1 /* Common code for 32 and 64-bit NUMA */
2 #include <linux/acpi.h>
3 #include <linux/kernel.h>
4 #include <linux/mm.h>
5 #include <linux/string.h>
6 #include <linux/init.h>
7 #include <linux/bootmem.h>
8 #include <linux/memblock.h>
9 #include <linux/mmzone.h>
10 #include <linux/ctype.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14
15 #include <asm/e820/api.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/amd_nb.h>
19
20 #include "numa_internal.h"
21
22 int numa_off;
23 nodemask_t numa_nodes_parsed __initdata;
24
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
27
28 static struct numa_meminfo numa_meminfo
29 #ifndef CONFIG_MEMORY_HOTPLUG
30 __initdata
31 #endif
32 ;
33
34 static int numa_distance_cnt;
35 static u8 *numa_distance;
36
numa_setup(char * opt)37 static __init int numa_setup(char *opt)
38 {
39 if (!opt)
40 return -EINVAL;
41 if (!strncmp(opt, "off", 3))
42 numa_off = 1;
43 #ifdef CONFIG_NUMA_EMU
44 if (!strncmp(opt, "fake=", 5))
45 numa_emu_cmdline(opt + 5);
46 #endif
47 #ifdef CONFIG_ACPI_NUMA
48 if (!strncmp(opt, "noacpi", 6))
49 acpi_numa = -1;
50 #endif
51 return 0;
52 }
53 early_param("numa", numa_setup);
54
55 /*
56 * apicid, cpu, node mappings
57 */
58 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
59 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
60 };
61
numa_cpu_node(int cpu)62 int numa_cpu_node(int cpu)
63 {
64 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
65
66 if (apicid != BAD_APICID)
67 return __apicid_to_node[apicid];
68 return NUMA_NO_NODE;
69 }
70
71 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
72 EXPORT_SYMBOL(node_to_cpumask_map);
73
74 /*
75 * Map cpu index to node index
76 */
77 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
78 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
79
numa_set_node(int cpu,int node)80 void numa_set_node(int cpu, int node)
81 {
82 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
83
84 /* early setting, no percpu area yet */
85 if (cpu_to_node_map) {
86 cpu_to_node_map[cpu] = node;
87 return;
88 }
89
90 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
91 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
92 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
93 dump_stack();
94 return;
95 }
96 #endif
97 per_cpu(x86_cpu_to_node_map, cpu) = node;
98
99 set_cpu_numa_node(cpu, node);
100 }
101
numa_clear_node(int cpu)102 void numa_clear_node(int cpu)
103 {
104 numa_set_node(cpu, NUMA_NO_NODE);
105 }
106
107 /*
108 * Allocate node_to_cpumask_map based on number of available nodes
109 * Requires node_possible_map to be valid.
110 *
111 * Note: cpumask_of_node() is not valid until after this is done.
112 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
113 */
setup_node_to_cpumask_map(void)114 void __init setup_node_to_cpumask_map(void)
115 {
116 unsigned int node;
117
118 /* setup nr_node_ids if not done yet */
119 if (nr_node_ids == MAX_NUMNODES)
120 setup_nr_node_ids();
121
122 /* allocate the map */
123 for (node = 0; node < nr_node_ids; node++)
124 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
125
126 /* cpumask_of_node() will now work */
127 pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
128 }
129
numa_add_memblk_to(int nid,u64 start,u64 end,struct numa_meminfo * mi)130 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
131 struct numa_meminfo *mi)
132 {
133 /* ignore zero length blks */
134 if (start == end)
135 return 0;
136
137 /* whine about and ignore invalid blks */
138 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
139 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
140 nid, start, end - 1);
141 return 0;
142 }
143
144 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
145 pr_err("too many memblk ranges\n");
146 return -EINVAL;
147 }
148
149 mi->blk[mi->nr_blks].start = start;
150 mi->blk[mi->nr_blks].end = end;
151 mi->blk[mi->nr_blks].nid = nid;
152 mi->nr_blks++;
153 return 0;
154 }
155
156 /**
157 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
158 * @idx: Index of memblk to remove
159 * @mi: numa_meminfo to remove memblk from
160 *
161 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
162 * decrementing @mi->nr_blks.
163 */
numa_remove_memblk_from(int idx,struct numa_meminfo * mi)164 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
165 {
166 mi->nr_blks--;
167 memmove(&mi->blk[idx], &mi->blk[idx + 1],
168 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
169 }
170
171 /**
172 * numa_add_memblk - Add one numa_memblk to numa_meminfo
173 * @nid: NUMA node ID of the new memblk
174 * @start: Start address of the new memblk
175 * @end: End address of the new memblk
176 *
177 * Add a new memblk to the default numa_meminfo.
178 *
179 * RETURNS:
180 * 0 on success, -errno on failure.
181 */
numa_add_memblk(int nid,u64 start,u64 end)182 int __init numa_add_memblk(int nid, u64 start, u64 end)
183 {
184 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
185 }
186
187 /* Allocate NODE_DATA for a node on the local memory */
alloc_node_data(int nid)188 static void __init alloc_node_data(int nid)
189 {
190 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
191 u64 nd_pa;
192 void *nd;
193 int tnid;
194
195 /*
196 * Allocate node data. Try node-local memory and then any node.
197 * Never allocate in DMA zone.
198 */
199 nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
200 if (!nd_pa) {
201 nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
202 MEMBLOCK_ALLOC_ACCESSIBLE);
203 if (!nd_pa) {
204 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
205 nd_size, nid);
206 return;
207 }
208 }
209 nd = __va(nd_pa);
210
211 /* report and initialize */
212 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
213 nd_pa, nd_pa + nd_size - 1);
214 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
215 if (tnid != nid)
216 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
217
218 node_data[nid] = nd;
219 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
220
221 node_set_online(nid);
222 }
223
224 /**
225 * numa_cleanup_meminfo - Cleanup a numa_meminfo
226 * @mi: numa_meminfo to clean up
227 *
228 * Sanitize @mi by merging and removing unnecessary memblks. Also check for
229 * conflicts and clear unused memblks.
230 *
231 * RETURNS:
232 * 0 on success, -errno on failure.
233 */
numa_cleanup_meminfo(struct numa_meminfo * mi)234 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
235 {
236 const u64 low = 0;
237 const u64 high = PFN_PHYS(max_pfn);
238 int i, j, k;
239
240 /* first, trim all entries */
241 for (i = 0; i < mi->nr_blks; i++) {
242 struct numa_memblk *bi = &mi->blk[i];
243
244 /* make sure all blocks are inside the limits */
245 bi->start = max(bi->start, low);
246 bi->end = min(bi->end, high);
247
248 /* and there's no empty or non-exist block */
249 if (bi->start >= bi->end ||
250 !memblock_overlaps_region(&memblock.memory,
251 bi->start, bi->end - bi->start))
252 numa_remove_memblk_from(i--, mi);
253 }
254
255 /* merge neighboring / overlapping entries */
256 for (i = 0; i < mi->nr_blks; i++) {
257 struct numa_memblk *bi = &mi->blk[i];
258
259 for (j = i + 1; j < mi->nr_blks; j++) {
260 struct numa_memblk *bj = &mi->blk[j];
261 u64 start, end;
262
263 /*
264 * See whether there are overlapping blocks. Whine
265 * about but allow overlaps of the same nid. They
266 * will be merged below.
267 */
268 if (bi->end > bj->start && bi->start < bj->end) {
269 if (bi->nid != bj->nid) {
270 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
271 bi->nid, bi->start, bi->end - 1,
272 bj->nid, bj->start, bj->end - 1);
273 return -EINVAL;
274 }
275 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
276 bi->nid, bi->start, bi->end - 1,
277 bj->start, bj->end - 1);
278 }
279
280 /*
281 * Join together blocks on the same node, holes
282 * between which don't overlap with memory on other
283 * nodes.
284 */
285 if (bi->nid != bj->nid)
286 continue;
287 start = min(bi->start, bj->start);
288 end = max(bi->end, bj->end);
289 for (k = 0; k < mi->nr_blks; k++) {
290 struct numa_memblk *bk = &mi->blk[k];
291
292 if (bi->nid == bk->nid)
293 continue;
294 if (start < bk->end && end > bk->start)
295 break;
296 }
297 if (k < mi->nr_blks)
298 continue;
299 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
300 bi->nid, bi->start, bi->end - 1, bj->start,
301 bj->end - 1, start, end - 1);
302 bi->start = start;
303 bi->end = end;
304 numa_remove_memblk_from(j--, mi);
305 }
306 }
307
308 /* clear unused ones */
309 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
310 mi->blk[i].start = mi->blk[i].end = 0;
311 mi->blk[i].nid = NUMA_NO_NODE;
312 }
313
314 return 0;
315 }
316
317 /*
318 * Set nodes, which have memory in @mi, in *@nodemask.
319 */
numa_nodemask_from_meminfo(nodemask_t * nodemask,const struct numa_meminfo * mi)320 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
321 const struct numa_meminfo *mi)
322 {
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
326 if (mi->blk[i].start != mi->blk[i].end &&
327 mi->blk[i].nid != NUMA_NO_NODE)
328 node_set(mi->blk[i].nid, *nodemask);
329 }
330
331 /**
332 * numa_reset_distance - Reset NUMA distance table
333 *
334 * The current table is freed. The next numa_set_distance() call will
335 * create a new one.
336 */
numa_reset_distance(void)337 void __init numa_reset_distance(void)
338 {
339 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
340
341 /* numa_distance could be 1LU marking allocation failure, test cnt */
342 if (numa_distance_cnt)
343 memblock_free(__pa(numa_distance), size);
344 numa_distance_cnt = 0;
345 numa_distance = NULL; /* enable table creation */
346 }
347
numa_alloc_distance(void)348 static int __init numa_alloc_distance(void)
349 {
350 nodemask_t nodes_parsed;
351 size_t size;
352 int i, j, cnt = 0;
353 u64 phys;
354
355 /* size the new table and allocate it */
356 nodes_parsed = numa_nodes_parsed;
357 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
358
359 for_each_node_mask(i, nodes_parsed)
360 cnt = i;
361 cnt++;
362 size = cnt * cnt * sizeof(numa_distance[0]);
363
364 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
365 size, PAGE_SIZE);
366 if (!phys) {
367 pr_warn("Warning: can't allocate distance table!\n");
368 /* don't retry until explicitly reset */
369 numa_distance = (void *)1LU;
370 return -ENOMEM;
371 }
372 memblock_reserve(phys, size);
373
374 numa_distance = __va(phys);
375 numa_distance_cnt = cnt;
376
377 /* fill with the default distances */
378 for (i = 0; i < cnt; i++)
379 for (j = 0; j < cnt; j++)
380 numa_distance[i * cnt + j] = i == j ?
381 LOCAL_DISTANCE : REMOTE_DISTANCE;
382 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
383
384 return 0;
385 }
386
387 /**
388 * numa_set_distance - Set NUMA distance from one NUMA to another
389 * @from: the 'from' node to set distance
390 * @to: the 'to' node to set distance
391 * @distance: NUMA distance
392 *
393 * Set the distance from node @from to @to to @distance. If distance table
394 * doesn't exist, one which is large enough to accommodate all the currently
395 * known nodes will be created.
396 *
397 * If such table cannot be allocated, a warning is printed and further
398 * calls are ignored until the distance table is reset with
399 * numa_reset_distance().
400 *
401 * If @from or @to is higher than the highest known node or lower than zero
402 * at the time of table creation or @distance doesn't make sense, the call
403 * is ignored.
404 * This is to allow simplification of specific NUMA config implementations.
405 */
numa_set_distance(int from,int to,int distance)406 void __init numa_set_distance(int from, int to, int distance)
407 {
408 if (!numa_distance && numa_alloc_distance() < 0)
409 return;
410
411 if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
412 from < 0 || to < 0) {
413 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
414 from, to, distance);
415 return;
416 }
417
418 if ((u8)distance != distance ||
419 (from == to && distance != LOCAL_DISTANCE)) {
420 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
421 from, to, distance);
422 return;
423 }
424
425 numa_distance[from * numa_distance_cnt + to] = distance;
426 }
427
__node_distance(int from,int to)428 int __node_distance(int from, int to)
429 {
430 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
431 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
432 return numa_distance[from * numa_distance_cnt + to];
433 }
434 EXPORT_SYMBOL(__node_distance);
435
436 /*
437 * Sanity check to catch more bad NUMA configurations (they are amazingly
438 * common). Make sure the nodes cover all memory.
439 */
numa_meminfo_cover_memory(const struct numa_meminfo * mi)440 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
441 {
442 u64 numaram, e820ram;
443 int i;
444
445 numaram = 0;
446 for (i = 0; i < mi->nr_blks; i++) {
447 u64 s = mi->blk[i].start >> PAGE_SHIFT;
448 u64 e = mi->blk[i].end >> PAGE_SHIFT;
449 numaram += e - s;
450 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
451 if ((s64)numaram < 0)
452 numaram = 0;
453 }
454
455 e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
456
457 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
458 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
459 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
460 (numaram << PAGE_SHIFT) >> 20,
461 (e820ram << PAGE_SHIFT) >> 20);
462 return false;
463 }
464 return true;
465 }
466
467 /*
468 * Mark all currently memblock-reserved physical memory (which covers the
469 * kernel's own memory ranges) as hot-unswappable.
470 */
numa_clear_kernel_node_hotplug(void)471 static void __init numa_clear_kernel_node_hotplug(void)
472 {
473 nodemask_t reserved_nodemask = NODE_MASK_NONE;
474 struct memblock_region *mb_region;
475 int i;
476
477 /*
478 * We have to do some preprocessing of memblock regions, to
479 * make them suitable for reservation.
480 *
481 * At this time, all memory regions reserved by memblock are
482 * used by the kernel, but those regions are not split up
483 * along node boundaries yet, and don't necessarily have their
484 * node ID set yet either.
485 *
486 * So iterate over all memory known to the x86 architecture,
487 * and use those ranges to set the nid in memblock.reserved.
488 * This will split up the memblock regions along node
489 * boundaries and will set the node IDs as well.
490 */
491 for (i = 0; i < numa_meminfo.nr_blks; i++) {
492 struct numa_memblk *mb = numa_meminfo.blk + i;
493 int ret;
494
495 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
496 WARN_ON_ONCE(ret);
497 }
498
499 /*
500 * Now go over all reserved memblock regions, to construct a
501 * node mask of all kernel reserved memory areas.
502 *
503 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
504 * numa_meminfo might not include all memblock.reserved
505 * memory ranges, because quirks such as trim_snb_memory()
506 * reserve specific pages for Sandy Bridge graphics. ]
507 */
508 for_each_memblock(reserved, mb_region) {
509 if (mb_region->nid != MAX_NUMNODES)
510 node_set(mb_region->nid, reserved_nodemask);
511 }
512
513 /*
514 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
515 * belonging to the reserved node mask.
516 *
517 * Note that this will include memory regions that reside
518 * on nodes that contain kernel memory - entire nodes
519 * become hot-unpluggable:
520 */
521 for (i = 0; i < numa_meminfo.nr_blks; i++) {
522 struct numa_memblk *mb = numa_meminfo.blk + i;
523
524 if (!node_isset(mb->nid, reserved_nodemask))
525 continue;
526
527 memblock_clear_hotplug(mb->start, mb->end - mb->start);
528 }
529 }
530
numa_register_memblks(struct numa_meminfo * mi)531 static int __init numa_register_memblks(struct numa_meminfo *mi)
532 {
533 unsigned long uninitialized_var(pfn_align);
534 int i, nid;
535
536 /* Account for nodes with cpus and no memory */
537 node_possible_map = numa_nodes_parsed;
538 numa_nodemask_from_meminfo(&node_possible_map, mi);
539 if (WARN_ON(nodes_empty(node_possible_map)))
540 return -EINVAL;
541
542 for (i = 0; i < mi->nr_blks; i++) {
543 struct numa_memblk *mb = &mi->blk[i];
544 memblock_set_node(mb->start, mb->end - mb->start,
545 &memblock.memory, mb->nid);
546 }
547
548 /*
549 * At very early time, the kernel have to use some memory such as
550 * loading the kernel image. We cannot prevent this anyway. So any
551 * node the kernel resides in should be un-hotpluggable.
552 *
553 * And when we come here, alloc node data won't fail.
554 */
555 numa_clear_kernel_node_hotplug();
556
557 /*
558 * If sections array is gonna be used for pfn -> nid mapping, check
559 * whether its granularity is fine enough.
560 */
561 #ifdef NODE_NOT_IN_PAGE_FLAGS
562 pfn_align = node_map_pfn_alignment();
563 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
564 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
565 PFN_PHYS(pfn_align) >> 20,
566 PFN_PHYS(PAGES_PER_SECTION) >> 20);
567 return -EINVAL;
568 }
569 #endif
570 if (!numa_meminfo_cover_memory(mi))
571 return -EINVAL;
572
573 /* Finally register nodes. */
574 for_each_node_mask(nid, node_possible_map) {
575 u64 start = PFN_PHYS(max_pfn);
576 u64 end = 0;
577
578 for (i = 0; i < mi->nr_blks; i++) {
579 if (nid != mi->blk[i].nid)
580 continue;
581 start = min(mi->blk[i].start, start);
582 end = max(mi->blk[i].end, end);
583 }
584
585 if (start >= end)
586 continue;
587
588 /*
589 * Don't confuse VM with a node that doesn't have the
590 * minimum amount of memory:
591 */
592 if (end && (end - start) < NODE_MIN_SIZE)
593 continue;
594
595 alloc_node_data(nid);
596 }
597
598 /* Dump memblock with node info and return. */
599 memblock_dump_all();
600 return 0;
601 }
602
603 /*
604 * There are unfortunately some poorly designed mainboards around that
605 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
606 * mapping. To avoid this fill in the mapping for all possible CPUs,
607 * as the number of CPUs is not known yet. We round robin the existing
608 * nodes.
609 */
numa_init_array(void)610 static void __init numa_init_array(void)
611 {
612 int rr, i;
613
614 rr = first_node(node_online_map);
615 for (i = 0; i < nr_cpu_ids; i++) {
616 if (early_cpu_to_node(i) != NUMA_NO_NODE)
617 continue;
618 numa_set_node(i, rr);
619 rr = next_node_in(rr, node_online_map);
620 }
621 }
622
numa_init(int (* init_func)(void))623 static int __init numa_init(int (*init_func)(void))
624 {
625 int i;
626 int ret;
627
628 for (i = 0; i < MAX_LOCAL_APIC; i++)
629 set_apicid_to_node(i, NUMA_NO_NODE);
630
631 nodes_clear(numa_nodes_parsed);
632 nodes_clear(node_possible_map);
633 nodes_clear(node_online_map);
634 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
635 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
636 MAX_NUMNODES));
637 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
638 MAX_NUMNODES));
639 /* In case that parsing SRAT failed. */
640 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
641 numa_reset_distance();
642
643 ret = init_func();
644 if (ret < 0)
645 return ret;
646
647 /*
648 * We reset memblock back to the top-down direction
649 * here because if we configured ACPI_NUMA, we have
650 * parsed SRAT in init_func(). It is ok to have the
651 * reset here even if we did't configure ACPI_NUMA
652 * or acpi numa init fails and fallbacks to dummy
653 * numa init.
654 */
655 memblock_set_bottom_up(false);
656
657 ret = numa_cleanup_meminfo(&numa_meminfo);
658 if (ret < 0)
659 return ret;
660
661 numa_emulation(&numa_meminfo, numa_distance_cnt);
662
663 ret = numa_register_memblks(&numa_meminfo);
664 if (ret < 0)
665 return ret;
666
667 for (i = 0; i < nr_cpu_ids; i++) {
668 int nid = early_cpu_to_node(i);
669
670 if (nid == NUMA_NO_NODE)
671 continue;
672 if (!node_online(nid))
673 numa_clear_node(i);
674 }
675 numa_init_array();
676
677 return 0;
678 }
679
680 /**
681 * dummy_numa_init - Fallback dummy NUMA init
682 *
683 * Used if there's no underlying NUMA architecture, NUMA initialization
684 * fails, or NUMA is disabled on the command line.
685 *
686 * Must online at least one node and add memory blocks that cover all
687 * allowed memory. This function must not fail.
688 */
dummy_numa_init(void)689 static int __init dummy_numa_init(void)
690 {
691 printk(KERN_INFO "%s\n",
692 numa_off ? "NUMA turned off" : "No NUMA configuration found");
693 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
694 0LLU, PFN_PHYS(max_pfn) - 1);
695
696 node_set(0, numa_nodes_parsed);
697 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
698
699 return 0;
700 }
701
702 /**
703 * x86_numa_init - Initialize NUMA
704 *
705 * Try each configured NUMA initialization method until one succeeds. The
706 * last fallback is dummy single node config encomapssing whole memory and
707 * never fails.
708 */
x86_numa_init(void)709 void __init x86_numa_init(void)
710 {
711 if (!numa_off) {
712 #ifdef CONFIG_ACPI_NUMA
713 if (!numa_init(x86_acpi_numa_init))
714 return;
715 #endif
716 #ifdef CONFIG_AMD_NUMA
717 if (!numa_init(amd_numa_init))
718 return;
719 #endif
720 }
721
722 numa_init(dummy_numa_init);
723 }
724
init_memory_less_node(int nid)725 static void __init init_memory_less_node(int nid)
726 {
727 unsigned long zones_size[MAX_NR_ZONES] = {0};
728 unsigned long zholes_size[MAX_NR_ZONES] = {0};
729
730 /* Allocate and initialize node data. Memory-less node is now online.*/
731 alloc_node_data(nid);
732 free_area_init_node(nid, zones_size, 0, zholes_size);
733
734 /*
735 * All zonelists will be built later in start_kernel() after per cpu
736 * areas are initialized.
737 */
738 }
739
740 /*
741 * Setup early cpu_to_node.
742 *
743 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
744 * and apicid_to_node[] tables have valid entries for a CPU.
745 * This means we skip cpu_to_node[] initialisation for NUMA
746 * emulation and faking node case (when running a kernel compiled
747 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
748 * is already initialized in a round robin manner at numa_init_array,
749 * prior to this call, and this initialization is good enough
750 * for the fake NUMA cases.
751 *
752 * Called before the per_cpu areas are setup.
753 */
init_cpu_to_node(void)754 void __init init_cpu_to_node(void)
755 {
756 int cpu;
757 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
758
759 BUG_ON(cpu_to_apicid == NULL);
760
761 for_each_possible_cpu(cpu) {
762 int node = numa_cpu_node(cpu);
763
764 if (node == NUMA_NO_NODE)
765 continue;
766
767 if (!node_online(node))
768 init_memory_less_node(node);
769
770 numa_set_node(cpu, node);
771 }
772 }
773
774 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
775
776 # ifndef CONFIG_NUMA_EMU
numa_add_cpu(int cpu)777 void numa_add_cpu(int cpu)
778 {
779 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
780 }
781
numa_remove_cpu(int cpu)782 void numa_remove_cpu(int cpu)
783 {
784 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
785 }
786 # endif /* !CONFIG_NUMA_EMU */
787
788 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
789
__cpu_to_node(int cpu)790 int __cpu_to_node(int cpu)
791 {
792 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
793 printk(KERN_WARNING
794 "cpu_to_node(%d): usage too early!\n", cpu);
795 dump_stack();
796 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
797 }
798 return per_cpu(x86_cpu_to_node_map, cpu);
799 }
800 EXPORT_SYMBOL(__cpu_to_node);
801
802 /*
803 * Same function as cpu_to_node() but used if called before the
804 * per_cpu areas are setup.
805 */
early_cpu_to_node(int cpu)806 int early_cpu_to_node(int cpu)
807 {
808 if (early_per_cpu_ptr(x86_cpu_to_node_map))
809 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
810
811 if (!cpu_possible(cpu)) {
812 printk(KERN_WARNING
813 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
814 dump_stack();
815 return NUMA_NO_NODE;
816 }
817 return per_cpu(x86_cpu_to_node_map, cpu);
818 }
819
debug_cpumask_set_cpu(int cpu,int node,bool enable)820 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
821 {
822 struct cpumask *mask;
823
824 if (node == NUMA_NO_NODE) {
825 /* early_cpu_to_node() already emits a warning and trace */
826 return;
827 }
828 mask = node_to_cpumask_map[node];
829 if (!mask) {
830 pr_err("node_to_cpumask_map[%i] NULL\n", node);
831 dump_stack();
832 return;
833 }
834
835 if (enable)
836 cpumask_set_cpu(cpu, mask);
837 else
838 cpumask_clear_cpu(cpu, mask);
839
840 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
841 enable ? "numa_add_cpu" : "numa_remove_cpu",
842 cpu, node, cpumask_pr_args(mask));
843 return;
844 }
845
846 # ifndef CONFIG_NUMA_EMU
numa_set_cpumask(int cpu,bool enable)847 static void numa_set_cpumask(int cpu, bool enable)
848 {
849 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
850 }
851
numa_add_cpu(int cpu)852 void numa_add_cpu(int cpu)
853 {
854 numa_set_cpumask(cpu, true);
855 }
856
numa_remove_cpu(int cpu)857 void numa_remove_cpu(int cpu)
858 {
859 numa_set_cpumask(cpu, false);
860 }
861 # endif /* !CONFIG_NUMA_EMU */
862
863 /*
864 * Returns a pointer to the bitmask of CPUs on Node 'node'.
865 */
cpumask_of_node(int node)866 const struct cpumask *cpumask_of_node(int node)
867 {
868 if (node >= nr_node_ids) {
869 printk(KERN_WARNING
870 "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
871 node, nr_node_ids);
872 dump_stack();
873 return cpu_none_mask;
874 }
875 if (node_to_cpumask_map[node] == NULL) {
876 printk(KERN_WARNING
877 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
878 node);
879 dump_stack();
880 return cpu_online_mask;
881 }
882 return node_to_cpumask_map[node];
883 }
884 EXPORT_SYMBOL(cpumask_of_node);
885
886 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
887
888 #ifdef CONFIG_MEMORY_HOTPLUG
memory_add_physaddr_to_nid(u64 start)889 int memory_add_physaddr_to_nid(u64 start)
890 {
891 struct numa_meminfo *mi = &numa_meminfo;
892 int nid = mi->blk[0].nid;
893 int i;
894
895 for (i = 0; i < mi->nr_blks; i++)
896 if (mi->blk[i].start <= start && mi->blk[i].end > start)
897 nid = mi->blk[i].nid;
898 return nid;
899 }
900 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
901 #endif
902