1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 * x86-64 work by Andi Kleen 2002
9 */
10
11 #ifndef _ASM_X86_FPU_INTERNAL_H
12 #define _ASM_X86_FPU_INTERNAL_H
13
14 #include <linux/compat.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17
18 #include <asm/user.h>
19 #include <asm/fpu/api.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/cpufeature.h>
22 #include <asm/trace/fpu.h>
23
24 /*
25 * High level FPU state handling functions:
26 */
27 extern void fpu__initialize(struct fpu *fpu);
28 extern void fpu__prepare_read(struct fpu *fpu);
29 extern void fpu__prepare_write(struct fpu *fpu);
30 extern void fpu__save(struct fpu *fpu);
31 extern void fpu__restore(struct fpu *fpu);
32 extern int fpu__restore_sig(void __user *buf, int ia32_frame);
33 extern void fpu__drop(struct fpu *fpu);
34 extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
35 extern void fpu__clear(struct fpu *fpu);
36 extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
37 extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
38
39 /*
40 * Boot time FPU initialization functions:
41 */
42 extern void fpu__init_cpu(void);
43 extern void fpu__init_system_xstate(void);
44 extern void fpu__init_cpu_xstate(void);
45 extern void fpu__init_system(struct cpuinfo_x86 *c);
46 extern void fpu__init_check_bugs(void);
47 extern void fpu__resume_cpu(void);
48 extern u64 fpu__get_supported_xfeatures_mask(void);
49
50 /*
51 * Debugging facility:
52 */
53 #ifdef CONFIG_X86_DEBUG_FPU
54 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
55 #else
56 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
57 #endif
58
59 /*
60 * FPU related CPU feature flag helper routines:
61 */
use_xsaveopt(void)62 static __always_inline __pure bool use_xsaveopt(void)
63 {
64 return static_cpu_has(X86_FEATURE_XSAVEOPT);
65 }
66
use_xsave(void)67 static __always_inline __pure bool use_xsave(void)
68 {
69 return static_cpu_has(X86_FEATURE_XSAVE);
70 }
71
use_fxsr(void)72 static __always_inline __pure bool use_fxsr(void)
73 {
74 return static_cpu_has(X86_FEATURE_FXSR);
75 }
76
77 /*
78 * fpstate handling functions:
79 */
80
81 extern union fpregs_state init_fpstate;
82
83 extern void fpstate_init(union fpregs_state *state);
84 #ifdef CONFIG_MATH_EMULATION
85 extern void fpstate_init_soft(struct swregs_state *soft);
86 #else
fpstate_init_soft(struct swregs_state * soft)87 static inline void fpstate_init_soft(struct swregs_state *soft) {}
88 #endif
89
fpstate_init_xstate(struct xregs_state * xsave)90 static inline void fpstate_init_xstate(struct xregs_state *xsave)
91 {
92 /*
93 * XRSTORS requires these bits set in xcomp_bv, or it will
94 * trigger #GP:
95 */
96 xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
97 }
98
fpstate_init_fxstate(struct fxregs_state * fx)99 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
100 {
101 fx->cwd = 0x37f;
102 fx->mxcsr = MXCSR_DEFAULT;
103 }
104 extern void fpstate_sanitize_xstate(struct fpu *fpu);
105
106 #define user_insn(insn, output, input...) \
107 ({ \
108 int err; \
109 asm volatile(ASM_STAC "\n" \
110 "1:" #insn "\n\t" \
111 "2: " ASM_CLAC "\n" \
112 ".section .fixup,\"ax\"\n" \
113 "3: movl $-1,%[err]\n" \
114 " jmp 2b\n" \
115 ".previous\n" \
116 _ASM_EXTABLE(1b, 3b) \
117 : [err] "=r" (err), output \
118 : "0"(0), input); \
119 err; \
120 })
121
122 #define kernel_insn(insn, output, input...) \
123 asm volatile("1:" #insn "\n\t" \
124 "2:\n" \
125 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \
126 : output : input)
127
copy_fregs_to_user(struct fregs_state __user * fx)128 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129 {
130 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
131 }
132
copy_fxregs_to_user(struct fxregs_state __user * fx)133 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134 {
135 if (IS_ENABLED(CONFIG_X86_32))
136 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
138 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139
140 /* See comment in copy_fxregs_to_kernel() below. */
141 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142 }
143
copy_kernel_to_fxregs(struct fxregs_state * fx)144 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145 {
146 if (IS_ENABLED(CONFIG_X86_32)) {
147 kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
148 } else {
149 if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
150 kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
151 } else {
152 /* See comment in copy_fxregs_to_kernel() below. */
153 kernel_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
154 }
155 }
156 }
157
copy_user_to_fxregs(struct fxregs_state __user * fx)158 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
159 {
160 if (IS_ENABLED(CONFIG_X86_32))
161 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
162 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
163 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
164
165 /* See comment in copy_fxregs_to_kernel() below. */
166 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
167 "m" (*fx));
168 }
169
copy_kernel_to_fregs(struct fregs_state * fx)170 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
171 {
172 kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
173 }
174
copy_user_to_fregs(struct fregs_state __user * fx)175 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
176 {
177 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
178 }
179
copy_fxregs_to_kernel(struct fpu * fpu)180 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
181 {
182 if (IS_ENABLED(CONFIG_X86_32))
183 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
184 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
185 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
186 else {
187 /* Using "rex64; fxsave %0" is broken because, if the memory
188 * operand uses any extended registers for addressing, a second
189 * REX prefix will be generated (to the assembler, rex64
190 * followed by semicolon is a separate instruction), and hence
191 * the 64-bitness is lost.
192 *
193 * Using "fxsaveq %0" would be the ideal choice, but is only
194 * supported starting with gas 2.16.
195 *
196 * Using, as a workaround, the properly prefixed form below
197 * isn't accepted by any binutils version so far released,
198 * complaining that the same type of prefix is used twice if
199 * an extended register is needed for addressing (fix submitted
200 * to mainline 2005-11-21).
201 *
202 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
203 *
204 * This, however, we can work around by forcing the compiler to
205 * select an addressing mode that doesn't require extended
206 * registers.
207 */
208 asm volatile( "rex64/fxsave (%[fx])"
209 : "=m" (fpu->state.fxsave)
210 : [fx] "R" (&fpu->state.fxsave));
211 }
212 }
213
214 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
215 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
216 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
217 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
218 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
219 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
220
221 #define XSTATE_OP(op, st, lmask, hmask, err) \
222 asm volatile("1:" op "\n\t" \
223 "xor %[err], %[err]\n" \
224 "2:\n\t" \
225 ".pushsection .fixup,\"ax\"\n\t" \
226 "3: movl $-2,%[err]\n\t" \
227 "jmp 2b\n\t" \
228 ".popsection\n\t" \
229 _ASM_EXTABLE(1b, 3b) \
230 : [err] "=r" (err) \
231 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
232 : "memory")
233
234 /*
235 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
236 * format and supervisor states in addition to modified optimization in
237 * XSAVEOPT.
238 *
239 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
240 * supports modified optimization which is not supported by XSAVE.
241 *
242 * We use XSAVE as a fallback.
243 *
244 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
245 * original instruction which gets replaced. We need to use it here as the
246 * address of the instruction where we might get an exception at.
247 */
248 #define XSTATE_XSAVE(st, lmask, hmask, err) \
249 asm volatile(ALTERNATIVE_2(XSAVE, \
250 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
251 XSAVES, X86_FEATURE_XSAVES) \
252 "\n" \
253 "xor %[err], %[err]\n" \
254 "3:\n" \
255 ".pushsection .fixup,\"ax\"\n" \
256 "4: movl $-2, %[err]\n" \
257 "jmp 3b\n" \
258 ".popsection\n" \
259 _ASM_EXTABLE(661b, 4b) \
260 : [err] "=r" (err) \
261 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
262 : "memory")
263
264 /*
265 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
266 * XSAVE area format.
267 */
268 #define XSTATE_XRESTORE(st, lmask, hmask) \
269 asm volatile(ALTERNATIVE(XRSTOR, \
270 XRSTORS, X86_FEATURE_XSAVES) \
271 "\n" \
272 "3:\n" \
273 _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
274 : \
275 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
276 : "memory")
277
278 /*
279 * This function is called only during boot time when x86 caps are not set
280 * up and alternative can not be used yet.
281 */
copy_xregs_to_kernel_booting(struct xregs_state * xstate)282 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
283 {
284 u64 mask = -1;
285 u32 lmask = mask;
286 u32 hmask = mask >> 32;
287 int err;
288
289 WARN_ON(system_state != SYSTEM_BOOTING);
290
291 if (static_cpu_has(X86_FEATURE_XSAVES))
292 XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
293 else
294 XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
295
296 /* We should never fault when copying to a kernel buffer: */
297 WARN_ON_FPU(err);
298 }
299
300 /*
301 * This function is called only during boot time when x86 caps are not set
302 * up and alternative can not be used yet.
303 */
copy_kernel_to_xregs_booting(struct xregs_state * xstate)304 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
305 {
306 u64 mask = -1;
307 u32 lmask = mask;
308 u32 hmask = mask >> 32;
309 int err;
310
311 WARN_ON(system_state != SYSTEM_BOOTING);
312
313 if (static_cpu_has(X86_FEATURE_XSAVES))
314 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
315 else
316 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
317
318 /*
319 * We should never fault when copying from a kernel buffer, and the FPU
320 * state we set at boot time should be valid.
321 */
322 WARN_ON_FPU(err);
323 }
324
325 /*
326 * Save processor xstate to xsave area.
327 */
copy_xregs_to_kernel(struct xregs_state * xstate)328 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
329 {
330 u64 mask = -1;
331 u32 lmask = mask;
332 u32 hmask = mask >> 32;
333 int err;
334
335 WARN_ON_FPU(!alternatives_patched);
336
337 XSTATE_XSAVE(xstate, lmask, hmask, err);
338
339 /* We should never fault when copying to a kernel buffer: */
340 WARN_ON_FPU(err);
341 }
342
343 /*
344 * Restore processor xstate from xsave area.
345 */
copy_kernel_to_xregs(struct xregs_state * xstate,u64 mask)346 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
347 {
348 u32 lmask = mask;
349 u32 hmask = mask >> 32;
350
351 XSTATE_XRESTORE(xstate, lmask, hmask);
352 }
353
354 /*
355 * Save xstate to user space xsave area.
356 *
357 * We don't use modified optimization because xrstor/xrstors might track
358 * a different application.
359 *
360 * We don't use compacted format xsave area for
361 * backward compatibility for old applications which don't understand
362 * compacted format of xsave area.
363 */
copy_xregs_to_user(struct xregs_state __user * buf)364 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
365 {
366 int err;
367
368 /*
369 * Clear the xsave header first, so that reserved fields are
370 * initialized to zero.
371 */
372 err = __clear_user(&buf->header, sizeof(buf->header));
373 if (unlikely(err))
374 return -EFAULT;
375
376 stac();
377 XSTATE_OP(XSAVE, buf, -1, -1, err);
378 clac();
379
380 return err;
381 }
382
383 /*
384 * Restore xstate from user space xsave area.
385 */
copy_user_to_xregs(struct xregs_state __user * buf,u64 mask)386 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
387 {
388 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
389 u32 lmask = mask;
390 u32 hmask = mask >> 32;
391 int err;
392
393 stac();
394 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
395 clac();
396
397 return err;
398 }
399
400 /*
401 * These must be called with preempt disabled. Returns
402 * 'true' if the FPU state is still intact and we can
403 * keep registers active.
404 *
405 * The legacy FNSAVE instruction cleared all FPU state
406 * unconditionally, so registers are essentially destroyed.
407 * Modern FPU state can be kept in registers, if there are
408 * no pending FP exceptions.
409 */
copy_fpregs_to_fpstate(struct fpu * fpu)410 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
411 {
412 if (likely(use_xsave())) {
413 copy_xregs_to_kernel(&fpu->state.xsave);
414 return 1;
415 }
416
417 if (likely(use_fxsr())) {
418 copy_fxregs_to_kernel(fpu);
419 return 1;
420 }
421
422 /*
423 * Legacy FPU register saving, FNSAVE always clears FPU registers,
424 * so we have to mark them inactive:
425 */
426 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
427
428 return 0;
429 }
430
__copy_kernel_to_fpregs(union fpregs_state * fpstate,u64 mask)431 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
432 {
433 if (use_xsave()) {
434 copy_kernel_to_xregs(&fpstate->xsave, mask);
435 } else {
436 if (use_fxsr())
437 copy_kernel_to_fxregs(&fpstate->fxsave);
438 else
439 copy_kernel_to_fregs(&fpstate->fsave);
440 }
441 }
442
copy_kernel_to_fpregs(union fpregs_state * fpstate)443 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
444 {
445 /*
446 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
447 * pending. Clear the x87 state here by setting it to fixed values.
448 * "m" is a random variable that should be in L1.
449 */
450 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
451 asm volatile(
452 "fnclex\n\t"
453 "emms\n\t"
454 "fildl %P[addr]" /* set F?P to defined value */
455 : : [addr] "m" (fpstate));
456 }
457
458 __copy_kernel_to_fpregs(fpstate, -1);
459 }
460
461 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
462
463 /*
464 * FPU context switch related helper methods:
465 */
466
467 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
468
469 /*
470 * The in-register FPU state for an FPU context on a CPU is assumed to be
471 * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
472 * matches the FPU.
473 *
474 * If the FPU register state is valid, the kernel can skip restoring the
475 * FPU state from memory.
476 *
477 * Any code that clobbers the FPU registers or updates the in-memory
478 * FPU state for a task MUST let the rest of the kernel know that the
479 * FPU registers are no longer valid for this task.
480 *
481 * Either one of these invalidation functions is enough. Invalidate
482 * a resource you control: CPU if using the CPU for something else
483 * (with preemption disabled), FPU for the current task, or a task that
484 * is prevented from running by the current task.
485 */
__cpu_invalidate_fpregs_state(void)486 static inline void __cpu_invalidate_fpregs_state(void)
487 {
488 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
489 }
490
__fpu_invalidate_fpregs_state(struct fpu * fpu)491 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
492 {
493 fpu->last_cpu = -1;
494 }
495
fpregs_state_valid(struct fpu * fpu,unsigned int cpu)496 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
497 {
498 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
499 }
500
501 /*
502 * These generally need preemption protection to work,
503 * do try to avoid using these on their own:
504 */
fpregs_deactivate(struct fpu * fpu)505 static inline void fpregs_deactivate(struct fpu *fpu)
506 {
507 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
508 trace_x86_fpu_regs_deactivated(fpu);
509 }
510
fpregs_activate(struct fpu * fpu)511 static inline void fpregs_activate(struct fpu *fpu)
512 {
513 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
514 trace_x86_fpu_regs_activated(fpu);
515 }
516
517 /*
518 * FPU state switching for scheduling.
519 *
520 * This is a two-stage process:
521 *
522 * - switch_fpu_prepare() saves the old state.
523 * This is done within the context of the old process.
524 *
525 * - switch_fpu_finish() restores the new state as
526 * necessary.
527 */
528 static inline void
switch_fpu_prepare(struct fpu * old_fpu,int cpu)529 switch_fpu_prepare(struct fpu *old_fpu, int cpu)
530 {
531 if (static_cpu_has(X86_FEATURE_FPU) && old_fpu->initialized) {
532 if (!copy_fpregs_to_fpstate(old_fpu))
533 old_fpu->last_cpu = -1;
534 else
535 old_fpu->last_cpu = cpu;
536
537 /* But leave fpu_fpregs_owner_ctx! */
538 trace_x86_fpu_regs_deactivated(old_fpu);
539 } else
540 old_fpu->last_cpu = -1;
541 }
542
543 /*
544 * Misc helper functions:
545 */
546
547 /*
548 * Set up the userspace FPU context for the new task, if the task
549 * has used the FPU.
550 */
switch_fpu_finish(struct fpu * new_fpu,int cpu)551 static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu)
552 {
553 bool preload = static_cpu_has(X86_FEATURE_FPU) &&
554 new_fpu->initialized;
555
556 if (preload) {
557 if (!fpregs_state_valid(new_fpu, cpu))
558 copy_kernel_to_fpregs(&new_fpu->state);
559 fpregs_activate(new_fpu);
560 }
561 }
562
563 /*
564 * Needs to be preemption-safe.
565 *
566 * NOTE! user_fpu_begin() must be used only immediately before restoring
567 * the save state. It does not do any saving/restoring on its own. In
568 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
569 * the task can lose the FPU right after preempt_enable().
570 */
user_fpu_begin(void)571 static inline void user_fpu_begin(void)
572 {
573 struct fpu *fpu = ¤t->thread.fpu;
574
575 preempt_disable();
576 fpregs_activate(fpu);
577 preempt_enable();
578 }
579
580 /*
581 * MXCSR and XCR definitions:
582 */
583
584 extern unsigned int mxcsr_feature_mask;
585
586 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
587
xgetbv(u32 index)588 static inline u64 xgetbv(u32 index)
589 {
590 u32 eax, edx;
591
592 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
593 : "=a" (eax), "=d" (edx)
594 : "c" (index));
595 return eax + ((u64)edx << 32);
596 }
597
xsetbv(u32 index,u64 value)598 static inline void xsetbv(u32 index, u64 value)
599 {
600 u32 eax = value;
601 u32 edx = value >> 32;
602
603 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
604 : : "a" (eax), "d" (edx), "c" (index));
605 }
606
607 #endif /* _ASM_X86_FPU_INTERNAL_H */
608