1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * prepare to run common code
4 *
5 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #define DISABLE_BRANCH_PROFILING
9
10 /* cpu_feature_enabled() cannot be used this early */
11 #define USE_EARLY_PGTABLE_L5
12
13 #include <linux/init.h>
14 #include <linux/linkage.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/percpu.h>
19 #include <linux/start_kernel.h>
20 #include <linux/io.h>
21 #include <linux/memblock.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/pgtable.h>
24
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/desc.h>
41 #include <asm/extable.h>
42 #include <asm/trapnr.h>
43 #include <asm/sev-es.h>
44
45 /*
46 * Manage page tables very early on.
47 */
48 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
49 static unsigned int __initdata next_early_pgt;
50 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
51
52 #ifdef CONFIG_X86_5LEVEL
53 unsigned int __pgtable_l5_enabled __ro_after_init;
54 unsigned int pgdir_shift __ro_after_init = 39;
55 EXPORT_SYMBOL(pgdir_shift);
56 unsigned int ptrs_per_p4d __ro_after_init = 1;
57 EXPORT_SYMBOL(ptrs_per_p4d);
58 #endif
59
60 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
61 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
62 EXPORT_SYMBOL(page_offset_base);
63 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
64 EXPORT_SYMBOL(vmalloc_base);
65 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
66 EXPORT_SYMBOL(vmemmap_base);
67 #endif
68
69 /*
70 * GDT used on the boot CPU before switching to virtual addresses.
71 */
72 static struct desc_struct startup_gdt[GDT_ENTRIES] = {
73 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
74 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
75 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
76 };
77
78 /*
79 * Address needs to be set at runtime because it references the startup_gdt
80 * while the kernel still uses a direct mapping.
81 */
82 static struct desc_ptr startup_gdt_descr = {
83 .size = sizeof(startup_gdt),
84 .address = 0,
85 };
86
87 #define __head __section(".head.text")
88
fixup_pointer(void * ptr,unsigned long physaddr)89 static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
90 {
91 return ptr - (void *)_text + (void *)physaddr;
92 }
93
fixup_long(void * ptr,unsigned long physaddr)94 static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr)
95 {
96 return fixup_pointer(ptr, physaddr);
97 }
98
99 #ifdef CONFIG_X86_5LEVEL
fixup_int(void * ptr,unsigned long physaddr)100 static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr)
101 {
102 return fixup_pointer(ptr, physaddr);
103 }
104
check_la57_support(unsigned long physaddr)105 static bool __head check_la57_support(unsigned long physaddr)
106 {
107 /*
108 * 5-level paging is detected and enabled at kernel decomression
109 * stage. Only check if it has been enabled there.
110 */
111 if (!(native_read_cr4() & X86_CR4_LA57))
112 return false;
113
114 *fixup_int(&__pgtable_l5_enabled, physaddr) = 1;
115 *fixup_int(&pgdir_shift, physaddr) = 48;
116 *fixup_int(&ptrs_per_p4d, physaddr) = 512;
117 *fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5;
118 *fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5;
119 *fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5;
120
121 return true;
122 }
123 #else
check_la57_support(unsigned long physaddr)124 static bool __head check_la57_support(unsigned long physaddr)
125 {
126 return false;
127 }
128 #endif
129
130 /* Code in __startup_64() can be relocated during execution, but the compiler
131 * doesn't have to generate PC-relative relocations when accessing globals from
132 * that function. Clang actually does not generate them, which leads to
133 * boot-time crashes. To work around this problem, every global pointer must
134 * be adjusted using fixup_pointer().
135 */
__startup_64(unsigned long physaddr,struct boot_params * bp)136 unsigned long __head __startup_64(unsigned long physaddr,
137 struct boot_params *bp)
138 {
139 unsigned long vaddr, vaddr_end;
140 unsigned long load_delta, *p;
141 unsigned long pgtable_flags;
142 pgdval_t *pgd;
143 p4dval_t *p4d;
144 pudval_t *pud;
145 pmdval_t *pmd, pmd_entry;
146 pteval_t *mask_ptr;
147 bool la57;
148 int i;
149 unsigned int *next_pgt_ptr;
150
151 la57 = check_la57_support(physaddr);
152
153 /* Is the address too large? */
154 if (physaddr >> MAX_PHYSMEM_BITS)
155 for (;;);
156
157 /*
158 * Compute the delta between the address I am compiled to run at
159 * and the address I am actually running at.
160 */
161 load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
162
163 /* Is the address not 2M aligned? */
164 if (load_delta & ~PMD_PAGE_MASK)
165 for (;;);
166
167 /* Activate Secure Memory Encryption (SME) if supported and enabled */
168 sme_enable(bp);
169
170 /* Include the SME encryption mask in the fixup value */
171 load_delta += sme_get_me_mask();
172
173 /* Fixup the physical addresses in the page table */
174
175 pgd = fixup_pointer(&early_top_pgt, physaddr);
176 p = pgd + pgd_index(__START_KERNEL_map);
177 if (la57)
178 *p = (unsigned long)level4_kernel_pgt;
179 else
180 *p = (unsigned long)level3_kernel_pgt;
181 *p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta;
182
183 if (la57) {
184 p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
185 p4d[511] += load_delta;
186 }
187
188 pud = fixup_pointer(&level3_kernel_pgt, physaddr);
189 pud[510] += load_delta;
190 pud[511] += load_delta;
191
192 pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
193 for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
194 pmd[i] += load_delta;
195
196 /*
197 * Set up the identity mapping for the switchover. These
198 * entries should *NOT* have the global bit set! This also
199 * creates a bunch of nonsense entries but that is fine --
200 * it avoids problems around wraparound.
201 */
202
203 next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
204 pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
205 pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
206
207 pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
208
209 if (la57) {
210 p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++],
211 physaddr);
212
213 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
214 pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
215 pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
216
217 i = physaddr >> P4D_SHIFT;
218 p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
219 p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
220 } else {
221 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
222 pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
223 pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
224 }
225
226 i = physaddr >> PUD_SHIFT;
227 pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
228 pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
229
230 pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
231 /* Filter out unsupported __PAGE_KERNEL_* bits: */
232 mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr);
233 pmd_entry &= *mask_ptr;
234 pmd_entry += sme_get_me_mask();
235 pmd_entry += physaddr;
236
237 for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
238 int idx = i + (physaddr >> PMD_SHIFT);
239
240 pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
241 }
242
243 /*
244 * Fixup the kernel text+data virtual addresses. Note that
245 * we might write invalid pmds, when the kernel is relocated
246 * cleanup_highmap() fixes this up along with the mappings
247 * beyond _end.
248 *
249 * Only the region occupied by the kernel image has so far
250 * been checked against the table of usable memory regions
251 * provided by the firmware, so invalidate pages outside that
252 * region. A page table entry that maps to a reserved area of
253 * memory would allow processor speculation into that area,
254 * and on some hardware (particularly the UV platform) even
255 * speculative access to some reserved areas is caught as an
256 * error, causing the BIOS to halt the system.
257 */
258
259 pmd = fixup_pointer(level2_kernel_pgt, physaddr);
260
261 /* invalidate pages before the kernel image */
262 for (i = 0; i < pmd_index((unsigned long)_text); i++)
263 pmd[i] &= ~_PAGE_PRESENT;
264
265 /* fixup pages that are part of the kernel image */
266 for (; i <= pmd_index((unsigned long)_end); i++)
267 if (pmd[i] & _PAGE_PRESENT)
268 pmd[i] += load_delta;
269
270 /* invalidate pages after the kernel image */
271 for (; i < PTRS_PER_PMD; i++)
272 pmd[i] &= ~_PAGE_PRESENT;
273
274 /*
275 * Fixup phys_base - remove the memory encryption mask to obtain
276 * the true physical address.
277 */
278 *fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask();
279
280 /* Encrypt the kernel and related (if SME is active) */
281 sme_encrypt_kernel(bp);
282
283 /*
284 * Clear the memory encryption mask from the .bss..decrypted section.
285 * The bss section will be memset to zero later in the initialization so
286 * there is no need to zero it after changing the memory encryption
287 * attribute.
288 */
289 if (mem_encrypt_active()) {
290 vaddr = (unsigned long)__start_bss_decrypted;
291 vaddr_end = (unsigned long)__end_bss_decrypted;
292 for (; vaddr < vaddr_end; vaddr += PMD_SIZE) {
293 i = pmd_index(vaddr);
294 pmd[i] -= sme_get_me_mask();
295 }
296 }
297
298 /*
299 * Return the SME encryption mask (if SME is active) to be used as a
300 * modifier for the initial pgdir entry programmed into CR3.
301 */
302 return sme_get_me_mask();
303 }
304
__startup_secondary_64(void)305 unsigned long __startup_secondary_64(void)
306 {
307 /*
308 * Return the SME encryption mask (if SME is active) to be used as a
309 * modifier for the initial pgdir entry programmed into CR3.
310 */
311 return sme_get_me_mask();
312 }
313
314 /* Wipe all early page tables except for the kernel symbol map */
reset_early_page_tables(void)315 static void __init reset_early_page_tables(void)
316 {
317 memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
318 next_early_pgt = 0;
319 write_cr3(__sme_pa_nodebug(early_top_pgt));
320 }
321
322 /* Create a new PMD entry */
__early_make_pgtable(unsigned long address,pmdval_t pmd)323 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
324 {
325 unsigned long physaddr = address - __PAGE_OFFSET;
326 pgdval_t pgd, *pgd_p;
327 p4dval_t p4d, *p4d_p;
328 pudval_t pud, *pud_p;
329 pmdval_t *pmd_p;
330
331 /* Invalid address or early pgt is done ? */
332 if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
333 return false;
334
335 again:
336 pgd_p = &early_top_pgt[pgd_index(address)].pgd;
337 pgd = *pgd_p;
338
339 /*
340 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
341 * critical -- __PAGE_OFFSET would point us back into the dynamic
342 * range and we might end up looping forever...
343 */
344 if (!pgtable_l5_enabled())
345 p4d_p = pgd_p;
346 else if (pgd)
347 p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
348 else {
349 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
350 reset_early_page_tables();
351 goto again;
352 }
353
354 p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
355 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
356 *pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
357 }
358 p4d_p += p4d_index(address);
359 p4d = *p4d_p;
360
361 if (p4d)
362 pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
363 else {
364 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
365 reset_early_page_tables();
366 goto again;
367 }
368
369 pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
370 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
371 *p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
372 }
373 pud_p += pud_index(address);
374 pud = *pud_p;
375
376 if (pud)
377 pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
378 else {
379 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
380 reset_early_page_tables();
381 goto again;
382 }
383
384 pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
385 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
386 *pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
387 }
388 pmd_p[pmd_index(address)] = pmd;
389
390 return true;
391 }
392
early_make_pgtable(unsigned long address)393 static bool __init early_make_pgtable(unsigned long address)
394 {
395 unsigned long physaddr = address - __PAGE_OFFSET;
396 pmdval_t pmd;
397
398 pmd = (physaddr & PMD_MASK) + early_pmd_flags;
399
400 return __early_make_pgtable(address, pmd);
401 }
402
do_early_exception(struct pt_regs * regs,int trapnr)403 void __init do_early_exception(struct pt_regs *regs, int trapnr)
404 {
405 if (trapnr == X86_TRAP_PF &&
406 early_make_pgtable(native_read_cr2()))
407 return;
408
409 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
410 trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
411 return;
412
413 early_fixup_exception(regs, trapnr);
414 }
415
416 /* Don't add a printk in there. printk relies on the PDA which is not initialized
417 yet. */
clear_bss(void)418 static void __init clear_bss(void)
419 {
420 memset(__bss_start, 0,
421 (unsigned long) __bss_stop - (unsigned long) __bss_start);
422 }
423
get_cmd_line_ptr(void)424 static unsigned long get_cmd_line_ptr(void)
425 {
426 unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
427
428 cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
429
430 return cmd_line_ptr;
431 }
432
copy_bootdata(char * real_mode_data)433 static void __init copy_bootdata(char *real_mode_data)
434 {
435 char * command_line;
436 unsigned long cmd_line_ptr;
437
438 /*
439 * If SME is active, this will create decrypted mappings of the
440 * boot data in advance of the copy operations.
441 */
442 sme_map_bootdata(real_mode_data);
443
444 memcpy(&boot_params, real_mode_data, sizeof(boot_params));
445 sanitize_boot_params(&boot_params);
446 cmd_line_ptr = get_cmd_line_ptr();
447 if (cmd_line_ptr) {
448 command_line = __va(cmd_line_ptr);
449 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
450 }
451
452 /*
453 * The old boot data is no longer needed and won't be reserved,
454 * freeing up that memory for use by the system. If SME is active,
455 * we need to remove the mappings that were created so that the
456 * memory doesn't remain mapped as decrypted.
457 */
458 sme_unmap_bootdata(real_mode_data);
459 }
460
x86_64_start_kernel(char * real_mode_data)461 asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data)
462 {
463 /*
464 * Build-time sanity checks on the kernel image and module
465 * area mappings. (these are purely build-time and produce no code)
466 */
467 BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
468 BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
469 BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
470 BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
471 BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
472 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
473 MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
474 (__START_KERNEL & PGDIR_MASK)));
475 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
476
477 cr4_init_shadow();
478
479 /* Kill off the identity-map trampoline */
480 reset_early_page_tables();
481
482 clear_bss();
483
484 clear_page(init_top_pgt);
485
486 /*
487 * SME support may update early_pmd_flags to include the memory
488 * encryption mask, so it needs to be called before anything
489 * that may generate a page fault.
490 */
491 sme_early_init();
492
493 kasan_early_init();
494
495 idt_setup_early_handler();
496
497 copy_bootdata(__va(real_mode_data));
498
499 /*
500 * Load microcode early on BSP.
501 */
502 load_ucode_bsp();
503
504 /* set init_top_pgt kernel high mapping*/
505 init_top_pgt[511] = early_top_pgt[511];
506
507 x86_64_start_reservations(real_mode_data);
508 }
509
x86_64_start_reservations(char * real_mode_data)510 void __init x86_64_start_reservations(char *real_mode_data)
511 {
512 /* version is always not zero if it is copied */
513 if (!boot_params.hdr.version)
514 copy_bootdata(__va(real_mode_data));
515
516 x86_early_init_platform_quirks();
517
518 switch (boot_params.hdr.hardware_subarch) {
519 case X86_SUBARCH_INTEL_MID:
520 x86_intel_mid_early_setup();
521 break;
522 default:
523 break;
524 }
525
526 start_kernel();
527 }
528
529 /*
530 * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
531 * used until the idt_table takes over. On the boot CPU this happens in
532 * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
533 * this happens in the functions called from head_64.S.
534 *
535 * The idt_table can't be used that early because all the code modifying it is
536 * in idt.c and can be instrumented by tracing or KASAN, which both don't work
537 * during early CPU bringup. Also the idt_table has the runtime vectors
538 * configured which require certain CPU state to be setup already (like TSS),
539 * which also hasn't happened yet in early CPU bringup.
540 */
541 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
542
543 static struct desc_ptr bringup_idt_descr = {
544 .size = (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1,
545 .address = 0, /* Set at runtime */
546 };
547
set_bringup_idt_handler(gate_desc * idt,int n,void * handler)548 static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler)
549 {
550 #ifdef CONFIG_AMD_MEM_ENCRYPT
551 struct idt_data data;
552 gate_desc desc;
553
554 init_idt_data(&data, n, handler);
555 idt_init_desc(&desc, &data);
556 native_write_idt_entry(idt, n, &desc);
557 #endif
558 }
559
560 /* This runs while still in the direct mapping */
startup_64_load_idt(unsigned long physbase)561 static void startup_64_load_idt(unsigned long physbase)
562 {
563 struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase);
564 gate_desc *idt = fixup_pointer(bringup_idt_table, physbase);
565
566
567 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
568 void *handler;
569
570 /* VMM Communication Exception */
571 handler = fixup_pointer(vc_no_ghcb, physbase);
572 set_bringup_idt_handler(idt, X86_TRAP_VC, handler);
573 }
574
575 desc->address = (unsigned long)idt;
576 native_load_idt(desc);
577 }
578
579 /* This is used when running on kernel addresses */
early_setup_idt(void)580 void early_setup_idt(void)
581 {
582 /* VMM Communication Exception */
583 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT))
584 set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb);
585
586 bringup_idt_descr.address = (unsigned long)bringup_idt_table;
587 native_load_idt(&bringup_idt_descr);
588 }
589
590 /*
591 * Setup boot CPU state needed before kernel switches to virtual addresses.
592 */
startup_64_setup_env(unsigned long physbase)593 void __head startup_64_setup_env(unsigned long physbase)
594 {
595 /* Load GDT */
596 startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase);
597 native_load_gdt(&startup_gdt_descr);
598
599 /* New GDT is live - reload data segment registers */
600 asm volatile("movl %%eax, %%ds\n"
601 "movl %%eax, %%ss\n"
602 "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
603
604 startup_64_load_idt(physbase);
605 }
606