1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Functions to manage eBPF programs attached to cgroups
4 *
5 * Copyright (c) 2016 Daniel Mack
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <linux/bpf_lsm.h>
18 #include <linux/bpf_verifier.h>
19 #include <net/sock.h>
20 #include <net/bpf_sk_storage.h>
21
22 #include "../cgroup/cgroup-internal.h"
23
24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
25 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
26
27 /* __always_inline is necessary to prevent indirect call through run_prog
28 * function pointer.
29 */
30 static __always_inline int
bpf_prog_run_array_cg(const struct cgroup_bpf * cgrp,enum cgroup_bpf_attach_type atype,const void * ctx,bpf_prog_run_fn run_prog,int retval,u32 * ret_flags)31 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp,
32 enum cgroup_bpf_attach_type atype,
33 const void *ctx, bpf_prog_run_fn run_prog,
34 int retval, u32 *ret_flags)
35 {
36 const struct bpf_prog_array_item *item;
37 const struct bpf_prog *prog;
38 const struct bpf_prog_array *array;
39 struct bpf_run_ctx *old_run_ctx;
40 struct bpf_cg_run_ctx run_ctx;
41 u32 func_ret;
42
43 run_ctx.retval = retval;
44 migrate_disable();
45 rcu_read_lock();
46 array = rcu_dereference(cgrp->effective[atype]);
47 item = &array->items[0];
48 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
49 while ((prog = READ_ONCE(item->prog))) {
50 run_ctx.prog_item = item;
51 func_ret = run_prog(prog, ctx);
52 if (ret_flags) {
53 *(ret_flags) |= (func_ret >> 1);
54 func_ret &= 1;
55 }
56 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval))
57 run_ctx.retval = -EPERM;
58 item++;
59 }
60 bpf_reset_run_ctx(old_run_ctx);
61 rcu_read_unlock();
62 migrate_enable();
63 return run_ctx.retval;
64 }
65
__cgroup_bpf_run_lsm_sock(const void * ctx,const struct bpf_insn * insn)66 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx,
67 const struct bpf_insn *insn)
68 {
69 const struct bpf_prog *shim_prog;
70 struct sock *sk;
71 struct cgroup *cgrp;
72 int ret = 0;
73 u64 *args;
74
75 args = (u64 *)ctx;
76 sk = (void *)(unsigned long)args[0];
77 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
78 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
79
80 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
81 if (likely(cgrp))
82 ret = bpf_prog_run_array_cg(&cgrp->bpf,
83 shim_prog->aux->cgroup_atype,
84 ctx, bpf_prog_run, 0, NULL);
85 return ret;
86 }
87
__cgroup_bpf_run_lsm_socket(const void * ctx,const struct bpf_insn * insn)88 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx,
89 const struct bpf_insn *insn)
90 {
91 const struct bpf_prog *shim_prog;
92 struct socket *sock;
93 struct cgroup *cgrp;
94 int ret = 0;
95 u64 *args;
96
97 args = (u64 *)ctx;
98 sock = (void *)(unsigned long)args[0];
99 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
100 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
101
102 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data);
103 if (likely(cgrp))
104 ret = bpf_prog_run_array_cg(&cgrp->bpf,
105 shim_prog->aux->cgroup_atype,
106 ctx, bpf_prog_run, 0, NULL);
107 return ret;
108 }
109
__cgroup_bpf_run_lsm_current(const void * ctx,const struct bpf_insn * insn)110 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx,
111 const struct bpf_insn *insn)
112 {
113 const struct bpf_prog *shim_prog;
114 struct cgroup *cgrp;
115 int ret = 0;
116
117 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
118 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
119
120 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */
121 cgrp = task_dfl_cgroup(current);
122 if (likely(cgrp))
123 ret = bpf_prog_run_array_cg(&cgrp->bpf,
124 shim_prog->aux->cgroup_atype,
125 ctx, bpf_prog_run, 0, NULL);
126 return ret;
127 }
128
129 #ifdef CONFIG_BPF_LSM
130 struct cgroup_lsm_atype {
131 u32 attach_btf_id;
132 int refcnt;
133 };
134
135 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM];
136
137 static enum cgroup_bpf_attach_type
bpf_cgroup_atype_find(enum bpf_attach_type attach_type,u32 attach_btf_id)138 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
139 {
140 int i;
141
142 lockdep_assert_held(&cgroup_mutex);
143
144 if (attach_type != BPF_LSM_CGROUP)
145 return to_cgroup_bpf_attach_type(attach_type);
146
147 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
148 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id)
149 return CGROUP_LSM_START + i;
150
151 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
152 if (cgroup_lsm_atype[i].attach_btf_id == 0)
153 return CGROUP_LSM_START + i;
154
155 return -E2BIG;
156
157 }
158
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)159 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype)
160 {
161 int i = cgroup_atype - CGROUP_LSM_START;
162
163 lockdep_assert_held(&cgroup_mutex);
164
165 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id &&
166 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id);
167
168 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id;
169 cgroup_lsm_atype[i].refcnt++;
170 }
171
bpf_cgroup_atype_put(int cgroup_atype)172 void bpf_cgroup_atype_put(int cgroup_atype)
173 {
174 int i = cgroup_atype - CGROUP_LSM_START;
175
176 cgroup_lock();
177 if (--cgroup_lsm_atype[i].refcnt <= 0)
178 cgroup_lsm_atype[i].attach_btf_id = 0;
179 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0);
180 cgroup_unlock();
181 }
182 #else
183 static enum cgroup_bpf_attach_type
bpf_cgroup_atype_find(enum bpf_attach_type attach_type,u32 attach_btf_id)184 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
185 {
186 if (attach_type != BPF_LSM_CGROUP)
187 return to_cgroup_bpf_attach_type(attach_type);
188 return -EOPNOTSUPP;
189 }
190 #endif /* CONFIG_BPF_LSM */
191
cgroup_bpf_offline(struct cgroup * cgrp)192 void cgroup_bpf_offline(struct cgroup *cgrp)
193 {
194 cgroup_get(cgrp);
195 percpu_ref_kill(&cgrp->bpf.refcnt);
196 }
197
bpf_cgroup_storages_free(struct bpf_cgroup_storage * storages[])198 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
199 {
200 enum bpf_cgroup_storage_type stype;
201
202 for_each_cgroup_storage_type(stype)
203 bpf_cgroup_storage_free(storages[stype]);
204 }
205
bpf_cgroup_storages_alloc(struct bpf_cgroup_storage * storages[],struct bpf_cgroup_storage * new_storages[],enum bpf_attach_type type,struct bpf_prog * prog,struct cgroup * cgrp)206 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
207 struct bpf_cgroup_storage *new_storages[],
208 enum bpf_attach_type type,
209 struct bpf_prog *prog,
210 struct cgroup *cgrp)
211 {
212 enum bpf_cgroup_storage_type stype;
213 struct bpf_cgroup_storage_key key;
214 struct bpf_map *map;
215
216 key.cgroup_inode_id = cgroup_id(cgrp);
217 key.attach_type = type;
218
219 for_each_cgroup_storage_type(stype) {
220 map = prog->aux->cgroup_storage[stype];
221 if (!map)
222 continue;
223
224 storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
225 if (storages[stype])
226 continue;
227
228 storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
229 if (IS_ERR(storages[stype])) {
230 bpf_cgroup_storages_free(new_storages);
231 return -ENOMEM;
232 }
233
234 new_storages[stype] = storages[stype];
235 }
236
237 return 0;
238 }
239
bpf_cgroup_storages_assign(struct bpf_cgroup_storage * dst[],struct bpf_cgroup_storage * src[])240 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
241 struct bpf_cgroup_storage *src[])
242 {
243 enum bpf_cgroup_storage_type stype;
244
245 for_each_cgroup_storage_type(stype)
246 dst[stype] = src[stype];
247 }
248
bpf_cgroup_storages_link(struct bpf_cgroup_storage * storages[],struct cgroup * cgrp,enum bpf_attach_type attach_type)249 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
250 struct cgroup *cgrp,
251 enum bpf_attach_type attach_type)
252 {
253 enum bpf_cgroup_storage_type stype;
254
255 for_each_cgroup_storage_type(stype)
256 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
257 }
258
259 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
260 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
261 * doesn't free link memory, which will eventually be done by bpf_link's
262 * release() callback, when its last FD is closed.
263 */
bpf_cgroup_link_auto_detach(struct bpf_cgroup_link * link)264 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
265 {
266 cgroup_put(link->cgroup);
267 link->cgroup = NULL;
268 }
269
270 /**
271 * cgroup_bpf_release() - put references of all bpf programs and
272 * release all cgroup bpf data
273 * @work: work structure embedded into the cgroup to modify
274 */
cgroup_bpf_release(struct work_struct * work)275 static void cgroup_bpf_release(struct work_struct *work)
276 {
277 struct cgroup *p, *cgrp = container_of(work, struct cgroup,
278 bpf.release_work);
279 struct bpf_prog_array *old_array;
280 struct list_head *storages = &cgrp->bpf.storages;
281 struct bpf_cgroup_storage *storage, *stmp;
282
283 unsigned int atype;
284
285 cgroup_lock();
286
287 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
288 struct hlist_head *progs = &cgrp->bpf.progs[atype];
289 struct bpf_prog_list *pl;
290 struct hlist_node *pltmp;
291
292 hlist_for_each_entry_safe(pl, pltmp, progs, node) {
293 hlist_del(&pl->node);
294 if (pl->prog) {
295 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP)
296 bpf_trampoline_unlink_cgroup_shim(pl->prog);
297 bpf_prog_put(pl->prog);
298 }
299 if (pl->link) {
300 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP)
301 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog);
302 bpf_cgroup_link_auto_detach(pl->link);
303 }
304 kfree(pl);
305 static_branch_dec(&cgroup_bpf_enabled_key[atype]);
306 }
307 old_array = rcu_dereference_protected(
308 cgrp->bpf.effective[atype],
309 lockdep_is_held(&cgroup_mutex));
310 bpf_prog_array_free(old_array);
311 }
312
313 list_for_each_entry_safe(storage, stmp, storages, list_cg) {
314 bpf_cgroup_storage_unlink(storage);
315 bpf_cgroup_storage_free(storage);
316 }
317
318 cgroup_unlock();
319
320 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
321 cgroup_bpf_put(p);
322
323 percpu_ref_exit(&cgrp->bpf.refcnt);
324 cgroup_put(cgrp);
325 }
326
327 /**
328 * cgroup_bpf_release_fn() - callback used to schedule releasing
329 * of bpf cgroup data
330 * @ref: percpu ref counter structure
331 */
cgroup_bpf_release_fn(struct percpu_ref * ref)332 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
333 {
334 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
335
336 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
337 queue_work(system_wq, &cgrp->bpf.release_work);
338 }
339
340 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
341 * link or direct prog.
342 */
prog_list_prog(struct bpf_prog_list * pl)343 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
344 {
345 if (pl->prog)
346 return pl->prog;
347 if (pl->link)
348 return pl->link->link.prog;
349 return NULL;
350 }
351
352 /* count number of elements in the list.
353 * it's slow but the list cannot be long
354 */
prog_list_length(struct hlist_head * head)355 static u32 prog_list_length(struct hlist_head *head)
356 {
357 struct bpf_prog_list *pl;
358 u32 cnt = 0;
359
360 hlist_for_each_entry(pl, head, node) {
361 if (!prog_list_prog(pl))
362 continue;
363 cnt++;
364 }
365 return cnt;
366 }
367
368 /* if parent has non-overridable prog attached,
369 * disallow attaching new programs to the descendent cgroup.
370 * if parent has overridable or multi-prog, allow attaching
371 */
hierarchy_allows_attach(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)372 static bool hierarchy_allows_attach(struct cgroup *cgrp,
373 enum cgroup_bpf_attach_type atype)
374 {
375 struct cgroup *p;
376
377 p = cgroup_parent(cgrp);
378 if (!p)
379 return true;
380 do {
381 u32 flags = p->bpf.flags[atype];
382 u32 cnt;
383
384 if (flags & BPF_F_ALLOW_MULTI)
385 return true;
386 cnt = prog_list_length(&p->bpf.progs[atype]);
387 WARN_ON_ONCE(cnt > 1);
388 if (cnt == 1)
389 return !!(flags & BPF_F_ALLOW_OVERRIDE);
390 p = cgroup_parent(p);
391 } while (p);
392 return true;
393 }
394
395 /* compute a chain of effective programs for a given cgroup:
396 * start from the list of programs in this cgroup and add
397 * all parent programs.
398 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
399 * to programs in this cgroup
400 */
compute_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array ** array)401 static int compute_effective_progs(struct cgroup *cgrp,
402 enum cgroup_bpf_attach_type atype,
403 struct bpf_prog_array **array)
404 {
405 struct bpf_prog_array_item *item;
406 struct bpf_prog_array *progs;
407 struct bpf_prog_list *pl;
408 struct cgroup *p = cgrp;
409 int cnt = 0;
410
411 /* count number of effective programs by walking parents */
412 do {
413 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
414 cnt += prog_list_length(&p->bpf.progs[atype]);
415 p = cgroup_parent(p);
416 } while (p);
417
418 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
419 if (!progs)
420 return -ENOMEM;
421
422 /* populate the array with effective progs */
423 cnt = 0;
424 p = cgrp;
425 do {
426 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
427 continue;
428
429 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) {
430 if (!prog_list_prog(pl))
431 continue;
432
433 item = &progs->items[cnt];
434 item->prog = prog_list_prog(pl);
435 bpf_cgroup_storages_assign(item->cgroup_storage,
436 pl->storage);
437 cnt++;
438 }
439 } while ((p = cgroup_parent(p)));
440
441 *array = progs;
442 return 0;
443 }
444
activate_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array * old_array)445 static void activate_effective_progs(struct cgroup *cgrp,
446 enum cgroup_bpf_attach_type atype,
447 struct bpf_prog_array *old_array)
448 {
449 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
450 lockdep_is_held(&cgroup_mutex));
451 /* free prog array after grace period, since __cgroup_bpf_run_*()
452 * might be still walking the array
453 */
454 bpf_prog_array_free(old_array);
455 }
456
457 /**
458 * cgroup_bpf_inherit() - inherit effective programs from parent
459 * @cgrp: the cgroup to modify
460 */
cgroup_bpf_inherit(struct cgroup * cgrp)461 int cgroup_bpf_inherit(struct cgroup *cgrp)
462 {
463 /* has to use marco instead of const int, since compiler thinks
464 * that array below is variable length
465 */
466 #define NR ARRAY_SIZE(cgrp->bpf.effective)
467 struct bpf_prog_array *arrays[NR] = {};
468 struct cgroup *p;
469 int ret, i;
470
471 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
472 GFP_KERNEL);
473 if (ret)
474 return ret;
475
476 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
477 cgroup_bpf_get(p);
478
479 for (i = 0; i < NR; i++)
480 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]);
481
482 INIT_LIST_HEAD(&cgrp->bpf.storages);
483
484 for (i = 0; i < NR; i++)
485 if (compute_effective_progs(cgrp, i, &arrays[i]))
486 goto cleanup;
487
488 for (i = 0; i < NR; i++)
489 activate_effective_progs(cgrp, i, arrays[i]);
490
491 return 0;
492 cleanup:
493 for (i = 0; i < NR; i++)
494 bpf_prog_array_free(arrays[i]);
495
496 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
497 cgroup_bpf_put(p);
498
499 percpu_ref_exit(&cgrp->bpf.refcnt);
500
501 return -ENOMEM;
502 }
503
update_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)504 static int update_effective_progs(struct cgroup *cgrp,
505 enum cgroup_bpf_attach_type atype)
506 {
507 struct cgroup_subsys_state *css;
508 int err;
509
510 /* allocate and recompute effective prog arrays */
511 css_for_each_descendant_pre(css, &cgrp->self) {
512 struct cgroup *desc = container_of(css, struct cgroup, self);
513
514 if (percpu_ref_is_zero(&desc->bpf.refcnt))
515 continue;
516
517 err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
518 if (err)
519 goto cleanup;
520 }
521
522 /* all allocations were successful. Activate all prog arrays */
523 css_for_each_descendant_pre(css, &cgrp->self) {
524 struct cgroup *desc = container_of(css, struct cgroup, self);
525
526 if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
527 if (unlikely(desc->bpf.inactive)) {
528 bpf_prog_array_free(desc->bpf.inactive);
529 desc->bpf.inactive = NULL;
530 }
531 continue;
532 }
533
534 activate_effective_progs(desc, atype, desc->bpf.inactive);
535 desc->bpf.inactive = NULL;
536 }
537
538 return 0;
539
540 cleanup:
541 /* oom while computing effective. Free all computed effective arrays
542 * since they were not activated
543 */
544 css_for_each_descendant_pre(css, &cgrp->self) {
545 struct cgroup *desc = container_of(css, struct cgroup, self);
546
547 bpf_prog_array_free(desc->bpf.inactive);
548 desc->bpf.inactive = NULL;
549 }
550
551 return err;
552 }
553
554 #define BPF_CGROUP_MAX_PROGS 64
555
find_attach_entry(struct hlist_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,struct bpf_prog * replace_prog,bool allow_multi)556 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs,
557 struct bpf_prog *prog,
558 struct bpf_cgroup_link *link,
559 struct bpf_prog *replace_prog,
560 bool allow_multi)
561 {
562 struct bpf_prog_list *pl;
563
564 /* single-attach case */
565 if (!allow_multi) {
566 if (hlist_empty(progs))
567 return NULL;
568 return hlist_entry(progs->first, typeof(*pl), node);
569 }
570
571 hlist_for_each_entry(pl, progs, node) {
572 if (prog && pl->prog == prog && prog != replace_prog)
573 /* disallow attaching the same prog twice */
574 return ERR_PTR(-EINVAL);
575 if (link && pl->link == link)
576 /* disallow attaching the same link twice */
577 return ERR_PTR(-EINVAL);
578 }
579
580 /* direct prog multi-attach w/ replacement case */
581 if (replace_prog) {
582 hlist_for_each_entry(pl, progs, node) {
583 if (pl->prog == replace_prog)
584 /* a match found */
585 return pl;
586 }
587 /* prog to replace not found for cgroup */
588 return ERR_PTR(-ENOENT);
589 }
590
591 return NULL;
592 }
593
594 /**
595 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
596 * propagate the change to descendants
597 * @cgrp: The cgroup which descendants to traverse
598 * @prog: A program to attach
599 * @link: A link to attach
600 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
601 * @type: Type of attach operation
602 * @flags: Option flags
603 *
604 * Exactly one of @prog or @link can be non-null.
605 * Must be called with cgroup_mutex held.
606 */
__cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)607 static int __cgroup_bpf_attach(struct cgroup *cgrp,
608 struct bpf_prog *prog, struct bpf_prog *replace_prog,
609 struct bpf_cgroup_link *link,
610 enum bpf_attach_type type, u32 flags)
611 {
612 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
613 struct bpf_prog *old_prog = NULL;
614 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
615 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
616 struct bpf_prog *new_prog = prog ? : link->link.prog;
617 enum cgroup_bpf_attach_type atype;
618 struct bpf_prog_list *pl;
619 struct hlist_head *progs;
620 int err;
621
622 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
623 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
624 /* invalid combination */
625 return -EINVAL;
626 if (link && (prog || replace_prog))
627 /* only either link or prog/replace_prog can be specified */
628 return -EINVAL;
629 if (!!replace_prog != !!(flags & BPF_F_REPLACE))
630 /* replace_prog implies BPF_F_REPLACE, and vice versa */
631 return -EINVAL;
632
633 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id);
634 if (atype < 0)
635 return -EINVAL;
636
637 progs = &cgrp->bpf.progs[atype];
638
639 if (!hierarchy_allows_attach(cgrp, atype))
640 return -EPERM;
641
642 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
643 /* Disallow attaching non-overridable on top
644 * of existing overridable in this cgroup.
645 * Disallow attaching multi-prog if overridable or none
646 */
647 return -EPERM;
648
649 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
650 return -E2BIG;
651
652 pl = find_attach_entry(progs, prog, link, replace_prog,
653 flags & BPF_F_ALLOW_MULTI);
654 if (IS_ERR(pl))
655 return PTR_ERR(pl);
656
657 if (bpf_cgroup_storages_alloc(storage, new_storage, type,
658 prog ? : link->link.prog, cgrp))
659 return -ENOMEM;
660
661 if (pl) {
662 old_prog = pl->prog;
663 } else {
664 struct hlist_node *last = NULL;
665
666 pl = kmalloc(sizeof(*pl), GFP_KERNEL);
667 if (!pl) {
668 bpf_cgroup_storages_free(new_storage);
669 return -ENOMEM;
670 }
671 if (hlist_empty(progs))
672 hlist_add_head(&pl->node, progs);
673 else
674 hlist_for_each(last, progs) {
675 if (last->next)
676 continue;
677 hlist_add_behind(&pl->node, last);
678 break;
679 }
680 }
681
682 pl->prog = prog;
683 pl->link = link;
684 bpf_cgroup_storages_assign(pl->storage, storage);
685 cgrp->bpf.flags[atype] = saved_flags;
686
687 if (type == BPF_LSM_CGROUP) {
688 err = bpf_trampoline_link_cgroup_shim(new_prog, atype);
689 if (err)
690 goto cleanup;
691 }
692
693 err = update_effective_progs(cgrp, atype);
694 if (err)
695 goto cleanup_trampoline;
696
697 if (old_prog) {
698 if (type == BPF_LSM_CGROUP)
699 bpf_trampoline_unlink_cgroup_shim(old_prog);
700 bpf_prog_put(old_prog);
701 } else {
702 static_branch_inc(&cgroup_bpf_enabled_key[atype]);
703 }
704 bpf_cgroup_storages_link(new_storage, cgrp, type);
705 return 0;
706
707 cleanup_trampoline:
708 if (type == BPF_LSM_CGROUP)
709 bpf_trampoline_unlink_cgroup_shim(new_prog);
710
711 cleanup:
712 if (old_prog) {
713 pl->prog = old_prog;
714 pl->link = NULL;
715 }
716 bpf_cgroup_storages_free(new_storage);
717 if (!old_prog) {
718 hlist_del(&pl->node);
719 kfree(pl);
720 }
721 return err;
722 }
723
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)724 static int cgroup_bpf_attach(struct cgroup *cgrp,
725 struct bpf_prog *prog, struct bpf_prog *replace_prog,
726 struct bpf_cgroup_link *link,
727 enum bpf_attach_type type,
728 u32 flags)
729 {
730 int ret;
731
732 cgroup_lock();
733 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
734 cgroup_unlock();
735 return ret;
736 }
737
738 /* Swap updated BPF program for given link in effective program arrays across
739 * all descendant cgroups. This function is guaranteed to succeed.
740 */
replace_effective_prog(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_cgroup_link * link)741 static void replace_effective_prog(struct cgroup *cgrp,
742 enum cgroup_bpf_attach_type atype,
743 struct bpf_cgroup_link *link)
744 {
745 struct bpf_prog_array_item *item;
746 struct cgroup_subsys_state *css;
747 struct bpf_prog_array *progs;
748 struct bpf_prog_list *pl;
749 struct hlist_head *head;
750 struct cgroup *cg;
751 int pos;
752
753 css_for_each_descendant_pre(css, &cgrp->self) {
754 struct cgroup *desc = container_of(css, struct cgroup, self);
755
756 if (percpu_ref_is_zero(&desc->bpf.refcnt))
757 continue;
758
759 /* find position of link in effective progs array */
760 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
761 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
762 continue;
763
764 head = &cg->bpf.progs[atype];
765 hlist_for_each_entry(pl, head, node) {
766 if (!prog_list_prog(pl))
767 continue;
768 if (pl->link == link)
769 goto found;
770 pos++;
771 }
772 }
773 found:
774 BUG_ON(!cg);
775 progs = rcu_dereference_protected(
776 desc->bpf.effective[atype],
777 lockdep_is_held(&cgroup_mutex));
778 item = &progs->items[pos];
779 WRITE_ONCE(item->prog, link->link.prog);
780 }
781 }
782
783 /**
784 * __cgroup_bpf_replace() - Replace link's program and propagate the change
785 * to descendants
786 * @cgrp: The cgroup which descendants to traverse
787 * @link: A link for which to replace BPF program
788 * @new_prog: &struct bpf_prog for the target BPF program with its refcnt
789 * incremented
790 *
791 * Must be called with cgroup_mutex held.
792 */
__cgroup_bpf_replace(struct cgroup * cgrp,struct bpf_cgroup_link * link,struct bpf_prog * new_prog)793 static int __cgroup_bpf_replace(struct cgroup *cgrp,
794 struct bpf_cgroup_link *link,
795 struct bpf_prog *new_prog)
796 {
797 enum cgroup_bpf_attach_type atype;
798 struct bpf_prog *old_prog;
799 struct bpf_prog_list *pl;
800 struct hlist_head *progs;
801 bool found = false;
802
803 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id);
804 if (atype < 0)
805 return -EINVAL;
806
807 progs = &cgrp->bpf.progs[atype];
808
809 if (link->link.prog->type != new_prog->type)
810 return -EINVAL;
811
812 hlist_for_each_entry(pl, progs, node) {
813 if (pl->link == link) {
814 found = true;
815 break;
816 }
817 }
818 if (!found)
819 return -ENOENT;
820
821 old_prog = xchg(&link->link.prog, new_prog);
822 replace_effective_prog(cgrp, atype, link);
823 bpf_prog_put(old_prog);
824 return 0;
825 }
826
cgroup_bpf_replace(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)827 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
828 struct bpf_prog *old_prog)
829 {
830 struct bpf_cgroup_link *cg_link;
831 int ret;
832
833 cg_link = container_of(link, struct bpf_cgroup_link, link);
834
835 cgroup_lock();
836 /* link might have been auto-released by dying cgroup, so fail */
837 if (!cg_link->cgroup) {
838 ret = -ENOLINK;
839 goto out_unlock;
840 }
841 if (old_prog && link->prog != old_prog) {
842 ret = -EPERM;
843 goto out_unlock;
844 }
845 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
846 out_unlock:
847 cgroup_unlock();
848 return ret;
849 }
850
find_detach_entry(struct hlist_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,bool allow_multi)851 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs,
852 struct bpf_prog *prog,
853 struct bpf_cgroup_link *link,
854 bool allow_multi)
855 {
856 struct bpf_prog_list *pl;
857
858 if (!allow_multi) {
859 if (hlist_empty(progs))
860 /* report error when trying to detach and nothing is attached */
861 return ERR_PTR(-ENOENT);
862
863 /* to maintain backward compatibility NONE and OVERRIDE cgroups
864 * allow detaching with invalid FD (prog==NULL) in legacy mode
865 */
866 return hlist_entry(progs->first, typeof(*pl), node);
867 }
868
869 if (!prog && !link)
870 /* to detach MULTI prog the user has to specify valid FD
871 * of the program or link to be detached
872 */
873 return ERR_PTR(-EINVAL);
874
875 /* find the prog or link and detach it */
876 hlist_for_each_entry(pl, progs, node) {
877 if (pl->prog == prog && pl->link == link)
878 return pl;
879 }
880 return ERR_PTR(-ENOENT);
881 }
882
883 /**
884 * purge_effective_progs() - After compute_effective_progs fails to alloc new
885 * cgrp->bpf.inactive table we can recover by
886 * recomputing the array in place.
887 *
888 * @cgrp: The cgroup which descendants to travers
889 * @prog: A program to detach or NULL
890 * @link: A link to detach or NULL
891 * @atype: Type of detach operation
892 */
purge_effective_progs(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum cgroup_bpf_attach_type atype)893 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog,
894 struct bpf_cgroup_link *link,
895 enum cgroup_bpf_attach_type atype)
896 {
897 struct cgroup_subsys_state *css;
898 struct bpf_prog_array *progs;
899 struct bpf_prog_list *pl;
900 struct hlist_head *head;
901 struct cgroup *cg;
902 int pos;
903
904 /* recompute effective prog array in place */
905 css_for_each_descendant_pre(css, &cgrp->self) {
906 struct cgroup *desc = container_of(css, struct cgroup, self);
907
908 if (percpu_ref_is_zero(&desc->bpf.refcnt))
909 continue;
910
911 /* find position of link or prog in effective progs array */
912 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
913 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
914 continue;
915
916 head = &cg->bpf.progs[atype];
917 hlist_for_each_entry(pl, head, node) {
918 if (!prog_list_prog(pl))
919 continue;
920 if (pl->prog == prog && pl->link == link)
921 goto found;
922 pos++;
923 }
924 }
925
926 /* no link or prog match, skip the cgroup of this layer */
927 continue;
928 found:
929 progs = rcu_dereference_protected(
930 desc->bpf.effective[atype],
931 lockdep_is_held(&cgroup_mutex));
932
933 /* Remove the program from the array */
934 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos),
935 "Failed to purge a prog from array at index %d", pos);
936 }
937 }
938
939 /**
940 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
941 * propagate the change to descendants
942 * @cgrp: The cgroup which descendants to traverse
943 * @prog: A program to detach or NULL
944 * @link: A link to detach or NULL
945 * @type: Type of detach operation
946 *
947 * At most one of @prog or @link can be non-NULL.
948 * Must be called with cgroup_mutex held.
949 */
__cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum bpf_attach_type type)950 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
951 struct bpf_cgroup_link *link, enum bpf_attach_type type)
952 {
953 enum cgroup_bpf_attach_type atype;
954 struct bpf_prog *old_prog;
955 struct bpf_prog_list *pl;
956 struct hlist_head *progs;
957 u32 attach_btf_id = 0;
958 u32 flags;
959
960 if (prog)
961 attach_btf_id = prog->aux->attach_btf_id;
962 if (link)
963 attach_btf_id = link->link.prog->aux->attach_btf_id;
964
965 atype = bpf_cgroup_atype_find(type, attach_btf_id);
966 if (atype < 0)
967 return -EINVAL;
968
969 progs = &cgrp->bpf.progs[atype];
970 flags = cgrp->bpf.flags[atype];
971
972 if (prog && link)
973 /* only one of prog or link can be specified */
974 return -EINVAL;
975
976 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
977 if (IS_ERR(pl))
978 return PTR_ERR(pl);
979
980 /* mark it deleted, so it's ignored while recomputing effective */
981 old_prog = pl->prog;
982 pl->prog = NULL;
983 pl->link = NULL;
984
985 if (update_effective_progs(cgrp, atype)) {
986 /* if update effective array failed replace the prog with a dummy prog*/
987 pl->prog = old_prog;
988 pl->link = link;
989 purge_effective_progs(cgrp, old_prog, link, atype);
990 }
991
992 /* now can actually delete it from this cgroup list */
993 hlist_del(&pl->node);
994
995 kfree(pl);
996 if (hlist_empty(progs))
997 /* last program was detached, reset flags to zero */
998 cgrp->bpf.flags[atype] = 0;
999 if (old_prog) {
1000 if (type == BPF_LSM_CGROUP)
1001 bpf_trampoline_unlink_cgroup_shim(old_prog);
1002 bpf_prog_put(old_prog);
1003 }
1004 static_branch_dec(&cgroup_bpf_enabled_key[atype]);
1005 return 0;
1006 }
1007
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)1008 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
1009 enum bpf_attach_type type)
1010 {
1011 int ret;
1012
1013 cgroup_lock();
1014 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
1015 cgroup_unlock();
1016 return ret;
1017 }
1018
1019 /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)1020 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
1021 union bpf_attr __user *uattr)
1022 {
1023 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags);
1024 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE;
1025 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
1026 enum bpf_attach_type type = attr->query.attach_type;
1027 enum cgroup_bpf_attach_type from_atype, to_atype;
1028 enum cgroup_bpf_attach_type atype;
1029 struct bpf_prog_array *effective;
1030 int cnt, ret = 0, i;
1031 int total_cnt = 0;
1032 u32 flags;
1033
1034 if (effective_query && prog_attach_flags)
1035 return -EINVAL;
1036
1037 if (type == BPF_LSM_CGROUP) {
1038 if (!effective_query && attr->query.prog_cnt &&
1039 prog_ids && !prog_attach_flags)
1040 return -EINVAL;
1041
1042 from_atype = CGROUP_LSM_START;
1043 to_atype = CGROUP_LSM_END;
1044 flags = 0;
1045 } else {
1046 from_atype = to_cgroup_bpf_attach_type(type);
1047 if (from_atype < 0)
1048 return -EINVAL;
1049 to_atype = from_atype;
1050 flags = cgrp->bpf.flags[from_atype];
1051 }
1052
1053 for (atype = from_atype; atype <= to_atype; atype++) {
1054 if (effective_query) {
1055 effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
1056 lockdep_is_held(&cgroup_mutex));
1057 total_cnt += bpf_prog_array_length(effective);
1058 } else {
1059 total_cnt += prog_list_length(&cgrp->bpf.progs[atype]);
1060 }
1061 }
1062
1063 /* always output uattr->query.attach_flags as 0 during effective query */
1064 flags = effective_query ? 0 : flags;
1065 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
1066 return -EFAULT;
1067 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt)))
1068 return -EFAULT;
1069 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt)
1070 /* return early if user requested only program count + flags */
1071 return 0;
1072
1073 if (attr->query.prog_cnt < total_cnt) {
1074 total_cnt = attr->query.prog_cnt;
1075 ret = -ENOSPC;
1076 }
1077
1078 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) {
1079 if (effective_query) {
1080 effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
1081 lockdep_is_held(&cgroup_mutex));
1082 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt);
1083 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
1084 } else {
1085 struct hlist_head *progs;
1086 struct bpf_prog_list *pl;
1087 struct bpf_prog *prog;
1088 u32 id;
1089
1090 progs = &cgrp->bpf.progs[atype];
1091 cnt = min_t(int, prog_list_length(progs), total_cnt);
1092 i = 0;
1093 hlist_for_each_entry(pl, progs, node) {
1094 prog = prog_list_prog(pl);
1095 id = prog->aux->id;
1096 if (copy_to_user(prog_ids + i, &id, sizeof(id)))
1097 return -EFAULT;
1098 if (++i == cnt)
1099 break;
1100 }
1101
1102 if (prog_attach_flags) {
1103 flags = cgrp->bpf.flags[atype];
1104
1105 for (i = 0; i < cnt; i++)
1106 if (copy_to_user(prog_attach_flags + i,
1107 &flags, sizeof(flags)))
1108 return -EFAULT;
1109 prog_attach_flags += cnt;
1110 }
1111 }
1112
1113 prog_ids += cnt;
1114 total_cnt -= cnt;
1115 }
1116 return ret;
1117 }
1118
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)1119 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
1120 union bpf_attr __user *uattr)
1121 {
1122 int ret;
1123
1124 cgroup_lock();
1125 ret = __cgroup_bpf_query(cgrp, attr, uattr);
1126 cgroup_unlock();
1127 return ret;
1128 }
1129
cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)1130 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
1131 enum bpf_prog_type ptype, struct bpf_prog *prog)
1132 {
1133 struct bpf_prog *replace_prog = NULL;
1134 struct cgroup *cgrp;
1135 int ret;
1136
1137 cgrp = cgroup_get_from_fd(attr->target_fd);
1138 if (IS_ERR(cgrp))
1139 return PTR_ERR(cgrp);
1140
1141 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
1142 (attr->attach_flags & BPF_F_REPLACE)) {
1143 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
1144 if (IS_ERR(replace_prog)) {
1145 cgroup_put(cgrp);
1146 return PTR_ERR(replace_prog);
1147 }
1148 }
1149
1150 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
1151 attr->attach_type, attr->attach_flags);
1152
1153 if (replace_prog)
1154 bpf_prog_put(replace_prog);
1155 cgroup_put(cgrp);
1156 return ret;
1157 }
1158
cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)1159 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
1160 {
1161 struct bpf_prog *prog;
1162 struct cgroup *cgrp;
1163 int ret;
1164
1165 cgrp = cgroup_get_from_fd(attr->target_fd);
1166 if (IS_ERR(cgrp))
1167 return PTR_ERR(cgrp);
1168
1169 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
1170 if (IS_ERR(prog))
1171 prog = NULL;
1172
1173 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
1174 if (prog)
1175 bpf_prog_put(prog);
1176
1177 cgroup_put(cgrp);
1178 return ret;
1179 }
1180
bpf_cgroup_link_release(struct bpf_link * link)1181 static void bpf_cgroup_link_release(struct bpf_link *link)
1182 {
1183 struct bpf_cgroup_link *cg_link =
1184 container_of(link, struct bpf_cgroup_link, link);
1185 struct cgroup *cg;
1186
1187 /* link might have been auto-detached by dying cgroup already,
1188 * in that case our work is done here
1189 */
1190 if (!cg_link->cgroup)
1191 return;
1192
1193 cgroup_lock();
1194
1195 /* re-check cgroup under lock again */
1196 if (!cg_link->cgroup) {
1197 cgroup_unlock();
1198 return;
1199 }
1200
1201 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
1202 cg_link->type));
1203 if (cg_link->type == BPF_LSM_CGROUP)
1204 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog);
1205
1206 cg = cg_link->cgroup;
1207 cg_link->cgroup = NULL;
1208
1209 cgroup_unlock();
1210
1211 cgroup_put(cg);
1212 }
1213
bpf_cgroup_link_dealloc(struct bpf_link * link)1214 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
1215 {
1216 struct bpf_cgroup_link *cg_link =
1217 container_of(link, struct bpf_cgroup_link, link);
1218
1219 kfree(cg_link);
1220 }
1221
bpf_cgroup_link_detach(struct bpf_link * link)1222 static int bpf_cgroup_link_detach(struct bpf_link *link)
1223 {
1224 bpf_cgroup_link_release(link);
1225
1226 return 0;
1227 }
1228
bpf_cgroup_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)1229 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
1230 struct seq_file *seq)
1231 {
1232 struct bpf_cgroup_link *cg_link =
1233 container_of(link, struct bpf_cgroup_link, link);
1234 u64 cg_id = 0;
1235
1236 cgroup_lock();
1237 if (cg_link->cgroup)
1238 cg_id = cgroup_id(cg_link->cgroup);
1239 cgroup_unlock();
1240
1241 seq_printf(seq,
1242 "cgroup_id:\t%llu\n"
1243 "attach_type:\t%d\n",
1244 cg_id,
1245 cg_link->type);
1246 }
1247
bpf_cgroup_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)1248 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
1249 struct bpf_link_info *info)
1250 {
1251 struct bpf_cgroup_link *cg_link =
1252 container_of(link, struct bpf_cgroup_link, link);
1253 u64 cg_id = 0;
1254
1255 cgroup_lock();
1256 if (cg_link->cgroup)
1257 cg_id = cgroup_id(cg_link->cgroup);
1258 cgroup_unlock();
1259
1260 info->cgroup.cgroup_id = cg_id;
1261 info->cgroup.attach_type = cg_link->type;
1262 return 0;
1263 }
1264
1265 static const struct bpf_link_ops bpf_cgroup_link_lops = {
1266 .release = bpf_cgroup_link_release,
1267 .dealloc = bpf_cgroup_link_dealloc,
1268 .detach = bpf_cgroup_link_detach,
1269 .update_prog = cgroup_bpf_replace,
1270 .show_fdinfo = bpf_cgroup_link_show_fdinfo,
1271 .fill_link_info = bpf_cgroup_link_fill_link_info,
1272 };
1273
cgroup_bpf_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)1274 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
1275 {
1276 struct bpf_link_primer link_primer;
1277 struct bpf_cgroup_link *link;
1278 struct cgroup *cgrp;
1279 int err;
1280
1281 if (attr->link_create.flags)
1282 return -EINVAL;
1283
1284 cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
1285 if (IS_ERR(cgrp))
1286 return PTR_ERR(cgrp);
1287
1288 link = kzalloc(sizeof(*link), GFP_USER);
1289 if (!link) {
1290 err = -ENOMEM;
1291 goto out_put_cgroup;
1292 }
1293 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
1294 prog);
1295 link->cgroup = cgrp;
1296 link->type = attr->link_create.attach_type;
1297
1298 err = bpf_link_prime(&link->link, &link_primer);
1299 if (err) {
1300 kfree(link);
1301 goto out_put_cgroup;
1302 }
1303
1304 err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
1305 link->type, BPF_F_ALLOW_MULTI);
1306 if (err) {
1307 bpf_link_cleanup(&link_primer);
1308 goto out_put_cgroup;
1309 }
1310
1311 return bpf_link_settle(&link_primer);
1312
1313 out_put_cgroup:
1314 cgroup_put(cgrp);
1315 return err;
1316 }
1317
cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)1318 int cgroup_bpf_prog_query(const union bpf_attr *attr,
1319 union bpf_attr __user *uattr)
1320 {
1321 struct cgroup *cgrp;
1322 int ret;
1323
1324 cgrp = cgroup_get_from_fd(attr->query.target_fd);
1325 if (IS_ERR(cgrp))
1326 return PTR_ERR(cgrp);
1327
1328 ret = cgroup_bpf_query(cgrp, attr, uattr);
1329
1330 cgroup_put(cgrp);
1331 return ret;
1332 }
1333
1334 /**
1335 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
1336 * @sk: The socket sending or receiving traffic
1337 * @skb: The skb that is being sent or received
1338 * @atype: The type of program to be executed
1339 *
1340 * If no socket is passed, or the socket is not of type INET or INET6,
1341 * this function does nothing and returns 0.
1342 *
1343 * The program type passed in via @type must be suitable for network
1344 * filtering. No further check is performed to assert that.
1345 *
1346 * For egress packets, this function can return:
1347 * NET_XMIT_SUCCESS (0) - continue with packet output
1348 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr
1349 * NET_XMIT_CN (2) - continue with packet output and notify TCP
1350 * to call cwr
1351 * -err - drop packet
1352 *
1353 * For ingress packets, this function will return -EPERM if any
1354 * attached program was found and if it returned != 1 during execution.
1355 * Otherwise 0 is returned.
1356 */
__cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum cgroup_bpf_attach_type atype)1357 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1358 struct sk_buff *skb,
1359 enum cgroup_bpf_attach_type atype)
1360 {
1361 unsigned int offset = skb->data - skb_network_header(skb);
1362 struct sock *save_sk;
1363 void *saved_data_end;
1364 struct cgroup *cgrp;
1365 int ret;
1366
1367 if (!sk || !sk_fullsock(sk))
1368 return 0;
1369
1370 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1371 return 0;
1372
1373 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1374 save_sk = skb->sk;
1375 skb->sk = sk;
1376 __skb_push(skb, offset);
1377
1378 /* compute pointers for the bpf prog */
1379 bpf_compute_and_save_data_end(skb, &saved_data_end);
1380
1381 if (atype == CGROUP_INET_EGRESS) {
1382 u32 flags = 0;
1383 bool cn;
1384
1385 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb,
1386 __bpf_prog_run_save_cb, 0, &flags);
1387
1388 /* Return values of CGROUP EGRESS BPF programs are:
1389 * 0: drop packet
1390 * 1: keep packet
1391 * 2: drop packet and cn
1392 * 3: keep packet and cn
1393 *
1394 * The returned value is then converted to one of the NET_XMIT
1395 * or an error code that is then interpreted as drop packet
1396 * (and no cn):
1397 * 0: NET_XMIT_SUCCESS skb should be transmitted
1398 * 1: NET_XMIT_DROP skb should be dropped and cn
1399 * 2: NET_XMIT_CN skb should be transmitted and cn
1400 * 3: -err skb should be dropped
1401 */
1402
1403 cn = flags & BPF_RET_SET_CN;
1404 if (ret && !IS_ERR_VALUE((long)ret))
1405 ret = -EFAULT;
1406 if (!ret)
1407 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS);
1408 else
1409 ret = (cn ? NET_XMIT_DROP : ret);
1410 } else {
1411 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype,
1412 skb, __bpf_prog_run_save_cb, 0,
1413 NULL);
1414 if (ret && !IS_ERR_VALUE((long)ret))
1415 ret = -EFAULT;
1416 }
1417 bpf_restore_data_end(skb, saved_data_end);
1418 __skb_pull(skb, offset);
1419 skb->sk = save_sk;
1420
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1424
1425 /**
1426 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1427 * @sk: sock structure to manipulate
1428 * @atype: The type of program to be executed
1429 *
1430 * socket is passed is expected to be of type INET or INET6.
1431 *
1432 * The program type passed in via @type must be suitable for sock
1433 * filtering. No further check is performed to assert that.
1434 *
1435 * This function will return %-EPERM if any if an attached program was found
1436 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1437 */
__cgroup_bpf_run_filter_sk(struct sock * sk,enum cgroup_bpf_attach_type atype)1438 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1439 enum cgroup_bpf_attach_type atype)
1440 {
1441 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1442
1443 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0,
1444 NULL);
1445 }
1446 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1447
1448 /**
1449 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1450 * provided by user sockaddr
1451 * @sk: sock struct that will use sockaddr
1452 * @uaddr: sockaddr struct provided by user
1453 * @atype: The type of program to be executed
1454 * @t_ctx: Pointer to attach type specific context
1455 * @flags: Pointer to u32 which contains higher bits of BPF program
1456 * return value (OR'ed together).
1457 *
1458 * socket is expected to be of type INET or INET6.
1459 *
1460 * This function will return %-EPERM if an attached program is found and
1461 * returned value != 1 during execution. In all other cases, 0 is returned.
1462 */
__cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,enum cgroup_bpf_attach_type atype,void * t_ctx,u32 * flags)1463 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1464 struct sockaddr *uaddr,
1465 enum cgroup_bpf_attach_type atype,
1466 void *t_ctx,
1467 u32 *flags)
1468 {
1469 struct bpf_sock_addr_kern ctx = {
1470 .sk = sk,
1471 .uaddr = uaddr,
1472 .t_ctx = t_ctx,
1473 };
1474 struct sockaddr_storage unspec;
1475 struct cgroup *cgrp;
1476
1477 /* Check socket family since not all sockets represent network
1478 * endpoint (e.g. AF_UNIX).
1479 */
1480 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1481 return 0;
1482
1483 if (!ctx.uaddr) {
1484 memset(&unspec, 0, sizeof(unspec));
1485 ctx.uaddr = (struct sockaddr *)&unspec;
1486 }
1487
1488 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1489 return bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run,
1490 0, flags);
1491 }
1492 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1493
1494 /**
1495 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1496 * @sk: socket to get cgroup from
1497 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1498 * sk with connection information (IP addresses, etc.) May not contain
1499 * cgroup info if it is a req sock.
1500 * @atype: The type of program to be executed
1501 *
1502 * socket passed is expected to be of type INET or INET6.
1503 *
1504 * The program type passed in via @type must be suitable for sock_ops
1505 * filtering. No further check is performed to assert that.
1506 *
1507 * This function will return %-EPERM if any if an attached program was found
1508 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1509 */
__cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum cgroup_bpf_attach_type atype)1510 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1511 struct bpf_sock_ops_kern *sock_ops,
1512 enum cgroup_bpf_attach_type atype)
1513 {
1514 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1515
1516 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run,
1517 0, NULL);
1518 }
1519 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1520
__cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum cgroup_bpf_attach_type atype)1521 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1522 short access, enum cgroup_bpf_attach_type atype)
1523 {
1524 struct cgroup *cgrp;
1525 struct bpf_cgroup_dev_ctx ctx = {
1526 .access_type = (access << 16) | dev_type,
1527 .major = major,
1528 .minor = minor,
1529 };
1530 int ret;
1531
1532 rcu_read_lock();
1533 cgrp = task_dfl_cgroup(current);
1534 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
1535 NULL);
1536 rcu_read_unlock();
1537
1538 return ret;
1539 }
1540
BPF_CALL_2(bpf_get_local_storage,struct bpf_map *,map,u64,flags)1541 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
1542 {
1543 /* flags argument is not used now,
1544 * but provides an ability to extend the API.
1545 * verifier checks that its value is correct.
1546 */
1547 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
1548 struct bpf_cgroup_storage *storage;
1549 struct bpf_cg_run_ctx *ctx;
1550 void *ptr;
1551
1552 /* get current cgroup storage from BPF run context */
1553 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1554 storage = ctx->prog_item->cgroup_storage[stype];
1555
1556 if (stype == BPF_CGROUP_STORAGE_SHARED)
1557 ptr = &READ_ONCE(storage->buf)->data[0];
1558 else
1559 ptr = this_cpu_ptr(storage->percpu_buf);
1560
1561 return (unsigned long)ptr;
1562 }
1563
1564 const struct bpf_func_proto bpf_get_local_storage_proto = {
1565 .func = bpf_get_local_storage,
1566 .gpl_only = false,
1567 .ret_type = RET_PTR_TO_MAP_VALUE,
1568 .arg1_type = ARG_CONST_MAP_PTR,
1569 .arg2_type = ARG_ANYTHING,
1570 };
1571
BPF_CALL_0(bpf_get_retval)1572 BPF_CALL_0(bpf_get_retval)
1573 {
1574 struct bpf_cg_run_ctx *ctx =
1575 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1576
1577 return ctx->retval;
1578 }
1579
1580 const struct bpf_func_proto bpf_get_retval_proto = {
1581 .func = bpf_get_retval,
1582 .gpl_only = false,
1583 .ret_type = RET_INTEGER,
1584 };
1585
BPF_CALL_1(bpf_set_retval,int,retval)1586 BPF_CALL_1(bpf_set_retval, int, retval)
1587 {
1588 struct bpf_cg_run_ctx *ctx =
1589 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1590
1591 ctx->retval = retval;
1592 return 0;
1593 }
1594
1595 const struct bpf_func_proto bpf_set_retval_proto = {
1596 .func = bpf_set_retval,
1597 .gpl_only = false,
1598 .ret_type = RET_INTEGER,
1599 .arg1_type = ARG_ANYTHING,
1600 };
1601
1602 static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1603 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1604 {
1605 const struct bpf_func_proto *func_proto;
1606
1607 func_proto = cgroup_common_func_proto(func_id, prog);
1608 if (func_proto)
1609 return func_proto;
1610
1611 func_proto = cgroup_current_func_proto(func_id, prog);
1612 if (func_proto)
1613 return func_proto;
1614
1615 switch (func_id) {
1616 case BPF_FUNC_perf_event_output:
1617 return &bpf_event_output_data_proto;
1618 default:
1619 return bpf_base_func_proto(func_id);
1620 }
1621 }
1622
cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1623 static bool cgroup_dev_is_valid_access(int off, int size,
1624 enum bpf_access_type type,
1625 const struct bpf_prog *prog,
1626 struct bpf_insn_access_aux *info)
1627 {
1628 const int size_default = sizeof(__u32);
1629
1630 if (type == BPF_WRITE)
1631 return false;
1632
1633 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1634 return false;
1635 /* The verifier guarantees that size > 0. */
1636 if (off % size != 0)
1637 return false;
1638
1639 switch (off) {
1640 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1641 bpf_ctx_record_field_size(info, size_default);
1642 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1643 return false;
1644 break;
1645 default:
1646 if (size != size_default)
1647 return false;
1648 }
1649
1650 return true;
1651 }
1652
1653 const struct bpf_prog_ops cg_dev_prog_ops = {
1654 };
1655
1656 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1657 .get_func_proto = cgroup_dev_func_proto,
1658 .is_valid_access = cgroup_dev_is_valid_access,
1659 };
1660
1661 /**
1662 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1663 *
1664 * @head: sysctl table header
1665 * @table: sysctl table
1666 * @write: sysctl is being read (= 0) or written (= 1)
1667 * @buf: pointer to buffer (in and out)
1668 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1669 * result is size of @new_buf if program set new value, initial value
1670 * otherwise
1671 * @ppos: value-result argument: value is position at which read from or write
1672 * to sysctl is happening, result is new position if program overrode it,
1673 * initial value otherwise
1674 * @atype: type of program to be executed
1675 *
1676 * Program is run when sysctl is being accessed, either read or written, and
1677 * can allow or deny such access.
1678 *
1679 * This function will return %-EPERM if an attached program is found and
1680 * returned value != 1 during execution. In all other cases 0 is returned.
1681 */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,char ** buf,size_t * pcount,loff_t * ppos,enum cgroup_bpf_attach_type atype)1682 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1683 struct ctl_table *table, int write,
1684 char **buf, size_t *pcount, loff_t *ppos,
1685 enum cgroup_bpf_attach_type atype)
1686 {
1687 struct bpf_sysctl_kern ctx = {
1688 .head = head,
1689 .table = table,
1690 .write = write,
1691 .ppos = ppos,
1692 .cur_val = NULL,
1693 .cur_len = PAGE_SIZE,
1694 .new_val = NULL,
1695 .new_len = 0,
1696 .new_updated = 0,
1697 };
1698 struct cgroup *cgrp;
1699 loff_t pos = 0;
1700 int ret;
1701
1702 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1703 if (!ctx.cur_val ||
1704 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1705 /* Let BPF program decide how to proceed. */
1706 ctx.cur_len = 0;
1707 }
1708
1709 if (write && *buf && *pcount) {
1710 /* BPF program should be able to override new value with a
1711 * buffer bigger than provided by user.
1712 */
1713 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1714 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1715 if (ctx.new_val) {
1716 memcpy(ctx.new_val, *buf, ctx.new_len);
1717 } else {
1718 /* Let BPF program decide how to proceed. */
1719 ctx.new_len = 0;
1720 }
1721 }
1722
1723 rcu_read_lock();
1724 cgrp = task_dfl_cgroup(current);
1725 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
1726 NULL);
1727 rcu_read_unlock();
1728
1729 kfree(ctx.cur_val);
1730
1731 if (ret == 1 && ctx.new_updated) {
1732 kfree(*buf);
1733 *buf = ctx.new_val;
1734 *pcount = ctx.new_len;
1735 } else {
1736 kfree(ctx.new_val);
1737 }
1738
1739 return ret;
1740 }
1741
1742 #ifdef CONFIG_NET
sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen,struct bpf_sockopt_buf * buf)1743 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1744 struct bpf_sockopt_buf *buf)
1745 {
1746 if (unlikely(max_optlen < 0))
1747 return -EINVAL;
1748
1749 if (unlikely(max_optlen > PAGE_SIZE)) {
1750 /* We don't expose optvals that are greater than PAGE_SIZE
1751 * to the BPF program.
1752 */
1753 max_optlen = PAGE_SIZE;
1754 }
1755
1756 if (max_optlen <= sizeof(buf->data)) {
1757 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1758 * bytes avoid the cost of kzalloc.
1759 */
1760 ctx->optval = buf->data;
1761 ctx->optval_end = ctx->optval + max_optlen;
1762 return max_optlen;
1763 }
1764
1765 ctx->optval = kzalloc(max_optlen, GFP_USER);
1766 if (!ctx->optval)
1767 return -ENOMEM;
1768
1769 ctx->optval_end = ctx->optval + max_optlen;
1770
1771 return max_optlen;
1772 }
1773
sockopt_free_buf(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1774 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1775 struct bpf_sockopt_buf *buf)
1776 {
1777 if (ctx->optval == buf->data)
1778 return;
1779 kfree(ctx->optval);
1780 }
1781
sockopt_buf_allocated(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1782 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1783 struct bpf_sockopt_buf *buf)
1784 {
1785 return ctx->optval != buf->data;
1786 }
1787
__cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,char __user * optval,int * optlen,char ** kernel_optval)1788 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1789 int *optname, char __user *optval,
1790 int *optlen, char **kernel_optval)
1791 {
1792 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1793 struct bpf_sockopt_buf buf = {};
1794 struct bpf_sockopt_kern ctx = {
1795 .sk = sk,
1796 .level = *level,
1797 .optname = *optname,
1798 };
1799 int ret, max_optlen;
1800
1801 /* Allocate a bit more than the initial user buffer for
1802 * BPF program. The canonical use case is overriding
1803 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1804 */
1805 max_optlen = max_t(int, 16, *optlen);
1806 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1807 if (max_optlen < 0)
1808 return max_optlen;
1809
1810 ctx.optlen = *optlen;
1811
1812 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1813 ret = -EFAULT;
1814 goto out;
1815 }
1816
1817 lock_sock(sk);
1818 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT,
1819 &ctx, bpf_prog_run, 0, NULL);
1820 release_sock(sk);
1821
1822 if (ret)
1823 goto out;
1824
1825 if (ctx.optlen == -1) {
1826 /* optlen set to -1, bypass kernel */
1827 ret = 1;
1828 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1829 /* optlen is out of bounds */
1830 if (*optlen > PAGE_SIZE && ctx.optlen >= 0) {
1831 pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
1832 ctx.optlen, max_optlen);
1833 ret = 0;
1834 goto out;
1835 }
1836 ret = -EFAULT;
1837 } else {
1838 /* optlen within bounds, run kernel handler */
1839 ret = 0;
1840
1841 /* export any potential modifications */
1842 *level = ctx.level;
1843 *optname = ctx.optname;
1844
1845 /* optlen == 0 from BPF indicates that we should
1846 * use original userspace data.
1847 */
1848 if (ctx.optlen != 0) {
1849 *optlen = ctx.optlen;
1850 /* We've used bpf_sockopt_kern->buf as an intermediary
1851 * storage, but the BPF program indicates that we need
1852 * to pass this data to the kernel setsockopt handler.
1853 * No way to export on-stack buf, have to allocate a
1854 * new buffer.
1855 */
1856 if (!sockopt_buf_allocated(&ctx, &buf)) {
1857 void *p = kmalloc(ctx.optlen, GFP_USER);
1858
1859 if (!p) {
1860 ret = -ENOMEM;
1861 goto out;
1862 }
1863 memcpy(p, ctx.optval, ctx.optlen);
1864 *kernel_optval = p;
1865 } else {
1866 *kernel_optval = ctx.optval;
1867 }
1868 /* export and don't free sockopt buf */
1869 return 0;
1870 }
1871 }
1872
1873 out:
1874 sockopt_free_buf(&ctx, &buf);
1875 return ret;
1876 }
1877
__cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen,int max_optlen,int retval)1878 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1879 int optname, char __user *optval,
1880 int __user *optlen, int max_optlen,
1881 int retval)
1882 {
1883 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1884 struct bpf_sockopt_buf buf = {};
1885 struct bpf_sockopt_kern ctx = {
1886 .sk = sk,
1887 .level = level,
1888 .optname = optname,
1889 .current_task = current,
1890 };
1891 int orig_optlen;
1892 int ret;
1893
1894 orig_optlen = max_optlen;
1895 ctx.optlen = max_optlen;
1896 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1897 if (max_optlen < 0)
1898 return max_optlen;
1899
1900 if (!retval) {
1901 /* If kernel getsockopt finished successfully,
1902 * copy whatever was returned to the user back
1903 * into our temporary buffer. Set optlen to the
1904 * one that kernel returned as well to let
1905 * BPF programs inspect the value.
1906 */
1907
1908 if (get_user(ctx.optlen, optlen)) {
1909 ret = -EFAULT;
1910 goto out;
1911 }
1912
1913 if (ctx.optlen < 0) {
1914 ret = -EFAULT;
1915 goto out;
1916 }
1917 orig_optlen = ctx.optlen;
1918
1919 if (copy_from_user(ctx.optval, optval,
1920 min(ctx.optlen, max_optlen)) != 0) {
1921 ret = -EFAULT;
1922 goto out;
1923 }
1924 }
1925
1926 lock_sock(sk);
1927 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
1928 &ctx, bpf_prog_run, retval, NULL);
1929 release_sock(sk);
1930
1931 if (ret < 0)
1932 goto out;
1933
1934 if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) {
1935 if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) {
1936 pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
1937 ctx.optlen, max_optlen);
1938 ret = retval;
1939 goto out;
1940 }
1941 ret = -EFAULT;
1942 goto out;
1943 }
1944
1945 if (ctx.optlen != 0) {
1946 if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) {
1947 ret = -EFAULT;
1948 goto out;
1949 }
1950 if (put_user(ctx.optlen, optlen)) {
1951 ret = -EFAULT;
1952 goto out;
1953 }
1954 }
1955
1956 out:
1957 sockopt_free_buf(&ctx, &buf);
1958 return ret;
1959 }
1960
__cgroup_bpf_run_filter_getsockopt_kern(struct sock * sk,int level,int optname,void * optval,int * optlen,int retval)1961 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1962 int optname, void *optval,
1963 int *optlen, int retval)
1964 {
1965 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1966 struct bpf_sockopt_kern ctx = {
1967 .sk = sk,
1968 .level = level,
1969 .optname = optname,
1970 .optlen = *optlen,
1971 .optval = optval,
1972 .optval_end = optval + *optlen,
1973 .current_task = current,
1974 };
1975 int ret;
1976
1977 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1978 * user data back into BPF buffer when reval != 0. This is
1979 * done as an optimization to avoid extra copy, assuming
1980 * kernel won't populate the data in case of an error.
1981 * Here we always pass the data and memset() should
1982 * be called if that data shouldn't be "exported".
1983 */
1984
1985 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
1986 &ctx, bpf_prog_run, retval, NULL);
1987 if (ret < 0)
1988 return ret;
1989
1990 if (ctx.optlen > *optlen)
1991 return -EFAULT;
1992
1993 /* BPF programs can shrink the buffer, export the modifications.
1994 */
1995 if (ctx.optlen != 0)
1996 *optlen = ctx.optlen;
1997
1998 return ret;
1999 }
2000 #endif
2001
sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)2002 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
2003 size_t *lenp)
2004 {
2005 ssize_t tmp_ret = 0, ret;
2006
2007 if (dir->header.parent) {
2008 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
2009 if (tmp_ret < 0)
2010 return tmp_ret;
2011 }
2012
2013 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
2014 if (ret < 0)
2015 return ret;
2016 *bufp += ret;
2017 *lenp -= ret;
2018 ret += tmp_ret;
2019
2020 /* Avoid leading slash. */
2021 if (!ret)
2022 return ret;
2023
2024 tmp_ret = strscpy(*bufp, "/", *lenp);
2025 if (tmp_ret < 0)
2026 return tmp_ret;
2027 *bufp += tmp_ret;
2028 *lenp -= tmp_ret;
2029
2030 return ret + tmp_ret;
2031 }
2032
BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)2033 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
2034 size_t, buf_len, u64, flags)
2035 {
2036 ssize_t tmp_ret = 0, ret;
2037
2038 if (!buf)
2039 return -EINVAL;
2040
2041 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
2042 if (!ctx->head)
2043 return -EINVAL;
2044 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
2045 if (tmp_ret < 0)
2046 return tmp_ret;
2047 }
2048
2049 ret = strscpy(buf, ctx->table->procname, buf_len);
2050
2051 return ret < 0 ? ret : tmp_ret + ret;
2052 }
2053
2054 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
2055 .func = bpf_sysctl_get_name,
2056 .gpl_only = false,
2057 .ret_type = RET_INTEGER,
2058 .arg1_type = ARG_PTR_TO_CTX,
2059 .arg2_type = ARG_PTR_TO_MEM,
2060 .arg3_type = ARG_CONST_SIZE,
2061 .arg4_type = ARG_ANYTHING,
2062 };
2063
copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)2064 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
2065 size_t src_len)
2066 {
2067 if (!dst)
2068 return -EINVAL;
2069
2070 if (!dst_len)
2071 return -E2BIG;
2072
2073 if (!src || !src_len) {
2074 memset(dst, 0, dst_len);
2075 return -EINVAL;
2076 }
2077
2078 memcpy(dst, src, min(dst_len, src_len));
2079
2080 if (dst_len > src_len) {
2081 memset(dst + src_len, '\0', dst_len - src_len);
2082 return src_len;
2083 }
2084
2085 dst[dst_len - 1] = '\0';
2086
2087 return -E2BIG;
2088 }
2089
BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)2090 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
2091 char *, buf, size_t, buf_len)
2092 {
2093 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
2094 }
2095
2096 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
2097 .func = bpf_sysctl_get_current_value,
2098 .gpl_only = false,
2099 .ret_type = RET_INTEGER,
2100 .arg1_type = ARG_PTR_TO_CTX,
2101 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
2102 .arg3_type = ARG_CONST_SIZE,
2103 };
2104
BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)2105 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
2106 size_t, buf_len)
2107 {
2108 if (!ctx->write) {
2109 if (buf && buf_len)
2110 memset(buf, '\0', buf_len);
2111 return -EINVAL;
2112 }
2113 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
2114 }
2115
2116 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
2117 .func = bpf_sysctl_get_new_value,
2118 .gpl_only = false,
2119 .ret_type = RET_INTEGER,
2120 .arg1_type = ARG_PTR_TO_CTX,
2121 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
2122 .arg3_type = ARG_CONST_SIZE,
2123 };
2124
BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)2125 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
2126 const char *, buf, size_t, buf_len)
2127 {
2128 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
2129 return -EINVAL;
2130
2131 if (buf_len > PAGE_SIZE - 1)
2132 return -E2BIG;
2133
2134 memcpy(ctx->new_val, buf, buf_len);
2135 ctx->new_len = buf_len;
2136 ctx->new_updated = 1;
2137
2138 return 0;
2139 }
2140
2141 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
2142 .func = bpf_sysctl_set_new_value,
2143 .gpl_only = false,
2144 .ret_type = RET_INTEGER,
2145 .arg1_type = ARG_PTR_TO_CTX,
2146 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
2147 .arg3_type = ARG_CONST_SIZE,
2148 };
2149
2150 static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2151 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2152 {
2153 const struct bpf_func_proto *func_proto;
2154
2155 func_proto = cgroup_common_func_proto(func_id, prog);
2156 if (func_proto)
2157 return func_proto;
2158
2159 func_proto = cgroup_current_func_proto(func_id, prog);
2160 if (func_proto)
2161 return func_proto;
2162
2163 switch (func_id) {
2164 case BPF_FUNC_sysctl_get_name:
2165 return &bpf_sysctl_get_name_proto;
2166 case BPF_FUNC_sysctl_get_current_value:
2167 return &bpf_sysctl_get_current_value_proto;
2168 case BPF_FUNC_sysctl_get_new_value:
2169 return &bpf_sysctl_get_new_value_proto;
2170 case BPF_FUNC_sysctl_set_new_value:
2171 return &bpf_sysctl_set_new_value_proto;
2172 case BPF_FUNC_ktime_get_coarse_ns:
2173 return &bpf_ktime_get_coarse_ns_proto;
2174 case BPF_FUNC_perf_event_output:
2175 return &bpf_event_output_data_proto;
2176 default:
2177 return bpf_base_func_proto(func_id);
2178 }
2179 }
2180
sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2181 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
2182 const struct bpf_prog *prog,
2183 struct bpf_insn_access_aux *info)
2184 {
2185 const int size_default = sizeof(__u32);
2186
2187 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
2188 return false;
2189
2190 switch (off) {
2191 case bpf_ctx_range(struct bpf_sysctl, write):
2192 if (type != BPF_READ)
2193 return false;
2194 bpf_ctx_record_field_size(info, size_default);
2195 return bpf_ctx_narrow_access_ok(off, size, size_default);
2196 case bpf_ctx_range(struct bpf_sysctl, file_pos):
2197 if (type == BPF_READ) {
2198 bpf_ctx_record_field_size(info, size_default);
2199 return bpf_ctx_narrow_access_ok(off, size, size_default);
2200 } else {
2201 return size == size_default;
2202 }
2203 default:
2204 return false;
2205 }
2206 }
2207
sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2208 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
2209 const struct bpf_insn *si,
2210 struct bpf_insn *insn_buf,
2211 struct bpf_prog *prog, u32 *target_size)
2212 {
2213 struct bpf_insn *insn = insn_buf;
2214 u32 read_size;
2215
2216 switch (si->off) {
2217 case offsetof(struct bpf_sysctl, write):
2218 *insn++ = BPF_LDX_MEM(
2219 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
2220 bpf_target_off(struct bpf_sysctl_kern, write,
2221 sizeof_field(struct bpf_sysctl_kern,
2222 write),
2223 target_size));
2224 break;
2225 case offsetof(struct bpf_sysctl, file_pos):
2226 /* ppos is a pointer so it should be accessed via indirect
2227 * loads and stores. Also for stores additional temporary
2228 * register is used since neither src_reg nor dst_reg can be
2229 * overridden.
2230 */
2231 if (type == BPF_WRITE) {
2232 int treg = BPF_REG_9;
2233
2234 if (si->src_reg == treg || si->dst_reg == treg)
2235 --treg;
2236 if (si->src_reg == treg || si->dst_reg == treg)
2237 --treg;
2238 *insn++ = BPF_STX_MEM(
2239 BPF_DW, si->dst_reg, treg,
2240 offsetof(struct bpf_sysctl_kern, tmp_reg));
2241 *insn++ = BPF_LDX_MEM(
2242 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
2243 treg, si->dst_reg,
2244 offsetof(struct bpf_sysctl_kern, ppos));
2245 *insn++ = BPF_RAW_INSN(
2246 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32),
2247 treg, si->src_reg,
2248 bpf_ctx_narrow_access_offset(
2249 0, sizeof(u32), sizeof(loff_t)),
2250 si->imm);
2251 *insn++ = BPF_LDX_MEM(
2252 BPF_DW, treg, si->dst_reg,
2253 offsetof(struct bpf_sysctl_kern, tmp_reg));
2254 } else {
2255 *insn++ = BPF_LDX_MEM(
2256 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
2257 si->dst_reg, si->src_reg,
2258 offsetof(struct bpf_sysctl_kern, ppos));
2259 read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
2260 *insn++ = BPF_LDX_MEM(
2261 BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
2262 bpf_ctx_narrow_access_offset(
2263 0, read_size, sizeof(loff_t)));
2264 }
2265 *target_size = sizeof(u32);
2266 break;
2267 }
2268
2269 return insn - insn_buf;
2270 }
2271
2272 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
2273 .get_func_proto = sysctl_func_proto,
2274 .is_valid_access = sysctl_is_valid_access,
2275 .convert_ctx_access = sysctl_convert_ctx_access,
2276 };
2277
2278 const struct bpf_prog_ops cg_sysctl_prog_ops = {
2279 };
2280
2281 #ifdef CONFIG_NET
BPF_CALL_1(bpf_get_netns_cookie_sockopt,struct bpf_sockopt_kern *,ctx)2282 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
2283 {
2284 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
2285
2286 return net->net_cookie;
2287 }
2288
2289 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
2290 .func = bpf_get_netns_cookie_sockopt,
2291 .gpl_only = false,
2292 .ret_type = RET_INTEGER,
2293 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
2294 };
2295 #endif
2296
2297 static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2298 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2299 {
2300 const struct bpf_func_proto *func_proto;
2301
2302 func_proto = cgroup_common_func_proto(func_id, prog);
2303 if (func_proto)
2304 return func_proto;
2305
2306 func_proto = cgroup_current_func_proto(func_id, prog);
2307 if (func_proto)
2308 return func_proto;
2309
2310 switch (func_id) {
2311 #ifdef CONFIG_NET
2312 case BPF_FUNC_get_netns_cookie:
2313 return &bpf_get_netns_cookie_sockopt_proto;
2314 case BPF_FUNC_sk_storage_get:
2315 return &bpf_sk_storage_get_proto;
2316 case BPF_FUNC_sk_storage_delete:
2317 return &bpf_sk_storage_delete_proto;
2318 case BPF_FUNC_setsockopt:
2319 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
2320 return &bpf_sk_setsockopt_proto;
2321 return NULL;
2322 case BPF_FUNC_getsockopt:
2323 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
2324 return &bpf_sk_getsockopt_proto;
2325 return NULL;
2326 #endif
2327 #ifdef CONFIG_INET
2328 case BPF_FUNC_tcp_sock:
2329 return &bpf_tcp_sock_proto;
2330 #endif
2331 case BPF_FUNC_perf_event_output:
2332 return &bpf_event_output_data_proto;
2333 default:
2334 return bpf_base_func_proto(func_id);
2335 }
2336 }
2337
cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2338 static bool cg_sockopt_is_valid_access(int off, int size,
2339 enum bpf_access_type type,
2340 const struct bpf_prog *prog,
2341 struct bpf_insn_access_aux *info)
2342 {
2343 const int size_default = sizeof(__u32);
2344
2345 if (off < 0 || off >= sizeof(struct bpf_sockopt))
2346 return false;
2347
2348 if (off % size != 0)
2349 return false;
2350
2351 if (type == BPF_WRITE) {
2352 switch (off) {
2353 case offsetof(struct bpf_sockopt, retval):
2354 if (size != size_default)
2355 return false;
2356 return prog->expected_attach_type ==
2357 BPF_CGROUP_GETSOCKOPT;
2358 case offsetof(struct bpf_sockopt, optname):
2359 fallthrough;
2360 case offsetof(struct bpf_sockopt, level):
2361 if (size != size_default)
2362 return false;
2363 return prog->expected_attach_type ==
2364 BPF_CGROUP_SETSOCKOPT;
2365 case offsetof(struct bpf_sockopt, optlen):
2366 return size == size_default;
2367 default:
2368 return false;
2369 }
2370 }
2371
2372 switch (off) {
2373 case offsetof(struct bpf_sockopt, sk):
2374 if (size != sizeof(__u64))
2375 return false;
2376 info->reg_type = PTR_TO_SOCKET;
2377 break;
2378 case offsetof(struct bpf_sockopt, optval):
2379 if (size != sizeof(__u64))
2380 return false;
2381 info->reg_type = PTR_TO_PACKET;
2382 break;
2383 case offsetof(struct bpf_sockopt, optval_end):
2384 if (size != sizeof(__u64))
2385 return false;
2386 info->reg_type = PTR_TO_PACKET_END;
2387 break;
2388 case offsetof(struct bpf_sockopt, retval):
2389 if (size != size_default)
2390 return false;
2391 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
2392 default:
2393 if (size != size_default)
2394 return false;
2395 break;
2396 }
2397 return true;
2398 }
2399
2400 #define CG_SOCKOPT_READ_FIELD(F) \
2401 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \
2402 si->dst_reg, si->src_reg, \
2403 offsetof(struct bpf_sockopt_kern, F))
2404
2405 #define CG_SOCKOPT_WRITE_FIELD(F) \
2406 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \
2407 BPF_MEM | BPF_CLASS(si->code)), \
2408 si->dst_reg, si->src_reg, \
2409 offsetof(struct bpf_sockopt_kern, F), \
2410 si->imm)
2411
cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2412 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
2413 const struct bpf_insn *si,
2414 struct bpf_insn *insn_buf,
2415 struct bpf_prog *prog,
2416 u32 *target_size)
2417 {
2418 struct bpf_insn *insn = insn_buf;
2419
2420 switch (si->off) {
2421 case offsetof(struct bpf_sockopt, sk):
2422 *insn++ = CG_SOCKOPT_READ_FIELD(sk);
2423 break;
2424 case offsetof(struct bpf_sockopt, level):
2425 if (type == BPF_WRITE)
2426 *insn++ = CG_SOCKOPT_WRITE_FIELD(level);
2427 else
2428 *insn++ = CG_SOCKOPT_READ_FIELD(level);
2429 break;
2430 case offsetof(struct bpf_sockopt, optname):
2431 if (type == BPF_WRITE)
2432 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname);
2433 else
2434 *insn++ = CG_SOCKOPT_READ_FIELD(optname);
2435 break;
2436 case offsetof(struct bpf_sockopt, optlen):
2437 if (type == BPF_WRITE)
2438 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen);
2439 else
2440 *insn++ = CG_SOCKOPT_READ_FIELD(optlen);
2441 break;
2442 case offsetof(struct bpf_sockopt, retval):
2443 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0);
2444
2445 if (type == BPF_WRITE) {
2446 int treg = BPF_REG_9;
2447
2448 if (si->src_reg == treg || si->dst_reg == treg)
2449 --treg;
2450 if (si->src_reg == treg || si->dst_reg == treg)
2451 --treg;
2452 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg,
2453 offsetof(struct bpf_sockopt_kern, tmp_reg));
2454 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
2455 treg, si->dst_reg,
2456 offsetof(struct bpf_sockopt_kern, current_task));
2457 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
2458 treg, treg,
2459 offsetof(struct task_struct, bpf_ctx));
2460 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM |
2461 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
2462 treg, si->src_reg,
2463 offsetof(struct bpf_cg_run_ctx, retval),
2464 si->imm);
2465 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg,
2466 offsetof(struct bpf_sockopt_kern, tmp_reg));
2467 } else {
2468 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
2469 si->dst_reg, si->src_reg,
2470 offsetof(struct bpf_sockopt_kern, current_task));
2471 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
2472 si->dst_reg, si->dst_reg,
2473 offsetof(struct task_struct, bpf_ctx));
2474 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
2475 si->dst_reg, si->dst_reg,
2476 offsetof(struct bpf_cg_run_ctx, retval));
2477 }
2478 break;
2479 case offsetof(struct bpf_sockopt, optval):
2480 *insn++ = CG_SOCKOPT_READ_FIELD(optval);
2481 break;
2482 case offsetof(struct bpf_sockopt, optval_end):
2483 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end);
2484 break;
2485 }
2486
2487 return insn - insn_buf;
2488 }
2489
cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)2490 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2491 bool direct_write,
2492 const struct bpf_prog *prog)
2493 {
2494 /* Nothing to do for sockopt argument. The data is kzalloc'ated.
2495 */
2496 return 0;
2497 }
2498
2499 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2500 .get_func_proto = cg_sockopt_func_proto,
2501 .is_valid_access = cg_sockopt_is_valid_access,
2502 .convert_ctx_access = cg_sockopt_convert_ctx_access,
2503 .gen_prologue = cg_sockopt_get_prologue,
2504 };
2505
2506 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2507 };
2508
2509 /* Common helpers for cgroup hooks. */
2510 const struct bpf_func_proto *
cgroup_common_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2511 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2512 {
2513 switch (func_id) {
2514 case BPF_FUNC_get_local_storage:
2515 return &bpf_get_local_storage_proto;
2516 case BPF_FUNC_get_retval:
2517 switch (prog->expected_attach_type) {
2518 case BPF_CGROUP_INET_INGRESS:
2519 case BPF_CGROUP_INET_EGRESS:
2520 case BPF_CGROUP_SOCK_OPS:
2521 case BPF_CGROUP_UDP4_RECVMSG:
2522 case BPF_CGROUP_UDP6_RECVMSG:
2523 case BPF_CGROUP_INET4_GETPEERNAME:
2524 case BPF_CGROUP_INET6_GETPEERNAME:
2525 case BPF_CGROUP_INET4_GETSOCKNAME:
2526 case BPF_CGROUP_INET6_GETSOCKNAME:
2527 return NULL;
2528 default:
2529 return &bpf_get_retval_proto;
2530 }
2531 case BPF_FUNC_set_retval:
2532 switch (prog->expected_attach_type) {
2533 case BPF_CGROUP_INET_INGRESS:
2534 case BPF_CGROUP_INET_EGRESS:
2535 case BPF_CGROUP_SOCK_OPS:
2536 case BPF_CGROUP_UDP4_RECVMSG:
2537 case BPF_CGROUP_UDP6_RECVMSG:
2538 case BPF_CGROUP_INET4_GETPEERNAME:
2539 case BPF_CGROUP_INET6_GETPEERNAME:
2540 case BPF_CGROUP_INET4_GETSOCKNAME:
2541 case BPF_CGROUP_INET6_GETSOCKNAME:
2542 return NULL;
2543 default:
2544 return &bpf_set_retval_proto;
2545 }
2546 default:
2547 return NULL;
2548 }
2549 }
2550
2551 /* Common helpers for cgroup hooks with valid process context. */
2552 const struct bpf_func_proto *
cgroup_current_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2553 cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2554 {
2555 switch (func_id) {
2556 case BPF_FUNC_get_current_uid_gid:
2557 return &bpf_get_current_uid_gid_proto;
2558 case BPF_FUNC_get_current_pid_tgid:
2559 return &bpf_get_current_pid_tgid_proto;
2560 case BPF_FUNC_get_current_comm:
2561 return &bpf_get_current_comm_proto;
2562 #ifdef CONFIG_CGROUP_NET_CLASSID
2563 case BPF_FUNC_get_cgroup_classid:
2564 return &bpf_get_cgroup_classid_curr_proto;
2565 #endif
2566 default:
2567 return NULL;
2568 }
2569 }
2570