1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 #include <linux/sched/signal.h>
25
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
29
30 #include "smp.h"
31 #include "hci_request.h"
32
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
36
hci_req_init(struct hci_request * req,struct hci_dev * hdev)37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38 {
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42 }
43
hci_req_purge(struct hci_request * req)44 void hci_req_purge(struct hci_request *req)
45 {
46 skb_queue_purge(&req->cmd_q);
47 }
48
hci_req_status_pend(struct hci_dev * hdev)49 bool hci_req_status_pend(struct hci_dev *hdev)
50 {
51 return hdev->req_status == HCI_REQ_PEND;
52 }
53
req_run(struct hci_request * req,hci_req_complete_t complete,hci_req_complete_skb_t complete_skb)54 static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 hci_req_complete_skb_t complete_skb)
56 {
57 struct hci_dev *hdev = req->hdev;
58 struct sk_buff *skb;
59 unsigned long flags;
60
61 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
62
63 /* If an error occurred during request building, remove all HCI
64 * commands queued on the HCI request queue.
65 */
66 if (req->err) {
67 skb_queue_purge(&req->cmd_q);
68 return req->err;
69 }
70
71 /* Do not allow empty requests */
72 if (skb_queue_empty(&req->cmd_q))
73 return -ENODATA;
74
75 skb = skb_peek_tail(&req->cmd_q);
76 if (complete) {
77 bt_cb(skb)->hci.req_complete = complete;
78 } else if (complete_skb) {
79 bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
81 }
82
83 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
86
87 queue_work(hdev->workqueue, &hdev->cmd_work);
88
89 return 0;
90 }
91
hci_req_run(struct hci_request * req,hci_req_complete_t complete)92 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
93 {
94 return req_run(req, complete, NULL);
95 }
96
hci_req_run_skb(struct hci_request * req,hci_req_complete_skb_t complete)97 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
98 {
99 return req_run(req, NULL, complete);
100 }
101
hci_req_sync_complete(struct hci_dev * hdev,u8 result,u16 opcode,struct sk_buff * skb)102 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
103 struct sk_buff *skb)
104 {
105 BT_DBG("%s result 0x%2.2x", hdev->name, result);
106
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 if (skb)
111 hdev->req_skb = skb_get(skb);
112 wake_up_interruptible(&hdev->req_wait_q);
113 }
114 }
115
hci_req_sync_cancel(struct hci_dev * hdev,int err)116 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117 {
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
119
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
124 }
125 }
126
__hci_cmd_sync_ev(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout)127 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 const void *param, u8 event, u32 timeout)
129 {
130 struct hci_request req;
131 struct sk_buff *skb;
132 int err = 0;
133
134 BT_DBG("%s", hdev->name);
135
136 hci_req_init(&req, hdev);
137
138 hci_req_add_ev(&req, opcode, plen, param, event);
139
140 hdev->req_status = HCI_REQ_PEND;
141
142 err = hci_req_run_skb(&req, hci_req_sync_complete);
143 if (err < 0)
144 return ERR_PTR(err);
145
146 err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 hdev->req_status != HCI_REQ_PEND, timeout);
148
149 if (err == -ERESTARTSYS)
150 return ERR_PTR(-EINTR);
151
152 switch (hdev->req_status) {
153 case HCI_REQ_DONE:
154 err = -bt_to_errno(hdev->req_result);
155 break;
156
157 case HCI_REQ_CANCELED:
158 err = -hdev->req_result;
159 break;
160
161 default:
162 err = -ETIMEDOUT;
163 break;
164 }
165
166 hdev->req_status = hdev->req_result = 0;
167 skb = hdev->req_skb;
168 hdev->req_skb = NULL;
169
170 BT_DBG("%s end: err %d", hdev->name, err);
171
172 if (err < 0) {
173 kfree_skb(skb);
174 return ERR_PTR(err);
175 }
176
177 if (!skb)
178 return ERR_PTR(-ENODATA);
179
180 return skb;
181 }
182 EXPORT_SYMBOL(__hci_cmd_sync_ev);
183
__hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)184 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 const void *param, u32 timeout)
186 {
187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
188 }
189 EXPORT_SYMBOL(__hci_cmd_sync);
190
191 /* Execute request and wait for completion. */
__hci_req_sync(struct hci_dev * hdev,int (* func)(struct hci_request * req,unsigned long opt),unsigned long opt,u32 timeout,u8 * hci_status)192 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
193 unsigned long opt),
194 unsigned long opt, u32 timeout, u8 *hci_status)
195 {
196 struct hci_request req;
197 int err = 0;
198
199 BT_DBG("%s start", hdev->name);
200
201 hci_req_init(&req, hdev);
202
203 hdev->req_status = HCI_REQ_PEND;
204
205 err = func(&req, opt);
206 if (err) {
207 if (hci_status)
208 *hci_status = HCI_ERROR_UNSPECIFIED;
209 return err;
210 }
211
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
213 if (err < 0) {
214 hdev->req_status = 0;
215
216 /* ENODATA means the HCI request command queue is empty.
217 * This can happen when a request with conditionals doesn't
218 * trigger any commands to be sent. This is normal behavior
219 * and should not trigger an error return.
220 */
221 if (err == -ENODATA) {
222 if (hci_status)
223 *hci_status = 0;
224 return 0;
225 }
226
227 if (hci_status)
228 *hci_status = HCI_ERROR_UNSPECIFIED;
229
230 return err;
231 }
232
233 err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 hdev->req_status != HCI_REQ_PEND, timeout);
235
236 if (err == -ERESTARTSYS)
237 return -EINTR;
238
239 switch (hdev->req_status) {
240 case HCI_REQ_DONE:
241 err = -bt_to_errno(hdev->req_result);
242 if (hci_status)
243 *hci_status = hdev->req_result;
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 if (hci_status)
249 *hci_status = HCI_ERROR_UNSPECIFIED;
250 break;
251
252 default:
253 err = -ETIMEDOUT;
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
256 break;
257 }
258
259 kfree_skb(hdev->req_skb);
260 hdev->req_skb = NULL;
261 hdev->req_status = hdev->req_result = 0;
262
263 BT_DBG("%s end: err %d", hdev->name, err);
264
265 return err;
266 }
267
hci_req_sync(struct hci_dev * hdev,int (* req)(struct hci_request * req,unsigned long opt),unsigned long opt,u32 timeout,u8 * hci_status)268 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
269 unsigned long opt),
270 unsigned long opt, u32 timeout, u8 *hci_status)
271 {
272 int ret;
273
274 if (!test_bit(HCI_UP, &hdev->flags))
275 return -ENETDOWN;
276
277 /* Serialize all requests */
278 hci_req_sync_lock(hdev);
279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 hci_req_sync_unlock(hdev);
281
282 return ret;
283 }
284
hci_prepare_cmd(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)285 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
286 const void *param)
287 {
288 int len = HCI_COMMAND_HDR_SIZE + plen;
289 struct hci_command_hdr *hdr;
290 struct sk_buff *skb;
291
292 skb = bt_skb_alloc(len, GFP_ATOMIC);
293 if (!skb)
294 return NULL;
295
296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 hdr->opcode = cpu_to_le16(opcode);
298 hdr->plen = plen;
299
300 if (plen)
301 skb_put_data(skb, param, plen);
302
303 BT_DBG("skb len %d", skb->len);
304
305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 hci_skb_opcode(skb) = opcode;
307
308 return skb;
309 }
310
311 /* Queue a command to an asynchronous HCI request */
hci_req_add_ev(struct hci_request * req,u16 opcode,u32 plen,const void * param,u8 event)312 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 const void *param, u8 event)
314 {
315 struct hci_dev *hdev = req->hdev;
316 struct sk_buff *skb;
317
318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
319
320 /* If an error occurred during request building, there is no point in
321 * queueing the HCI command. We can simply return.
322 */
323 if (req->err)
324 return;
325
326 skb = hci_prepare_cmd(hdev, opcode, plen, param);
327 if (!skb) {
328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
329 opcode);
330 req->err = -ENOMEM;
331 return;
332 }
333
334 if (skb_queue_empty(&req->cmd_q))
335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336
337 bt_cb(skb)->hci.req_event = event;
338
339 skb_queue_tail(&req->cmd_q, skb);
340 }
341
hci_req_add(struct hci_request * req,u16 opcode,u32 plen,const void * param)342 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
343 const void *param)
344 {
345 hci_req_add_ev(req, opcode, plen, param, 0);
346 }
347
__hci_req_write_fast_connectable(struct hci_request * req,bool enable)348 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
349 {
350 struct hci_dev *hdev = req->hdev;
351 struct hci_cp_write_page_scan_activity acp;
352 u8 type;
353
354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
355 return;
356
357 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
358 return;
359
360 if (enable) {
361 type = PAGE_SCAN_TYPE_INTERLACED;
362
363 /* 160 msec page scan interval */
364 acp.interval = cpu_to_le16(0x0100);
365 } else {
366 type = hdev->def_page_scan_type;
367 acp.interval = cpu_to_le16(hdev->def_page_scan_int);
368 }
369
370 acp.window = cpu_to_le16(hdev->def_page_scan_window);
371
372 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
373 __cpu_to_le16(hdev->page_scan_window) != acp.window)
374 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
375 sizeof(acp), &acp);
376
377 if (hdev->page_scan_type != type)
378 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
379 }
380
381 /* This function controls the background scanning based on hdev->pend_le_conns
382 * list. If there are pending LE connection we start the background scanning,
383 * otherwise we stop it.
384 *
385 * This function requires the caller holds hdev->lock.
386 */
__hci_update_background_scan(struct hci_request * req)387 static void __hci_update_background_scan(struct hci_request *req)
388 {
389 struct hci_dev *hdev = req->hdev;
390
391 if (!test_bit(HCI_UP, &hdev->flags) ||
392 test_bit(HCI_INIT, &hdev->flags) ||
393 hci_dev_test_flag(hdev, HCI_SETUP) ||
394 hci_dev_test_flag(hdev, HCI_CONFIG) ||
395 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
396 hci_dev_test_flag(hdev, HCI_UNREGISTER))
397 return;
398
399 /* No point in doing scanning if LE support hasn't been enabled */
400 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
401 return;
402
403 /* If discovery is active don't interfere with it */
404 if (hdev->discovery.state != DISCOVERY_STOPPED)
405 return;
406
407 /* Reset RSSI and UUID filters when starting background scanning
408 * since these filters are meant for service discovery only.
409 *
410 * The Start Discovery and Start Service Discovery operations
411 * ensure to set proper values for RSSI threshold and UUID
412 * filter list. So it is safe to just reset them here.
413 */
414 hci_discovery_filter_clear(hdev);
415
416 BT_DBG("%s ADV monitoring is %s", hdev->name,
417 hci_is_adv_monitoring(hdev) ? "on" : "off");
418
419 if (list_empty(&hdev->pend_le_conns) &&
420 list_empty(&hdev->pend_le_reports) &&
421 !hci_is_adv_monitoring(hdev)) {
422 /* If there is no pending LE connections or devices
423 * to be scanned for or no ADV monitors, we should stop the
424 * background scanning.
425 */
426
427 /* If controller is not scanning we are done. */
428 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
429 return;
430
431 hci_req_add_le_scan_disable(req, false);
432
433 BT_DBG("%s stopping background scanning", hdev->name);
434 } else {
435 /* If there is at least one pending LE connection, we should
436 * keep the background scan running.
437 */
438
439 /* If controller is connecting, we should not start scanning
440 * since some controllers are not able to scan and connect at
441 * the same time.
442 */
443 if (hci_lookup_le_connect(hdev))
444 return;
445
446 /* If controller is currently scanning, we stop it to ensure we
447 * don't miss any advertising (due to duplicates filter).
448 */
449 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
450 hci_req_add_le_scan_disable(req, false);
451
452 hci_req_add_le_passive_scan(req);
453
454 BT_DBG("%s starting background scanning", hdev->name);
455 }
456 }
457
__hci_req_update_name(struct hci_request * req)458 void __hci_req_update_name(struct hci_request *req)
459 {
460 struct hci_dev *hdev = req->hdev;
461 struct hci_cp_write_local_name cp;
462
463 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
464
465 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
466 }
467
468 #define PNP_INFO_SVCLASS_ID 0x1200
469
create_uuid16_list(struct hci_dev * hdev,u8 * data,ptrdiff_t len)470 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
471 {
472 u8 *ptr = data, *uuids_start = NULL;
473 struct bt_uuid *uuid;
474
475 if (len < 4)
476 return ptr;
477
478 list_for_each_entry(uuid, &hdev->uuids, list) {
479 u16 uuid16;
480
481 if (uuid->size != 16)
482 continue;
483
484 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
485 if (uuid16 < 0x1100)
486 continue;
487
488 if (uuid16 == PNP_INFO_SVCLASS_ID)
489 continue;
490
491 if (!uuids_start) {
492 uuids_start = ptr;
493 uuids_start[0] = 1;
494 uuids_start[1] = EIR_UUID16_ALL;
495 ptr += 2;
496 }
497
498 /* Stop if not enough space to put next UUID */
499 if ((ptr - data) + sizeof(u16) > len) {
500 uuids_start[1] = EIR_UUID16_SOME;
501 break;
502 }
503
504 *ptr++ = (uuid16 & 0x00ff);
505 *ptr++ = (uuid16 & 0xff00) >> 8;
506 uuids_start[0] += sizeof(uuid16);
507 }
508
509 return ptr;
510 }
511
create_uuid32_list(struct hci_dev * hdev,u8 * data,ptrdiff_t len)512 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
513 {
514 u8 *ptr = data, *uuids_start = NULL;
515 struct bt_uuid *uuid;
516
517 if (len < 6)
518 return ptr;
519
520 list_for_each_entry(uuid, &hdev->uuids, list) {
521 if (uuid->size != 32)
522 continue;
523
524 if (!uuids_start) {
525 uuids_start = ptr;
526 uuids_start[0] = 1;
527 uuids_start[1] = EIR_UUID32_ALL;
528 ptr += 2;
529 }
530
531 /* Stop if not enough space to put next UUID */
532 if ((ptr - data) + sizeof(u32) > len) {
533 uuids_start[1] = EIR_UUID32_SOME;
534 break;
535 }
536
537 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
538 ptr += sizeof(u32);
539 uuids_start[0] += sizeof(u32);
540 }
541
542 return ptr;
543 }
544
create_uuid128_list(struct hci_dev * hdev,u8 * data,ptrdiff_t len)545 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
546 {
547 u8 *ptr = data, *uuids_start = NULL;
548 struct bt_uuid *uuid;
549
550 if (len < 18)
551 return ptr;
552
553 list_for_each_entry(uuid, &hdev->uuids, list) {
554 if (uuid->size != 128)
555 continue;
556
557 if (!uuids_start) {
558 uuids_start = ptr;
559 uuids_start[0] = 1;
560 uuids_start[1] = EIR_UUID128_ALL;
561 ptr += 2;
562 }
563
564 /* Stop if not enough space to put next UUID */
565 if ((ptr - data) + 16 > len) {
566 uuids_start[1] = EIR_UUID128_SOME;
567 break;
568 }
569
570 memcpy(ptr, uuid->uuid, 16);
571 ptr += 16;
572 uuids_start[0] += 16;
573 }
574
575 return ptr;
576 }
577
create_eir(struct hci_dev * hdev,u8 * data)578 static void create_eir(struct hci_dev *hdev, u8 *data)
579 {
580 u8 *ptr = data;
581 size_t name_len;
582
583 name_len = strlen(hdev->dev_name);
584
585 if (name_len > 0) {
586 /* EIR Data type */
587 if (name_len > 48) {
588 name_len = 48;
589 ptr[1] = EIR_NAME_SHORT;
590 } else
591 ptr[1] = EIR_NAME_COMPLETE;
592
593 /* EIR Data length */
594 ptr[0] = name_len + 1;
595
596 memcpy(ptr + 2, hdev->dev_name, name_len);
597
598 ptr += (name_len + 2);
599 }
600
601 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
602 ptr[0] = 2;
603 ptr[1] = EIR_TX_POWER;
604 ptr[2] = (u8) hdev->inq_tx_power;
605
606 ptr += 3;
607 }
608
609 if (hdev->devid_source > 0) {
610 ptr[0] = 9;
611 ptr[1] = EIR_DEVICE_ID;
612
613 put_unaligned_le16(hdev->devid_source, ptr + 2);
614 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
615 put_unaligned_le16(hdev->devid_product, ptr + 6);
616 put_unaligned_le16(hdev->devid_version, ptr + 8);
617
618 ptr += 10;
619 }
620
621 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
622 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
623 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624 }
625
__hci_req_update_eir(struct hci_request * req)626 void __hci_req_update_eir(struct hci_request *req)
627 {
628 struct hci_dev *hdev = req->hdev;
629 struct hci_cp_write_eir cp;
630
631 if (!hdev_is_powered(hdev))
632 return;
633
634 if (!lmp_ext_inq_capable(hdev))
635 return;
636
637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
638 return;
639
640 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
641 return;
642
643 memset(&cp, 0, sizeof(cp));
644
645 create_eir(hdev, cp.data);
646
647 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
648 return;
649
650 memcpy(hdev->eir, cp.data, sizeof(cp.data));
651
652 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
653 }
654
hci_req_add_le_scan_disable(struct hci_request * req,bool rpa_le_conn)655 void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
656 {
657 struct hci_dev *hdev = req->hdev;
658
659 if (hdev->scanning_paused) {
660 bt_dev_dbg(hdev, "Scanning is paused for suspend");
661 return;
662 }
663
664 if (use_ext_scan(hdev)) {
665 struct hci_cp_le_set_ext_scan_enable cp;
666
667 memset(&cp, 0, sizeof(cp));
668 cp.enable = LE_SCAN_DISABLE;
669 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
670 &cp);
671 } else {
672 struct hci_cp_le_set_scan_enable cp;
673
674 memset(&cp, 0, sizeof(cp));
675 cp.enable = LE_SCAN_DISABLE;
676 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
677 }
678
679 /* Disable address resolution */
680 if (use_ll_privacy(hdev) &&
681 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
682 hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
683 __u8 enable = 0x00;
684
685 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
686 }
687 }
688
del_from_white_list(struct hci_request * req,bdaddr_t * bdaddr,u8 bdaddr_type)689 static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
690 u8 bdaddr_type)
691 {
692 struct hci_cp_le_del_from_white_list cp;
693
694 cp.bdaddr_type = bdaddr_type;
695 bacpy(&cp.bdaddr, bdaddr);
696
697 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
698 cp.bdaddr_type);
699 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
700
701 if (use_ll_privacy(req->hdev)) {
702 struct smp_irk *irk;
703
704 irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
705 if (irk) {
706 struct hci_cp_le_del_from_resolv_list cp;
707
708 cp.bdaddr_type = bdaddr_type;
709 bacpy(&cp.bdaddr, bdaddr);
710
711 hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
712 sizeof(cp), &cp);
713 }
714 }
715 }
716
717 /* Adds connection to white list if needed. On error, returns -1. */
add_to_white_list(struct hci_request * req,struct hci_conn_params * params,u8 * num_entries,bool allow_rpa)718 static int add_to_white_list(struct hci_request *req,
719 struct hci_conn_params *params, u8 *num_entries,
720 bool allow_rpa)
721 {
722 struct hci_cp_le_add_to_white_list cp;
723 struct hci_dev *hdev = req->hdev;
724
725 /* Already in white list */
726 if (hci_bdaddr_list_lookup(&hdev->le_white_list, ¶ms->addr,
727 params->addr_type))
728 return 0;
729
730 /* Select filter policy to accept all advertising */
731 if (*num_entries >= hdev->le_white_list_size)
732 return -1;
733
734 /* White list can not be used with RPAs */
735 if (!allow_rpa && !use_ll_privacy(hdev) &&
736 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) {
737 return -1;
738 }
739
740 /* During suspend, only wakeable devices can be in whitelist */
741 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
742 params->current_flags))
743 return 0;
744
745 *num_entries += 1;
746 cp.bdaddr_type = params->addr_type;
747 bacpy(&cp.bdaddr, ¶ms->addr);
748
749 bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
750 cp.bdaddr_type);
751 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
752
753 if (use_ll_privacy(hdev)) {
754 struct smp_irk *irk;
755
756 irk = hci_find_irk_by_addr(hdev, ¶ms->addr,
757 params->addr_type);
758 if (irk) {
759 struct hci_cp_le_add_to_resolv_list cp;
760
761 cp.bdaddr_type = params->addr_type;
762 bacpy(&cp.bdaddr, ¶ms->addr);
763 memcpy(cp.peer_irk, irk->val, 16);
764
765 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
766 memcpy(cp.local_irk, hdev->irk, 16);
767 else
768 memset(cp.local_irk, 0, 16);
769
770 hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
771 sizeof(cp), &cp);
772 }
773 }
774
775 return 0;
776 }
777
update_white_list(struct hci_request * req)778 static u8 update_white_list(struct hci_request *req)
779 {
780 struct hci_dev *hdev = req->hdev;
781 struct hci_conn_params *params;
782 struct bdaddr_list *b;
783 u8 num_entries = 0;
784 bool pend_conn, pend_report;
785 /* We allow whitelisting even with RPAs in suspend. In the worst case,
786 * we won't be able to wake from devices that use the privacy1.2
787 * features. Additionally, once we support privacy1.2 and IRK
788 * offloading, we can update this to also check for those conditions.
789 */
790 bool allow_rpa = hdev->suspended;
791
792 /* Go through the current white list programmed into the
793 * controller one by one and check if that address is still
794 * in the list of pending connections or list of devices to
795 * report. If not present in either list, then queue the
796 * command to remove it from the controller.
797 */
798 list_for_each_entry(b, &hdev->le_white_list, list) {
799 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
800 &b->bdaddr,
801 b->bdaddr_type);
802 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
803 &b->bdaddr,
804 b->bdaddr_type);
805
806 /* If the device is not likely to connect or report,
807 * remove it from the whitelist.
808 */
809 if (!pend_conn && !pend_report) {
810 del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
811 continue;
812 }
813
814 /* White list can not be used with RPAs */
815 if (!allow_rpa && !use_ll_privacy(hdev) &&
816 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
817 return 0x00;
818 }
819
820 num_entries++;
821 }
822
823 /* Since all no longer valid white list entries have been
824 * removed, walk through the list of pending connections
825 * and ensure that any new device gets programmed into
826 * the controller.
827 *
828 * If the list of the devices is larger than the list of
829 * available white list entries in the controller, then
830 * just abort and return filer policy value to not use the
831 * white list.
832 */
833 list_for_each_entry(params, &hdev->pend_le_conns, action) {
834 if (add_to_white_list(req, params, &num_entries, allow_rpa))
835 return 0x00;
836 }
837
838 /* After adding all new pending connections, walk through
839 * the list of pending reports and also add these to the
840 * white list if there is still space. Abort if space runs out.
841 */
842 list_for_each_entry(params, &hdev->pend_le_reports, action) {
843 if (add_to_white_list(req, params, &num_entries, allow_rpa))
844 return 0x00;
845 }
846
847 /* Once the controller offloading of advertisement monitor is in place,
848 * the if condition should include the support of MSFT extension
849 * support. If suspend is ongoing, whitelist should be the default to
850 * prevent waking by random advertisements.
851 */
852 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended)
853 return 0x00;
854
855 /* Select filter policy to use white list */
856 return 0x01;
857 }
858
scan_use_rpa(struct hci_dev * hdev)859 static bool scan_use_rpa(struct hci_dev *hdev)
860 {
861 return hci_dev_test_flag(hdev, HCI_PRIVACY);
862 }
863
hci_req_start_scan(struct hci_request * req,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy,bool addr_resolv)864 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
865 u16 window, u8 own_addr_type, u8 filter_policy,
866 bool addr_resolv)
867 {
868 struct hci_dev *hdev = req->hdev;
869
870 if (hdev->scanning_paused) {
871 bt_dev_dbg(hdev, "Scanning is paused for suspend");
872 return;
873 }
874
875 if (use_ll_privacy(hdev) &&
876 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
877 addr_resolv) {
878 u8 enable = 0x01;
879
880 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
881 }
882
883 /* Use ext scanning if set ext scan param and ext scan enable is
884 * supported
885 */
886 if (use_ext_scan(hdev)) {
887 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
888 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
889 struct hci_cp_le_scan_phy_params *phy_params;
890 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
891 u32 plen;
892
893 ext_param_cp = (void *)data;
894 phy_params = (void *)ext_param_cp->data;
895
896 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
897 ext_param_cp->own_addr_type = own_addr_type;
898 ext_param_cp->filter_policy = filter_policy;
899
900 plen = sizeof(*ext_param_cp);
901
902 if (scan_1m(hdev) || scan_2m(hdev)) {
903 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
904
905 memset(phy_params, 0, sizeof(*phy_params));
906 phy_params->type = type;
907 phy_params->interval = cpu_to_le16(interval);
908 phy_params->window = cpu_to_le16(window);
909
910 plen += sizeof(*phy_params);
911 phy_params++;
912 }
913
914 if (scan_coded(hdev)) {
915 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
916
917 memset(phy_params, 0, sizeof(*phy_params));
918 phy_params->type = type;
919 phy_params->interval = cpu_to_le16(interval);
920 phy_params->window = cpu_to_le16(window);
921
922 plen += sizeof(*phy_params);
923 phy_params++;
924 }
925
926 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
927 plen, ext_param_cp);
928
929 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
930 ext_enable_cp.enable = LE_SCAN_ENABLE;
931 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
932
933 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
934 sizeof(ext_enable_cp), &ext_enable_cp);
935 } else {
936 struct hci_cp_le_set_scan_param param_cp;
937 struct hci_cp_le_set_scan_enable enable_cp;
938
939 memset(¶m_cp, 0, sizeof(param_cp));
940 param_cp.type = type;
941 param_cp.interval = cpu_to_le16(interval);
942 param_cp.window = cpu_to_le16(window);
943 param_cp.own_address_type = own_addr_type;
944 param_cp.filter_policy = filter_policy;
945 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
946 ¶m_cp);
947
948 memset(&enable_cp, 0, sizeof(enable_cp));
949 enable_cp.enable = LE_SCAN_ENABLE;
950 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
951 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
952 &enable_cp);
953 }
954 }
955
956 /* Returns true if an le connection is in the scanning state */
hci_is_le_conn_scanning(struct hci_dev * hdev)957 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
958 {
959 struct hci_conn_hash *h = &hdev->conn_hash;
960 struct hci_conn *c;
961
962 rcu_read_lock();
963
964 list_for_each_entry_rcu(c, &h->list, list) {
965 if (c->type == LE_LINK && c->state == BT_CONNECT &&
966 test_bit(HCI_CONN_SCANNING, &c->flags)) {
967 rcu_read_unlock();
968 return true;
969 }
970 }
971
972 rcu_read_unlock();
973
974 return false;
975 }
976
977 /* Ensure to call hci_req_add_le_scan_disable() first to disable the
978 * controller based address resolution to be able to reconfigure
979 * resolving list.
980 */
hci_req_add_le_passive_scan(struct hci_request * req)981 void hci_req_add_le_passive_scan(struct hci_request *req)
982 {
983 struct hci_dev *hdev = req->hdev;
984 u8 own_addr_type;
985 u8 filter_policy;
986 u16 window, interval;
987 /* Background scanning should run with address resolution */
988 bool addr_resolv = true;
989
990 if (hdev->scanning_paused) {
991 bt_dev_dbg(hdev, "Scanning is paused for suspend");
992 return;
993 }
994
995 /* Set require_privacy to false since no SCAN_REQ are send
996 * during passive scanning. Not using an non-resolvable address
997 * here is important so that peer devices using direct
998 * advertising with our address will be correctly reported
999 * by the controller.
1000 */
1001 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
1002 &own_addr_type))
1003 return;
1004
1005 /* Adding or removing entries from the white list must
1006 * happen before enabling scanning. The controller does
1007 * not allow white list modification while scanning.
1008 */
1009 filter_policy = update_white_list(req);
1010
1011 /* When the controller is using random resolvable addresses and
1012 * with that having LE privacy enabled, then controllers with
1013 * Extended Scanner Filter Policies support can now enable support
1014 * for handling directed advertising.
1015 *
1016 * So instead of using filter polices 0x00 (no whitelist)
1017 * and 0x01 (whitelist enabled) use the new filter policies
1018 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
1019 */
1020 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1021 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
1022 filter_policy |= 0x02;
1023
1024 if (hdev->suspended) {
1025 window = hdev->le_scan_window_suspend;
1026 interval = hdev->le_scan_int_suspend;
1027 } else if (hci_is_le_conn_scanning(hdev)) {
1028 window = hdev->le_scan_window_connect;
1029 interval = hdev->le_scan_int_connect;
1030 } else if (hci_is_adv_monitoring(hdev)) {
1031 window = hdev->le_scan_window_adv_monitor;
1032 interval = hdev->le_scan_int_adv_monitor;
1033 } else {
1034 window = hdev->le_scan_window;
1035 interval = hdev->le_scan_interval;
1036 }
1037
1038 bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
1039 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1040 own_addr_type, filter_policy, addr_resolv);
1041 }
1042
get_adv_instance_scan_rsp_len(struct hci_dev * hdev,u8 instance)1043 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
1044 {
1045 struct adv_info *adv_instance;
1046
1047 /* Instance 0x00 always set local name */
1048 if (instance == 0x00)
1049 return 1;
1050
1051 adv_instance = hci_find_adv_instance(hdev, instance);
1052 if (!adv_instance)
1053 return 0;
1054
1055 /* TODO: Take into account the "appearance" and "local-name" flags here.
1056 * These are currently being ignored as they are not supported.
1057 */
1058 return adv_instance->scan_rsp_len;
1059 }
1060
hci_req_clear_event_filter(struct hci_request * req)1061 static void hci_req_clear_event_filter(struct hci_request *req)
1062 {
1063 struct hci_cp_set_event_filter f;
1064
1065 memset(&f, 0, sizeof(f));
1066 f.flt_type = HCI_FLT_CLEAR_ALL;
1067 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
1068
1069 /* Update page scan state (since we may have modified it when setting
1070 * the event filter).
1071 */
1072 __hci_req_update_scan(req);
1073 }
1074
hci_req_set_event_filter(struct hci_request * req)1075 static void hci_req_set_event_filter(struct hci_request *req)
1076 {
1077 struct bdaddr_list_with_flags *b;
1078 struct hci_cp_set_event_filter f;
1079 struct hci_dev *hdev = req->hdev;
1080 u8 scan = SCAN_DISABLED;
1081
1082 /* Always clear event filter when starting */
1083 hci_req_clear_event_filter(req);
1084
1085 list_for_each_entry(b, &hdev->whitelist, list) {
1086 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1087 b->current_flags))
1088 continue;
1089
1090 memset(&f, 0, sizeof(f));
1091 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
1092 f.flt_type = HCI_FLT_CONN_SETUP;
1093 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
1094 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
1095
1096 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
1097 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1098 scan = SCAN_PAGE;
1099 }
1100
1101 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1102 }
1103
hci_req_config_le_suspend_scan(struct hci_request * req)1104 static void hci_req_config_le_suspend_scan(struct hci_request *req)
1105 {
1106 /* Before changing params disable scan if enabled */
1107 if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN))
1108 hci_req_add_le_scan_disable(req, false);
1109
1110 /* Configure params and enable scanning */
1111 hci_req_add_le_passive_scan(req);
1112
1113 /* Block suspend notifier on response */
1114 set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
1115 }
1116
cancel_adv_timeout(struct hci_dev * hdev)1117 static void cancel_adv_timeout(struct hci_dev *hdev)
1118 {
1119 if (hdev->adv_instance_timeout) {
1120 hdev->adv_instance_timeout = 0;
1121 cancel_delayed_work(&hdev->adv_instance_expire);
1122 }
1123 }
1124
1125 /* This function requires the caller holds hdev->lock */
hci_suspend_adv_instances(struct hci_request * req)1126 static void hci_suspend_adv_instances(struct hci_request *req)
1127 {
1128 bt_dev_dbg(req->hdev, "Suspending advertising instances");
1129
1130 /* Call to disable any advertisements active on the controller.
1131 * This will succeed even if no advertisements are configured.
1132 */
1133 __hci_req_disable_advertising(req);
1134
1135 /* If we are using software rotation, pause the loop */
1136 if (!ext_adv_capable(req->hdev))
1137 cancel_adv_timeout(req->hdev);
1138 }
1139
1140 /* This function requires the caller holds hdev->lock */
hci_resume_adv_instances(struct hci_request * req)1141 static void hci_resume_adv_instances(struct hci_request *req)
1142 {
1143 struct adv_info *adv;
1144
1145 bt_dev_dbg(req->hdev, "Resuming advertising instances");
1146
1147 if (ext_adv_capable(req->hdev)) {
1148 /* Call for each tracked instance to be re-enabled */
1149 list_for_each_entry(adv, &req->hdev->adv_instances, list) {
1150 __hci_req_enable_ext_advertising(req,
1151 adv->instance);
1152 }
1153
1154 } else {
1155 /* Schedule for most recent instance to be restarted and begin
1156 * the software rotation loop
1157 */
1158 __hci_req_schedule_adv_instance(req,
1159 req->hdev->cur_adv_instance,
1160 true);
1161 }
1162 }
1163
suspend_req_complete(struct hci_dev * hdev,u8 status,u16 opcode)1164 static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1165 {
1166 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1167 status);
1168 if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1169 test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1170 wake_up(&hdev->suspend_wait_q);
1171 }
1172 }
1173
1174 /* Call with hci_dev_lock */
hci_req_prepare_suspend(struct hci_dev * hdev,enum suspended_state next)1175 void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1176 {
1177 int old_state;
1178 struct hci_conn *conn;
1179 struct hci_request req;
1180 u8 page_scan;
1181 int disconnect_counter;
1182
1183 if (next == hdev->suspend_state) {
1184 bt_dev_dbg(hdev, "Same state before and after: %d", next);
1185 goto done;
1186 }
1187
1188 hdev->suspend_state = next;
1189 hci_req_init(&req, hdev);
1190
1191 if (next == BT_SUSPEND_DISCONNECT) {
1192 /* Mark device as suspended */
1193 hdev->suspended = true;
1194
1195 /* Pause discovery if not already stopped */
1196 old_state = hdev->discovery.state;
1197 if (old_state != DISCOVERY_STOPPED) {
1198 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1199 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1200 queue_work(hdev->req_workqueue, &hdev->discov_update);
1201 }
1202
1203 hdev->discovery_paused = true;
1204 hdev->discovery_old_state = old_state;
1205
1206 /* Stop directed advertising */
1207 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1208 if (old_state) {
1209 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1210 cancel_delayed_work(&hdev->discov_off);
1211 queue_delayed_work(hdev->req_workqueue,
1212 &hdev->discov_off, 0);
1213 }
1214
1215 /* Pause other advertisements */
1216 if (hdev->adv_instance_cnt)
1217 hci_suspend_adv_instances(&req);
1218
1219 hdev->advertising_paused = true;
1220 hdev->advertising_old_state = old_state;
1221 /* Disable page scan */
1222 page_scan = SCAN_DISABLED;
1223 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);
1224
1225 /* Disable LE passive scan if enabled */
1226 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1227 hci_req_add_le_scan_disable(&req, false);
1228
1229 /* Mark task needing completion */
1230 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1231
1232 /* Prevent disconnects from causing scanning to be re-enabled */
1233 hdev->scanning_paused = true;
1234
1235 /* Run commands before disconnecting */
1236 hci_req_run(&req, suspend_req_complete);
1237
1238 disconnect_counter = 0;
1239 /* Soft disconnect everything (power off) */
1240 list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1241 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1242 disconnect_counter++;
1243 }
1244
1245 if (disconnect_counter > 0) {
1246 bt_dev_dbg(hdev,
1247 "Had %d disconnects. Will wait on them",
1248 disconnect_counter);
1249 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1250 }
1251 } else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1252 /* Unpause to take care of updating scanning params */
1253 hdev->scanning_paused = false;
1254 /* Enable event filter for paired devices */
1255 hci_req_set_event_filter(&req);
1256 /* Enable passive scan at lower duty cycle */
1257 hci_req_config_le_suspend_scan(&req);
1258 /* Pause scan changes again. */
1259 hdev->scanning_paused = true;
1260 hci_req_run(&req, suspend_req_complete);
1261 } else {
1262 hdev->suspended = false;
1263 hdev->scanning_paused = false;
1264
1265 hci_req_clear_event_filter(&req);
1266 /* Reset passive/background scanning to normal */
1267 hci_req_config_le_suspend_scan(&req);
1268
1269 /* Unpause directed advertising */
1270 hdev->advertising_paused = false;
1271 if (hdev->advertising_old_state) {
1272 set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1273 hdev->suspend_tasks);
1274 hci_dev_set_flag(hdev, HCI_ADVERTISING);
1275 queue_work(hdev->req_workqueue,
1276 &hdev->discoverable_update);
1277 hdev->advertising_old_state = 0;
1278 }
1279
1280 /* Resume other advertisements */
1281 if (hdev->adv_instance_cnt)
1282 hci_resume_adv_instances(&req);
1283
1284 /* Unpause discovery */
1285 hdev->discovery_paused = false;
1286 if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1287 hdev->discovery_old_state != DISCOVERY_STOPPING) {
1288 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1289 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1290 queue_work(hdev->req_workqueue, &hdev->discov_update);
1291 }
1292
1293 hci_req_run(&req, suspend_req_complete);
1294 }
1295
1296 hdev->suspend_state = next;
1297
1298 done:
1299 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1300 wake_up(&hdev->suspend_wait_q);
1301 }
1302
get_cur_adv_instance_scan_rsp_len(struct hci_dev * hdev)1303 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
1304 {
1305 u8 instance = hdev->cur_adv_instance;
1306 struct adv_info *adv_instance;
1307
1308 /* Instance 0x00 always set local name */
1309 if (instance == 0x00)
1310 return 1;
1311
1312 adv_instance = hci_find_adv_instance(hdev, instance);
1313 if (!adv_instance)
1314 return 0;
1315
1316 /* TODO: Take into account the "appearance" and "local-name" flags here.
1317 * These are currently being ignored as they are not supported.
1318 */
1319 return adv_instance->scan_rsp_len;
1320 }
1321
__hci_req_disable_advertising(struct hci_request * req)1322 void __hci_req_disable_advertising(struct hci_request *req)
1323 {
1324 if (ext_adv_capable(req->hdev)) {
1325 __hci_req_disable_ext_adv_instance(req, 0x00);
1326
1327 } else {
1328 u8 enable = 0x00;
1329
1330 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1331 }
1332 }
1333
get_adv_instance_flags(struct hci_dev * hdev,u8 instance)1334 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1335 {
1336 u32 flags;
1337 struct adv_info *adv_instance;
1338
1339 if (instance == 0x00) {
1340 /* Instance 0 always manages the "Tx Power" and "Flags"
1341 * fields
1342 */
1343 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1344
1345 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1346 * corresponds to the "connectable" instance flag.
1347 */
1348 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1349 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1350
1351 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1352 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1353 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1354 flags |= MGMT_ADV_FLAG_DISCOV;
1355
1356 return flags;
1357 }
1358
1359 adv_instance = hci_find_adv_instance(hdev, instance);
1360
1361 /* Return 0 when we got an invalid instance identifier. */
1362 if (!adv_instance)
1363 return 0;
1364
1365 return adv_instance->flags;
1366 }
1367
adv_use_rpa(struct hci_dev * hdev,uint32_t flags)1368 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1369 {
1370 /* If privacy is not enabled don't use RPA */
1371 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1372 return false;
1373
1374 /* If basic privacy mode is enabled use RPA */
1375 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1376 return true;
1377
1378 /* If limited privacy mode is enabled don't use RPA if we're
1379 * both discoverable and bondable.
1380 */
1381 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1382 hci_dev_test_flag(hdev, HCI_BONDABLE))
1383 return false;
1384
1385 /* We're neither bondable nor discoverable in the limited
1386 * privacy mode, therefore use RPA.
1387 */
1388 return true;
1389 }
1390
is_advertising_allowed(struct hci_dev * hdev,bool connectable)1391 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1392 {
1393 /* If there is no connection we are OK to advertise. */
1394 if (hci_conn_num(hdev, LE_LINK) == 0)
1395 return true;
1396
1397 /* Check le_states if there is any connection in slave role. */
1398 if (hdev->conn_hash.le_num_slave > 0) {
1399 /* Slave connection state and non connectable mode bit 20. */
1400 if (!connectable && !(hdev->le_states[2] & 0x10))
1401 return false;
1402
1403 /* Slave connection state and connectable mode bit 38
1404 * and scannable bit 21.
1405 */
1406 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1407 !(hdev->le_states[2] & 0x20)))
1408 return false;
1409 }
1410
1411 /* Check le_states if there is any connection in master role. */
1412 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1413 /* Master connection state and non connectable mode bit 18. */
1414 if (!connectable && !(hdev->le_states[2] & 0x02))
1415 return false;
1416
1417 /* Master connection state and connectable mode bit 35 and
1418 * scannable 19.
1419 */
1420 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1421 !(hdev->le_states[2] & 0x08)))
1422 return false;
1423 }
1424
1425 return true;
1426 }
1427
__hci_req_enable_advertising(struct hci_request * req)1428 void __hci_req_enable_advertising(struct hci_request *req)
1429 {
1430 struct hci_dev *hdev = req->hdev;
1431 struct hci_cp_le_set_adv_param cp;
1432 u8 own_addr_type, enable = 0x01;
1433 bool connectable;
1434 u16 adv_min_interval, adv_max_interval;
1435 u32 flags;
1436
1437 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1438
1439 /* If the "connectable" instance flag was not set, then choose between
1440 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1441 */
1442 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1443 mgmt_get_connectable(hdev);
1444
1445 if (!is_advertising_allowed(hdev, connectable))
1446 return;
1447
1448 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1449 __hci_req_disable_advertising(req);
1450
1451 /* Clear the HCI_LE_ADV bit temporarily so that the
1452 * hci_update_random_address knows that it's safe to go ahead
1453 * and write a new random address. The flag will be set back on
1454 * as soon as the SET_ADV_ENABLE HCI command completes.
1455 */
1456 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1457
1458 /* Set require_privacy to true only when non-connectable
1459 * advertising is used. In that case it is fine to use a
1460 * non-resolvable private address.
1461 */
1462 if (hci_update_random_address(req, !connectable,
1463 adv_use_rpa(hdev, flags),
1464 &own_addr_type) < 0)
1465 return;
1466
1467 memset(&cp, 0, sizeof(cp));
1468
1469 if (connectable) {
1470 cp.type = LE_ADV_IND;
1471
1472 adv_min_interval = hdev->le_adv_min_interval;
1473 adv_max_interval = hdev->le_adv_max_interval;
1474 } else {
1475 if (get_cur_adv_instance_scan_rsp_len(hdev))
1476 cp.type = LE_ADV_SCAN_IND;
1477 else
1478 cp.type = LE_ADV_NONCONN_IND;
1479
1480 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1481 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1482 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1483 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1484 } else {
1485 adv_min_interval = hdev->le_adv_min_interval;
1486 adv_max_interval = hdev->le_adv_max_interval;
1487 }
1488 }
1489
1490 cp.min_interval = cpu_to_le16(adv_min_interval);
1491 cp.max_interval = cpu_to_le16(adv_max_interval);
1492 cp.own_address_type = own_addr_type;
1493 cp.channel_map = hdev->le_adv_channel_map;
1494
1495 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1496
1497 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1498 }
1499
append_local_name(struct hci_dev * hdev,u8 * ptr,u8 ad_len)1500 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1501 {
1502 size_t short_len;
1503 size_t complete_len;
1504
1505 /* no space left for name (+ NULL + type + len) */
1506 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1507 return ad_len;
1508
1509 /* use complete name if present and fits */
1510 complete_len = strlen(hdev->dev_name);
1511 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1512 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1513 hdev->dev_name, complete_len + 1);
1514
1515 /* use short name if present */
1516 short_len = strlen(hdev->short_name);
1517 if (short_len)
1518 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1519 hdev->short_name, short_len + 1);
1520
1521 /* use shortened full name if present, we already know that name
1522 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1523 */
1524 if (complete_len) {
1525 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1526
1527 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1528 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1529
1530 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1531 sizeof(name));
1532 }
1533
1534 return ad_len;
1535 }
1536
append_appearance(struct hci_dev * hdev,u8 * ptr,u8 ad_len)1537 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1538 {
1539 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1540 }
1541
create_default_scan_rsp_data(struct hci_dev * hdev,u8 * ptr)1542 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1543 {
1544 u8 scan_rsp_len = 0;
1545
1546 if (hdev->appearance) {
1547 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1548 }
1549
1550 return append_local_name(hdev, ptr, scan_rsp_len);
1551 }
1552
create_instance_scan_rsp_data(struct hci_dev * hdev,u8 instance,u8 * ptr)1553 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1554 u8 *ptr)
1555 {
1556 struct adv_info *adv_instance;
1557 u32 instance_flags;
1558 u8 scan_rsp_len = 0;
1559
1560 adv_instance = hci_find_adv_instance(hdev, instance);
1561 if (!adv_instance)
1562 return 0;
1563
1564 instance_flags = adv_instance->flags;
1565
1566 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1567 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1568 }
1569
1570 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1571 adv_instance->scan_rsp_len);
1572
1573 scan_rsp_len += adv_instance->scan_rsp_len;
1574
1575 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1576 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1577
1578 return scan_rsp_len;
1579 }
1580
__hci_req_update_scan_rsp_data(struct hci_request * req,u8 instance)1581 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1582 {
1583 struct hci_dev *hdev = req->hdev;
1584 u8 len;
1585
1586 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1587 return;
1588
1589 if (ext_adv_capable(hdev)) {
1590 struct hci_cp_le_set_ext_scan_rsp_data cp;
1591
1592 memset(&cp, 0, sizeof(cp));
1593
1594 /* Extended scan response data doesn't allow a response to be
1595 * set if the instance isn't scannable.
1596 */
1597 if (get_adv_instance_scan_rsp_len(hdev, instance))
1598 len = create_instance_scan_rsp_data(hdev, instance,
1599 cp.data);
1600 else
1601 len = 0;
1602
1603 if (hdev->scan_rsp_data_len == len &&
1604 !memcmp(cp.data, hdev->scan_rsp_data, len))
1605 return;
1606
1607 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1608 hdev->scan_rsp_data_len = len;
1609
1610 cp.handle = instance;
1611 cp.length = len;
1612 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1613 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1614
1615 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1616 &cp);
1617 } else {
1618 struct hci_cp_le_set_scan_rsp_data cp;
1619
1620 memset(&cp, 0, sizeof(cp));
1621
1622 if (instance)
1623 len = create_instance_scan_rsp_data(hdev, instance,
1624 cp.data);
1625 else
1626 len = create_default_scan_rsp_data(hdev, cp.data);
1627
1628 if (hdev->scan_rsp_data_len == len &&
1629 !memcmp(cp.data, hdev->scan_rsp_data, len))
1630 return;
1631
1632 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1633 hdev->scan_rsp_data_len = len;
1634
1635 cp.length = len;
1636
1637 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1638 }
1639 }
1640
create_instance_adv_data(struct hci_dev * hdev,u8 instance,u8 * ptr)1641 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1642 {
1643 struct adv_info *adv_instance = NULL;
1644 u8 ad_len = 0, flags = 0;
1645 u32 instance_flags;
1646
1647 /* Return 0 when the current instance identifier is invalid. */
1648 if (instance) {
1649 adv_instance = hci_find_adv_instance(hdev, instance);
1650 if (!adv_instance)
1651 return 0;
1652 }
1653
1654 instance_flags = get_adv_instance_flags(hdev, instance);
1655
1656 /* If instance already has the flags set skip adding it once
1657 * again.
1658 */
1659 if (adv_instance && eir_get_data(adv_instance->adv_data,
1660 adv_instance->adv_data_len, EIR_FLAGS,
1661 NULL))
1662 goto skip_flags;
1663
1664 /* The Add Advertising command allows userspace to set both the general
1665 * and limited discoverable flags.
1666 */
1667 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1668 flags |= LE_AD_GENERAL;
1669
1670 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1671 flags |= LE_AD_LIMITED;
1672
1673 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1674 flags |= LE_AD_NO_BREDR;
1675
1676 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1677 /* If a discovery flag wasn't provided, simply use the global
1678 * settings.
1679 */
1680 if (!flags)
1681 flags |= mgmt_get_adv_discov_flags(hdev);
1682
1683 /* If flags would still be empty, then there is no need to
1684 * include the "Flags" AD field".
1685 */
1686 if (flags) {
1687 ptr[0] = 0x02;
1688 ptr[1] = EIR_FLAGS;
1689 ptr[2] = flags;
1690
1691 ad_len += 3;
1692 ptr += 3;
1693 }
1694 }
1695
1696 skip_flags:
1697 if (adv_instance) {
1698 memcpy(ptr, adv_instance->adv_data,
1699 adv_instance->adv_data_len);
1700 ad_len += adv_instance->adv_data_len;
1701 ptr += adv_instance->adv_data_len;
1702 }
1703
1704 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1705 s8 adv_tx_power;
1706
1707 if (ext_adv_capable(hdev)) {
1708 if (adv_instance)
1709 adv_tx_power = adv_instance->tx_power;
1710 else
1711 adv_tx_power = hdev->adv_tx_power;
1712 } else {
1713 adv_tx_power = hdev->adv_tx_power;
1714 }
1715
1716 /* Provide Tx Power only if we can provide a valid value for it */
1717 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1718 ptr[0] = 0x02;
1719 ptr[1] = EIR_TX_POWER;
1720 ptr[2] = (u8)adv_tx_power;
1721
1722 ad_len += 3;
1723 ptr += 3;
1724 }
1725 }
1726
1727 return ad_len;
1728 }
1729
__hci_req_update_adv_data(struct hci_request * req,u8 instance)1730 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1731 {
1732 struct hci_dev *hdev = req->hdev;
1733 u8 len;
1734
1735 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1736 return;
1737
1738 if (ext_adv_capable(hdev)) {
1739 struct hci_cp_le_set_ext_adv_data cp;
1740
1741 memset(&cp, 0, sizeof(cp));
1742
1743 len = create_instance_adv_data(hdev, instance, cp.data);
1744
1745 /* There's nothing to do if the data hasn't changed */
1746 if (hdev->adv_data_len == len &&
1747 memcmp(cp.data, hdev->adv_data, len) == 0)
1748 return;
1749
1750 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1751 hdev->adv_data_len = len;
1752
1753 cp.length = len;
1754 cp.handle = instance;
1755 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1756 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1757
1758 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1759 } else {
1760 struct hci_cp_le_set_adv_data cp;
1761
1762 memset(&cp, 0, sizeof(cp));
1763
1764 len = create_instance_adv_data(hdev, instance, cp.data);
1765
1766 /* There's nothing to do if the data hasn't changed */
1767 if (hdev->adv_data_len == len &&
1768 memcmp(cp.data, hdev->adv_data, len) == 0)
1769 return;
1770
1771 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1772 hdev->adv_data_len = len;
1773
1774 cp.length = len;
1775
1776 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1777 }
1778 }
1779
hci_req_update_adv_data(struct hci_dev * hdev,u8 instance)1780 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1781 {
1782 struct hci_request req;
1783
1784 hci_req_init(&req, hdev);
1785 __hci_req_update_adv_data(&req, instance);
1786
1787 return hci_req_run(&req, NULL);
1788 }
1789
enable_addr_resolution_complete(struct hci_dev * hdev,u8 status,u16 opcode)1790 static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
1791 u16 opcode)
1792 {
1793 BT_DBG("%s status %u", hdev->name, status);
1794 }
1795
hci_req_disable_address_resolution(struct hci_dev * hdev)1796 void hci_req_disable_address_resolution(struct hci_dev *hdev)
1797 {
1798 struct hci_request req;
1799 __u8 enable = 0x00;
1800
1801 if (!use_ll_privacy(hdev) &&
1802 !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1803 return;
1804
1805 hci_req_init(&req, hdev);
1806
1807 hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
1808
1809 hci_req_run(&req, enable_addr_resolution_complete);
1810 }
1811
adv_enable_complete(struct hci_dev * hdev,u8 status,u16 opcode)1812 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1813 {
1814 BT_DBG("%s status %u", hdev->name, status);
1815 }
1816
hci_req_reenable_advertising(struct hci_dev * hdev)1817 void hci_req_reenable_advertising(struct hci_dev *hdev)
1818 {
1819 struct hci_request req;
1820
1821 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1822 list_empty(&hdev->adv_instances))
1823 return;
1824
1825 hci_req_init(&req, hdev);
1826
1827 if (hdev->cur_adv_instance) {
1828 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1829 true);
1830 } else {
1831 if (ext_adv_capable(hdev)) {
1832 __hci_req_start_ext_adv(&req, 0x00);
1833 } else {
1834 __hci_req_update_adv_data(&req, 0x00);
1835 __hci_req_update_scan_rsp_data(&req, 0x00);
1836 __hci_req_enable_advertising(&req);
1837 }
1838 }
1839
1840 hci_req_run(&req, adv_enable_complete);
1841 }
1842
adv_timeout_expire(struct work_struct * work)1843 static void adv_timeout_expire(struct work_struct *work)
1844 {
1845 struct hci_dev *hdev = container_of(work, struct hci_dev,
1846 adv_instance_expire.work);
1847
1848 struct hci_request req;
1849 u8 instance;
1850
1851 BT_DBG("%s", hdev->name);
1852
1853 hci_dev_lock(hdev);
1854
1855 hdev->adv_instance_timeout = 0;
1856
1857 instance = hdev->cur_adv_instance;
1858 if (instance == 0x00)
1859 goto unlock;
1860
1861 hci_req_init(&req, hdev);
1862
1863 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1864
1865 if (list_empty(&hdev->adv_instances))
1866 __hci_req_disable_advertising(&req);
1867
1868 hci_req_run(&req, NULL);
1869
1870 unlock:
1871 hci_dev_unlock(hdev);
1872 }
1873
hci_get_random_address(struct hci_dev * hdev,bool require_privacy,bool use_rpa,struct adv_info * adv_instance,u8 * own_addr_type,bdaddr_t * rand_addr)1874 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1875 bool use_rpa, struct adv_info *adv_instance,
1876 u8 *own_addr_type, bdaddr_t *rand_addr)
1877 {
1878 int err;
1879
1880 bacpy(rand_addr, BDADDR_ANY);
1881
1882 /* If privacy is enabled use a resolvable private address. If
1883 * current RPA has expired then generate a new one.
1884 */
1885 if (use_rpa) {
1886 int to;
1887
1888 /* If Controller supports LL Privacy use own address type is
1889 * 0x03
1890 */
1891 if (use_ll_privacy(hdev))
1892 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
1893 else
1894 *own_addr_type = ADDR_LE_DEV_RANDOM;
1895
1896 if (adv_instance) {
1897 if (!adv_instance->rpa_expired &&
1898 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1899 return 0;
1900
1901 adv_instance->rpa_expired = false;
1902 } else {
1903 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1904 !bacmp(&hdev->random_addr, &hdev->rpa))
1905 return 0;
1906 }
1907
1908 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1909 if (err < 0) {
1910 bt_dev_err(hdev, "failed to generate new RPA");
1911 return err;
1912 }
1913
1914 bacpy(rand_addr, &hdev->rpa);
1915
1916 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917 if (adv_instance)
1918 queue_delayed_work(hdev->workqueue,
1919 &adv_instance->rpa_expired_cb, to);
1920 else
1921 queue_delayed_work(hdev->workqueue,
1922 &hdev->rpa_expired, to);
1923
1924 return 0;
1925 }
1926
1927 /* In case of required privacy without resolvable private address,
1928 * use an non-resolvable private address. This is useful for
1929 * non-connectable advertising.
1930 */
1931 if (require_privacy) {
1932 bdaddr_t nrpa;
1933
1934 while (true) {
1935 /* The non-resolvable private address is generated
1936 * from random six bytes with the two most significant
1937 * bits cleared.
1938 */
1939 get_random_bytes(&nrpa, 6);
1940 nrpa.b[5] &= 0x3f;
1941
1942 /* The non-resolvable private address shall not be
1943 * equal to the public address.
1944 */
1945 if (bacmp(&hdev->bdaddr, &nrpa))
1946 break;
1947 }
1948
1949 *own_addr_type = ADDR_LE_DEV_RANDOM;
1950 bacpy(rand_addr, &nrpa);
1951
1952 return 0;
1953 }
1954
1955 /* No privacy so use a public address. */
1956 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1957
1958 return 0;
1959 }
1960
__hci_req_clear_ext_adv_sets(struct hci_request * req)1961 void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1962 {
1963 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1964 }
1965
__hci_req_setup_ext_adv_instance(struct hci_request * req,u8 instance)1966 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1967 {
1968 struct hci_cp_le_set_ext_adv_params cp;
1969 struct hci_dev *hdev = req->hdev;
1970 bool connectable;
1971 u32 flags;
1972 bdaddr_t random_addr;
1973 u8 own_addr_type;
1974 int err;
1975 struct adv_info *adv_instance;
1976 bool secondary_adv;
1977
1978 if (instance > 0) {
1979 adv_instance = hci_find_adv_instance(hdev, instance);
1980 if (!adv_instance)
1981 return -EINVAL;
1982 } else {
1983 adv_instance = NULL;
1984 }
1985
1986 flags = get_adv_instance_flags(hdev, instance);
1987
1988 /* If the "connectable" instance flag was not set, then choose between
1989 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1990 */
1991 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1992 mgmt_get_connectable(hdev);
1993
1994 if (!is_advertising_allowed(hdev, connectable))
1995 return -EPERM;
1996
1997 /* Set require_privacy to true only when non-connectable
1998 * advertising is used. In that case it is fine to use a
1999 * non-resolvable private address.
2000 */
2001 err = hci_get_random_address(hdev, !connectable,
2002 adv_use_rpa(hdev, flags), adv_instance,
2003 &own_addr_type, &random_addr);
2004 if (err < 0)
2005 return err;
2006
2007 memset(&cp, 0, sizeof(cp));
2008
2009 /* In ext adv set param interval is 3 octets */
2010 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
2011 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
2012
2013 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
2014
2015 if (connectable) {
2016 if (secondary_adv)
2017 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
2018 else
2019 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
2020 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
2021 if (secondary_adv)
2022 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
2023 else
2024 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
2025 } else {
2026 if (secondary_adv)
2027 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
2028 else
2029 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
2030 }
2031
2032 cp.own_addr_type = own_addr_type;
2033 cp.channel_map = hdev->le_adv_channel_map;
2034 cp.tx_power = 127;
2035 cp.handle = instance;
2036
2037 if (flags & MGMT_ADV_FLAG_SEC_2M) {
2038 cp.primary_phy = HCI_ADV_PHY_1M;
2039 cp.secondary_phy = HCI_ADV_PHY_2M;
2040 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
2041 cp.primary_phy = HCI_ADV_PHY_CODED;
2042 cp.secondary_phy = HCI_ADV_PHY_CODED;
2043 } else {
2044 /* In all other cases use 1M */
2045 cp.primary_phy = HCI_ADV_PHY_1M;
2046 cp.secondary_phy = HCI_ADV_PHY_1M;
2047 }
2048
2049 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
2050
2051 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
2052 bacmp(&random_addr, BDADDR_ANY)) {
2053 struct hci_cp_le_set_adv_set_rand_addr cp;
2054
2055 /* Check if random address need to be updated */
2056 if (adv_instance) {
2057 if (!bacmp(&random_addr, &adv_instance->random_addr))
2058 return 0;
2059 } else {
2060 if (!bacmp(&random_addr, &hdev->random_addr))
2061 return 0;
2062 }
2063
2064 memset(&cp, 0, sizeof(cp));
2065
2066 cp.handle = instance;
2067 bacpy(&cp.bdaddr, &random_addr);
2068
2069 hci_req_add(req,
2070 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
2071 sizeof(cp), &cp);
2072 }
2073
2074 return 0;
2075 }
2076
__hci_req_enable_ext_advertising(struct hci_request * req,u8 instance)2077 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2078 {
2079 struct hci_dev *hdev = req->hdev;
2080 struct hci_cp_le_set_ext_adv_enable *cp;
2081 struct hci_cp_ext_adv_set *adv_set;
2082 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2083 struct adv_info *adv_instance;
2084
2085 if (instance > 0) {
2086 adv_instance = hci_find_adv_instance(hdev, instance);
2087 if (!adv_instance)
2088 return -EINVAL;
2089 } else {
2090 adv_instance = NULL;
2091 }
2092
2093 cp = (void *) data;
2094 adv_set = (void *) cp->data;
2095
2096 memset(cp, 0, sizeof(*cp));
2097
2098 cp->enable = 0x01;
2099 cp->num_of_sets = 0x01;
2100
2101 memset(adv_set, 0, sizeof(*adv_set));
2102
2103 adv_set->handle = instance;
2104
2105 /* Set duration per instance since controller is responsible for
2106 * scheduling it.
2107 */
2108 if (adv_instance && adv_instance->duration) {
2109 u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2110
2111 /* Time = N * 10 ms */
2112 adv_set->duration = cpu_to_le16(duration / 10);
2113 }
2114
2115 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
2116 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
2117 data);
2118
2119 return 0;
2120 }
2121
__hci_req_disable_ext_adv_instance(struct hci_request * req,u8 instance)2122 int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
2123 {
2124 struct hci_dev *hdev = req->hdev;
2125 struct hci_cp_le_set_ext_adv_enable *cp;
2126 struct hci_cp_ext_adv_set *adv_set;
2127 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2128 u8 req_size;
2129
2130 /* If request specifies an instance that doesn't exist, fail */
2131 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2132 return -EINVAL;
2133
2134 memset(data, 0, sizeof(data));
2135
2136 cp = (void *)data;
2137 adv_set = (void *)cp->data;
2138
2139 /* Instance 0x00 indicates all advertising instances will be disabled */
2140 cp->num_of_sets = !!instance;
2141 cp->enable = 0x00;
2142
2143 adv_set->handle = instance;
2144
2145 req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
2146 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
2147
2148 return 0;
2149 }
2150
__hci_req_remove_ext_adv_instance(struct hci_request * req,u8 instance)2151 int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
2152 {
2153 struct hci_dev *hdev = req->hdev;
2154
2155 /* If request specifies an instance that doesn't exist, fail */
2156 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2157 return -EINVAL;
2158
2159 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
2160
2161 return 0;
2162 }
2163
__hci_req_start_ext_adv(struct hci_request * req,u8 instance)2164 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
2165 {
2166 struct hci_dev *hdev = req->hdev;
2167 struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2168 int err;
2169
2170 /* If instance isn't pending, the chip knows about it, and it's safe to
2171 * disable
2172 */
2173 if (adv_instance && !adv_instance->pending)
2174 __hci_req_disable_ext_adv_instance(req, instance);
2175
2176 err = __hci_req_setup_ext_adv_instance(req, instance);
2177 if (err < 0)
2178 return err;
2179
2180 __hci_req_update_scan_rsp_data(req, instance);
2181 __hci_req_enable_ext_advertising(req, instance);
2182
2183 return 0;
2184 }
2185
__hci_req_schedule_adv_instance(struct hci_request * req,u8 instance,bool force)2186 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
2187 bool force)
2188 {
2189 struct hci_dev *hdev = req->hdev;
2190 struct adv_info *adv_instance = NULL;
2191 u16 timeout;
2192
2193 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2194 list_empty(&hdev->adv_instances))
2195 return -EPERM;
2196
2197 if (hdev->adv_instance_timeout)
2198 return -EBUSY;
2199
2200 adv_instance = hci_find_adv_instance(hdev, instance);
2201 if (!adv_instance)
2202 return -ENOENT;
2203
2204 /* A zero timeout means unlimited advertising. As long as there is
2205 * only one instance, duration should be ignored. We still set a timeout
2206 * in case further instances are being added later on.
2207 *
2208 * If the remaining lifetime of the instance is more than the duration
2209 * then the timeout corresponds to the duration, otherwise it will be
2210 * reduced to the remaining instance lifetime.
2211 */
2212 if (adv_instance->timeout == 0 ||
2213 adv_instance->duration <= adv_instance->remaining_time)
2214 timeout = adv_instance->duration;
2215 else
2216 timeout = adv_instance->remaining_time;
2217
2218 /* The remaining time is being reduced unless the instance is being
2219 * advertised without time limit.
2220 */
2221 if (adv_instance->timeout)
2222 adv_instance->remaining_time =
2223 adv_instance->remaining_time - timeout;
2224
2225 /* Only use work for scheduling instances with legacy advertising */
2226 if (!ext_adv_capable(hdev)) {
2227 hdev->adv_instance_timeout = timeout;
2228 queue_delayed_work(hdev->req_workqueue,
2229 &hdev->adv_instance_expire,
2230 msecs_to_jiffies(timeout * 1000));
2231 }
2232
2233 /* If we're just re-scheduling the same instance again then do not
2234 * execute any HCI commands. This happens when a single instance is
2235 * being advertised.
2236 */
2237 if (!force && hdev->cur_adv_instance == instance &&
2238 hci_dev_test_flag(hdev, HCI_LE_ADV))
2239 return 0;
2240
2241 hdev->cur_adv_instance = instance;
2242 if (ext_adv_capable(hdev)) {
2243 __hci_req_start_ext_adv(req, instance);
2244 } else {
2245 __hci_req_update_adv_data(req, instance);
2246 __hci_req_update_scan_rsp_data(req, instance);
2247 __hci_req_enable_advertising(req);
2248 }
2249
2250 return 0;
2251 }
2252
2253 /* For a single instance:
2254 * - force == true: The instance will be removed even when its remaining
2255 * lifetime is not zero.
2256 * - force == false: the instance will be deactivated but kept stored unless
2257 * the remaining lifetime is zero.
2258 *
2259 * For instance == 0x00:
2260 * - force == true: All instances will be removed regardless of their timeout
2261 * setting.
2262 * - force == false: Only instances that have a timeout will be removed.
2263 */
hci_req_clear_adv_instance(struct hci_dev * hdev,struct sock * sk,struct hci_request * req,u8 instance,bool force)2264 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2265 struct hci_request *req, u8 instance,
2266 bool force)
2267 {
2268 struct adv_info *adv_instance, *n, *next_instance = NULL;
2269 int err;
2270 u8 rem_inst;
2271
2272 /* Cancel any timeout concerning the removed instance(s). */
2273 if (!instance || hdev->cur_adv_instance == instance)
2274 cancel_adv_timeout(hdev);
2275
2276 /* Get the next instance to advertise BEFORE we remove
2277 * the current one. This can be the same instance again
2278 * if there is only one instance.
2279 */
2280 if (instance && hdev->cur_adv_instance == instance)
2281 next_instance = hci_get_next_instance(hdev, instance);
2282
2283 if (instance == 0x00) {
2284 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2285 list) {
2286 if (!(force || adv_instance->timeout))
2287 continue;
2288
2289 rem_inst = adv_instance->instance;
2290 err = hci_remove_adv_instance(hdev, rem_inst);
2291 if (!err)
2292 mgmt_advertising_removed(sk, hdev, rem_inst);
2293 }
2294 } else {
2295 adv_instance = hci_find_adv_instance(hdev, instance);
2296
2297 if (force || (adv_instance && adv_instance->timeout &&
2298 !adv_instance->remaining_time)) {
2299 /* Don't advertise a removed instance. */
2300 if (next_instance &&
2301 next_instance->instance == instance)
2302 next_instance = NULL;
2303
2304 err = hci_remove_adv_instance(hdev, instance);
2305 if (!err)
2306 mgmt_advertising_removed(sk, hdev, instance);
2307 }
2308 }
2309
2310 if (!req || !hdev_is_powered(hdev) ||
2311 hci_dev_test_flag(hdev, HCI_ADVERTISING))
2312 return;
2313
2314 if (next_instance && !ext_adv_capable(hdev))
2315 __hci_req_schedule_adv_instance(req, next_instance->instance,
2316 false);
2317 }
2318
set_random_addr(struct hci_request * req,bdaddr_t * rpa)2319 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2320 {
2321 struct hci_dev *hdev = req->hdev;
2322
2323 /* If we're advertising or initiating an LE connection we can't
2324 * go ahead and change the random address at this time. This is
2325 * because the eventual initiator address used for the
2326 * subsequently created connection will be undefined (some
2327 * controllers use the new address and others the one we had
2328 * when the operation started).
2329 *
2330 * In this kind of scenario skip the update and let the random
2331 * address be updated at the next cycle.
2332 */
2333 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2334 hci_lookup_le_connect(hdev)) {
2335 BT_DBG("Deferring random address update");
2336 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2337 return;
2338 }
2339
2340 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2341 }
2342
hci_update_random_address(struct hci_request * req,bool require_privacy,bool use_rpa,u8 * own_addr_type)2343 int hci_update_random_address(struct hci_request *req, bool require_privacy,
2344 bool use_rpa, u8 *own_addr_type)
2345 {
2346 struct hci_dev *hdev = req->hdev;
2347 int err;
2348
2349 /* If privacy is enabled use a resolvable private address. If
2350 * current RPA has expired or there is something else than
2351 * the current RPA in use, then generate a new one.
2352 */
2353 if (use_rpa) {
2354 int to;
2355
2356 /* If Controller supports LL Privacy use own address type is
2357 * 0x03
2358 */
2359 if (use_ll_privacy(hdev))
2360 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2361 else
2362 *own_addr_type = ADDR_LE_DEV_RANDOM;
2363
2364 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2365 !bacmp(&hdev->random_addr, &hdev->rpa))
2366 return 0;
2367
2368 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2369 if (err < 0) {
2370 bt_dev_err(hdev, "failed to generate new RPA");
2371 return err;
2372 }
2373
2374 set_random_addr(req, &hdev->rpa);
2375
2376 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
2377 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
2378
2379 return 0;
2380 }
2381
2382 /* In case of required privacy without resolvable private address,
2383 * use an non-resolvable private address. This is useful for active
2384 * scanning and non-connectable advertising.
2385 */
2386 if (require_privacy) {
2387 bdaddr_t nrpa;
2388
2389 while (true) {
2390 /* The non-resolvable private address is generated
2391 * from random six bytes with the two most significant
2392 * bits cleared.
2393 */
2394 get_random_bytes(&nrpa, 6);
2395 nrpa.b[5] &= 0x3f;
2396
2397 /* The non-resolvable private address shall not be
2398 * equal to the public address.
2399 */
2400 if (bacmp(&hdev->bdaddr, &nrpa))
2401 break;
2402 }
2403
2404 *own_addr_type = ADDR_LE_DEV_RANDOM;
2405 set_random_addr(req, &nrpa);
2406 return 0;
2407 }
2408
2409 /* If forcing static address is in use or there is no public
2410 * address use the static address as random address (but skip
2411 * the HCI command if the current random address is already the
2412 * static one.
2413 *
2414 * In case BR/EDR has been disabled on a dual-mode controller
2415 * and a static address has been configured, then use that
2416 * address instead of the public BR/EDR address.
2417 */
2418 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2419 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2420 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2421 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2422 *own_addr_type = ADDR_LE_DEV_RANDOM;
2423 if (bacmp(&hdev->static_addr, &hdev->random_addr))
2424 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2425 &hdev->static_addr);
2426 return 0;
2427 }
2428
2429 /* Neither privacy nor static address is being used so use a
2430 * public address.
2431 */
2432 *own_addr_type = ADDR_LE_DEV_PUBLIC;
2433
2434 return 0;
2435 }
2436
disconnected_whitelist_entries(struct hci_dev * hdev)2437 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
2438 {
2439 struct bdaddr_list *b;
2440
2441 list_for_each_entry(b, &hdev->whitelist, list) {
2442 struct hci_conn *conn;
2443
2444 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2445 if (!conn)
2446 return true;
2447
2448 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2449 return true;
2450 }
2451
2452 return false;
2453 }
2454
__hci_req_update_scan(struct hci_request * req)2455 void __hci_req_update_scan(struct hci_request *req)
2456 {
2457 struct hci_dev *hdev = req->hdev;
2458 u8 scan;
2459
2460 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2461 return;
2462
2463 if (!hdev_is_powered(hdev))
2464 return;
2465
2466 if (mgmt_powering_down(hdev))
2467 return;
2468
2469 if (hdev->scanning_paused)
2470 return;
2471
2472 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2473 disconnected_whitelist_entries(hdev))
2474 scan = SCAN_PAGE;
2475 else
2476 scan = SCAN_DISABLED;
2477
2478 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2479 scan |= SCAN_INQUIRY;
2480
2481 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2482 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2483 return;
2484
2485 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2486 }
2487
update_scan(struct hci_request * req,unsigned long opt)2488 static int update_scan(struct hci_request *req, unsigned long opt)
2489 {
2490 hci_dev_lock(req->hdev);
2491 __hci_req_update_scan(req);
2492 hci_dev_unlock(req->hdev);
2493 return 0;
2494 }
2495
scan_update_work(struct work_struct * work)2496 static void scan_update_work(struct work_struct *work)
2497 {
2498 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2499
2500 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2501 }
2502
connectable_update(struct hci_request * req,unsigned long opt)2503 static int connectable_update(struct hci_request *req, unsigned long opt)
2504 {
2505 struct hci_dev *hdev = req->hdev;
2506
2507 hci_dev_lock(hdev);
2508
2509 __hci_req_update_scan(req);
2510
2511 /* If BR/EDR is not enabled and we disable advertising as a
2512 * by-product of disabling connectable, we need to update the
2513 * advertising flags.
2514 */
2515 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2516 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2517
2518 /* Update the advertising parameters if necessary */
2519 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2520 !list_empty(&hdev->adv_instances)) {
2521 if (ext_adv_capable(hdev))
2522 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2523 else
2524 __hci_req_enable_advertising(req);
2525 }
2526
2527 __hci_update_background_scan(req);
2528
2529 hci_dev_unlock(hdev);
2530
2531 return 0;
2532 }
2533
connectable_update_work(struct work_struct * work)2534 static void connectable_update_work(struct work_struct *work)
2535 {
2536 struct hci_dev *hdev = container_of(work, struct hci_dev,
2537 connectable_update);
2538 u8 status;
2539
2540 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2541 mgmt_set_connectable_complete(hdev, status);
2542 }
2543
get_service_classes(struct hci_dev * hdev)2544 static u8 get_service_classes(struct hci_dev *hdev)
2545 {
2546 struct bt_uuid *uuid;
2547 u8 val = 0;
2548
2549 list_for_each_entry(uuid, &hdev->uuids, list)
2550 val |= uuid->svc_hint;
2551
2552 return val;
2553 }
2554
__hci_req_update_class(struct hci_request * req)2555 void __hci_req_update_class(struct hci_request *req)
2556 {
2557 struct hci_dev *hdev = req->hdev;
2558 u8 cod[3];
2559
2560 BT_DBG("%s", hdev->name);
2561
2562 if (!hdev_is_powered(hdev))
2563 return;
2564
2565 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2566 return;
2567
2568 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2569 return;
2570
2571 cod[0] = hdev->minor_class;
2572 cod[1] = hdev->major_class;
2573 cod[2] = get_service_classes(hdev);
2574
2575 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2576 cod[1] |= 0x20;
2577
2578 if (memcmp(cod, hdev->dev_class, 3) == 0)
2579 return;
2580
2581 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2582 }
2583
write_iac(struct hci_request * req)2584 static void write_iac(struct hci_request *req)
2585 {
2586 struct hci_dev *hdev = req->hdev;
2587 struct hci_cp_write_current_iac_lap cp;
2588
2589 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2590 return;
2591
2592 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2593 /* Limited discoverable mode */
2594 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2595 cp.iac_lap[0] = 0x00; /* LIAC */
2596 cp.iac_lap[1] = 0x8b;
2597 cp.iac_lap[2] = 0x9e;
2598 cp.iac_lap[3] = 0x33; /* GIAC */
2599 cp.iac_lap[4] = 0x8b;
2600 cp.iac_lap[5] = 0x9e;
2601 } else {
2602 /* General discoverable mode */
2603 cp.num_iac = 1;
2604 cp.iac_lap[0] = 0x33; /* GIAC */
2605 cp.iac_lap[1] = 0x8b;
2606 cp.iac_lap[2] = 0x9e;
2607 }
2608
2609 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2610 (cp.num_iac * 3) + 1, &cp);
2611 }
2612
discoverable_update(struct hci_request * req,unsigned long opt)2613 static int discoverable_update(struct hci_request *req, unsigned long opt)
2614 {
2615 struct hci_dev *hdev = req->hdev;
2616
2617 hci_dev_lock(hdev);
2618
2619 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2620 write_iac(req);
2621 __hci_req_update_scan(req);
2622 __hci_req_update_class(req);
2623 }
2624
2625 /* Advertising instances don't use the global discoverable setting, so
2626 * only update AD if advertising was enabled using Set Advertising.
2627 */
2628 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2629 __hci_req_update_adv_data(req, 0x00);
2630
2631 /* Discoverable mode affects the local advertising
2632 * address in limited privacy mode.
2633 */
2634 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2635 if (ext_adv_capable(hdev))
2636 __hci_req_start_ext_adv(req, 0x00);
2637 else
2638 __hci_req_enable_advertising(req);
2639 }
2640 }
2641
2642 hci_dev_unlock(hdev);
2643
2644 return 0;
2645 }
2646
discoverable_update_work(struct work_struct * work)2647 static void discoverable_update_work(struct work_struct *work)
2648 {
2649 struct hci_dev *hdev = container_of(work, struct hci_dev,
2650 discoverable_update);
2651 u8 status;
2652
2653 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2654 mgmt_set_discoverable_complete(hdev, status);
2655 }
2656
__hci_abort_conn(struct hci_request * req,struct hci_conn * conn,u8 reason)2657 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2658 u8 reason)
2659 {
2660 switch (conn->state) {
2661 case BT_CONNECTED:
2662 case BT_CONFIG:
2663 if (conn->type == AMP_LINK) {
2664 struct hci_cp_disconn_phy_link cp;
2665
2666 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2667 cp.reason = reason;
2668 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2669 &cp);
2670 } else {
2671 struct hci_cp_disconnect dc;
2672
2673 dc.handle = cpu_to_le16(conn->handle);
2674 dc.reason = reason;
2675 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2676 }
2677
2678 conn->state = BT_DISCONN;
2679
2680 break;
2681 case BT_CONNECT:
2682 if (conn->type == LE_LINK) {
2683 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2684 break;
2685 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2686 0, NULL);
2687 } else if (conn->type == ACL_LINK) {
2688 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2689 break;
2690 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2691 6, &conn->dst);
2692 }
2693 break;
2694 case BT_CONNECT2:
2695 if (conn->type == ACL_LINK) {
2696 struct hci_cp_reject_conn_req rej;
2697
2698 bacpy(&rej.bdaddr, &conn->dst);
2699 rej.reason = reason;
2700
2701 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2702 sizeof(rej), &rej);
2703 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2704 struct hci_cp_reject_sync_conn_req rej;
2705
2706 bacpy(&rej.bdaddr, &conn->dst);
2707
2708 /* SCO rejection has its own limited set of
2709 * allowed error values (0x0D-0x0F) which isn't
2710 * compatible with most values passed to this
2711 * function. To be safe hard-code one of the
2712 * values that's suitable for SCO.
2713 */
2714 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2715
2716 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2717 sizeof(rej), &rej);
2718 }
2719 break;
2720 default:
2721 conn->state = BT_CLOSED;
2722 break;
2723 }
2724 }
2725
abort_conn_complete(struct hci_dev * hdev,u8 status,u16 opcode)2726 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2727 {
2728 if (status)
2729 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2730 }
2731
hci_abort_conn(struct hci_conn * conn,u8 reason)2732 int hci_abort_conn(struct hci_conn *conn, u8 reason)
2733 {
2734 struct hci_request req;
2735 int err;
2736
2737 hci_req_init(&req, conn->hdev);
2738
2739 __hci_abort_conn(&req, conn, reason);
2740
2741 err = hci_req_run(&req, abort_conn_complete);
2742 if (err && err != -ENODATA) {
2743 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2744 return err;
2745 }
2746
2747 return 0;
2748 }
2749
update_bg_scan(struct hci_request * req,unsigned long opt)2750 static int update_bg_scan(struct hci_request *req, unsigned long opt)
2751 {
2752 hci_dev_lock(req->hdev);
2753 __hci_update_background_scan(req);
2754 hci_dev_unlock(req->hdev);
2755 return 0;
2756 }
2757
bg_scan_update(struct work_struct * work)2758 static void bg_scan_update(struct work_struct *work)
2759 {
2760 struct hci_dev *hdev = container_of(work, struct hci_dev,
2761 bg_scan_update);
2762 struct hci_conn *conn;
2763 u8 status;
2764 int err;
2765
2766 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2767 if (!err)
2768 return;
2769
2770 hci_dev_lock(hdev);
2771
2772 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2773 if (conn)
2774 hci_le_conn_failed(conn, status);
2775
2776 hci_dev_unlock(hdev);
2777 }
2778
le_scan_disable(struct hci_request * req,unsigned long opt)2779 static int le_scan_disable(struct hci_request *req, unsigned long opt)
2780 {
2781 hci_req_add_le_scan_disable(req, false);
2782 return 0;
2783 }
2784
bredr_inquiry(struct hci_request * req,unsigned long opt)2785 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2786 {
2787 u8 length = opt;
2788 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2789 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2790 struct hci_cp_inquiry cp;
2791
2792 BT_DBG("%s", req->hdev->name);
2793
2794 hci_dev_lock(req->hdev);
2795 hci_inquiry_cache_flush(req->hdev);
2796 hci_dev_unlock(req->hdev);
2797
2798 memset(&cp, 0, sizeof(cp));
2799
2800 if (req->hdev->discovery.limited)
2801 memcpy(&cp.lap, liac, sizeof(cp.lap));
2802 else
2803 memcpy(&cp.lap, giac, sizeof(cp.lap));
2804
2805 cp.length = length;
2806
2807 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2808
2809 return 0;
2810 }
2811
le_scan_disable_work(struct work_struct * work)2812 static void le_scan_disable_work(struct work_struct *work)
2813 {
2814 struct hci_dev *hdev = container_of(work, struct hci_dev,
2815 le_scan_disable.work);
2816 u8 status;
2817
2818 BT_DBG("%s", hdev->name);
2819
2820 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2821 return;
2822
2823 cancel_delayed_work(&hdev->le_scan_restart);
2824
2825 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2826 if (status) {
2827 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2828 status);
2829 return;
2830 }
2831
2832 hdev->discovery.scan_start = 0;
2833
2834 /* If we were running LE only scan, change discovery state. If
2835 * we were running both LE and BR/EDR inquiry simultaneously,
2836 * and BR/EDR inquiry is already finished, stop discovery,
2837 * otherwise BR/EDR inquiry will stop discovery when finished.
2838 * If we will resolve remote device name, do not change
2839 * discovery state.
2840 */
2841
2842 if (hdev->discovery.type == DISCOV_TYPE_LE)
2843 goto discov_stopped;
2844
2845 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2846 return;
2847
2848 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2849 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2850 hdev->discovery.state != DISCOVERY_RESOLVING)
2851 goto discov_stopped;
2852
2853 return;
2854 }
2855
2856 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2857 HCI_CMD_TIMEOUT, &status);
2858 if (status) {
2859 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2860 goto discov_stopped;
2861 }
2862
2863 return;
2864
2865 discov_stopped:
2866 hci_dev_lock(hdev);
2867 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2868 hci_dev_unlock(hdev);
2869 }
2870
le_scan_restart(struct hci_request * req,unsigned long opt)2871 static int le_scan_restart(struct hci_request *req, unsigned long opt)
2872 {
2873 struct hci_dev *hdev = req->hdev;
2874
2875 /* If controller is not scanning we are done. */
2876 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2877 return 0;
2878
2879 if (hdev->scanning_paused) {
2880 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2881 return 0;
2882 }
2883
2884 hci_req_add_le_scan_disable(req, false);
2885
2886 if (use_ext_scan(hdev)) {
2887 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2888
2889 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2890 ext_enable_cp.enable = LE_SCAN_ENABLE;
2891 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2892
2893 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2894 sizeof(ext_enable_cp), &ext_enable_cp);
2895 } else {
2896 struct hci_cp_le_set_scan_enable cp;
2897
2898 memset(&cp, 0, sizeof(cp));
2899 cp.enable = LE_SCAN_ENABLE;
2900 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2901 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2902 }
2903
2904 return 0;
2905 }
2906
le_scan_restart_work(struct work_struct * work)2907 static void le_scan_restart_work(struct work_struct *work)
2908 {
2909 struct hci_dev *hdev = container_of(work, struct hci_dev,
2910 le_scan_restart.work);
2911 unsigned long timeout, duration, scan_start, now;
2912 u8 status;
2913
2914 BT_DBG("%s", hdev->name);
2915
2916 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2917 if (status) {
2918 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2919 status);
2920 return;
2921 }
2922
2923 hci_dev_lock(hdev);
2924
2925 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2926 !hdev->discovery.scan_start)
2927 goto unlock;
2928
2929 /* When the scan was started, hdev->le_scan_disable has been queued
2930 * after duration from scan_start. During scan restart this job
2931 * has been canceled, and we need to queue it again after proper
2932 * timeout, to make sure that scan does not run indefinitely.
2933 */
2934 duration = hdev->discovery.scan_duration;
2935 scan_start = hdev->discovery.scan_start;
2936 now = jiffies;
2937 if (now - scan_start <= duration) {
2938 int elapsed;
2939
2940 if (now >= scan_start)
2941 elapsed = now - scan_start;
2942 else
2943 elapsed = ULONG_MAX - scan_start + now;
2944
2945 timeout = duration - elapsed;
2946 } else {
2947 timeout = 0;
2948 }
2949
2950 queue_delayed_work(hdev->req_workqueue,
2951 &hdev->le_scan_disable, timeout);
2952
2953 unlock:
2954 hci_dev_unlock(hdev);
2955 }
2956
active_scan(struct hci_request * req,unsigned long opt)2957 static int active_scan(struct hci_request *req, unsigned long opt)
2958 {
2959 uint16_t interval = opt;
2960 struct hci_dev *hdev = req->hdev;
2961 u8 own_addr_type;
2962 /* White list is not used for discovery */
2963 u8 filter_policy = 0x00;
2964 /* Discovery doesn't require controller address resolution */
2965 bool addr_resolv = false;
2966 int err;
2967
2968 BT_DBG("%s", hdev->name);
2969
2970 /* If controller is scanning, it means the background scanning is
2971 * running. Thus, we should temporarily stop it in order to set the
2972 * discovery scanning parameters.
2973 */
2974 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2975 hci_req_add_le_scan_disable(req, false);
2976
2977 /* All active scans will be done with either a resolvable private
2978 * address (when privacy feature has been enabled) or non-resolvable
2979 * private address.
2980 */
2981 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2982 &own_addr_type);
2983 if (err < 0)
2984 own_addr_type = ADDR_LE_DEV_PUBLIC;
2985
2986 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
2987 hdev->le_scan_window_discovery, own_addr_type,
2988 filter_policy, addr_resolv);
2989 return 0;
2990 }
2991
interleaved_discov(struct hci_request * req,unsigned long opt)2992 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2993 {
2994 int err;
2995
2996 BT_DBG("%s", req->hdev->name);
2997
2998 err = active_scan(req, opt);
2999 if (err)
3000 return err;
3001
3002 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
3003 }
3004
start_discovery(struct hci_dev * hdev,u8 * status)3005 static void start_discovery(struct hci_dev *hdev, u8 *status)
3006 {
3007 unsigned long timeout;
3008
3009 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
3010
3011 switch (hdev->discovery.type) {
3012 case DISCOV_TYPE_BREDR:
3013 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
3014 hci_req_sync(hdev, bredr_inquiry,
3015 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
3016 status);
3017 return;
3018 case DISCOV_TYPE_INTERLEAVED:
3019 /* When running simultaneous discovery, the LE scanning time
3020 * should occupy the whole discovery time sine BR/EDR inquiry
3021 * and LE scanning are scheduled by the controller.
3022 *
3023 * For interleaving discovery in comparison, BR/EDR inquiry
3024 * and LE scanning are done sequentially with separate
3025 * timeouts.
3026 */
3027 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
3028 &hdev->quirks)) {
3029 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
3030 /* During simultaneous discovery, we double LE scan
3031 * interval. We must leave some time for the controller
3032 * to do BR/EDR inquiry.
3033 */
3034 hci_req_sync(hdev, interleaved_discov,
3035 hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
3036 status);
3037 break;
3038 }
3039
3040 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
3041 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3042 HCI_CMD_TIMEOUT, status);
3043 break;
3044 case DISCOV_TYPE_LE:
3045 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
3046 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3047 HCI_CMD_TIMEOUT, status);
3048 break;
3049 default:
3050 *status = HCI_ERROR_UNSPECIFIED;
3051 return;
3052 }
3053
3054 if (*status)
3055 return;
3056
3057 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
3058
3059 /* When service discovery is used and the controller has a
3060 * strict duplicate filter, it is important to remember the
3061 * start and duration of the scan. This is required for
3062 * restarting scanning during the discovery phase.
3063 */
3064 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
3065 hdev->discovery.result_filtering) {
3066 hdev->discovery.scan_start = jiffies;
3067 hdev->discovery.scan_duration = timeout;
3068 }
3069
3070 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
3071 timeout);
3072 }
3073
hci_req_stop_discovery(struct hci_request * req)3074 bool hci_req_stop_discovery(struct hci_request *req)
3075 {
3076 struct hci_dev *hdev = req->hdev;
3077 struct discovery_state *d = &hdev->discovery;
3078 struct hci_cp_remote_name_req_cancel cp;
3079 struct inquiry_entry *e;
3080 bool ret = false;
3081
3082 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
3083
3084 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
3085 if (test_bit(HCI_INQUIRY, &hdev->flags))
3086 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3087
3088 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3089 cancel_delayed_work(&hdev->le_scan_disable);
3090 hci_req_add_le_scan_disable(req, false);
3091 }
3092
3093 ret = true;
3094 } else {
3095 /* Passive scanning */
3096 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3097 hci_req_add_le_scan_disable(req, false);
3098 ret = true;
3099 }
3100 }
3101
3102 /* No further actions needed for LE-only discovery */
3103 if (d->type == DISCOV_TYPE_LE)
3104 return ret;
3105
3106 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
3107 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
3108 NAME_PENDING);
3109 if (!e)
3110 return ret;
3111
3112 bacpy(&cp.bdaddr, &e->data.bdaddr);
3113 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
3114 &cp);
3115 ret = true;
3116 }
3117
3118 return ret;
3119 }
3120
stop_discovery(struct hci_request * req,unsigned long opt)3121 static int stop_discovery(struct hci_request *req, unsigned long opt)
3122 {
3123 hci_dev_lock(req->hdev);
3124 hci_req_stop_discovery(req);
3125 hci_dev_unlock(req->hdev);
3126
3127 return 0;
3128 }
3129
discov_update(struct work_struct * work)3130 static void discov_update(struct work_struct *work)
3131 {
3132 struct hci_dev *hdev = container_of(work, struct hci_dev,
3133 discov_update);
3134 u8 status = 0;
3135
3136 switch (hdev->discovery.state) {
3137 case DISCOVERY_STARTING:
3138 start_discovery(hdev, &status);
3139 mgmt_start_discovery_complete(hdev, status);
3140 if (status)
3141 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3142 else
3143 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
3144 break;
3145 case DISCOVERY_STOPPING:
3146 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
3147 mgmt_stop_discovery_complete(hdev, status);
3148 if (!status)
3149 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3150 break;
3151 case DISCOVERY_STOPPED:
3152 default:
3153 return;
3154 }
3155 }
3156
discov_off(struct work_struct * work)3157 static void discov_off(struct work_struct *work)
3158 {
3159 struct hci_dev *hdev = container_of(work, struct hci_dev,
3160 discov_off.work);
3161
3162 BT_DBG("%s", hdev->name);
3163
3164 hci_dev_lock(hdev);
3165
3166 /* When discoverable timeout triggers, then just make sure
3167 * the limited discoverable flag is cleared. Even in the case
3168 * of a timeout triggered from general discoverable, it is
3169 * safe to unconditionally clear the flag.
3170 */
3171 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3172 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3173 hdev->discov_timeout = 0;
3174
3175 hci_dev_unlock(hdev);
3176
3177 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
3178 mgmt_new_settings(hdev);
3179 }
3180
powered_update_hci(struct hci_request * req,unsigned long opt)3181 static int powered_update_hci(struct hci_request *req, unsigned long opt)
3182 {
3183 struct hci_dev *hdev = req->hdev;
3184 u8 link_sec;
3185
3186 hci_dev_lock(hdev);
3187
3188 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
3189 !lmp_host_ssp_capable(hdev)) {
3190 u8 mode = 0x01;
3191
3192 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
3193
3194 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
3195 u8 support = 0x01;
3196
3197 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
3198 sizeof(support), &support);
3199 }
3200 }
3201
3202 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
3203 lmp_bredr_capable(hdev)) {
3204 struct hci_cp_write_le_host_supported cp;
3205
3206 cp.le = 0x01;
3207 cp.simul = 0x00;
3208
3209 /* Check first if we already have the right
3210 * host state (host features set)
3211 */
3212 if (cp.le != lmp_host_le_capable(hdev) ||
3213 cp.simul != lmp_host_le_br_capable(hdev))
3214 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3215 sizeof(cp), &cp);
3216 }
3217
3218 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3219 /* Make sure the controller has a good default for
3220 * advertising data. This also applies to the case
3221 * where BR/EDR was toggled during the AUTO_OFF phase.
3222 */
3223 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3224 list_empty(&hdev->adv_instances)) {
3225 int err;
3226
3227 if (ext_adv_capable(hdev)) {
3228 err = __hci_req_setup_ext_adv_instance(req,
3229 0x00);
3230 if (!err)
3231 __hci_req_update_scan_rsp_data(req,
3232 0x00);
3233 } else {
3234 err = 0;
3235 __hci_req_update_adv_data(req, 0x00);
3236 __hci_req_update_scan_rsp_data(req, 0x00);
3237 }
3238
3239 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3240 if (!ext_adv_capable(hdev))
3241 __hci_req_enable_advertising(req);
3242 else if (!err)
3243 __hci_req_enable_ext_advertising(req,
3244 0x00);
3245 }
3246 } else if (!list_empty(&hdev->adv_instances)) {
3247 struct adv_info *adv_instance;
3248
3249 adv_instance = list_first_entry(&hdev->adv_instances,
3250 struct adv_info, list);
3251 __hci_req_schedule_adv_instance(req,
3252 adv_instance->instance,
3253 true);
3254 }
3255 }
3256
3257 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3258 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3259 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3260 sizeof(link_sec), &link_sec);
3261
3262 if (lmp_bredr_capable(hdev)) {
3263 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3264 __hci_req_write_fast_connectable(req, true);
3265 else
3266 __hci_req_write_fast_connectable(req, false);
3267 __hci_req_update_scan(req);
3268 __hci_req_update_class(req);
3269 __hci_req_update_name(req);
3270 __hci_req_update_eir(req);
3271 }
3272
3273 hci_dev_unlock(hdev);
3274 return 0;
3275 }
3276
__hci_req_hci_power_on(struct hci_dev * hdev)3277 int __hci_req_hci_power_on(struct hci_dev *hdev)
3278 {
3279 /* Register the available SMP channels (BR/EDR and LE) only when
3280 * successfully powering on the controller. This late
3281 * registration is required so that LE SMP can clearly decide if
3282 * the public address or static address is used.
3283 */
3284 smp_register(hdev);
3285
3286 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3287 NULL);
3288 }
3289
hci_request_setup(struct hci_dev * hdev)3290 void hci_request_setup(struct hci_dev *hdev)
3291 {
3292 INIT_WORK(&hdev->discov_update, discov_update);
3293 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3294 INIT_WORK(&hdev->scan_update, scan_update_work);
3295 INIT_WORK(&hdev->connectable_update, connectable_update_work);
3296 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3297 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3298 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3299 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3300 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3301 }
3302
hci_request_cancel_all(struct hci_dev * hdev)3303 void hci_request_cancel_all(struct hci_dev *hdev)
3304 {
3305 hci_req_sync_cancel(hdev, ENODEV);
3306
3307 cancel_work_sync(&hdev->discov_update);
3308 cancel_work_sync(&hdev->bg_scan_update);
3309 cancel_work_sync(&hdev->scan_update);
3310 cancel_work_sync(&hdev->connectable_update);
3311 cancel_work_sync(&hdev->discoverable_update);
3312 cancel_delayed_work_sync(&hdev->discov_off);
3313 cancel_delayed_work_sync(&hdev->le_scan_disable);
3314 cancel_delayed_work_sync(&hdev->le_scan_restart);
3315
3316 if (hdev->adv_instance_timeout) {
3317 cancel_delayed_work_sync(&hdev->adv_instance_expire);
3318 hdev->adv_instance_timeout = 0;
3319 }
3320 }
3321