1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned long xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags;
100 };
101
102 struct ata_force_ent {
103 int port;
104 int device;
105 struct ata_force_param param;
106 };
107
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161
162
ata_sstatus_online(u32 sstatus)163 static bool ata_sstatus_online(u32 sstatus)
164 {
165 return (sstatus & 0xf) == 0x3;
166 }
167
168 /**
169 * ata_link_next - link iteration helper
170 * @link: the previous link, NULL to start
171 * @ap: ATA port containing links to iterate
172 * @mode: iteration mode, one of ATA_LITER_*
173 *
174 * LOCKING:
175 * Host lock or EH context.
176 *
177 * RETURNS:
178 * Pointer to the next link.
179 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)180 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
181 enum ata_link_iter_mode mode)
182 {
183 BUG_ON(mode != ATA_LITER_EDGE &&
184 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
185
186 /* NULL link indicates start of iteration */
187 if (!link)
188 switch (mode) {
189 case ATA_LITER_EDGE:
190 case ATA_LITER_PMP_FIRST:
191 if (sata_pmp_attached(ap))
192 return ap->pmp_link;
193 fallthrough;
194 case ATA_LITER_HOST_FIRST:
195 return &ap->link;
196 }
197
198 /* we just iterated over the host link, what's next? */
199 if (link == &ap->link)
200 switch (mode) {
201 case ATA_LITER_HOST_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 fallthrough;
205 case ATA_LITER_PMP_FIRST:
206 if (unlikely(ap->slave_link))
207 return ap->slave_link;
208 fallthrough;
209 case ATA_LITER_EDGE:
210 return NULL;
211 }
212
213 /* slave_link excludes PMP */
214 if (unlikely(link == ap->slave_link))
215 return NULL;
216
217 /* we were over a PMP link */
218 if (++link < ap->pmp_link + ap->nr_pmp_links)
219 return link;
220
221 if (mode == ATA_LITER_PMP_FIRST)
222 return &ap->link;
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(ata_link_next);
227
228 /**
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
233 *
234 * LOCKING:
235 * Host lock or EH context.
236 *
237 * RETURNS:
238 * Pointer to the next device.
239 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)240 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 enum ata_dev_iter_mode mode)
242 {
243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246 /* NULL dev indicates start of iteration */
247 if (!dev)
248 switch (mode) {
249 case ATA_DITER_ENABLED:
250 case ATA_DITER_ALL:
251 dev = link->device;
252 goto check;
253 case ATA_DITER_ENABLED_REVERSE:
254 case ATA_DITER_ALL_REVERSE:
255 dev = link->device + ata_link_max_devices(link) - 1;
256 goto check;
257 }
258
259 next:
260 /* move to the next one */
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 if (++dev < link->device + ata_link_max_devices(link))
265 goto check;
266 return NULL;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 if (--dev >= link->device)
270 goto check;
271 return NULL;
272 }
273
274 check:
275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 !ata_dev_enabled(dev))
277 goto next;
278 return dev;
279 }
280 EXPORT_SYMBOL_GPL(ata_dev_next);
281
282 /**
283 * ata_dev_phys_link - find physical link for a device
284 * @dev: ATA device to look up physical link for
285 *
286 * Look up physical link which @dev is attached to. Note that
287 * this is different from @dev->link only when @dev is on slave
288 * link. For all other cases, it's the same as @dev->link.
289 *
290 * LOCKING:
291 * Don't care.
292 *
293 * RETURNS:
294 * Pointer to the found physical link.
295 */
ata_dev_phys_link(struct ata_device * dev)296 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
297 {
298 struct ata_port *ap = dev->link->ap;
299
300 if (!ap->slave_link)
301 return dev->link;
302 if (!dev->devno)
303 return &ap->link;
304 return ap->slave_link;
305 }
306
307 #ifdef CONFIG_ATA_FORCE
308 /**
309 * ata_force_cbl - force cable type according to libata.force
310 * @ap: ATA port of interest
311 *
312 * Force cable type according to libata.force and whine about it.
313 * The last entry which has matching port number is used, so it
314 * can be specified as part of device force parameters. For
315 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
316 * same effect.
317 *
318 * LOCKING:
319 * EH context.
320 */
ata_force_cbl(struct ata_port * ap)321 void ata_force_cbl(struct ata_port *ap)
322 {
323 int i;
324
325 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
326 const struct ata_force_ent *fe = &ata_force_tbl[i];
327
328 if (fe->port != -1 && fe->port != ap->print_id)
329 continue;
330
331 if (fe->param.cbl == ATA_CBL_NONE)
332 continue;
333
334 ap->cbl = fe->param.cbl;
335 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
336 return;
337 }
338 }
339
340 /**
341 * ata_force_link_limits - force link limits according to libata.force
342 * @link: ATA link of interest
343 *
344 * Force link flags and SATA spd limit according to libata.force
345 * and whine about it. When only the port part is specified
346 * (e.g. 1:), the limit applies to all links connected to both
347 * the host link and all fan-out ports connected via PMP. If the
348 * device part is specified as 0 (e.g. 1.00:), it specifies the
349 * first fan-out link not the host link. Device number 15 always
350 * points to the host link whether PMP is attached or not. If the
351 * controller has slave link, device number 16 points to it.
352 *
353 * LOCKING:
354 * EH context.
355 */
ata_force_link_limits(struct ata_link * link)356 static void ata_force_link_limits(struct ata_link *link)
357 {
358 bool did_spd = false;
359 int linkno = link->pmp;
360 int i;
361
362 if (ata_is_host_link(link))
363 linkno += 15;
364
365 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
366 const struct ata_force_ent *fe = &ata_force_tbl[i];
367
368 if (fe->port != -1 && fe->port != link->ap->print_id)
369 continue;
370
371 if (fe->device != -1 && fe->device != linkno)
372 continue;
373
374 /* only honor the first spd limit */
375 if (!did_spd && fe->param.spd_limit) {
376 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
377 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
378 fe->param.name);
379 did_spd = true;
380 }
381
382 /* let lflags stack */
383 if (fe->param.lflags) {
384 link->flags |= fe->param.lflags;
385 ata_link_notice(link,
386 "FORCE: link flag 0x%x forced -> 0x%x\n",
387 fe->param.lflags, link->flags);
388 }
389 }
390 }
391
392 /**
393 * ata_force_xfermask - force xfermask according to libata.force
394 * @dev: ATA device of interest
395 *
396 * Force xfer_mask according to libata.force and whine about it.
397 * For consistency with link selection, device number 15 selects
398 * the first device connected to the host link.
399 *
400 * LOCKING:
401 * EH context.
402 */
ata_force_xfermask(struct ata_device * dev)403 static void ata_force_xfermask(struct ata_device *dev)
404 {
405 int devno = dev->link->pmp + dev->devno;
406 int alt_devno = devno;
407 int i;
408
409 /* allow n.15/16 for devices attached to host port */
410 if (ata_is_host_link(dev->link))
411 alt_devno += 15;
412
413 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414 const struct ata_force_ent *fe = &ata_force_tbl[i];
415 unsigned long pio_mask, mwdma_mask, udma_mask;
416
417 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418 continue;
419
420 if (fe->device != -1 && fe->device != devno &&
421 fe->device != alt_devno)
422 continue;
423
424 if (!fe->param.xfer_mask)
425 continue;
426
427 ata_unpack_xfermask(fe->param.xfer_mask,
428 &pio_mask, &mwdma_mask, &udma_mask);
429 if (udma_mask)
430 dev->udma_mask = udma_mask;
431 else if (mwdma_mask) {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = mwdma_mask;
434 } else {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = 0;
437 dev->pio_mask = pio_mask;
438 }
439
440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441 fe->param.name);
442 return;
443 }
444 }
445
446 /**
447 * ata_force_horkage - force horkage according to libata.force
448 * @dev: ATA device of interest
449 *
450 * Force horkage according to libata.force and whine about it.
451 * For consistency with link selection, device number 15 selects
452 * the first device connected to the host link.
453 *
454 * LOCKING:
455 * EH context.
456 */
ata_force_horkage(struct ata_device * dev)457 static void ata_force_horkage(struct ata_device *dev)
458 {
459 int devno = dev->link->pmp + dev->devno;
460 int alt_devno = devno;
461 int i;
462
463 /* allow n.15/16 for devices attached to host port */
464 if (ata_is_host_link(dev->link))
465 alt_devno += 15;
466
467 for (i = 0; i < ata_force_tbl_size; i++) {
468 const struct ata_force_ent *fe = &ata_force_tbl[i];
469
470 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471 continue;
472
473 if (fe->device != -1 && fe->device != devno &&
474 fe->device != alt_devno)
475 continue;
476
477 if (!(~dev->horkage & fe->param.horkage_on) &&
478 !(dev->horkage & fe->param.horkage_off))
479 continue;
480
481 dev->horkage |= fe->param.horkage_on;
482 dev->horkage &= ~fe->param.horkage_off;
483
484 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
485 fe->param.name);
486 }
487 }
488 #else
ata_force_link_limits(struct ata_link * link)489 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)490 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)491 static inline void ata_force_horkage(struct ata_device *dev) { }
492 #endif
493
494 /**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
atapi_cmd_type(u8 opcode)506 int atapi_cmd_type(u8 opcode)
507 {
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 fallthrough;
527 default:
528 return ATAPI_MISC;
529 }
530 }
531 EXPORT_SYMBOL_GPL(atapi_cmd_type);
532
533 static const u8 ata_rw_cmds[] = {
534 /* pio multi */
535 ATA_CMD_READ_MULTI,
536 ATA_CMD_WRITE_MULTI,
537 ATA_CMD_READ_MULTI_EXT,
538 ATA_CMD_WRITE_MULTI_EXT,
539 0,
540 0,
541 0,
542 ATA_CMD_WRITE_MULTI_FUA_EXT,
543 /* pio */
544 ATA_CMD_PIO_READ,
545 ATA_CMD_PIO_WRITE,
546 ATA_CMD_PIO_READ_EXT,
547 ATA_CMD_PIO_WRITE_EXT,
548 0,
549 0,
550 0,
551 0,
552 /* dma */
553 ATA_CMD_READ,
554 ATA_CMD_WRITE,
555 ATA_CMD_READ_EXT,
556 ATA_CMD_WRITE_EXT,
557 0,
558 0,
559 0,
560 ATA_CMD_WRITE_FUA_EXT
561 };
562
563 /**
564 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
565 * @tf: command to examine and configure
566 * @dev: device tf belongs to
567 *
568 * Examine the device configuration and tf->flags to calculate
569 * the proper read/write commands and protocol to use.
570 *
571 * LOCKING:
572 * caller.
573 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)574 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
575 {
576 u8 cmd;
577
578 int index, fua, lba48, write;
579
580 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
581 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
582 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
583
584 if (dev->flags & ATA_DFLAG_PIO) {
585 tf->protocol = ATA_PROT_PIO;
586 index = dev->multi_count ? 0 : 8;
587 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
588 /* Unable to use DMA due to host limitation */
589 tf->protocol = ATA_PROT_PIO;
590 index = dev->multi_count ? 0 : 8;
591 } else {
592 tf->protocol = ATA_PROT_DMA;
593 index = 16;
594 }
595
596 cmd = ata_rw_cmds[index + fua + lba48 + write];
597 if (cmd) {
598 tf->command = cmd;
599 return 0;
600 }
601 return -1;
602 }
603
604 /**
605 * ata_tf_read_block - Read block address from ATA taskfile
606 * @tf: ATA taskfile of interest
607 * @dev: ATA device @tf belongs to
608 *
609 * LOCKING:
610 * None.
611 *
612 * Read block address from @tf. This function can handle all
613 * three address formats - LBA, LBA48 and CHS. tf->protocol and
614 * flags select the address format to use.
615 *
616 * RETURNS:
617 * Block address read from @tf.
618 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)619 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
620 {
621 u64 block = 0;
622
623 if (tf->flags & ATA_TFLAG_LBA) {
624 if (tf->flags & ATA_TFLAG_LBA48) {
625 block |= (u64)tf->hob_lbah << 40;
626 block |= (u64)tf->hob_lbam << 32;
627 block |= (u64)tf->hob_lbal << 24;
628 } else
629 block |= (tf->device & 0xf) << 24;
630
631 block |= tf->lbah << 16;
632 block |= tf->lbam << 8;
633 block |= tf->lbal;
634 } else {
635 u32 cyl, head, sect;
636
637 cyl = tf->lbam | (tf->lbah << 8);
638 head = tf->device & 0xf;
639 sect = tf->lbal;
640
641 if (!sect) {
642 ata_dev_warn(dev,
643 "device reported invalid CHS sector 0\n");
644 return U64_MAX;
645 }
646
647 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
648 }
649
650 return block;
651 }
652
653 /**
654 * ata_build_rw_tf - Build ATA taskfile for given read/write request
655 * @tf: Target ATA taskfile
656 * @dev: ATA device @tf belongs to
657 * @block: Block address
658 * @n_block: Number of blocks
659 * @tf_flags: RW/FUA etc...
660 * @tag: tag
661 * @class: IO priority class
662 *
663 * LOCKING:
664 * None.
665 *
666 * Build ATA taskfile @tf for read/write request described by
667 * @block, @n_block, @tf_flags and @tag on @dev.
668 *
669 * RETURNS:
670 *
671 * 0 on success, -ERANGE if the request is too large for @dev,
672 * -EINVAL if the request is invalid.
673 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)674 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
675 u64 block, u32 n_block, unsigned int tf_flags,
676 unsigned int tag, int class)
677 {
678 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
679 tf->flags |= tf_flags;
680
681 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
682 /* yay, NCQ */
683 if (!lba_48_ok(block, n_block))
684 return -ERANGE;
685
686 tf->protocol = ATA_PROT_NCQ;
687 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
688
689 if (tf->flags & ATA_TFLAG_WRITE)
690 tf->command = ATA_CMD_FPDMA_WRITE;
691 else
692 tf->command = ATA_CMD_FPDMA_READ;
693
694 tf->nsect = tag << 3;
695 tf->hob_feature = (n_block >> 8) & 0xff;
696 tf->feature = n_block & 0xff;
697
698 tf->hob_lbah = (block >> 40) & 0xff;
699 tf->hob_lbam = (block >> 32) & 0xff;
700 tf->hob_lbal = (block >> 24) & 0xff;
701 tf->lbah = (block >> 16) & 0xff;
702 tf->lbam = (block >> 8) & 0xff;
703 tf->lbal = block & 0xff;
704
705 tf->device = ATA_LBA;
706 if (tf->flags & ATA_TFLAG_FUA)
707 tf->device |= 1 << 7;
708
709 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
710 if (class == IOPRIO_CLASS_RT)
711 tf->hob_nsect |= ATA_PRIO_HIGH <<
712 ATA_SHIFT_PRIO;
713 }
714 } else if (dev->flags & ATA_DFLAG_LBA) {
715 tf->flags |= ATA_TFLAG_LBA;
716
717 if (lba_28_ok(block, n_block)) {
718 /* use LBA28 */
719 tf->device |= (block >> 24) & 0xf;
720 } else if (lba_48_ok(block, n_block)) {
721 if (!(dev->flags & ATA_DFLAG_LBA48))
722 return -ERANGE;
723
724 /* use LBA48 */
725 tf->flags |= ATA_TFLAG_LBA48;
726
727 tf->hob_nsect = (n_block >> 8) & 0xff;
728
729 tf->hob_lbah = (block >> 40) & 0xff;
730 tf->hob_lbam = (block >> 32) & 0xff;
731 tf->hob_lbal = (block >> 24) & 0xff;
732 } else
733 /* request too large even for LBA48 */
734 return -ERANGE;
735
736 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
737 return -EINVAL;
738
739 tf->nsect = n_block & 0xff;
740
741 tf->lbah = (block >> 16) & 0xff;
742 tf->lbam = (block >> 8) & 0xff;
743 tf->lbal = block & 0xff;
744
745 tf->device |= ATA_LBA;
746 } else {
747 /* CHS */
748 u32 sect, head, cyl, track;
749
750 /* The request -may- be too large for CHS addressing. */
751 if (!lba_28_ok(block, n_block))
752 return -ERANGE;
753
754 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
755 return -EINVAL;
756
757 /* Convert LBA to CHS */
758 track = (u32)block / dev->sectors;
759 cyl = track / dev->heads;
760 head = track % dev->heads;
761 sect = (u32)block % dev->sectors + 1;
762
763 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
764 (u32)block, track, cyl, head, sect);
765
766 /* Check whether the converted CHS can fit.
767 Cylinder: 0-65535
768 Head: 0-15
769 Sector: 1-255*/
770 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
771 return -ERANGE;
772
773 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
774 tf->lbal = sect;
775 tf->lbam = cyl;
776 tf->lbah = cyl >> 8;
777 tf->device |= head;
778 }
779
780 return 0;
781 }
782
783 /**
784 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
785 * @pio_mask: pio_mask
786 * @mwdma_mask: mwdma_mask
787 * @udma_mask: udma_mask
788 *
789 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
790 * unsigned int xfer_mask.
791 *
792 * LOCKING:
793 * None.
794 *
795 * RETURNS:
796 * Packed xfer_mask.
797 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)798 unsigned long ata_pack_xfermask(unsigned long pio_mask,
799 unsigned long mwdma_mask,
800 unsigned long udma_mask)
801 {
802 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
803 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
804 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
805 }
806 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
807
808 /**
809 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
810 * @xfer_mask: xfer_mask to unpack
811 * @pio_mask: resulting pio_mask
812 * @mwdma_mask: resulting mwdma_mask
813 * @udma_mask: resulting udma_mask
814 *
815 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
816 * Any NULL destination masks will be ignored.
817 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)818 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
819 unsigned long *mwdma_mask, unsigned long *udma_mask)
820 {
821 if (pio_mask)
822 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
823 if (mwdma_mask)
824 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
825 if (udma_mask)
826 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
827 }
828
829 static const struct ata_xfer_ent {
830 int shift, bits;
831 u8 base;
832 } ata_xfer_tbl[] = {
833 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
834 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
835 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
836 { -1, },
837 };
838
839 /**
840 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
841 * @xfer_mask: xfer_mask of interest
842 *
843 * Return matching XFER_* value for @xfer_mask. Only the highest
844 * bit of @xfer_mask is considered.
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Matching XFER_* value, 0xff if no match found.
851 */
ata_xfer_mask2mode(unsigned long xfer_mask)852 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
853 {
854 int highbit = fls(xfer_mask) - 1;
855 const struct ata_xfer_ent *ent;
856
857 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
858 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
859 return ent->base + highbit - ent->shift;
860 return 0xff;
861 }
862 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
863
864 /**
865 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
866 * @xfer_mode: XFER_* of interest
867 *
868 * Return matching xfer_mask for @xfer_mode.
869 *
870 * LOCKING:
871 * None.
872 *
873 * RETURNS:
874 * Matching xfer_mask, 0 if no match found.
875 */
ata_xfer_mode2mask(u8 xfer_mode)876 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
877 {
878 const struct ata_xfer_ent *ent;
879
880 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
881 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
882 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
883 & ~((1 << ent->shift) - 1);
884 return 0;
885 }
886 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
887
888 /**
889 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
890 * @xfer_mode: XFER_* of interest
891 *
892 * Return matching xfer_shift for @xfer_mode.
893 *
894 * LOCKING:
895 * None.
896 *
897 * RETURNS:
898 * Matching xfer_shift, -1 if no match found.
899 */
ata_xfer_mode2shift(unsigned long xfer_mode)900 int ata_xfer_mode2shift(unsigned long xfer_mode)
901 {
902 const struct ata_xfer_ent *ent;
903
904 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
905 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
906 return ent->shift;
907 return -1;
908 }
909 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
910
911 /**
912 * ata_mode_string - convert xfer_mask to string
913 * @xfer_mask: mask of bits supported; only highest bit counts.
914 *
915 * Determine string which represents the highest speed
916 * (highest bit in @modemask).
917 *
918 * LOCKING:
919 * None.
920 *
921 * RETURNS:
922 * Constant C string representing highest speed listed in
923 * @mode_mask, or the constant C string "<n/a>".
924 */
ata_mode_string(unsigned long xfer_mask)925 const char *ata_mode_string(unsigned long xfer_mask)
926 {
927 static const char * const xfer_mode_str[] = {
928 "PIO0",
929 "PIO1",
930 "PIO2",
931 "PIO3",
932 "PIO4",
933 "PIO5",
934 "PIO6",
935 "MWDMA0",
936 "MWDMA1",
937 "MWDMA2",
938 "MWDMA3",
939 "MWDMA4",
940 "UDMA/16",
941 "UDMA/25",
942 "UDMA/33",
943 "UDMA/44",
944 "UDMA/66",
945 "UDMA/100",
946 "UDMA/133",
947 "UDMA7",
948 };
949 int highbit;
950
951 highbit = fls(xfer_mask) - 1;
952 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
953 return xfer_mode_str[highbit];
954 return "<n/a>";
955 }
956 EXPORT_SYMBOL_GPL(ata_mode_string);
957
sata_spd_string(unsigned int spd)958 const char *sata_spd_string(unsigned int spd)
959 {
960 static const char * const spd_str[] = {
961 "1.5 Gbps",
962 "3.0 Gbps",
963 "6.0 Gbps",
964 };
965
966 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
967 return "<unknown>";
968 return spd_str[spd - 1];
969 }
970
971 /**
972 * ata_dev_classify - determine device type based on ATA-spec signature
973 * @tf: ATA taskfile register set for device to be identified
974 *
975 * Determine from taskfile register contents whether a device is
976 * ATA or ATAPI, as per "Signature and persistence" section
977 * of ATA/PI spec (volume 1, sect 5.14).
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
984 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
985 */
ata_dev_classify(const struct ata_taskfile * tf)986 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
987 {
988 /* Apple's open source Darwin code hints that some devices only
989 * put a proper signature into the LBA mid/high registers,
990 * So, we only check those. It's sufficient for uniqueness.
991 *
992 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
993 * signatures for ATA and ATAPI devices attached on SerialATA,
994 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
995 * spec has never mentioned about using different signatures
996 * for ATA/ATAPI devices. Then, Serial ATA II: Port
997 * Multiplier specification began to use 0x69/0x96 to identify
998 * port multpliers and 0x3c/0xc3 to identify SEMB device.
999 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1000 * 0x69/0x96 shortly and described them as reserved for
1001 * SerialATA.
1002 *
1003 * We follow the current spec and consider that 0x69/0x96
1004 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1005 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1006 * SEMB signature. This is worked around in
1007 * ata_dev_read_id().
1008 */
1009 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1010 DPRINTK("found ATA device by sig\n");
1011 return ATA_DEV_ATA;
1012 }
1013
1014 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1015 DPRINTK("found ATAPI device by sig\n");
1016 return ATA_DEV_ATAPI;
1017 }
1018
1019 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1020 DPRINTK("found PMP device by sig\n");
1021 return ATA_DEV_PMP;
1022 }
1023
1024 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1025 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1026 return ATA_DEV_SEMB;
1027 }
1028
1029 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1030 DPRINTK("found ZAC device by sig\n");
1031 return ATA_DEV_ZAC;
1032 }
1033
1034 DPRINTK("unknown device\n");
1035 return ATA_DEV_UNKNOWN;
1036 }
1037 EXPORT_SYMBOL_GPL(ata_dev_classify);
1038
1039 /**
1040 * ata_id_string - Convert IDENTIFY DEVICE page into string
1041 * @id: IDENTIFY DEVICE results we will examine
1042 * @s: string into which data is output
1043 * @ofs: offset into identify device page
1044 * @len: length of string to return. must be an even number.
1045 *
1046 * The strings in the IDENTIFY DEVICE page are broken up into
1047 * 16-bit chunks. Run through the string, and output each
1048 * 8-bit chunk linearly, regardless of platform.
1049 *
1050 * LOCKING:
1051 * caller.
1052 */
1053
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1054 void ata_id_string(const u16 *id, unsigned char *s,
1055 unsigned int ofs, unsigned int len)
1056 {
1057 unsigned int c;
1058
1059 BUG_ON(len & 1);
1060
1061 while (len > 0) {
1062 c = id[ofs] >> 8;
1063 *s = c;
1064 s++;
1065
1066 c = id[ofs] & 0xff;
1067 *s = c;
1068 s++;
1069
1070 ofs++;
1071 len -= 2;
1072 }
1073 }
1074 EXPORT_SYMBOL_GPL(ata_id_string);
1075
1076 /**
1077 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1078 * @id: IDENTIFY DEVICE results we will examine
1079 * @s: string into which data is output
1080 * @ofs: offset into identify device page
1081 * @len: length of string to return. must be an odd number.
1082 *
1083 * This function is identical to ata_id_string except that it
1084 * trims trailing spaces and terminates the resulting string with
1085 * null. @len must be actual maximum length (even number) + 1.
1086 *
1087 * LOCKING:
1088 * caller.
1089 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1090 void ata_id_c_string(const u16 *id, unsigned char *s,
1091 unsigned int ofs, unsigned int len)
1092 {
1093 unsigned char *p;
1094
1095 ata_id_string(id, s, ofs, len - 1);
1096
1097 p = s + strnlen(s, len - 1);
1098 while (p > s && p[-1] == ' ')
1099 p--;
1100 *p = '\0';
1101 }
1102 EXPORT_SYMBOL_GPL(ata_id_c_string);
1103
ata_id_n_sectors(const u16 * id)1104 static u64 ata_id_n_sectors(const u16 *id)
1105 {
1106 if (ata_id_has_lba(id)) {
1107 if (ata_id_has_lba48(id))
1108 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1109 else
1110 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1111 } else {
1112 if (ata_id_current_chs_valid(id))
1113 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1114 id[ATA_ID_CUR_SECTORS];
1115 else
1116 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1117 id[ATA_ID_SECTORS];
1118 }
1119 }
1120
ata_tf_to_lba48(const struct ata_taskfile * tf)1121 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1122 {
1123 u64 sectors = 0;
1124
1125 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1126 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1127 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1128 sectors |= (tf->lbah & 0xff) << 16;
1129 sectors |= (tf->lbam & 0xff) << 8;
1130 sectors |= (tf->lbal & 0xff);
1131
1132 return sectors;
1133 }
1134
ata_tf_to_lba(const struct ata_taskfile * tf)1135 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1136 {
1137 u64 sectors = 0;
1138
1139 sectors |= (tf->device & 0x0f) << 24;
1140 sectors |= (tf->lbah & 0xff) << 16;
1141 sectors |= (tf->lbam & 0xff) << 8;
1142 sectors |= (tf->lbal & 0xff);
1143
1144 return sectors;
1145 }
1146
1147 /**
1148 * ata_read_native_max_address - Read native max address
1149 * @dev: target device
1150 * @max_sectors: out parameter for the result native max address
1151 *
1152 * Perform an LBA48 or LBA28 native size query upon the device in
1153 * question.
1154 *
1155 * RETURNS:
1156 * 0 on success, -EACCES if command is aborted by the drive.
1157 * -EIO on other errors.
1158 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1159 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1160 {
1161 unsigned int err_mask;
1162 struct ata_taskfile tf;
1163 int lba48 = ata_id_has_lba48(dev->id);
1164
1165 ata_tf_init(dev, &tf);
1166
1167 /* always clear all address registers */
1168 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1169
1170 if (lba48) {
1171 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1172 tf.flags |= ATA_TFLAG_LBA48;
1173 } else
1174 tf.command = ATA_CMD_READ_NATIVE_MAX;
1175
1176 tf.protocol = ATA_PROT_NODATA;
1177 tf.device |= ATA_LBA;
1178
1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180 if (err_mask) {
1181 ata_dev_warn(dev,
1182 "failed to read native max address (err_mask=0x%x)\n",
1183 err_mask);
1184 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1185 return -EACCES;
1186 return -EIO;
1187 }
1188
1189 if (lba48)
1190 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1191 else
1192 *max_sectors = ata_tf_to_lba(&tf) + 1;
1193 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1194 (*max_sectors)--;
1195 return 0;
1196 }
1197
1198 /**
1199 * ata_set_max_sectors - Set max sectors
1200 * @dev: target device
1201 * @new_sectors: new max sectors value to set for the device
1202 *
1203 * Set max sectors of @dev to @new_sectors.
1204 *
1205 * RETURNS:
1206 * 0 on success, -EACCES if command is aborted or denied (due to
1207 * previous non-volatile SET_MAX) by the drive. -EIO on other
1208 * errors.
1209 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1210 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1211 {
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1215
1216 new_sectors--;
1217
1218 ata_tf_init(dev, &tf);
1219
1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222 if (lba48) {
1223 tf.command = ATA_CMD_SET_MAX_EXT;
1224 tf.flags |= ATA_TFLAG_LBA48;
1225
1226 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1227 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1228 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1229 } else {
1230 tf.command = ATA_CMD_SET_MAX;
1231
1232 tf.device |= (new_sectors >> 24) & 0xf;
1233 }
1234
1235 tf.protocol = ATA_PROT_NODATA;
1236 tf.device |= ATA_LBA;
1237
1238 tf.lbal = (new_sectors >> 0) & 0xff;
1239 tf.lbam = (new_sectors >> 8) & 0xff;
1240 tf.lbah = (new_sectors >> 16) & 0xff;
1241
1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243 if (err_mask) {
1244 ata_dev_warn(dev,
1245 "failed to set max address (err_mask=0x%x)\n",
1246 err_mask);
1247 if (err_mask == AC_ERR_DEV &&
1248 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1249 return -EACCES;
1250 return -EIO;
1251 }
1252
1253 return 0;
1254 }
1255
1256 /**
1257 * ata_hpa_resize - Resize a device with an HPA set
1258 * @dev: Device to resize
1259 *
1260 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1261 * it if required to the full size of the media. The caller must check
1262 * the drive has the HPA feature set enabled.
1263 *
1264 * RETURNS:
1265 * 0 on success, -errno on failure.
1266 */
ata_hpa_resize(struct ata_device * dev)1267 static int ata_hpa_resize(struct ata_device *dev)
1268 {
1269 struct ata_eh_context *ehc = &dev->link->eh_context;
1270 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272 u64 sectors = ata_id_n_sectors(dev->id);
1273 u64 native_sectors;
1274 int rc;
1275
1276 /* do we need to do it? */
1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280 return 0;
1281
1282 /* read native max address */
1283 rc = ata_read_native_max_address(dev, &native_sectors);
1284 if (rc) {
1285 /* If device aborted the command or HPA isn't going to
1286 * be unlocked, skip HPA resizing.
1287 */
1288 if (rc == -EACCES || !unlock_hpa) {
1289 ata_dev_warn(dev,
1290 "HPA support seems broken, skipping HPA handling\n");
1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292
1293 /* we can continue if device aborted the command */
1294 if (rc == -EACCES)
1295 rc = 0;
1296 }
1297
1298 return rc;
1299 }
1300 dev->n_native_sectors = native_sectors;
1301
1302 /* nothing to do? */
1303 if (native_sectors <= sectors || !unlock_hpa) {
1304 if (!print_info || native_sectors == sectors)
1305 return 0;
1306
1307 if (native_sectors > sectors)
1308 ata_dev_info(dev,
1309 "HPA detected: current %llu, native %llu\n",
1310 (unsigned long long)sectors,
1311 (unsigned long long)native_sectors);
1312 else if (native_sectors < sectors)
1313 ata_dev_warn(dev,
1314 "native sectors (%llu) is smaller than sectors (%llu)\n",
1315 (unsigned long long)native_sectors,
1316 (unsigned long long)sectors);
1317 return 0;
1318 }
1319
1320 /* let's unlock HPA */
1321 rc = ata_set_max_sectors(dev, native_sectors);
1322 if (rc == -EACCES) {
1323 /* if device aborted the command, skip HPA resizing */
1324 ata_dev_warn(dev,
1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326 (unsigned long long)sectors,
1327 (unsigned long long)native_sectors);
1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329 return 0;
1330 } else if (rc)
1331 return rc;
1332
1333 /* re-read IDENTIFY data */
1334 rc = ata_dev_reread_id(dev, 0);
1335 if (rc) {
1336 ata_dev_err(dev,
1337 "failed to re-read IDENTIFY data after HPA resizing\n");
1338 return rc;
1339 }
1340
1341 if (print_info) {
1342 u64 new_sectors = ata_id_n_sectors(dev->id);
1343 ata_dev_info(dev,
1344 "HPA unlocked: %llu -> %llu, native %llu\n",
1345 (unsigned long long)sectors,
1346 (unsigned long long)new_sectors,
1347 (unsigned long long)native_sectors);
1348 }
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * ata_dump_id - IDENTIFY DEVICE info debugging output
1355 * @id: IDENTIFY DEVICE page to dump
1356 *
1357 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1358 * page.
1359 *
1360 * LOCKING:
1361 * caller.
1362 */
1363
ata_dump_id(const u16 * id)1364 static inline void ata_dump_id(const u16 *id)
1365 {
1366 DPRINTK("49==0x%04x "
1367 "53==0x%04x "
1368 "63==0x%04x "
1369 "64==0x%04x "
1370 "75==0x%04x \n",
1371 id[49],
1372 id[53],
1373 id[63],
1374 id[64],
1375 id[75]);
1376 DPRINTK("80==0x%04x "
1377 "81==0x%04x "
1378 "82==0x%04x "
1379 "83==0x%04x "
1380 "84==0x%04x \n",
1381 id[80],
1382 id[81],
1383 id[82],
1384 id[83],
1385 id[84]);
1386 DPRINTK("88==0x%04x "
1387 "93==0x%04x\n",
1388 id[88],
1389 id[93]);
1390 }
1391
1392 /**
1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 * @id: IDENTIFY data to compute xfer mask from
1395 *
1396 * Compute the xfermask for this device. This is not as trivial
1397 * as it seems if we must consider early devices correctly.
1398 *
1399 * FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 * LOCKING:
1402 * None.
1403 *
1404 * RETURNS:
1405 * Computed xfermask
1406 */
ata_id_xfermask(const u16 * id)1407 unsigned long ata_id_xfermask(const u16 *id)
1408 {
1409 unsigned long pio_mask, mwdma_mask, udma_mask;
1410
1411 /* Usual case. Word 53 indicates word 64 is valid */
1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414 pio_mask <<= 3;
1415 pio_mask |= 0x7;
1416 } else {
1417 /* If word 64 isn't valid then Word 51 high byte holds
1418 * the PIO timing number for the maximum. Turn it into
1419 * a mask.
1420 */
1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422 if (mode < 5) /* Valid PIO range */
1423 pio_mask = (2 << mode) - 1;
1424 else
1425 pio_mask = 1;
1426
1427 /* But wait.. there's more. Design your standards by
1428 * committee and you too can get a free iordy field to
1429 * process. However its the speeds not the modes that
1430 * are supported... Note drivers using the timing API
1431 * will get this right anyway
1432 */
1433 }
1434
1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437 if (ata_id_is_cfa(id)) {
1438 /*
1439 * Process compact flash extended modes
1440 */
1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444 if (pio)
1445 pio_mask |= (1 << 5);
1446 if (pio > 1)
1447 pio_mask |= (1 << 6);
1448 if (dma)
1449 mwdma_mask |= (1 << 3);
1450 if (dma > 1)
1451 mwdma_mask |= (1 << 4);
1452 }
1453
1454 udma_mask = 0;
1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459 }
1460 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
ata_qc_complete_internal(struct ata_queued_cmd * qc)1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463 {
1464 struct completion *waiting = qc->private_data;
1465
1466 complete(waiting);
1467 }
1468
1469 /**
1470 * ata_exec_internal_sg - execute libata internal command
1471 * @dev: Device to which the command is sent
1472 * @tf: Taskfile registers for the command and the result
1473 * @cdb: CDB for packet command
1474 * @dma_dir: Data transfer direction of the command
1475 * @sgl: sg list for the data buffer of the command
1476 * @n_elem: Number of sg entries
1477 * @timeout: Timeout in msecs (0 for default)
1478 *
1479 * Executes libata internal command with timeout. @tf contains
1480 * command on entry and result on return. Timeout and error
1481 * conditions are reported via return value. No recovery action
1482 * is taken after a command times out. It's caller's duty to
1483 * clean up after timeout.
1484 *
1485 * LOCKING:
1486 * None. Should be called with kernel context, might sleep.
1487 *
1488 * RETURNS:
1489 * Zero on success, AC_ERR_* mask on failure
1490 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1491 unsigned ata_exec_internal_sg(struct ata_device *dev,
1492 struct ata_taskfile *tf, const u8 *cdb,
1493 int dma_dir, struct scatterlist *sgl,
1494 unsigned int n_elem, unsigned long timeout)
1495 {
1496 struct ata_link *link = dev->link;
1497 struct ata_port *ap = link->ap;
1498 u8 command = tf->command;
1499 int auto_timeout = 0;
1500 struct ata_queued_cmd *qc;
1501 unsigned int preempted_tag;
1502 u32 preempted_sactive;
1503 u64 preempted_qc_active;
1504 int preempted_nr_active_links;
1505 DECLARE_COMPLETION_ONSTACK(wait);
1506 unsigned long flags;
1507 unsigned int err_mask;
1508 int rc;
1509
1510 spin_lock_irqsave(ap->lock, flags);
1511
1512 /* no internal command while frozen */
1513 if (ap->pflags & ATA_PFLAG_FROZEN) {
1514 spin_unlock_irqrestore(ap->lock, flags);
1515 return AC_ERR_SYSTEM;
1516 }
1517
1518 /* initialize internal qc */
1519 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1520
1521 qc->tag = ATA_TAG_INTERNAL;
1522 qc->hw_tag = 0;
1523 qc->scsicmd = NULL;
1524 qc->ap = ap;
1525 qc->dev = dev;
1526 ata_qc_reinit(qc);
1527
1528 preempted_tag = link->active_tag;
1529 preempted_sactive = link->sactive;
1530 preempted_qc_active = ap->qc_active;
1531 preempted_nr_active_links = ap->nr_active_links;
1532 link->active_tag = ATA_TAG_POISON;
1533 link->sactive = 0;
1534 ap->qc_active = 0;
1535 ap->nr_active_links = 0;
1536
1537 /* prepare & issue qc */
1538 qc->tf = *tf;
1539 if (cdb)
1540 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1541
1542 /* some SATA bridges need us to indicate data xfer direction */
1543 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1544 dma_dir == DMA_FROM_DEVICE)
1545 qc->tf.feature |= ATAPI_DMADIR;
1546
1547 qc->flags |= ATA_QCFLAG_RESULT_TF;
1548 qc->dma_dir = dma_dir;
1549 if (dma_dir != DMA_NONE) {
1550 unsigned int i, buflen = 0;
1551 struct scatterlist *sg;
1552
1553 for_each_sg(sgl, sg, n_elem, i)
1554 buflen += sg->length;
1555
1556 ata_sg_init(qc, sgl, n_elem);
1557 qc->nbytes = buflen;
1558 }
1559
1560 qc->private_data = &wait;
1561 qc->complete_fn = ata_qc_complete_internal;
1562
1563 ata_qc_issue(qc);
1564
1565 spin_unlock_irqrestore(ap->lock, flags);
1566
1567 if (!timeout) {
1568 if (ata_probe_timeout)
1569 timeout = ata_probe_timeout * 1000;
1570 else {
1571 timeout = ata_internal_cmd_timeout(dev, command);
1572 auto_timeout = 1;
1573 }
1574 }
1575
1576 if (ap->ops->error_handler)
1577 ata_eh_release(ap);
1578
1579 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1580
1581 if (ap->ops->error_handler)
1582 ata_eh_acquire(ap);
1583
1584 ata_sff_flush_pio_task(ap);
1585
1586 if (!rc) {
1587 spin_lock_irqsave(ap->lock, flags);
1588
1589 /* We're racing with irq here. If we lose, the
1590 * following test prevents us from completing the qc
1591 * twice. If we win, the port is frozen and will be
1592 * cleaned up by ->post_internal_cmd().
1593 */
1594 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1595 qc->err_mask |= AC_ERR_TIMEOUT;
1596
1597 if (ap->ops->error_handler)
1598 ata_port_freeze(ap);
1599 else
1600 ata_qc_complete(qc);
1601
1602 if (ata_msg_warn(ap))
1603 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1604 command);
1605 }
1606
1607 spin_unlock_irqrestore(ap->lock, flags);
1608 }
1609
1610 /* do post_internal_cmd */
1611 if (ap->ops->post_internal_cmd)
1612 ap->ops->post_internal_cmd(qc);
1613
1614 /* perform minimal error analysis */
1615 if (qc->flags & ATA_QCFLAG_FAILED) {
1616 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1617 qc->err_mask |= AC_ERR_DEV;
1618
1619 if (!qc->err_mask)
1620 qc->err_mask |= AC_ERR_OTHER;
1621
1622 if (qc->err_mask & ~AC_ERR_OTHER)
1623 qc->err_mask &= ~AC_ERR_OTHER;
1624 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1625 qc->result_tf.command |= ATA_SENSE;
1626 }
1627
1628 /* finish up */
1629 spin_lock_irqsave(ap->lock, flags);
1630
1631 *tf = qc->result_tf;
1632 err_mask = qc->err_mask;
1633
1634 ata_qc_free(qc);
1635 link->active_tag = preempted_tag;
1636 link->sactive = preempted_sactive;
1637 ap->qc_active = preempted_qc_active;
1638 ap->nr_active_links = preempted_nr_active_links;
1639
1640 spin_unlock_irqrestore(ap->lock, flags);
1641
1642 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1643 ata_internal_cmd_timed_out(dev, command);
1644
1645 return err_mask;
1646 }
1647
1648 /**
1649 * ata_exec_internal - execute libata internal command
1650 * @dev: Device to which the command is sent
1651 * @tf: Taskfile registers for the command and the result
1652 * @cdb: CDB for packet command
1653 * @dma_dir: Data transfer direction of the command
1654 * @buf: Data buffer of the command
1655 * @buflen: Length of data buffer
1656 * @timeout: Timeout in msecs (0 for default)
1657 *
1658 * Wrapper around ata_exec_internal_sg() which takes simple
1659 * buffer instead of sg list.
1660 *
1661 * LOCKING:
1662 * None. Should be called with kernel context, might sleep.
1663 *
1664 * RETURNS:
1665 * Zero on success, AC_ERR_* mask on failure
1666 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1667 unsigned ata_exec_internal(struct ata_device *dev,
1668 struct ata_taskfile *tf, const u8 *cdb,
1669 int dma_dir, void *buf, unsigned int buflen,
1670 unsigned long timeout)
1671 {
1672 struct scatterlist *psg = NULL, sg;
1673 unsigned int n_elem = 0;
1674
1675 if (dma_dir != DMA_NONE) {
1676 WARN_ON(!buf);
1677 sg_init_one(&sg, buf, buflen);
1678 psg = &sg;
1679 n_elem++;
1680 }
1681
1682 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1683 timeout);
1684 }
1685
1686 /**
1687 * ata_pio_need_iordy - check if iordy needed
1688 * @adev: ATA device
1689 *
1690 * Check if the current speed of the device requires IORDY. Used
1691 * by various controllers for chip configuration.
1692 */
ata_pio_need_iordy(const struct ata_device * adev)1693 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1694 {
1695 /* Don't set IORDY if we're preparing for reset. IORDY may
1696 * lead to controller lock up on certain controllers if the
1697 * port is not occupied. See bko#11703 for details.
1698 */
1699 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1700 return 0;
1701 /* Controller doesn't support IORDY. Probably a pointless
1702 * check as the caller should know this.
1703 */
1704 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1705 return 0;
1706 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1707 if (ata_id_is_cfa(adev->id)
1708 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1709 return 0;
1710 /* PIO3 and higher it is mandatory */
1711 if (adev->pio_mode > XFER_PIO_2)
1712 return 1;
1713 /* We turn it on when possible */
1714 if (ata_id_has_iordy(adev->id))
1715 return 1;
1716 return 0;
1717 }
1718 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1719
1720 /**
1721 * ata_pio_mask_no_iordy - Return the non IORDY mask
1722 * @adev: ATA device
1723 *
1724 * Compute the highest mode possible if we are not using iordy. Return
1725 * -1 if no iordy mode is available.
1726 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1727 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1728 {
1729 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1730 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1731 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1732 /* Is the speed faster than the drive allows non IORDY ? */
1733 if (pio) {
1734 /* This is cycle times not frequency - watch the logic! */
1735 if (pio > 240) /* PIO2 is 240nS per cycle */
1736 return 3 << ATA_SHIFT_PIO;
1737 return 7 << ATA_SHIFT_PIO;
1738 }
1739 }
1740 return 3 << ATA_SHIFT_PIO;
1741 }
1742
1743 /**
1744 * ata_do_dev_read_id - default ID read method
1745 * @dev: device
1746 * @tf: proposed taskfile
1747 * @id: data buffer
1748 *
1749 * Issue the identify taskfile and hand back the buffer containing
1750 * identify data. For some RAID controllers and for pre ATA devices
1751 * this function is wrapped or replaced by the driver
1752 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1753 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1754 struct ata_taskfile *tf, u16 *id)
1755 {
1756 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1757 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1758 }
1759 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1760
1761 /**
1762 * ata_dev_read_id - Read ID data from the specified device
1763 * @dev: target device
1764 * @p_class: pointer to class of the target device (may be changed)
1765 * @flags: ATA_READID_* flags
1766 * @id: buffer to read IDENTIFY data into
1767 *
1768 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1769 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1770 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1771 * for pre-ATA4 drives.
1772 *
1773 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1774 * now we abort if we hit that case.
1775 *
1776 * LOCKING:
1777 * Kernel thread context (may sleep)
1778 *
1779 * RETURNS:
1780 * 0 on success, -errno otherwise.
1781 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1782 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1783 unsigned int flags, u16 *id)
1784 {
1785 struct ata_port *ap = dev->link->ap;
1786 unsigned int class = *p_class;
1787 struct ata_taskfile tf;
1788 unsigned int err_mask = 0;
1789 const char *reason;
1790 bool is_semb = class == ATA_DEV_SEMB;
1791 int may_fallback = 1, tried_spinup = 0;
1792 int rc;
1793
1794 if (ata_msg_ctl(ap))
1795 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1796
1797 retry:
1798 ata_tf_init(dev, &tf);
1799
1800 switch (class) {
1801 case ATA_DEV_SEMB:
1802 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1803 fallthrough;
1804 case ATA_DEV_ATA:
1805 case ATA_DEV_ZAC:
1806 tf.command = ATA_CMD_ID_ATA;
1807 break;
1808 case ATA_DEV_ATAPI:
1809 tf.command = ATA_CMD_ID_ATAPI;
1810 break;
1811 default:
1812 rc = -ENODEV;
1813 reason = "unsupported class";
1814 goto err_out;
1815 }
1816
1817 tf.protocol = ATA_PROT_PIO;
1818
1819 /* Some devices choke if TF registers contain garbage. Make
1820 * sure those are properly initialized.
1821 */
1822 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1823
1824 /* Device presence detection is unreliable on some
1825 * controllers. Always poll IDENTIFY if available.
1826 */
1827 tf.flags |= ATA_TFLAG_POLLING;
1828
1829 if (ap->ops->read_id)
1830 err_mask = ap->ops->read_id(dev, &tf, id);
1831 else
1832 err_mask = ata_do_dev_read_id(dev, &tf, id);
1833
1834 if (err_mask) {
1835 if (err_mask & AC_ERR_NODEV_HINT) {
1836 ata_dev_dbg(dev, "NODEV after polling detection\n");
1837 return -ENOENT;
1838 }
1839
1840 if (is_semb) {
1841 ata_dev_info(dev,
1842 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1843 /* SEMB is not supported yet */
1844 *p_class = ATA_DEV_SEMB_UNSUP;
1845 return 0;
1846 }
1847
1848 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1849 /* Device or controller might have reported
1850 * the wrong device class. Give a shot at the
1851 * other IDENTIFY if the current one is
1852 * aborted by the device.
1853 */
1854 if (may_fallback) {
1855 may_fallback = 0;
1856
1857 if (class == ATA_DEV_ATA)
1858 class = ATA_DEV_ATAPI;
1859 else
1860 class = ATA_DEV_ATA;
1861 goto retry;
1862 }
1863
1864 /* Control reaches here iff the device aborted
1865 * both flavors of IDENTIFYs which happens
1866 * sometimes with phantom devices.
1867 */
1868 ata_dev_dbg(dev,
1869 "both IDENTIFYs aborted, assuming NODEV\n");
1870 return -ENOENT;
1871 }
1872
1873 rc = -EIO;
1874 reason = "I/O error";
1875 goto err_out;
1876 }
1877
1878 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1879 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1880 "class=%d may_fallback=%d tried_spinup=%d\n",
1881 class, may_fallback, tried_spinup);
1882 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1883 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1884 }
1885
1886 /* Falling back doesn't make sense if ID data was read
1887 * successfully at least once.
1888 */
1889 may_fallback = 0;
1890
1891 swap_buf_le16(id, ATA_ID_WORDS);
1892
1893 /* sanity check */
1894 rc = -EINVAL;
1895 reason = "device reports invalid type";
1896
1897 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1898 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1899 goto err_out;
1900 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1901 ata_id_is_ata(id)) {
1902 ata_dev_dbg(dev,
1903 "host indicates ignore ATA devices, ignored\n");
1904 return -ENOENT;
1905 }
1906 } else {
1907 if (ata_id_is_ata(id))
1908 goto err_out;
1909 }
1910
1911 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1912 tried_spinup = 1;
1913 /*
1914 * Drive powered-up in standby mode, and requires a specific
1915 * SET_FEATURES spin-up subcommand before it will accept
1916 * anything other than the original IDENTIFY command.
1917 */
1918 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1919 if (err_mask && id[2] != 0x738c) {
1920 rc = -EIO;
1921 reason = "SPINUP failed";
1922 goto err_out;
1923 }
1924 /*
1925 * If the drive initially returned incomplete IDENTIFY info,
1926 * we now must reissue the IDENTIFY command.
1927 */
1928 if (id[2] == 0x37c8)
1929 goto retry;
1930 }
1931
1932 if ((flags & ATA_READID_POSTRESET) &&
1933 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1934 /*
1935 * The exact sequence expected by certain pre-ATA4 drives is:
1936 * SRST RESET
1937 * IDENTIFY (optional in early ATA)
1938 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1939 * anything else..
1940 * Some drives were very specific about that exact sequence.
1941 *
1942 * Note that ATA4 says lba is mandatory so the second check
1943 * should never trigger.
1944 */
1945 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1946 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1947 if (err_mask) {
1948 rc = -EIO;
1949 reason = "INIT_DEV_PARAMS failed";
1950 goto err_out;
1951 }
1952
1953 /* current CHS translation info (id[53-58]) might be
1954 * changed. reread the identify device info.
1955 */
1956 flags &= ~ATA_READID_POSTRESET;
1957 goto retry;
1958 }
1959 }
1960
1961 *p_class = class;
1962
1963 return 0;
1964
1965 err_out:
1966 if (ata_msg_warn(ap))
1967 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1968 reason, err_mask);
1969 return rc;
1970 }
1971
1972 /**
1973 * ata_read_log_page - read a specific log page
1974 * @dev: target device
1975 * @log: log to read
1976 * @page: page to read
1977 * @buf: buffer to store read page
1978 * @sectors: number of sectors to read
1979 *
1980 * Read log page using READ_LOG_EXT command.
1981 *
1982 * LOCKING:
1983 * Kernel thread context (may sleep).
1984 *
1985 * RETURNS:
1986 * 0 on success, AC_ERR_* mask otherwise.
1987 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)1988 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1989 u8 page, void *buf, unsigned int sectors)
1990 {
1991 unsigned long ap_flags = dev->link->ap->flags;
1992 struct ata_taskfile tf;
1993 unsigned int err_mask;
1994 bool dma = false;
1995
1996 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1997
1998 /*
1999 * Return error without actually issuing the command on controllers
2000 * which e.g. lockup on a read log page.
2001 */
2002 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2003 return AC_ERR_DEV;
2004
2005 retry:
2006 ata_tf_init(dev, &tf);
2007 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2008 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2009 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2010 tf.protocol = ATA_PROT_DMA;
2011 dma = true;
2012 } else {
2013 tf.command = ATA_CMD_READ_LOG_EXT;
2014 tf.protocol = ATA_PROT_PIO;
2015 dma = false;
2016 }
2017 tf.lbal = log;
2018 tf.lbam = page;
2019 tf.nsect = sectors;
2020 tf.hob_nsect = sectors >> 8;
2021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2022
2023 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2024 buf, sectors * ATA_SECT_SIZE, 0);
2025
2026 if (err_mask && dma) {
2027 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2028 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2029 goto retry;
2030 }
2031
2032 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2033 return err_mask;
2034 }
2035
ata_log_supported(struct ata_device * dev,u8 log)2036 static bool ata_log_supported(struct ata_device *dev, u8 log)
2037 {
2038 struct ata_port *ap = dev->link->ap;
2039
2040 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2041 return false;
2042 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2043 }
2044
ata_identify_page_supported(struct ata_device * dev,u8 page)2045 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2046 {
2047 struct ata_port *ap = dev->link->ap;
2048 unsigned int err, i;
2049
2050 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2051 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2052 return false;
2053 }
2054
2055 /*
2056 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2057 * supported.
2058 */
2059 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2060 1);
2061 if (err) {
2062 ata_dev_info(dev,
2063 "failed to get Device Identify Log Emask 0x%x\n",
2064 err);
2065 return false;
2066 }
2067
2068 for (i = 0; i < ap->sector_buf[8]; i++) {
2069 if (ap->sector_buf[9 + i] == page)
2070 return true;
2071 }
2072
2073 return false;
2074 }
2075
ata_do_link_spd_horkage(struct ata_device * dev)2076 static int ata_do_link_spd_horkage(struct ata_device *dev)
2077 {
2078 struct ata_link *plink = ata_dev_phys_link(dev);
2079 u32 target, target_limit;
2080
2081 if (!sata_scr_valid(plink))
2082 return 0;
2083
2084 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2085 target = 1;
2086 else
2087 return 0;
2088
2089 target_limit = (1 << target) - 1;
2090
2091 /* if already on stricter limit, no need to push further */
2092 if (plink->sata_spd_limit <= target_limit)
2093 return 0;
2094
2095 plink->sata_spd_limit = target_limit;
2096
2097 /* Request another EH round by returning -EAGAIN if link is
2098 * going faster than the target speed. Forward progress is
2099 * guaranteed by setting sata_spd_limit to target_limit above.
2100 */
2101 if (plink->sata_spd > target) {
2102 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2103 sata_spd_string(target));
2104 return -EAGAIN;
2105 }
2106 return 0;
2107 }
2108
ata_dev_knobble(struct ata_device * dev)2109 static inline u8 ata_dev_knobble(struct ata_device *dev)
2110 {
2111 struct ata_port *ap = dev->link->ap;
2112
2113 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2114 return 0;
2115
2116 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2117 }
2118
ata_dev_config_ncq_send_recv(struct ata_device * dev)2119 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2120 {
2121 struct ata_port *ap = dev->link->ap;
2122 unsigned int err_mask;
2123
2124 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2125 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2126 return;
2127 }
2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 0, ap->sector_buf, 1);
2130 if (err_mask) {
2131 ata_dev_dbg(dev,
2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 err_mask);
2134 } else {
2135 u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 }
2145 }
2146 }
2147
ata_dev_config_ncq_non_data(struct ata_device * dev)2148 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2149 {
2150 struct ata_port *ap = dev->link->ap;
2151 unsigned int err_mask;
2152
2153 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2154 ata_dev_warn(dev,
2155 "NCQ Send/Recv Log not supported\n");
2156 return;
2157 }
2158 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2159 0, ap->sector_buf, 1);
2160 if (err_mask) {
2161 ata_dev_dbg(dev,
2162 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2163 err_mask);
2164 } else {
2165 u8 *cmds = dev->ncq_non_data_cmds;
2166
2167 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2168 }
2169 }
2170
ata_dev_config_ncq_prio(struct ata_device * dev)2171 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2172 {
2173 struct ata_port *ap = dev->link->ap;
2174 unsigned int err_mask;
2175
2176 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2177 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2178 return;
2179 }
2180
2181 err_mask = ata_read_log_page(dev,
2182 ATA_LOG_IDENTIFY_DEVICE,
2183 ATA_LOG_SATA_SETTINGS,
2184 ap->sector_buf,
2185 1);
2186 if (err_mask) {
2187 ata_dev_dbg(dev,
2188 "failed to get Identify Device data, Emask 0x%x\n",
2189 err_mask);
2190 return;
2191 }
2192
2193 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2194 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2195 } else {
2196 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2197 ata_dev_dbg(dev, "SATA page does not support priority\n");
2198 }
2199
2200 }
2201
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2202 static int ata_dev_config_ncq(struct ata_device *dev,
2203 char *desc, size_t desc_sz)
2204 {
2205 struct ata_port *ap = dev->link->ap;
2206 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2207 unsigned int err_mask;
2208 char *aa_desc = "";
2209
2210 if (!ata_id_has_ncq(dev->id)) {
2211 desc[0] = '\0';
2212 return 0;
2213 }
2214 if (!IS_ENABLED(CONFIG_SATA_HOST))
2215 return 0;
2216 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2217 snprintf(desc, desc_sz, "NCQ (not used)");
2218 return 0;
2219 }
2220 if (ap->flags & ATA_FLAG_NCQ) {
2221 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2222 dev->flags |= ATA_DFLAG_NCQ;
2223 }
2224
2225 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2226 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2227 ata_id_has_fpdma_aa(dev->id)) {
2228 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2229 SATA_FPDMA_AA);
2230 if (err_mask) {
2231 ata_dev_err(dev,
2232 "failed to enable AA (error_mask=0x%x)\n",
2233 err_mask);
2234 if (err_mask != AC_ERR_DEV) {
2235 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2236 return -EIO;
2237 }
2238 } else
2239 aa_desc = ", AA";
2240 }
2241
2242 if (hdepth >= ddepth)
2243 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2244 else
2245 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2246 ddepth, aa_desc);
2247
2248 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2249 if (ata_id_has_ncq_send_and_recv(dev->id))
2250 ata_dev_config_ncq_send_recv(dev);
2251 if (ata_id_has_ncq_non_data(dev->id))
2252 ata_dev_config_ncq_non_data(dev);
2253 if (ata_id_has_ncq_prio(dev->id))
2254 ata_dev_config_ncq_prio(dev);
2255 }
2256
2257 return 0;
2258 }
2259
ata_dev_config_sense_reporting(struct ata_device * dev)2260 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2261 {
2262 unsigned int err_mask;
2263
2264 if (!ata_id_has_sense_reporting(dev->id))
2265 return;
2266
2267 if (ata_id_sense_reporting_enabled(dev->id))
2268 return;
2269
2270 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2271 if (err_mask) {
2272 ata_dev_dbg(dev,
2273 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2274 err_mask);
2275 }
2276 }
2277
ata_dev_config_zac(struct ata_device * dev)2278 static void ata_dev_config_zac(struct ata_device *dev)
2279 {
2280 struct ata_port *ap = dev->link->ap;
2281 unsigned int err_mask;
2282 u8 *identify_buf = ap->sector_buf;
2283
2284 dev->zac_zones_optimal_open = U32_MAX;
2285 dev->zac_zones_optimal_nonseq = U32_MAX;
2286 dev->zac_zones_max_open = U32_MAX;
2287
2288 /*
2289 * Always set the 'ZAC' flag for Host-managed devices.
2290 */
2291 if (dev->class == ATA_DEV_ZAC)
2292 dev->flags |= ATA_DFLAG_ZAC;
2293 else if (ata_id_zoned_cap(dev->id) == 0x01)
2294 /*
2295 * Check for host-aware devices.
2296 */
2297 dev->flags |= ATA_DFLAG_ZAC;
2298
2299 if (!(dev->flags & ATA_DFLAG_ZAC))
2300 return;
2301
2302 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2303 ata_dev_warn(dev,
2304 "ATA Zoned Information Log not supported\n");
2305 return;
2306 }
2307
2308 /*
2309 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2310 */
2311 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2312 ATA_LOG_ZONED_INFORMATION,
2313 identify_buf, 1);
2314 if (!err_mask) {
2315 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2316
2317 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2318 if ((zoned_cap >> 63))
2319 dev->zac_zoned_cap = (zoned_cap & 1);
2320 opt_open = get_unaligned_le64(&identify_buf[24]);
2321 if ((opt_open >> 63))
2322 dev->zac_zones_optimal_open = (u32)opt_open;
2323 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2324 if ((opt_nonseq >> 63))
2325 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2326 max_open = get_unaligned_le64(&identify_buf[40]);
2327 if ((max_open >> 63))
2328 dev->zac_zones_max_open = (u32)max_open;
2329 }
2330 }
2331
ata_dev_config_trusted(struct ata_device * dev)2332 static void ata_dev_config_trusted(struct ata_device *dev)
2333 {
2334 struct ata_port *ap = dev->link->ap;
2335 u64 trusted_cap;
2336 unsigned int err;
2337
2338 if (!ata_id_has_trusted(dev->id))
2339 return;
2340
2341 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2342 ata_dev_warn(dev,
2343 "Security Log not supported\n");
2344 return;
2345 }
2346
2347 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2348 ap->sector_buf, 1);
2349 if (err) {
2350 ata_dev_dbg(dev,
2351 "failed to read Security Log, Emask 0x%x\n", err);
2352 return;
2353 }
2354
2355 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2356 if (!(trusted_cap & (1ULL << 63))) {
2357 ata_dev_dbg(dev,
2358 "Trusted Computing capability qword not valid!\n");
2359 return;
2360 }
2361
2362 if (trusted_cap & (1 << 0))
2363 dev->flags |= ATA_DFLAG_TRUSTED;
2364 }
2365
2366 /**
2367 * ata_dev_configure - Configure the specified ATA/ATAPI device
2368 * @dev: Target device to configure
2369 *
2370 * Configure @dev according to @dev->id. Generic and low-level
2371 * driver specific fixups are also applied.
2372 *
2373 * LOCKING:
2374 * Kernel thread context (may sleep)
2375 *
2376 * RETURNS:
2377 * 0 on success, -errno otherwise
2378 */
ata_dev_configure(struct ata_device * dev)2379 int ata_dev_configure(struct ata_device *dev)
2380 {
2381 struct ata_port *ap = dev->link->ap;
2382 struct ata_eh_context *ehc = &dev->link->eh_context;
2383 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2384 const u16 *id = dev->id;
2385 unsigned long xfer_mask;
2386 unsigned int err_mask;
2387 char revbuf[7]; /* XYZ-99\0 */
2388 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2389 char modelbuf[ATA_ID_PROD_LEN+1];
2390 int rc;
2391
2392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2393 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2394 return 0;
2395 }
2396
2397 if (ata_msg_probe(ap))
2398 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2399
2400 /* set horkage */
2401 dev->horkage |= ata_dev_blacklisted(dev);
2402 ata_force_horkage(dev);
2403
2404 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2405 ata_dev_info(dev, "unsupported device, disabling\n");
2406 ata_dev_disable(dev);
2407 return 0;
2408 }
2409
2410 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2411 dev->class == ATA_DEV_ATAPI) {
2412 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2413 atapi_enabled ? "not supported with this driver"
2414 : "disabled");
2415 ata_dev_disable(dev);
2416 return 0;
2417 }
2418
2419 rc = ata_do_link_spd_horkage(dev);
2420 if (rc)
2421 return rc;
2422
2423 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2424 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2425 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2426 dev->horkage |= ATA_HORKAGE_NOLPM;
2427
2428 if (ap->flags & ATA_FLAG_NO_LPM)
2429 dev->horkage |= ATA_HORKAGE_NOLPM;
2430
2431 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2432 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2433 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2434 }
2435
2436 /* let ACPI work its magic */
2437 rc = ata_acpi_on_devcfg(dev);
2438 if (rc)
2439 return rc;
2440
2441 /* massage HPA, do it early as it might change IDENTIFY data */
2442 rc = ata_hpa_resize(dev);
2443 if (rc)
2444 return rc;
2445
2446 /* print device capabilities */
2447 if (ata_msg_probe(ap))
2448 ata_dev_dbg(dev,
2449 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2450 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2451 __func__,
2452 id[49], id[82], id[83], id[84],
2453 id[85], id[86], id[87], id[88]);
2454
2455 /* initialize to-be-configured parameters */
2456 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2457 dev->max_sectors = 0;
2458 dev->cdb_len = 0;
2459 dev->n_sectors = 0;
2460 dev->cylinders = 0;
2461 dev->heads = 0;
2462 dev->sectors = 0;
2463 dev->multi_count = 0;
2464
2465 /*
2466 * common ATA, ATAPI feature tests
2467 */
2468
2469 /* find max transfer mode; for printk only */
2470 xfer_mask = ata_id_xfermask(id);
2471
2472 if (ata_msg_probe(ap))
2473 ata_dump_id(id);
2474
2475 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2476 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2477 sizeof(fwrevbuf));
2478
2479 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2480 sizeof(modelbuf));
2481
2482 /* ATA-specific feature tests */
2483 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2484 if (ata_id_is_cfa(id)) {
2485 /* CPRM may make this media unusable */
2486 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2487 ata_dev_warn(dev,
2488 "supports DRM functions and may not be fully accessible\n");
2489 snprintf(revbuf, 7, "CFA");
2490 } else {
2491 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2492 /* Warn the user if the device has TPM extensions */
2493 if (ata_id_has_tpm(id))
2494 ata_dev_warn(dev,
2495 "supports DRM functions and may not be fully accessible\n");
2496 }
2497
2498 dev->n_sectors = ata_id_n_sectors(id);
2499
2500 /* get current R/W Multiple count setting */
2501 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2502 unsigned int max = dev->id[47] & 0xff;
2503 unsigned int cnt = dev->id[59] & 0xff;
2504 /* only recognize/allow powers of two here */
2505 if (is_power_of_2(max) && is_power_of_2(cnt))
2506 if (cnt <= max)
2507 dev->multi_count = cnt;
2508 }
2509
2510 if (ata_id_has_lba(id)) {
2511 const char *lba_desc;
2512 char ncq_desc[24];
2513
2514 lba_desc = "LBA";
2515 dev->flags |= ATA_DFLAG_LBA;
2516 if (ata_id_has_lba48(id)) {
2517 dev->flags |= ATA_DFLAG_LBA48;
2518 lba_desc = "LBA48";
2519
2520 if (dev->n_sectors >= (1UL << 28) &&
2521 ata_id_has_flush_ext(id))
2522 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2523 }
2524
2525 /* config NCQ */
2526 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2527 if (rc)
2528 return rc;
2529
2530 /* print device info to dmesg */
2531 if (ata_msg_drv(ap) && print_info) {
2532 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2533 revbuf, modelbuf, fwrevbuf,
2534 ata_mode_string(xfer_mask));
2535 ata_dev_info(dev,
2536 "%llu sectors, multi %u: %s %s\n",
2537 (unsigned long long)dev->n_sectors,
2538 dev->multi_count, lba_desc, ncq_desc);
2539 }
2540 } else {
2541 /* CHS */
2542
2543 /* Default translation */
2544 dev->cylinders = id[1];
2545 dev->heads = id[3];
2546 dev->sectors = id[6];
2547
2548 if (ata_id_current_chs_valid(id)) {
2549 /* Current CHS translation is valid. */
2550 dev->cylinders = id[54];
2551 dev->heads = id[55];
2552 dev->sectors = id[56];
2553 }
2554
2555 /* print device info to dmesg */
2556 if (ata_msg_drv(ap) && print_info) {
2557 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2558 revbuf, modelbuf, fwrevbuf,
2559 ata_mode_string(xfer_mask));
2560 ata_dev_info(dev,
2561 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2562 (unsigned long long)dev->n_sectors,
2563 dev->multi_count, dev->cylinders,
2564 dev->heads, dev->sectors);
2565 }
2566 }
2567
2568 /* Check and mark DevSlp capability. Get DevSlp timing variables
2569 * from SATA Settings page of Identify Device Data Log.
2570 */
2571 if (ata_id_has_devslp(dev->id)) {
2572 u8 *sata_setting = ap->sector_buf;
2573 int i, j;
2574
2575 dev->flags |= ATA_DFLAG_DEVSLP;
2576 err_mask = ata_read_log_page(dev,
2577 ATA_LOG_IDENTIFY_DEVICE,
2578 ATA_LOG_SATA_SETTINGS,
2579 sata_setting,
2580 1);
2581 if (err_mask)
2582 ata_dev_dbg(dev,
2583 "failed to get Identify Device Data, Emask 0x%x\n",
2584 err_mask);
2585 else
2586 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2587 j = ATA_LOG_DEVSLP_OFFSET + i;
2588 dev->devslp_timing[i] = sata_setting[j];
2589 }
2590 }
2591 ata_dev_config_sense_reporting(dev);
2592 ata_dev_config_zac(dev);
2593 ata_dev_config_trusted(dev);
2594 dev->cdb_len = 32;
2595 }
2596
2597 /* ATAPI-specific feature tests */
2598 else if (dev->class == ATA_DEV_ATAPI) {
2599 const char *cdb_intr_string = "";
2600 const char *atapi_an_string = "";
2601 const char *dma_dir_string = "";
2602 u32 sntf;
2603
2604 rc = atapi_cdb_len(id);
2605 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2606 if (ata_msg_warn(ap))
2607 ata_dev_warn(dev, "unsupported CDB len\n");
2608 rc = -EINVAL;
2609 goto err_out_nosup;
2610 }
2611 dev->cdb_len = (unsigned int) rc;
2612
2613 /* Enable ATAPI AN if both the host and device have
2614 * the support. If PMP is attached, SNTF is required
2615 * to enable ATAPI AN to discern between PHY status
2616 * changed notifications and ATAPI ANs.
2617 */
2618 if (atapi_an &&
2619 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2620 (!sata_pmp_attached(ap) ||
2621 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2622 /* issue SET feature command to turn this on */
2623 err_mask = ata_dev_set_feature(dev,
2624 SETFEATURES_SATA_ENABLE, SATA_AN);
2625 if (err_mask)
2626 ata_dev_err(dev,
2627 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2628 err_mask);
2629 else {
2630 dev->flags |= ATA_DFLAG_AN;
2631 atapi_an_string = ", ATAPI AN";
2632 }
2633 }
2634
2635 if (ata_id_cdb_intr(dev->id)) {
2636 dev->flags |= ATA_DFLAG_CDB_INTR;
2637 cdb_intr_string = ", CDB intr";
2638 }
2639
2640 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2641 dev->flags |= ATA_DFLAG_DMADIR;
2642 dma_dir_string = ", DMADIR";
2643 }
2644
2645 if (ata_id_has_da(dev->id)) {
2646 dev->flags |= ATA_DFLAG_DA;
2647 zpodd_init(dev);
2648 }
2649
2650 /* print device info to dmesg */
2651 if (ata_msg_drv(ap) && print_info)
2652 ata_dev_info(dev,
2653 "ATAPI: %s, %s, max %s%s%s%s\n",
2654 modelbuf, fwrevbuf,
2655 ata_mode_string(xfer_mask),
2656 cdb_intr_string, atapi_an_string,
2657 dma_dir_string);
2658 }
2659
2660 /* determine max_sectors */
2661 dev->max_sectors = ATA_MAX_SECTORS;
2662 if (dev->flags & ATA_DFLAG_LBA48)
2663 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2664
2665 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2666 200 sectors */
2667 if (ata_dev_knobble(dev)) {
2668 if (ata_msg_drv(ap) && print_info)
2669 ata_dev_info(dev, "applying bridge limits\n");
2670 dev->udma_mask &= ATA_UDMA5;
2671 dev->max_sectors = ATA_MAX_SECTORS;
2672 }
2673
2674 if ((dev->class == ATA_DEV_ATAPI) &&
2675 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2676 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2677 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2678 }
2679
2680 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2681 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2682 dev->max_sectors);
2683
2684 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2685 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2686 dev->max_sectors);
2687
2688 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2689 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2690
2691 if (ap->ops->dev_config)
2692 ap->ops->dev_config(dev);
2693
2694 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2695 /* Let the user know. We don't want to disallow opens for
2696 rescue purposes, or in case the vendor is just a blithering
2697 idiot. Do this after the dev_config call as some controllers
2698 with buggy firmware may want to avoid reporting false device
2699 bugs */
2700
2701 if (print_info) {
2702 ata_dev_warn(dev,
2703 "Drive reports diagnostics failure. This may indicate a drive\n");
2704 ata_dev_warn(dev,
2705 "fault or invalid emulation. Contact drive vendor for information.\n");
2706 }
2707 }
2708
2709 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2710 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2711 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2712 }
2713
2714 return 0;
2715
2716 err_out_nosup:
2717 if (ata_msg_probe(ap))
2718 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2719 return rc;
2720 }
2721
2722 /**
2723 * ata_cable_40wire - return 40 wire cable type
2724 * @ap: port
2725 *
2726 * Helper method for drivers which want to hardwire 40 wire cable
2727 * detection.
2728 */
2729
ata_cable_40wire(struct ata_port * ap)2730 int ata_cable_40wire(struct ata_port *ap)
2731 {
2732 return ATA_CBL_PATA40;
2733 }
2734 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2735
2736 /**
2737 * ata_cable_80wire - return 80 wire cable type
2738 * @ap: port
2739 *
2740 * Helper method for drivers which want to hardwire 80 wire cable
2741 * detection.
2742 */
2743
ata_cable_80wire(struct ata_port * ap)2744 int ata_cable_80wire(struct ata_port *ap)
2745 {
2746 return ATA_CBL_PATA80;
2747 }
2748 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2749
2750 /**
2751 * ata_cable_unknown - return unknown PATA cable.
2752 * @ap: port
2753 *
2754 * Helper method for drivers which have no PATA cable detection.
2755 */
2756
ata_cable_unknown(struct ata_port * ap)2757 int ata_cable_unknown(struct ata_port *ap)
2758 {
2759 return ATA_CBL_PATA_UNK;
2760 }
2761 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2762
2763 /**
2764 * ata_cable_ignore - return ignored PATA cable.
2765 * @ap: port
2766 *
2767 * Helper method for drivers which don't use cable type to limit
2768 * transfer mode.
2769 */
ata_cable_ignore(struct ata_port * ap)2770 int ata_cable_ignore(struct ata_port *ap)
2771 {
2772 return ATA_CBL_PATA_IGN;
2773 }
2774 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2775
2776 /**
2777 * ata_cable_sata - return SATA cable type
2778 * @ap: port
2779 *
2780 * Helper method for drivers which have SATA cables
2781 */
2782
ata_cable_sata(struct ata_port * ap)2783 int ata_cable_sata(struct ata_port *ap)
2784 {
2785 return ATA_CBL_SATA;
2786 }
2787 EXPORT_SYMBOL_GPL(ata_cable_sata);
2788
2789 /**
2790 * ata_bus_probe - Reset and probe ATA bus
2791 * @ap: Bus to probe
2792 *
2793 * Master ATA bus probing function. Initiates a hardware-dependent
2794 * bus reset, then attempts to identify any devices found on
2795 * the bus.
2796 *
2797 * LOCKING:
2798 * PCI/etc. bus probe sem.
2799 *
2800 * RETURNS:
2801 * Zero on success, negative errno otherwise.
2802 */
2803
ata_bus_probe(struct ata_port * ap)2804 int ata_bus_probe(struct ata_port *ap)
2805 {
2806 unsigned int classes[ATA_MAX_DEVICES];
2807 int tries[ATA_MAX_DEVICES];
2808 int rc;
2809 struct ata_device *dev;
2810
2811 ata_for_each_dev(dev, &ap->link, ALL)
2812 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2813
2814 retry:
2815 ata_for_each_dev(dev, &ap->link, ALL) {
2816 /* If we issue an SRST then an ATA drive (not ATAPI)
2817 * may change configuration and be in PIO0 timing. If
2818 * we do a hard reset (or are coming from power on)
2819 * this is true for ATA or ATAPI. Until we've set a
2820 * suitable controller mode we should not touch the
2821 * bus as we may be talking too fast.
2822 */
2823 dev->pio_mode = XFER_PIO_0;
2824 dev->dma_mode = 0xff;
2825
2826 /* If the controller has a pio mode setup function
2827 * then use it to set the chipset to rights. Don't
2828 * touch the DMA setup as that will be dealt with when
2829 * configuring devices.
2830 */
2831 if (ap->ops->set_piomode)
2832 ap->ops->set_piomode(ap, dev);
2833 }
2834
2835 /* reset and determine device classes */
2836 ap->ops->phy_reset(ap);
2837
2838 ata_for_each_dev(dev, &ap->link, ALL) {
2839 if (dev->class != ATA_DEV_UNKNOWN)
2840 classes[dev->devno] = dev->class;
2841 else
2842 classes[dev->devno] = ATA_DEV_NONE;
2843
2844 dev->class = ATA_DEV_UNKNOWN;
2845 }
2846
2847 /* read IDENTIFY page and configure devices. We have to do the identify
2848 specific sequence bass-ackwards so that PDIAG- is released by
2849 the slave device */
2850
2851 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2852 if (tries[dev->devno])
2853 dev->class = classes[dev->devno];
2854
2855 if (!ata_dev_enabled(dev))
2856 continue;
2857
2858 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2859 dev->id);
2860 if (rc)
2861 goto fail;
2862 }
2863
2864 /* Now ask for the cable type as PDIAG- should have been released */
2865 if (ap->ops->cable_detect)
2866 ap->cbl = ap->ops->cable_detect(ap);
2867
2868 /* We may have SATA bridge glue hiding here irrespective of
2869 * the reported cable types and sensed types. When SATA
2870 * drives indicate we have a bridge, we don't know which end
2871 * of the link the bridge is which is a problem.
2872 */
2873 ata_for_each_dev(dev, &ap->link, ENABLED)
2874 if (ata_id_is_sata(dev->id))
2875 ap->cbl = ATA_CBL_SATA;
2876
2877 /* After the identify sequence we can now set up the devices. We do
2878 this in the normal order so that the user doesn't get confused */
2879
2880 ata_for_each_dev(dev, &ap->link, ENABLED) {
2881 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2882 rc = ata_dev_configure(dev);
2883 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2884 if (rc)
2885 goto fail;
2886 }
2887
2888 /* configure transfer mode */
2889 rc = ata_set_mode(&ap->link, &dev);
2890 if (rc)
2891 goto fail;
2892
2893 ata_for_each_dev(dev, &ap->link, ENABLED)
2894 return 0;
2895
2896 return -ENODEV;
2897
2898 fail:
2899 tries[dev->devno]--;
2900
2901 switch (rc) {
2902 case -EINVAL:
2903 /* eeek, something went very wrong, give up */
2904 tries[dev->devno] = 0;
2905 break;
2906
2907 case -ENODEV:
2908 /* give it just one more chance */
2909 tries[dev->devno] = min(tries[dev->devno], 1);
2910 fallthrough;
2911 case -EIO:
2912 if (tries[dev->devno] == 1) {
2913 /* This is the last chance, better to slow
2914 * down than lose it.
2915 */
2916 sata_down_spd_limit(&ap->link, 0);
2917 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2918 }
2919 }
2920
2921 if (!tries[dev->devno])
2922 ata_dev_disable(dev);
2923
2924 goto retry;
2925 }
2926
2927 /**
2928 * sata_print_link_status - Print SATA link status
2929 * @link: SATA link to printk link status about
2930 *
2931 * This function prints link speed and status of a SATA link.
2932 *
2933 * LOCKING:
2934 * None.
2935 */
sata_print_link_status(struct ata_link * link)2936 static void sata_print_link_status(struct ata_link *link)
2937 {
2938 u32 sstatus, scontrol, tmp;
2939
2940 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2941 return;
2942 sata_scr_read(link, SCR_CONTROL, &scontrol);
2943
2944 if (ata_phys_link_online(link)) {
2945 tmp = (sstatus >> 4) & 0xf;
2946 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2947 sata_spd_string(tmp), sstatus, scontrol);
2948 } else {
2949 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2950 sstatus, scontrol);
2951 }
2952 }
2953
2954 /**
2955 * ata_dev_pair - return other device on cable
2956 * @adev: device
2957 *
2958 * Obtain the other device on the same cable, or if none is
2959 * present NULL is returned
2960 */
2961
ata_dev_pair(struct ata_device * adev)2962 struct ata_device *ata_dev_pair(struct ata_device *adev)
2963 {
2964 struct ata_link *link = adev->link;
2965 struct ata_device *pair = &link->device[1 - adev->devno];
2966 if (!ata_dev_enabled(pair))
2967 return NULL;
2968 return pair;
2969 }
2970 EXPORT_SYMBOL_GPL(ata_dev_pair);
2971
2972 /**
2973 * sata_down_spd_limit - adjust SATA spd limit downward
2974 * @link: Link to adjust SATA spd limit for
2975 * @spd_limit: Additional limit
2976 *
2977 * Adjust SATA spd limit of @link downward. Note that this
2978 * function only adjusts the limit. The change must be applied
2979 * using sata_set_spd().
2980 *
2981 * If @spd_limit is non-zero, the speed is limited to equal to or
2982 * lower than @spd_limit if such speed is supported. If
2983 * @spd_limit is slower than any supported speed, only the lowest
2984 * supported speed is allowed.
2985 *
2986 * LOCKING:
2987 * Inherited from caller.
2988 *
2989 * RETURNS:
2990 * 0 on success, negative errno on failure
2991 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)2992 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2993 {
2994 u32 sstatus, spd, mask;
2995 int rc, bit;
2996
2997 if (!sata_scr_valid(link))
2998 return -EOPNOTSUPP;
2999
3000 /* If SCR can be read, use it to determine the current SPD.
3001 * If not, use cached value in link->sata_spd.
3002 */
3003 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3004 if (rc == 0 && ata_sstatus_online(sstatus))
3005 spd = (sstatus >> 4) & 0xf;
3006 else
3007 spd = link->sata_spd;
3008
3009 mask = link->sata_spd_limit;
3010 if (mask <= 1)
3011 return -EINVAL;
3012
3013 /* unconditionally mask off the highest bit */
3014 bit = fls(mask) - 1;
3015 mask &= ~(1 << bit);
3016
3017 /*
3018 * Mask off all speeds higher than or equal to the current one. At
3019 * this point, if current SPD is not available and we previously
3020 * recorded the link speed from SStatus, the driver has already
3021 * masked off the highest bit so mask should already be 1 or 0.
3022 * Otherwise, we should not force 1.5Gbps on a link where we have
3023 * not previously recorded speed from SStatus. Just return in this
3024 * case.
3025 */
3026 if (spd > 1)
3027 mask &= (1 << (spd - 1)) - 1;
3028 else
3029 return -EINVAL;
3030
3031 /* were we already at the bottom? */
3032 if (!mask)
3033 return -EINVAL;
3034
3035 if (spd_limit) {
3036 if (mask & ((1 << spd_limit) - 1))
3037 mask &= (1 << spd_limit) - 1;
3038 else {
3039 bit = ffs(mask) - 1;
3040 mask = 1 << bit;
3041 }
3042 }
3043
3044 link->sata_spd_limit = mask;
3045
3046 ata_link_warn(link, "limiting SATA link speed to %s\n",
3047 sata_spd_string(fls(mask)));
3048
3049 return 0;
3050 }
3051
3052 #ifdef CONFIG_ATA_ACPI
3053 /**
3054 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3055 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3056 * @cycle: cycle duration in ns
3057 *
3058 * Return matching xfer mode for @cycle. The returned mode is of
3059 * the transfer type specified by @xfer_shift. If @cycle is too
3060 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3061 * than the fastest known mode, the fasted mode is returned.
3062 *
3063 * LOCKING:
3064 * None.
3065 *
3066 * RETURNS:
3067 * Matching xfer_mode, 0xff if no match found.
3068 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3069 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3070 {
3071 u8 base_mode = 0xff, last_mode = 0xff;
3072 const struct ata_xfer_ent *ent;
3073 const struct ata_timing *t;
3074
3075 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3076 if (ent->shift == xfer_shift)
3077 base_mode = ent->base;
3078
3079 for (t = ata_timing_find_mode(base_mode);
3080 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3081 unsigned short this_cycle;
3082
3083 switch (xfer_shift) {
3084 case ATA_SHIFT_PIO:
3085 case ATA_SHIFT_MWDMA:
3086 this_cycle = t->cycle;
3087 break;
3088 case ATA_SHIFT_UDMA:
3089 this_cycle = t->udma;
3090 break;
3091 default:
3092 return 0xff;
3093 }
3094
3095 if (cycle > this_cycle)
3096 break;
3097
3098 last_mode = t->mode;
3099 }
3100
3101 return last_mode;
3102 }
3103 #endif
3104
3105 /**
3106 * ata_down_xfermask_limit - adjust dev xfer masks downward
3107 * @dev: Device to adjust xfer masks
3108 * @sel: ATA_DNXFER_* selector
3109 *
3110 * Adjust xfer masks of @dev downward. Note that this function
3111 * does not apply the change. Invoking ata_set_mode() afterwards
3112 * will apply the limit.
3113 *
3114 * LOCKING:
3115 * Inherited from caller.
3116 *
3117 * RETURNS:
3118 * 0 on success, negative errno on failure
3119 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3120 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3121 {
3122 char buf[32];
3123 unsigned long orig_mask, xfer_mask;
3124 unsigned long pio_mask, mwdma_mask, udma_mask;
3125 int quiet, highbit;
3126
3127 quiet = !!(sel & ATA_DNXFER_QUIET);
3128 sel &= ~ATA_DNXFER_QUIET;
3129
3130 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3131 dev->mwdma_mask,
3132 dev->udma_mask);
3133 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3134
3135 switch (sel) {
3136 case ATA_DNXFER_PIO:
3137 highbit = fls(pio_mask) - 1;
3138 pio_mask &= ~(1 << highbit);
3139 break;
3140
3141 case ATA_DNXFER_DMA:
3142 if (udma_mask) {
3143 highbit = fls(udma_mask) - 1;
3144 udma_mask &= ~(1 << highbit);
3145 if (!udma_mask)
3146 return -ENOENT;
3147 } else if (mwdma_mask) {
3148 highbit = fls(mwdma_mask) - 1;
3149 mwdma_mask &= ~(1 << highbit);
3150 if (!mwdma_mask)
3151 return -ENOENT;
3152 }
3153 break;
3154
3155 case ATA_DNXFER_40C:
3156 udma_mask &= ATA_UDMA_MASK_40C;
3157 break;
3158
3159 case ATA_DNXFER_FORCE_PIO0:
3160 pio_mask &= 1;
3161 fallthrough;
3162 case ATA_DNXFER_FORCE_PIO:
3163 mwdma_mask = 0;
3164 udma_mask = 0;
3165 break;
3166
3167 default:
3168 BUG();
3169 }
3170
3171 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3172
3173 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3174 return -ENOENT;
3175
3176 if (!quiet) {
3177 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3178 snprintf(buf, sizeof(buf), "%s:%s",
3179 ata_mode_string(xfer_mask),
3180 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3181 else
3182 snprintf(buf, sizeof(buf), "%s",
3183 ata_mode_string(xfer_mask));
3184
3185 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3186 }
3187
3188 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3189 &dev->udma_mask);
3190
3191 return 0;
3192 }
3193
ata_dev_set_mode(struct ata_device * dev)3194 static int ata_dev_set_mode(struct ata_device *dev)
3195 {
3196 struct ata_port *ap = dev->link->ap;
3197 struct ata_eh_context *ehc = &dev->link->eh_context;
3198 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3199 const char *dev_err_whine = "";
3200 int ign_dev_err = 0;
3201 unsigned int err_mask = 0;
3202 int rc;
3203
3204 dev->flags &= ~ATA_DFLAG_PIO;
3205 if (dev->xfer_shift == ATA_SHIFT_PIO)
3206 dev->flags |= ATA_DFLAG_PIO;
3207
3208 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3209 dev_err_whine = " (SET_XFERMODE skipped)";
3210 else {
3211 if (nosetxfer)
3212 ata_dev_warn(dev,
3213 "NOSETXFER but PATA detected - can't "
3214 "skip SETXFER, might malfunction\n");
3215 err_mask = ata_dev_set_xfermode(dev);
3216 }
3217
3218 if (err_mask & ~AC_ERR_DEV)
3219 goto fail;
3220
3221 /* revalidate */
3222 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3223 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3224 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3225 if (rc)
3226 return rc;
3227
3228 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3229 /* Old CFA may refuse this command, which is just fine */
3230 if (ata_id_is_cfa(dev->id))
3231 ign_dev_err = 1;
3232 /* Catch several broken garbage emulations plus some pre
3233 ATA devices */
3234 if (ata_id_major_version(dev->id) == 0 &&
3235 dev->pio_mode <= XFER_PIO_2)
3236 ign_dev_err = 1;
3237 /* Some very old devices and some bad newer ones fail
3238 any kind of SET_XFERMODE request but support PIO0-2
3239 timings and no IORDY */
3240 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3241 ign_dev_err = 1;
3242 }
3243 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3244 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3245 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3246 dev->dma_mode == XFER_MW_DMA_0 &&
3247 (dev->id[63] >> 8) & 1)
3248 ign_dev_err = 1;
3249
3250 /* if the device is actually configured correctly, ignore dev err */
3251 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3252 ign_dev_err = 1;
3253
3254 if (err_mask & AC_ERR_DEV) {
3255 if (!ign_dev_err)
3256 goto fail;
3257 else
3258 dev_err_whine = " (device error ignored)";
3259 }
3260
3261 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3262 dev->xfer_shift, (int)dev->xfer_mode);
3263
3264 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3265 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3266 ata_dev_info(dev, "configured for %s%s\n",
3267 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3268 dev_err_whine);
3269
3270 return 0;
3271
3272 fail:
3273 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3274 return -EIO;
3275 }
3276
3277 /**
3278 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3279 * @link: link on which timings will be programmed
3280 * @r_failed_dev: out parameter for failed device
3281 *
3282 * Standard implementation of the function used to tune and set
3283 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3284 * ata_dev_set_mode() fails, pointer to the failing device is
3285 * returned in @r_failed_dev.
3286 *
3287 * LOCKING:
3288 * PCI/etc. bus probe sem.
3289 *
3290 * RETURNS:
3291 * 0 on success, negative errno otherwise
3292 */
3293
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3294 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3295 {
3296 struct ata_port *ap = link->ap;
3297 struct ata_device *dev;
3298 int rc = 0, used_dma = 0, found = 0;
3299
3300 /* step 1: calculate xfer_mask */
3301 ata_for_each_dev(dev, link, ENABLED) {
3302 unsigned long pio_mask, dma_mask;
3303 unsigned int mode_mask;
3304
3305 mode_mask = ATA_DMA_MASK_ATA;
3306 if (dev->class == ATA_DEV_ATAPI)
3307 mode_mask = ATA_DMA_MASK_ATAPI;
3308 else if (ata_id_is_cfa(dev->id))
3309 mode_mask = ATA_DMA_MASK_CFA;
3310
3311 ata_dev_xfermask(dev);
3312 ata_force_xfermask(dev);
3313
3314 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3315
3316 if (libata_dma_mask & mode_mask)
3317 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3318 dev->udma_mask);
3319 else
3320 dma_mask = 0;
3321
3322 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3323 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3324
3325 found = 1;
3326 if (ata_dma_enabled(dev))
3327 used_dma = 1;
3328 }
3329 if (!found)
3330 goto out;
3331
3332 /* step 2: always set host PIO timings */
3333 ata_for_each_dev(dev, link, ENABLED) {
3334 if (dev->pio_mode == 0xff) {
3335 ata_dev_warn(dev, "no PIO support\n");
3336 rc = -EINVAL;
3337 goto out;
3338 }
3339
3340 dev->xfer_mode = dev->pio_mode;
3341 dev->xfer_shift = ATA_SHIFT_PIO;
3342 if (ap->ops->set_piomode)
3343 ap->ops->set_piomode(ap, dev);
3344 }
3345
3346 /* step 3: set host DMA timings */
3347 ata_for_each_dev(dev, link, ENABLED) {
3348 if (!ata_dma_enabled(dev))
3349 continue;
3350
3351 dev->xfer_mode = dev->dma_mode;
3352 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3353 if (ap->ops->set_dmamode)
3354 ap->ops->set_dmamode(ap, dev);
3355 }
3356
3357 /* step 4: update devices' xfer mode */
3358 ata_for_each_dev(dev, link, ENABLED) {
3359 rc = ata_dev_set_mode(dev);
3360 if (rc)
3361 goto out;
3362 }
3363
3364 /* Record simplex status. If we selected DMA then the other
3365 * host channels are not permitted to do so.
3366 */
3367 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3368 ap->host->simplex_claimed = ap;
3369
3370 out:
3371 if (rc)
3372 *r_failed_dev = dev;
3373 return rc;
3374 }
3375 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3376
3377 /**
3378 * ata_wait_ready - wait for link to become ready
3379 * @link: link to be waited on
3380 * @deadline: deadline jiffies for the operation
3381 * @check_ready: callback to check link readiness
3382 *
3383 * Wait for @link to become ready. @check_ready should return
3384 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3385 * link doesn't seem to be occupied, other errno for other error
3386 * conditions.
3387 *
3388 * Transient -ENODEV conditions are allowed for
3389 * ATA_TMOUT_FF_WAIT.
3390 *
3391 * LOCKING:
3392 * EH context.
3393 *
3394 * RETURNS:
3395 * 0 if @link is ready before @deadline; otherwise, -errno.
3396 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3397 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3398 int (*check_ready)(struct ata_link *link))
3399 {
3400 unsigned long start = jiffies;
3401 unsigned long nodev_deadline;
3402 int warned = 0;
3403
3404 /* choose which 0xff timeout to use, read comment in libata.h */
3405 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3406 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3407 else
3408 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3409
3410 /* Slave readiness can't be tested separately from master. On
3411 * M/S emulation configuration, this function should be called
3412 * only on the master and it will handle both master and slave.
3413 */
3414 WARN_ON(link == link->ap->slave_link);
3415
3416 if (time_after(nodev_deadline, deadline))
3417 nodev_deadline = deadline;
3418
3419 while (1) {
3420 unsigned long now = jiffies;
3421 int ready, tmp;
3422
3423 ready = tmp = check_ready(link);
3424 if (ready > 0)
3425 return 0;
3426
3427 /*
3428 * -ENODEV could be transient. Ignore -ENODEV if link
3429 * is online. Also, some SATA devices take a long
3430 * time to clear 0xff after reset. Wait for
3431 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3432 * offline.
3433 *
3434 * Note that some PATA controllers (pata_ali) explode
3435 * if status register is read more than once when
3436 * there's no device attached.
3437 */
3438 if (ready == -ENODEV) {
3439 if (ata_link_online(link))
3440 ready = 0;
3441 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3442 !ata_link_offline(link) &&
3443 time_before(now, nodev_deadline))
3444 ready = 0;
3445 }
3446
3447 if (ready)
3448 return ready;
3449 if (time_after(now, deadline))
3450 return -EBUSY;
3451
3452 if (!warned && time_after(now, start + 5 * HZ) &&
3453 (deadline - now > 3 * HZ)) {
3454 ata_link_warn(link,
3455 "link is slow to respond, please be patient "
3456 "(ready=%d)\n", tmp);
3457 warned = 1;
3458 }
3459
3460 ata_msleep(link->ap, 50);
3461 }
3462 }
3463
3464 /**
3465 * ata_wait_after_reset - wait for link to become ready after reset
3466 * @link: link to be waited on
3467 * @deadline: deadline jiffies for the operation
3468 * @check_ready: callback to check link readiness
3469 *
3470 * Wait for @link to become ready after reset.
3471 *
3472 * LOCKING:
3473 * EH context.
3474 *
3475 * RETURNS:
3476 * 0 if @link is ready before @deadline; otherwise, -errno.
3477 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3478 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3479 int (*check_ready)(struct ata_link *link))
3480 {
3481 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3482
3483 return ata_wait_ready(link, deadline, check_ready);
3484 }
3485 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3486
3487 /**
3488 * ata_std_prereset - prepare for reset
3489 * @link: ATA link to be reset
3490 * @deadline: deadline jiffies for the operation
3491 *
3492 * @link is about to be reset. Initialize it. Failure from
3493 * prereset makes libata abort whole reset sequence and give up
3494 * that port, so prereset should be best-effort. It does its
3495 * best to prepare for reset sequence but if things go wrong, it
3496 * should just whine, not fail.
3497 *
3498 * LOCKING:
3499 * Kernel thread context (may sleep)
3500 *
3501 * RETURNS:
3502 * 0 on success, -errno otherwise.
3503 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3504 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3505 {
3506 struct ata_port *ap = link->ap;
3507 struct ata_eh_context *ehc = &link->eh_context;
3508 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3509 int rc;
3510
3511 /* if we're about to do hardreset, nothing more to do */
3512 if (ehc->i.action & ATA_EH_HARDRESET)
3513 return 0;
3514
3515 /* if SATA, resume link */
3516 if (ap->flags & ATA_FLAG_SATA) {
3517 rc = sata_link_resume(link, timing, deadline);
3518 /* whine about phy resume failure but proceed */
3519 if (rc && rc != -EOPNOTSUPP)
3520 ata_link_warn(link,
3521 "failed to resume link for reset (errno=%d)\n",
3522 rc);
3523 }
3524
3525 /* no point in trying softreset on offline link */
3526 if (ata_phys_link_offline(link))
3527 ehc->i.action &= ~ATA_EH_SOFTRESET;
3528
3529 return 0;
3530 }
3531 EXPORT_SYMBOL_GPL(ata_std_prereset);
3532
3533 /**
3534 * sata_std_hardreset - COMRESET w/o waiting or classification
3535 * @link: link to reset
3536 * @class: resulting class of attached device
3537 * @deadline: deadline jiffies for the operation
3538 *
3539 * Standard SATA COMRESET w/o waiting or classification.
3540 *
3541 * LOCKING:
3542 * Kernel thread context (may sleep)
3543 *
3544 * RETURNS:
3545 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3546 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3547 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3548 unsigned long deadline)
3549 {
3550 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3551 bool online;
3552 int rc;
3553
3554 /* do hardreset */
3555 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3556 return online ? -EAGAIN : rc;
3557 }
3558 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3559
3560 /**
3561 * ata_std_postreset - standard postreset callback
3562 * @link: the target ata_link
3563 * @classes: classes of attached devices
3564 *
3565 * This function is invoked after a successful reset. Note that
3566 * the device might have been reset more than once using
3567 * different reset methods before postreset is invoked.
3568 *
3569 * LOCKING:
3570 * Kernel thread context (may sleep)
3571 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3572 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3573 {
3574 u32 serror;
3575
3576 DPRINTK("ENTER\n");
3577
3578 /* reset complete, clear SError */
3579 if (!sata_scr_read(link, SCR_ERROR, &serror))
3580 sata_scr_write(link, SCR_ERROR, serror);
3581
3582 /* print link status */
3583 sata_print_link_status(link);
3584
3585 DPRINTK("EXIT\n");
3586 }
3587 EXPORT_SYMBOL_GPL(ata_std_postreset);
3588
3589 /**
3590 * ata_dev_same_device - Determine whether new ID matches configured device
3591 * @dev: device to compare against
3592 * @new_class: class of the new device
3593 * @new_id: IDENTIFY page of the new device
3594 *
3595 * Compare @new_class and @new_id against @dev and determine
3596 * whether @dev is the device indicated by @new_class and
3597 * @new_id.
3598 *
3599 * LOCKING:
3600 * None.
3601 *
3602 * RETURNS:
3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3604 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 const u16 *new_id)
3607 {
3608 const u16 *old_id = dev->id;
3609 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3611
3612 if (dev->class != new_class) {
3613 ata_dev_info(dev, "class mismatch %d != %d\n",
3614 dev->class, new_class);
3615 return 0;
3616 }
3617
3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3622
3623 if (strcmp(model[0], model[1])) {
3624 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3625 model[0], model[1]);
3626 return 0;
3627 }
3628
3629 if (strcmp(serial[0], serial[1])) {
3630 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3631 serial[0], serial[1]);
3632 return 0;
3633 }
3634
3635 return 1;
3636 }
3637
3638 /**
3639 * ata_dev_reread_id - Re-read IDENTIFY data
3640 * @dev: target ATA device
3641 * @readid_flags: read ID flags
3642 *
3643 * Re-read IDENTIFY page and make sure @dev is still attached to
3644 * the port.
3645 *
3646 * LOCKING:
3647 * Kernel thread context (may sleep)
3648 *
3649 * RETURNS:
3650 * 0 on success, negative errno otherwise
3651 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3653 {
3654 unsigned int class = dev->class;
3655 u16 *id = (void *)dev->link->ap->sector_buf;
3656 int rc;
3657
3658 /* read ID data */
3659 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3660 if (rc)
3661 return rc;
3662
3663 /* is the device still there? */
3664 if (!ata_dev_same_device(dev, class, id))
3665 return -ENODEV;
3666
3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3668 return 0;
3669 }
3670
3671 /**
3672 * ata_dev_revalidate - Revalidate ATA device
3673 * @dev: device to revalidate
3674 * @new_class: new class code
3675 * @readid_flags: read ID flags
3676 *
3677 * Re-read IDENTIFY page, make sure @dev is still attached to the
3678 * port and reconfigure it according to the new IDENTIFY page.
3679 *
3680 * LOCKING:
3681 * Kernel thread context (may sleep)
3682 *
3683 * RETURNS:
3684 * 0 on success, negative errno otherwise
3685 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3686 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3687 unsigned int readid_flags)
3688 {
3689 u64 n_sectors = dev->n_sectors;
3690 u64 n_native_sectors = dev->n_native_sectors;
3691 int rc;
3692
3693 if (!ata_dev_enabled(dev))
3694 return -ENODEV;
3695
3696 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3697 if (ata_class_enabled(new_class) &&
3698 new_class != ATA_DEV_ATA &&
3699 new_class != ATA_DEV_ATAPI &&
3700 new_class != ATA_DEV_ZAC &&
3701 new_class != ATA_DEV_SEMB) {
3702 ata_dev_info(dev, "class mismatch %u != %u\n",
3703 dev->class, new_class);
3704 rc = -ENODEV;
3705 goto fail;
3706 }
3707
3708 /* re-read ID */
3709 rc = ata_dev_reread_id(dev, readid_flags);
3710 if (rc)
3711 goto fail;
3712
3713 /* configure device according to the new ID */
3714 rc = ata_dev_configure(dev);
3715 if (rc)
3716 goto fail;
3717
3718 /* verify n_sectors hasn't changed */
3719 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3720 dev->n_sectors == n_sectors)
3721 return 0;
3722
3723 /* n_sectors has changed */
3724 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3725 (unsigned long long)n_sectors,
3726 (unsigned long long)dev->n_sectors);
3727
3728 /*
3729 * Something could have caused HPA to be unlocked
3730 * involuntarily. If n_native_sectors hasn't changed and the
3731 * new size matches it, keep the device.
3732 */
3733 if (dev->n_native_sectors == n_native_sectors &&
3734 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3735 ata_dev_warn(dev,
3736 "new n_sectors matches native, probably "
3737 "late HPA unlock, n_sectors updated\n");
3738 /* use the larger n_sectors */
3739 return 0;
3740 }
3741
3742 /*
3743 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3744 * unlocking HPA in those cases.
3745 *
3746 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3747 */
3748 if (dev->n_native_sectors == n_native_sectors &&
3749 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3750 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3751 ata_dev_warn(dev,
3752 "old n_sectors matches native, probably "
3753 "late HPA lock, will try to unlock HPA\n");
3754 /* try unlocking HPA */
3755 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3756 rc = -EIO;
3757 } else
3758 rc = -ENODEV;
3759
3760 /* restore original n_[native_]sectors and fail */
3761 dev->n_native_sectors = n_native_sectors;
3762 dev->n_sectors = n_sectors;
3763 fail:
3764 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3765 return rc;
3766 }
3767
3768 struct ata_blacklist_entry {
3769 const char *model_num;
3770 const char *model_rev;
3771 unsigned long horkage;
3772 };
3773
3774 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3775 /* Devices with DMA related problems under Linux */
3776 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3777 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3778 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3779 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3780 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3781 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3782 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3783 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3784 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3785 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3786 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3787 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3788 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3789 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3790 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3791 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3792 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3793 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3794 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3795 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3796 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3797 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3798 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3799 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3800 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3801 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3802 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3803 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3804 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3805 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3806 /* Odd clown on sil3726/4726 PMPs */
3807 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3808
3809 /* Weird ATAPI devices */
3810 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3811 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3812 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3813 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3814
3815 /*
3816 * Causes silent data corruption with higher max sects.
3817 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3818 */
3819 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3820
3821 /*
3822 * These devices time out with higher max sects.
3823 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3824 */
3825 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3826 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3827
3828 /* Devices we expect to fail diagnostics */
3829
3830 /* Devices where NCQ should be avoided */
3831 /* NCQ is slow */
3832 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3833 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3834 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3835 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3836 /* NCQ is broken */
3837 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3838 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3839 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3840 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3841 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3842
3843 /* Seagate NCQ + FLUSH CACHE firmware bug */
3844 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3845 ATA_HORKAGE_FIRMWARE_WARN },
3846
3847 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3848 ATA_HORKAGE_FIRMWARE_WARN },
3849
3850 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3851 ATA_HORKAGE_FIRMWARE_WARN },
3852
3853 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3854 ATA_HORKAGE_FIRMWARE_WARN },
3855
3856 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3857 the ST disks also have LPM issues */
3858 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3859 ATA_HORKAGE_NOLPM, },
3860 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3861
3862 /* Blacklist entries taken from Silicon Image 3124/3132
3863 Windows driver .inf file - also several Linux problem reports */
3864 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3865 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3866 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3867
3868 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3869 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
3870
3871 /* Sandisk SD7/8/9s lock up hard on large trims */
3872 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, },
3873
3874 /* devices which puke on READ_NATIVE_MAX */
3875 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3876 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3877 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3878 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3879
3880 /* this one allows HPA unlocking but fails IOs on the area */
3881 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3882
3883 /* Devices which report 1 sector over size HPA */
3884 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3885 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3886 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3887
3888 /* Devices which get the IVB wrong */
3889 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3890 /* Maybe we should just blacklist TSSTcorp... */
3891 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
3892
3893 /* Devices that do not need bridging limits applied */
3894 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
3895 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
3896
3897 /* Devices which aren't very happy with higher link speeds */
3898 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
3899 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
3900
3901 /*
3902 * Devices which choke on SETXFER. Applies only if both the
3903 * device and controller are SATA.
3904 */
3905 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3906 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3907 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3908 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3909 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3910
3911 /* Crucial BX100 SSD 500GB has broken LPM support */
3912 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3913
3914 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3915 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3916 ATA_HORKAGE_ZERO_AFTER_TRIM |
3917 ATA_HORKAGE_NOLPM, },
3918 /* 512GB MX100 with newer firmware has only LPM issues */
3919 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
3920 ATA_HORKAGE_NOLPM, },
3921
3922 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3923 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3924 ATA_HORKAGE_ZERO_AFTER_TRIM |
3925 ATA_HORKAGE_NOLPM, },
3926 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3927 ATA_HORKAGE_ZERO_AFTER_TRIM |
3928 ATA_HORKAGE_NOLPM, },
3929
3930 /* These specific Samsung models/firmware-revs do not handle LPM well */
3931 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3932 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3933 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
3934 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3935
3936 /* devices that don't properly handle queued TRIM commands */
3937 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3938 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3939 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3940 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3941 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3942 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3943 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3944 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3945 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3946 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3947 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3948 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3949 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3950 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3951 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3952 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3953 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3954 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3955
3956 /* devices that don't properly handle TRIM commands */
3957 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
3958
3959 /*
3960 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3961 * (Return Zero After Trim) flags in the ATA Command Set are
3962 * unreliable in the sense that they only define what happens if
3963 * the device successfully executed the DSM TRIM command. TRIM
3964 * is only advisory, however, and the device is free to silently
3965 * ignore all or parts of the request.
3966 *
3967 * Whitelist drives that are known to reliably return zeroes
3968 * after TRIM.
3969 */
3970
3971 /*
3972 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
3973 * that model before whitelisting all other intel SSDs.
3974 */
3975 { "INTEL*SSDSC2MH*", NULL, 0, },
3976
3977 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3978 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3979 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3980 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3981 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3982 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3983 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3984 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985
3986 /*
3987 * Some WD SATA-I drives spin up and down erratically when the link
3988 * is put into the slumber mode. We don't have full list of the
3989 * affected devices. Disable LPM if the device matches one of the
3990 * known prefixes and is SATA-1. As a side effect LPM partial is
3991 * lost too.
3992 *
3993 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
3994 */
3995 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
3996 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
3997 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
3998 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
3999 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4000 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4001 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4002
4003 /* End Marker */
4004 { }
4005 };
4006
ata_dev_blacklisted(const struct ata_device * dev)4007 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4008 {
4009 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4010 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4011 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4012
4013 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4014 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4015
4016 while (ad->model_num) {
4017 if (glob_match(ad->model_num, model_num)) {
4018 if (ad->model_rev == NULL)
4019 return ad->horkage;
4020 if (glob_match(ad->model_rev, model_rev))
4021 return ad->horkage;
4022 }
4023 ad++;
4024 }
4025 return 0;
4026 }
4027
ata_dma_blacklisted(const struct ata_device * dev)4028 static int ata_dma_blacklisted(const struct ata_device *dev)
4029 {
4030 /* We don't support polling DMA.
4031 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4032 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4033 */
4034 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4035 (dev->flags & ATA_DFLAG_CDB_INTR))
4036 return 1;
4037 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4038 }
4039
4040 /**
4041 * ata_is_40wire - check drive side detection
4042 * @dev: device
4043 *
4044 * Perform drive side detection decoding, allowing for device vendors
4045 * who can't follow the documentation.
4046 */
4047
ata_is_40wire(struct ata_device * dev)4048 static int ata_is_40wire(struct ata_device *dev)
4049 {
4050 if (dev->horkage & ATA_HORKAGE_IVB)
4051 return ata_drive_40wire_relaxed(dev->id);
4052 return ata_drive_40wire(dev->id);
4053 }
4054
4055 /**
4056 * cable_is_40wire - 40/80/SATA decider
4057 * @ap: port to consider
4058 *
4059 * This function encapsulates the policy for speed management
4060 * in one place. At the moment we don't cache the result but
4061 * there is a good case for setting ap->cbl to the result when
4062 * we are called with unknown cables (and figuring out if it
4063 * impacts hotplug at all).
4064 *
4065 * Return 1 if the cable appears to be 40 wire.
4066 */
4067
cable_is_40wire(struct ata_port * ap)4068 static int cable_is_40wire(struct ata_port *ap)
4069 {
4070 struct ata_link *link;
4071 struct ata_device *dev;
4072
4073 /* If the controller thinks we are 40 wire, we are. */
4074 if (ap->cbl == ATA_CBL_PATA40)
4075 return 1;
4076
4077 /* If the controller thinks we are 80 wire, we are. */
4078 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4079 return 0;
4080
4081 /* If the system is known to be 40 wire short cable (eg
4082 * laptop), then we allow 80 wire modes even if the drive
4083 * isn't sure.
4084 */
4085 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4086 return 0;
4087
4088 /* If the controller doesn't know, we scan.
4089 *
4090 * Note: We look for all 40 wire detects at this point. Any
4091 * 80 wire detect is taken to be 80 wire cable because
4092 * - in many setups only the one drive (slave if present) will
4093 * give a valid detect
4094 * - if you have a non detect capable drive you don't want it
4095 * to colour the choice
4096 */
4097 ata_for_each_link(link, ap, EDGE) {
4098 ata_for_each_dev(dev, link, ENABLED) {
4099 if (!ata_is_40wire(dev))
4100 return 0;
4101 }
4102 }
4103 return 1;
4104 }
4105
4106 /**
4107 * ata_dev_xfermask - Compute supported xfermask of the given device
4108 * @dev: Device to compute xfermask for
4109 *
4110 * Compute supported xfermask of @dev and store it in
4111 * dev->*_mask. This function is responsible for applying all
4112 * known limits including host controller limits, device
4113 * blacklist, etc...
4114 *
4115 * LOCKING:
4116 * None.
4117 */
ata_dev_xfermask(struct ata_device * dev)4118 static void ata_dev_xfermask(struct ata_device *dev)
4119 {
4120 struct ata_link *link = dev->link;
4121 struct ata_port *ap = link->ap;
4122 struct ata_host *host = ap->host;
4123 unsigned long xfer_mask;
4124
4125 /* controller modes available */
4126 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4127 ap->mwdma_mask, ap->udma_mask);
4128
4129 /* drive modes available */
4130 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4131 dev->mwdma_mask, dev->udma_mask);
4132 xfer_mask &= ata_id_xfermask(dev->id);
4133
4134 /*
4135 * CFA Advanced TrueIDE timings are not allowed on a shared
4136 * cable
4137 */
4138 if (ata_dev_pair(dev)) {
4139 /* No PIO5 or PIO6 */
4140 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4141 /* No MWDMA3 or MWDMA 4 */
4142 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4143 }
4144
4145 if (ata_dma_blacklisted(dev)) {
4146 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4147 ata_dev_warn(dev,
4148 "device is on DMA blacklist, disabling DMA\n");
4149 }
4150
4151 if ((host->flags & ATA_HOST_SIMPLEX) &&
4152 host->simplex_claimed && host->simplex_claimed != ap) {
4153 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4154 ata_dev_warn(dev,
4155 "simplex DMA is claimed by other device, disabling DMA\n");
4156 }
4157
4158 if (ap->flags & ATA_FLAG_NO_IORDY)
4159 xfer_mask &= ata_pio_mask_no_iordy(dev);
4160
4161 if (ap->ops->mode_filter)
4162 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4163
4164 /* Apply cable rule here. Don't apply it early because when
4165 * we handle hot plug the cable type can itself change.
4166 * Check this last so that we know if the transfer rate was
4167 * solely limited by the cable.
4168 * Unknown or 80 wire cables reported host side are checked
4169 * drive side as well. Cases where we know a 40wire cable
4170 * is used safely for 80 are not checked here.
4171 */
4172 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4173 /* UDMA/44 or higher would be available */
4174 if (cable_is_40wire(ap)) {
4175 ata_dev_warn(dev,
4176 "limited to UDMA/33 due to 40-wire cable\n");
4177 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4178 }
4179
4180 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4181 &dev->mwdma_mask, &dev->udma_mask);
4182 }
4183
4184 /**
4185 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4186 * @dev: Device to which command will be sent
4187 *
4188 * Issue SET FEATURES - XFER MODE command to device @dev
4189 * on port @ap.
4190 *
4191 * LOCKING:
4192 * PCI/etc. bus probe sem.
4193 *
4194 * RETURNS:
4195 * 0 on success, AC_ERR_* mask otherwise.
4196 */
4197
ata_dev_set_xfermode(struct ata_device * dev)4198 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4199 {
4200 struct ata_taskfile tf;
4201 unsigned int err_mask;
4202
4203 /* set up set-features taskfile */
4204 DPRINTK("set features - xfer mode\n");
4205
4206 /* Some controllers and ATAPI devices show flaky interrupt
4207 * behavior after setting xfer mode. Use polling instead.
4208 */
4209 ata_tf_init(dev, &tf);
4210 tf.command = ATA_CMD_SET_FEATURES;
4211 tf.feature = SETFEATURES_XFER;
4212 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4213 tf.protocol = ATA_PROT_NODATA;
4214 /* If we are using IORDY we must send the mode setting command */
4215 if (ata_pio_need_iordy(dev))
4216 tf.nsect = dev->xfer_mode;
4217 /* If the device has IORDY and the controller does not - turn it off */
4218 else if (ata_id_has_iordy(dev->id))
4219 tf.nsect = 0x01;
4220 else /* In the ancient relic department - skip all of this */
4221 return 0;
4222
4223 /* On some disks, this command causes spin-up, so we need longer timeout */
4224 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4225
4226 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4227 return err_mask;
4228 }
4229
4230 /**
4231 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4232 * @dev: Device to which command will be sent
4233 * @enable: Whether to enable or disable the feature
4234 * @feature: The sector count represents the feature to set
4235 *
4236 * Issue SET FEATURES - SATA FEATURES command to device @dev
4237 * on port @ap with sector count
4238 *
4239 * LOCKING:
4240 * PCI/etc. bus probe sem.
4241 *
4242 * RETURNS:
4243 * 0 on success, AC_ERR_* mask otherwise.
4244 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4245 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4246 {
4247 struct ata_taskfile tf;
4248 unsigned int err_mask;
4249 unsigned long timeout = 0;
4250
4251 /* set up set-features taskfile */
4252 DPRINTK("set features - SATA features\n");
4253
4254 ata_tf_init(dev, &tf);
4255 tf.command = ATA_CMD_SET_FEATURES;
4256 tf.feature = enable;
4257 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4258 tf.protocol = ATA_PROT_NODATA;
4259 tf.nsect = feature;
4260
4261 if (enable == SETFEATURES_SPINUP)
4262 timeout = ata_probe_timeout ?
4263 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4264 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4265
4266 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4267 return err_mask;
4268 }
4269 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4270
4271 /**
4272 * ata_dev_init_params - Issue INIT DEV PARAMS command
4273 * @dev: Device to which command will be sent
4274 * @heads: Number of heads (taskfile parameter)
4275 * @sectors: Number of sectors (taskfile parameter)
4276 *
4277 * LOCKING:
4278 * Kernel thread context (may sleep)
4279 *
4280 * RETURNS:
4281 * 0 on success, AC_ERR_* mask otherwise.
4282 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4283 static unsigned int ata_dev_init_params(struct ata_device *dev,
4284 u16 heads, u16 sectors)
4285 {
4286 struct ata_taskfile tf;
4287 unsigned int err_mask;
4288
4289 /* Number of sectors per track 1-255. Number of heads 1-16 */
4290 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4291 return AC_ERR_INVALID;
4292
4293 /* set up init dev params taskfile */
4294 DPRINTK("init dev params \n");
4295
4296 ata_tf_init(dev, &tf);
4297 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4298 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4299 tf.protocol = ATA_PROT_NODATA;
4300 tf.nsect = sectors;
4301 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4302
4303 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4304 /* A clean abort indicates an original or just out of spec drive
4305 and we should continue as we issue the setup based on the
4306 drive reported working geometry */
4307 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4308 err_mask = 0;
4309
4310 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4311 return err_mask;
4312 }
4313
4314 /**
4315 * atapi_check_dma - Check whether ATAPI DMA can be supported
4316 * @qc: Metadata associated with taskfile to check
4317 *
4318 * Allow low-level driver to filter ATA PACKET commands, returning
4319 * a status indicating whether or not it is OK to use DMA for the
4320 * supplied PACKET command.
4321 *
4322 * LOCKING:
4323 * spin_lock_irqsave(host lock)
4324 *
4325 * RETURNS: 0 when ATAPI DMA can be used
4326 * nonzero otherwise
4327 */
atapi_check_dma(struct ata_queued_cmd * qc)4328 int atapi_check_dma(struct ata_queued_cmd *qc)
4329 {
4330 struct ata_port *ap = qc->ap;
4331
4332 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4333 * few ATAPI devices choke on such DMA requests.
4334 */
4335 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4336 unlikely(qc->nbytes & 15))
4337 return 1;
4338
4339 if (ap->ops->check_atapi_dma)
4340 return ap->ops->check_atapi_dma(qc);
4341
4342 return 0;
4343 }
4344
4345 /**
4346 * ata_std_qc_defer - Check whether a qc needs to be deferred
4347 * @qc: ATA command in question
4348 *
4349 * Non-NCQ commands cannot run with any other command, NCQ or
4350 * not. As upper layer only knows the queue depth, we are
4351 * responsible for maintaining exclusion. This function checks
4352 * whether a new command @qc can be issued.
4353 *
4354 * LOCKING:
4355 * spin_lock_irqsave(host lock)
4356 *
4357 * RETURNS:
4358 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4359 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4360 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4361 {
4362 struct ata_link *link = qc->dev->link;
4363
4364 if (ata_is_ncq(qc->tf.protocol)) {
4365 if (!ata_tag_valid(link->active_tag))
4366 return 0;
4367 } else {
4368 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4369 return 0;
4370 }
4371
4372 return ATA_DEFER_LINK;
4373 }
4374 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4375
ata_noop_qc_prep(struct ata_queued_cmd * qc)4376 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4377 {
4378 return AC_ERR_OK;
4379 }
4380 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4381
4382 /**
4383 * ata_sg_init - Associate command with scatter-gather table.
4384 * @qc: Command to be associated
4385 * @sg: Scatter-gather table.
4386 * @n_elem: Number of elements in s/g table.
4387 *
4388 * Initialize the data-related elements of queued_cmd @qc
4389 * to point to a scatter-gather table @sg, containing @n_elem
4390 * elements.
4391 *
4392 * LOCKING:
4393 * spin_lock_irqsave(host lock)
4394 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4395 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4396 unsigned int n_elem)
4397 {
4398 qc->sg = sg;
4399 qc->n_elem = n_elem;
4400 qc->cursg = qc->sg;
4401 }
4402
4403 #ifdef CONFIG_HAS_DMA
4404
4405 /**
4406 * ata_sg_clean - Unmap DMA memory associated with command
4407 * @qc: Command containing DMA memory to be released
4408 *
4409 * Unmap all mapped DMA memory associated with this command.
4410 *
4411 * LOCKING:
4412 * spin_lock_irqsave(host lock)
4413 */
ata_sg_clean(struct ata_queued_cmd * qc)4414 static void ata_sg_clean(struct ata_queued_cmd *qc)
4415 {
4416 struct ata_port *ap = qc->ap;
4417 struct scatterlist *sg = qc->sg;
4418 int dir = qc->dma_dir;
4419
4420 WARN_ON_ONCE(sg == NULL);
4421
4422 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4423
4424 if (qc->n_elem)
4425 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4426
4427 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4428 qc->sg = NULL;
4429 }
4430
4431 /**
4432 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4433 * @qc: Command with scatter-gather table to be mapped.
4434 *
4435 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4436 *
4437 * LOCKING:
4438 * spin_lock_irqsave(host lock)
4439 *
4440 * RETURNS:
4441 * Zero on success, negative on error.
4442 *
4443 */
ata_sg_setup(struct ata_queued_cmd * qc)4444 static int ata_sg_setup(struct ata_queued_cmd *qc)
4445 {
4446 struct ata_port *ap = qc->ap;
4447 unsigned int n_elem;
4448
4449 VPRINTK("ENTER, ata%u\n", ap->print_id);
4450
4451 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4452 if (n_elem < 1)
4453 return -1;
4454
4455 VPRINTK("%d sg elements mapped\n", n_elem);
4456 qc->orig_n_elem = qc->n_elem;
4457 qc->n_elem = n_elem;
4458 qc->flags |= ATA_QCFLAG_DMAMAP;
4459
4460 return 0;
4461 }
4462
4463 #else /* !CONFIG_HAS_DMA */
4464
ata_sg_clean(struct ata_queued_cmd * qc)4465 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4466 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4467
4468 #endif /* !CONFIG_HAS_DMA */
4469
4470 /**
4471 * swap_buf_le16 - swap halves of 16-bit words in place
4472 * @buf: Buffer to swap
4473 * @buf_words: Number of 16-bit words in buffer.
4474 *
4475 * Swap halves of 16-bit words if needed to convert from
4476 * little-endian byte order to native cpu byte order, or
4477 * vice-versa.
4478 *
4479 * LOCKING:
4480 * Inherited from caller.
4481 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4482 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4483 {
4484 #ifdef __BIG_ENDIAN
4485 unsigned int i;
4486
4487 for (i = 0; i < buf_words; i++)
4488 buf[i] = le16_to_cpu(buf[i]);
4489 #endif /* __BIG_ENDIAN */
4490 }
4491
4492 /**
4493 * ata_qc_new_init - Request an available ATA command, and initialize it
4494 * @dev: Device from whom we request an available command structure
4495 * @tag: tag
4496 *
4497 * LOCKING:
4498 * None.
4499 */
4500
ata_qc_new_init(struct ata_device * dev,int tag)4501 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4502 {
4503 struct ata_port *ap = dev->link->ap;
4504 struct ata_queued_cmd *qc;
4505
4506 /* no command while frozen */
4507 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4508 return NULL;
4509
4510 /* libsas case */
4511 if (ap->flags & ATA_FLAG_SAS_HOST) {
4512 tag = ata_sas_allocate_tag(ap);
4513 if (tag < 0)
4514 return NULL;
4515 }
4516
4517 qc = __ata_qc_from_tag(ap, tag);
4518 qc->tag = qc->hw_tag = tag;
4519 qc->scsicmd = NULL;
4520 qc->ap = ap;
4521 qc->dev = dev;
4522
4523 ata_qc_reinit(qc);
4524
4525 return qc;
4526 }
4527
4528 /**
4529 * ata_qc_free - free unused ata_queued_cmd
4530 * @qc: Command to complete
4531 *
4532 * Designed to free unused ata_queued_cmd object
4533 * in case something prevents using it.
4534 *
4535 * LOCKING:
4536 * spin_lock_irqsave(host lock)
4537 */
ata_qc_free(struct ata_queued_cmd * qc)4538 void ata_qc_free(struct ata_queued_cmd *qc)
4539 {
4540 struct ata_port *ap;
4541 unsigned int tag;
4542
4543 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4544 ap = qc->ap;
4545
4546 qc->flags = 0;
4547 tag = qc->tag;
4548 if (ata_tag_valid(tag)) {
4549 qc->tag = ATA_TAG_POISON;
4550 if (ap->flags & ATA_FLAG_SAS_HOST)
4551 ata_sas_free_tag(tag, ap);
4552 }
4553 }
4554
__ata_qc_complete(struct ata_queued_cmd * qc)4555 void __ata_qc_complete(struct ata_queued_cmd *qc)
4556 {
4557 struct ata_port *ap;
4558 struct ata_link *link;
4559
4560 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4561 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4562 ap = qc->ap;
4563 link = qc->dev->link;
4564
4565 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4566 ata_sg_clean(qc);
4567
4568 /* command should be marked inactive atomically with qc completion */
4569 if (ata_is_ncq(qc->tf.protocol)) {
4570 link->sactive &= ~(1 << qc->hw_tag);
4571 if (!link->sactive)
4572 ap->nr_active_links--;
4573 } else {
4574 link->active_tag = ATA_TAG_POISON;
4575 ap->nr_active_links--;
4576 }
4577
4578 /* clear exclusive status */
4579 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4580 ap->excl_link == link))
4581 ap->excl_link = NULL;
4582
4583 /* atapi: mark qc as inactive to prevent the interrupt handler
4584 * from completing the command twice later, before the error handler
4585 * is called. (when rc != 0 and atapi request sense is needed)
4586 */
4587 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4588 ap->qc_active &= ~(1ULL << qc->tag);
4589
4590 /* call completion callback */
4591 qc->complete_fn(qc);
4592 }
4593
fill_result_tf(struct ata_queued_cmd * qc)4594 static void fill_result_tf(struct ata_queued_cmd *qc)
4595 {
4596 struct ata_port *ap = qc->ap;
4597
4598 qc->result_tf.flags = qc->tf.flags;
4599 ap->ops->qc_fill_rtf(qc);
4600 }
4601
ata_verify_xfer(struct ata_queued_cmd * qc)4602 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4603 {
4604 struct ata_device *dev = qc->dev;
4605
4606 if (!ata_is_data(qc->tf.protocol))
4607 return;
4608
4609 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4610 return;
4611
4612 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4613 }
4614
4615 /**
4616 * ata_qc_complete - Complete an active ATA command
4617 * @qc: Command to complete
4618 *
4619 * Indicate to the mid and upper layers that an ATA command has
4620 * completed, with either an ok or not-ok status.
4621 *
4622 * Refrain from calling this function multiple times when
4623 * successfully completing multiple NCQ commands.
4624 * ata_qc_complete_multiple() should be used instead, which will
4625 * properly update IRQ expect state.
4626 *
4627 * LOCKING:
4628 * spin_lock_irqsave(host lock)
4629 */
ata_qc_complete(struct ata_queued_cmd * qc)4630 void ata_qc_complete(struct ata_queued_cmd *qc)
4631 {
4632 struct ata_port *ap = qc->ap;
4633
4634 /* Trigger the LED (if available) */
4635 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4636
4637 /* XXX: New EH and old EH use different mechanisms to
4638 * synchronize EH with regular execution path.
4639 *
4640 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4641 * Normal execution path is responsible for not accessing a
4642 * failed qc. libata core enforces the rule by returning NULL
4643 * from ata_qc_from_tag() for failed qcs.
4644 *
4645 * Old EH depends on ata_qc_complete() nullifying completion
4646 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4647 * not synchronize with interrupt handler. Only PIO task is
4648 * taken care of.
4649 */
4650 if (ap->ops->error_handler) {
4651 struct ata_device *dev = qc->dev;
4652 struct ata_eh_info *ehi = &dev->link->eh_info;
4653
4654 if (unlikely(qc->err_mask))
4655 qc->flags |= ATA_QCFLAG_FAILED;
4656
4657 /*
4658 * Finish internal commands without any further processing
4659 * and always with the result TF filled.
4660 */
4661 if (unlikely(ata_tag_internal(qc->tag))) {
4662 fill_result_tf(qc);
4663 trace_ata_qc_complete_internal(qc);
4664 __ata_qc_complete(qc);
4665 return;
4666 }
4667
4668 /*
4669 * Non-internal qc has failed. Fill the result TF and
4670 * summon EH.
4671 */
4672 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4673 fill_result_tf(qc);
4674 trace_ata_qc_complete_failed(qc);
4675 ata_qc_schedule_eh(qc);
4676 return;
4677 }
4678
4679 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4680
4681 /* read result TF if requested */
4682 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4683 fill_result_tf(qc);
4684
4685 trace_ata_qc_complete_done(qc);
4686 /* Some commands need post-processing after successful
4687 * completion.
4688 */
4689 switch (qc->tf.command) {
4690 case ATA_CMD_SET_FEATURES:
4691 if (qc->tf.feature != SETFEATURES_WC_ON &&
4692 qc->tf.feature != SETFEATURES_WC_OFF &&
4693 qc->tf.feature != SETFEATURES_RA_ON &&
4694 qc->tf.feature != SETFEATURES_RA_OFF)
4695 break;
4696 fallthrough;
4697 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4698 case ATA_CMD_SET_MULTI: /* multi_count changed */
4699 /* revalidate device */
4700 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4701 ata_port_schedule_eh(ap);
4702 break;
4703
4704 case ATA_CMD_SLEEP:
4705 dev->flags |= ATA_DFLAG_SLEEPING;
4706 break;
4707 }
4708
4709 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4710 ata_verify_xfer(qc);
4711
4712 __ata_qc_complete(qc);
4713 } else {
4714 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4715 return;
4716
4717 /* read result TF if failed or requested */
4718 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4719 fill_result_tf(qc);
4720
4721 __ata_qc_complete(qc);
4722 }
4723 }
4724 EXPORT_SYMBOL_GPL(ata_qc_complete);
4725
4726 /**
4727 * ata_qc_get_active - get bitmask of active qcs
4728 * @ap: port in question
4729 *
4730 * LOCKING:
4731 * spin_lock_irqsave(host lock)
4732 *
4733 * RETURNS:
4734 * Bitmask of active qcs
4735 */
ata_qc_get_active(struct ata_port * ap)4736 u64 ata_qc_get_active(struct ata_port *ap)
4737 {
4738 u64 qc_active = ap->qc_active;
4739
4740 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4741 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4742 qc_active |= (1 << 0);
4743 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4744 }
4745
4746 return qc_active;
4747 }
4748 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4749
4750 /**
4751 * ata_qc_issue - issue taskfile to device
4752 * @qc: command to issue to device
4753 *
4754 * Prepare an ATA command to submission to device.
4755 * This includes mapping the data into a DMA-able
4756 * area, filling in the S/G table, and finally
4757 * writing the taskfile to hardware, starting the command.
4758 *
4759 * LOCKING:
4760 * spin_lock_irqsave(host lock)
4761 */
ata_qc_issue(struct ata_queued_cmd * qc)4762 void ata_qc_issue(struct ata_queued_cmd *qc)
4763 {
4764 struct ata_port *ap = qc->ap;
4765 struct ata_link *link = qc->dev->link;
4766 u8 prot = qc->tf.protocol;
4767
4768 /* Make sure only one non-NCQ command is outstanding. The
4769 * check is skipped for old EH because it reuses active qc to
4770 * request ATAPI sense.
4771 */
4772 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4773
4774 if (ata_is_ncq(prot)) {
4775 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4776
4777 if (!link->sactive)
4778 ap->nr_active_links++;
4779 link->sactive |= 1 << qc->hw_tag;
4780 } else {
4781 WARN_ON_ONCE(link->sactive);
4782
4783 ap->nr_active_links++;
4784 link->active_tag = qc->tag;
4785 }
4786
4787 qc->flags |= ATA_QCFLAG_ACTIVE;
4788 ap->qc_active |= 1ULL << qc->tag;
4789
4790 /*
4791 * We guarantee to LLDs that they will have at least one
4792 * non-zero sg if the command is a data command.
4793 */
4794 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4795 goto sys_err;
4796
4797 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4798 (ap->flags & ATA_FLAG_PIO_DMA)))
4799 if (ata_sg_setup(qc))
4800 goto sys_err;
4801
4802 /* if device is sleeping, schedule reset and abort the link */
4803 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4804 link->eh_info.action |= ATA_EH_RESET;
4805 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4806 ata_link_abort(link);
4807 return;
4808 }
4809
4810 qc->err_mask |= ap->ops->qc_prep(qc);
4811 if (unlikely(qc->err_mask))
4812 goto err;
4813 trace_ata_qc_issue(qc);
4814 qc->err_mask |= ap->ops->qc_issue(qc);
4815 if (unlikely(qc->err_mask))
4816 goto err;
4817 return;
4818
4819 sys_err:
4820 qc->err_mask |= AC_ERR_SYSTEM;
4821 err:
4822 ata_qc_complete(qc);
4823 }
4824
4825 /**
4826 * ata_phys_link_online - test whether the given link is online
4827 * @link: ATA link to test
4828 *
4829 * Test whether @link is online. Note that this function returns
4830 * 0 if online status of @link cannot be obtained, so
4831 * ata_link_online(link) != !ata_link_offline(link).
4832 *
4833 * LOCKING:
4834 * None.
4835 *
4836 * RETURNS:
4837 * True if the port online status is available and online.
4838 */
ata_phys_link_online(struct ata_link * link)4839 bool ata_phys_link_online(struct ata_link *link)
4840 {
4841 u32 sstatus;
4842
4843 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4844 ata_sstatus_online(sstatus))
4845 return true;
4846 return false;
4847 }
4848
4849 /**
4850 * ata_phys_link_offline - test whether the given link is offline
4851 * @link: ATA link to test
4852 *
4853 * Test whether @link is offline. Note that this function
4854 * returns 0 if offline status of @link cannot be obtained, so
4855 * ata_link_online(link) != !ata_link_offline(link).
4856 *
4857 * LOCKING:
4858 * None.
4859 *
4860 * RETURNS:
4861 * True if the port offline status is available and offline.
4862 */
ata_phys_link_offline(struct ata_link * link)4863 bool ata_phys_link_offline(struct ata_link *link)
4864 {
4865 u32 sstatus;
4866
4867 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4868 !ata_sstatus_online(sstatus))
4869 return true;
4870 return false;
4871 }
4872
4873 /**
4874 * ata_link_online - test whether the given link is online
4875 * @link: ATA link to test
4876 *
4877 * Test whether @link is online. This is identical to
4878 * ata_phys_link_online() when there's no slave link. When
4879 * there's a slave link, this function should only be called on
4880 * the master link and will return true if any of M/S links is
4881 * online.
4882 *
4883 * LOCKING:
4884 * None.
4885 *
4886 * RETURNS:
4887 * True if the port online status is available and online.
4888 */
ata_link_online(struct ata_link * link)4889 bool ata_link_online(struct ata_link *link)
4890 {
4891 struct ata_link *slave = link->ap->slave_link;
4892
4893 WARN_ON(link == slave); /* shouldn't be called on slave link */
4894
4895 return ata_phys_link_online(link) ||
4896 (slave && ata_phys_link_online(slave));
4897 }
4898 EXPORT_SYMBOL_GPL(ata_link_online);
4899
4900 /**
4901 * ata_link_offline - test whether the given link is offline
4902 * @link: ATA link to test
4903 *
4904 * Test whether @link is offline. This is identical to
4905 * ata_phys_link_offline() when there's no slave link. When
4906 * there's a slave link, this function should only be called on
4907 * the master link and will return true if both M/S links are
4908 * offline.
4909 *
4910 * LOCKING:
4911 * None.
4912 *
4913 * RETURNS:
4914 * True if the port offline status is available and offline.
4915 */
ata_link_offline(struct ata_link * link)4916 bool ata_link_offline(struct ata_link *link)
4917 {
4918 struct ata_link *slave = link->ap->slave_link;
4919
4920 WARN_ON(link == slave); /* shouldn't be called on slave link */
4921
4922 return ata_phys_link_offline(link) &&
4923 (!slave || ata_phys_link_offline(slave));
4924 }
4925 EXPORT_SYMBOL_GPL(ata_link_offline);
4926
4927 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)4928 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4929 unsigned int action, unsigned int ehi_flags,
4930 bool async)
4931 {
4932 struct ata_link *link;
4933 unsigned long flags;
4934
4935 /* Previous resume operation might still be in
4936 * progress. Wait for PM_PENDING to clear.
4937 */
4938 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4939 ata_port_wait_eh(ap);
4940 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4941 }
4942
4943 /* request PM ops to EH */
4944 spin_lock_irqsave(ap->lock, flags);
4945
4946 ap->pm_mesg = mesg;
4947 ap->pflags |= ATA_PFLAG_PM_PENDING;
4948 ata_for_each_link(link, ap, HOST_FIRST) {
4949 link->eh_info.action |= action;
4950 link->eh_info.flags |= ehi_flags;
4951 }
4952
4953 ata_port_schedule_eh(ap);
4954
4955 spin_unlock_irqrestore(ap->lock, flags);
4956
4957 if (!async) {
4958 ata_port_wait_eh(ap);
4959 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4960 }
4961 }
4962
4963 /*
4964 * On some hardware, device fails to respond after spun down for suspend. As
4965 * the device won't be used before being resumed, we don't need to touch the
4966 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
4967 *
4968 * http://thread.gmane.org/gmane.linux.ide/46764
4969 */
4970 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
4971 | ATA_EHI_NO_AUTOPSY
4972 | ATA_EHI_NO_RECOVERY;
4973
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)4974 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
4975 {
4976 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
4977 }
4978
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)4979 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
4980 {
4981 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
4982 }
4983
ata_port_pm_suspend(struct device * dev)4984 static int ata_port_pm_suspend(struct device *dev)
4985 {
4986 struct ata_port *ap = to_ata_port(dev);
4987
4988 if (pm_runtime_suspended(dev))
4989 return 0;
4990
4991 ata_port_suspend(ap, PMSG_SUSPEND);
4992 return 0;
4993 }
4994
ata_port_pm_freeze(struct device * dev)4995 static int ata_port_pm_freeze(struct device *dev)
4996 {
4997 struct ata_port *ap = to_ata_port(dev);
4998
4999 if (pm_runtime_suspended(dev))
5000 return 0;
5001
5002 ata_port_suspend(ap, PMSG_FREEZE);
5003 return 0;
5004 }
5005
ata_port_pm_poweroff(struct device * dev)5006 static int ata_port_pm_poweroff(struct device *dev)
5007 {
5008 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5009 return 0;
5010 }
5011
5012 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5013 | ATA_EHI_QUIET;
5014
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5015 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5016 {
5017 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5018 }
5019
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5020 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5021 {
5022 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5023 }
5024
ata_port_pm_resume(struct device * dev)5025 static int ata_port_pm_resume(struct device *dev)
5026 {
5027 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5028 pm_runtime_disable(dev);
5029 pm_runtime_set_active(dev);
5030 pm_runtime_enable(dev);
5031 return 0;
5032 }
5033
5034 /*
5035 * For ODDs, the upper layer will poll for media change every few seconds,
5036 * which will make it enter and leave suspend state every few seconds. And
5037 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5038 * is very little and the ODD may malfunction after constantly being reset.
5039 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5040 * ODD is attached to the port.
5041 */
ata_port_runtime_idle(struct device * dev)5042 static int ata_port_runtime_idle(struct device *dev)
5043 {
5044 struct ata_port *ap = to_ata_port(dev);
5045 struct ata_link *link;
5046 struct ata_device *adev;
5047
5048 ata_for_each_link(link, ap, HOST_FIRST) {
5049 ata_for_each_dev(adev, link, ENABLED)
5050 if (adev->class == ATA_DEV_ATAPI &&
5051 !zpodd_dev_enabled(adev))
5052 return -EBUSY;
5053 }
5054
5055 return 0;
5056 }
5057
ata_port_runtime_suspend(struct device * dev)5058 static int ata_port_runtime_suspend(struct device *dev)
5059 {
5060 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5061 return 0;
5062 }
5063
ata_port_runtime_resume(struct device * dev)5064 static int ata_port_runtime_resume(struct device *dev)
5065 {
5066 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5067 return 0;
5068 }
5069
5070 static const struct dev_pm_ops ata_port_pm_ops = {
5071 .suspend = ata_port_pm_suspend,
5072 .resume = ata_port_pm_resume,
5073 .freeze = ata_port_pm_freeze,
5074 .thaw = ata_port_pm_resume,
5075 .poweroff = ata_port_pm_poweroff,
5076 .restore = ata_port_pm_resume,
5077
5078 .runtime_suspend = ata_port_runtime_suspend,
5079 .runtime_resume = ata_port_runtime_resume,
5080 .runtime_idle = ata_port_runtime_idle,
5081 };
5082
5083 /* sas ports don't participate in pm runtime management of ata_ports,
5084 * and need to resume ata devices at the domain level, not the per-port
5085 * level. sas suspend/resume is async to allow parallel port recovery
5086 * since sas has multiple ata_port instances per Scsi_Host.
5087 */
ata_sas_port_suspend(struct ata_port * ap)5088 void ata_sas_port_suspend(struct ata_port *ap)
5089 {
5090 ata_port_suspend_async(ap, PMSG_SUSPEND);
5091 }
5092 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5093
ata_sas_port_resume(struct ata_port * ap)5094 void ata_sas_port_resume(struct ata_port *ap)
5095 {
5096 ata_port_resume_async(ap, PMSG_RESUME);
5097 }
5098 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5099
5100 /**
5101 * ata_host_suspend - suspend host
5102 * @host: host to suspend
5103 * @mesg: PM message
5104 *
5105 * Suspend @host. Actual operation is performed by port suspend.
5106 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5107 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5108 {
5109 host->dev->power.power_state = mesg;
5110 return 0;
5111 }
5112 EXPORT_SYMBOL_GPL(ata_host_suspend);
5113
5114 /**
5115 * ata_host_resume - resume host
5116 * @host: host to resume
5117 *
5118 * Resume @host. Actual operation is performed by port resume.
5119 */
ata_host_resume(struct ata_host * host)5120 void ata_host_resume(struct ata_host *host)
5121 {
5122 host->dev->power.power_state = PMSG_ON;
5123 }
5124 EXPORT_SYMBOL_GPL(ata_host_resume);
5125 #endif
5126
5127 const struct device_type ata_port_type = {
5128 .name = "ata_port",
5129 #ifdef CONFIG_PM
5130 .pm = &ata_port_pm_ops,
5131 #endif
5132 };
5133
5134 /**
5135 * ata_dev_init - Initialize an ata_device structure
5136 * @dev: Device structure to initialize
5137 *
5138 * Initialize @dev in preparation for probing.
5139 *
5140 * LOCKING:
5141 * Inherited from caller.
5142 */
ata_dev_init(struct ata_device * dev)5143 void ata_dev_init(struct ata_device *dev)
5144 {
5145 struct ata_link *link = ata_dev_phys_link(dev);
5146 struct ata_port *ap = link->ap;
5147 unsigned long flags;
5148
5149 /* SATA spd limit is bound to the attached device, reset together */
5150 link->sata_spd_limit = link->hw_sata_spd_limit;
5151 link->sata_spd = 0;
5152
5153 /* High bits of dev->flags are used to record warm plug
5154 * requests which occur asynchronously. Synchronize using
5155 * host lock.
5156 */
5157 spin_lock_irqsave(ap->lock, flags);
5158 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5159 dev->horkage = 0;
5160 spin_unlock_irqrestore(ap->lock, flags);
5161
5162 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5163 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5164 dev->pio_mask = UINT_MAX;
5165 dev->mwdma_mask = UINT_MAX;
5166 dev->udma_mask = UINT_MAX;
5167 }
5168
5169 /**
5170 * ata_link_init - Initialize an ata_link structure
5171 * @ap: ATA port link is attached to
5172 * @link: Link structure to initialize
5173 * @pmp: Port multiplier port number
5174 *
5175 * Initialize @link.
5176 *
5177 * LOCKING:
5178 * Kernel thread context (may sleep)
5179 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5180 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5181 {
5182 int i;
5183
5184 /* clear everything except for devices */
5185 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5186 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5187
5188 link->ap = ap;
5189 link->pmp = pmp;
5190 link->active_tag = ATA_TAG_POISON;
5191 link->hw_sata_spd_limit = UINT_MAX;
5192
5193 /* can't use iterator, ap isn't initialized yet */
5194 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5195 struct ata_device *dev = &link->device[i];
5196
5197 dev->link = link;
5198 dev->devno = dev - link->device;
5199 #ifdef CONFIG_ATA_ACPI
5200 dev->gtf_filter = ata_acpi_gtf_filter;
5201 #endif
5202 ata_dev_init(dev);
5203 }
5204 }
5205
5206 /**
5207 * sata_link_init_spd - Initialize link->sata_spd_limit
5208 * @link: Link to configure sata_spd_limit for
5209 *
5210 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5211 * configured value.
5212 *
5213 * LOCKING:
5214 * Kernel thread context (may sleep).
5215 *
5216 * RETURNS:
5217 * 0 on success, -errno on failure.
5218 */
sata_link_init_spd(struct ata_link * link)5219 int sata_link_init_spd(struct ata_link *link)
5220 {
5221 u8 spd;
5222 int rc;
5223
5224 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5225 if (rc)
5226 return rc;
5227
5228 spd = (link->saved_scontrol >> 4) & 0xf;
5229 if (spd)
5230 link->hw_sata_spd_limit &= (1 << spd) - 1;
5231
5232 ata_force_link_limits(link);
5233
5234 link->sata_spd_limit = link->hw_sata_spd_limit;
5235
5236 return 0;
5237 }
5238
5239 /**
5240 * ata_port_alloc - allocate and initialize basic ATA port resources
5241 * @host: ATA host this allocated port belongs to
5242 *
5243 * Allocate and initialize basic ATA port resources.
5244 *
5245 * RETURNS:
5246 * Allocate ATA port on success, NULL on failure.
5247 *
5248 * LOCKING:
5249 * Inherited from calling layer (may sleep).
5250 */
ata_port_alloc(struct ata_host * host)5251 struct ata_port *ata_port_alloc(struct ata_host *host)
5252 {
5253 struct ata_port *ap;
5254
5255 DPRINTK("ENTER\n");
5256
5257 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5258 if (!ap)
5259 return NULL;
5260
5261 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5262 ap->lock = &host->lock;
5263 ap->print_id = -1;
5264 ap->local_port_no = -1;
5265 ap->host = host;
5266 ap->dev = host->dev;
5267
5268 #if defined(ATA_VERBOSE_DEBUG)
5269 /* turn on all debugging levels */
5270 ap->msg_enable = 0x00FF;
5271 #elif defined(ATA_DEBUG)
5272 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5273 #else
5274 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5275 #endif
5276
5277 mutex_init(&ap->scsi_scan_mutex);
5278 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5279 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5280 INIT_LIST_HEAD(&ap->eh_done_q);
5281 init_waitqueue_head(&ap->eh_wait_q);
5282 init_completion(&ap->park_req_pending);
5283 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5284 TIMER_DEFERRABLE);
5285
5286 ap->cbl = ATA_CBL_NONE;
5287
5288 ata_link_init(ap, &ap->link, 0);
5289
5290 #ifdef ATA_IRQ_TRAP
5291 ap->stats.unhandled_irq = 1;
5292 ap->stats.idle_irq = 1;
5293 #endif
5294 ata_sff_port_init(ap);
5295
5296 return ap;
5297 }
5298
ata_devres_release(struct device * gendev,void * res)5299 static void ata_devres_release(struct device *gendev, void *res)
5300 {
5301 struct ata_host *host = dev_get_drvdata(gendev);
5302 int i;
5303
5304 for (i = 0; i < host->n_ports; i++) {
5305 struct ata_port *ap = host->ports[i];
5306
5307 if (!ap)
5308 continue;
5309
5310 if (ap->scsi_host)
5311 scsi_host_put(ap->scsi_host);
5312
5313 }
5314
5315 dev_set_drvdata(gendev, NULL);
5316 ata_host_put(host);
5317 }
5318
ata_host_release(struct kref * kref)5319 static void ata_host_release(struct kref *kref)
5320 {
5321 struct ata_host *host = container_of(kref, struct ata_host, kref);
5322 int i;
5323
5324 for (i = 0; i < host->n_ports; i++) {
5325 struct ata_port *ap = host->ports[i];
5326
5327 kfree(ap->pmp_link);
5328 kfree(ap->slave_link);
5329 kfree(ap);
5330 host->ports[i] = NULL;
5331 }
5332 kfree(host);
5333 }
5334
ata_host_get(struct ata_host * host)5335 void ata_host_get(struct ata_host *host)
5336 {
5337 kref_get(&host->kref);
5338 }
5339
ata_host_put(struct ata_host * host)5340 void ata_host_put(struct ata_host *host)
5341 {
5342 kref_put(&host->kref, ata_host_release);
5343 }
5344 EXPORT_SYMBOL_GPL(ata_host_put);
5345
5346 /**
5347 * ata_host_alloc - allocate and init basic ATA host resources
5348 * @dev: generic device this host is associated with
5349 * @max_ports: maximum number of ATA ports associated with this host
5350 *
5351 * Allocate and initialize basic ATA host resources. LLD calls
5352 * this function to allocate a host, initializes it fully and
5353 * attaches it using ata_host_register().
5354 *
5355 * @max_ports ports are allocated and host->n_ports is
5356 * initialized to @max_ports. The caller is allowed to decrease
5357 * host->n_ports before calling ata_host_register(). The unused
5358 * ports will be automatically freed on registration.
5359 *
5360 * RETURNS:
5361 * Allocate ATA host on success, NULL on failure.
5362 *
5363 * LOCKING:
5364 * Inherited from calling layer (may sleep).
5365 */
ata_host_alloc(struct device * dev,int max_ports)5366 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5367 {
5368 struct ata_host *host;
5369 size_t sz;
5370 int i;
5371 void *dr;
5372
5373 DPRINTK("ENTER\n");
5374
5375 /* alloc a container for our list of ATA ports (buses) */
5376 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5377 host = kzalloc(sz, GFP_KERNEL);
5378 if (!host)
5379 return NULL;
5380
5381 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5382 goto err_free;
5383
5384 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5385 if (!dr)
5386 goto err_out;
5387
5388 devres_add(dev, dr);
5389 dev_set_drvdata(dev, host);
5390
5391 spin_lock_init(&host->lock);
5392 mutex_init(&host->eh_mutex);
5393 host->dev = dev;
5394 host->n_ports = max_ports;
5395 kref_init(&host->kref);
5396
5397 /* allocate ports bound to this host */
5398 for (i = 0; i < max_ports; i++) {
5399 struct ata_port *ap;
5400
5401 ap = ata_port_alloc(host);
5402 if (!ap)
5403 goto err_out;
5404
5405 ap->port_no = i;
5406 host->ports[i] = ap;
5407 }
5408
5409 devres_remove_group(dev, NULL);
5410 return host;
5411
5412 err_out:
5413 devres_release_group(dev, NULL);
5414 err_free:
5415 kfree(host);
5416 return NULL;
5417 }
5418 EXPORT_SYMBOL_GPL(ata_host_alloc);
5419
5420 /**
5421 * ata_host_alloc_pinfo - alloc host and init with port_info array
5422 * @dev: generic device this host is associated with
5423 * @ppi: array of ATA port_info to initialize host with
5424 * @n_ports: number of ATA ports attached to this host
5425 *
5426 * Allocate ATA host and initialize with info from @ppi. If NULL
5427 * terminated, @ppi may contain fewer entries than @n_ports. The
5428 * last entry will be used for the remaining ports.
5429 *
5430 * RETURNS:
5431 * Allocate ATA host on success, NULL on failure.
5432 *
5433 * LOCKING:
5434 * Inherited from calling layer (may sleep).
5435 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5436 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5437 const struct ata_port_info * const * ppi,
5438 int n_ports)
5439 {
5440 const struct ata_port_info *pi;
5441 struct ata_host *host;
5442 int i, j;
5443
5444 host = ata_host_alloc(dev, n_ports);
5445 if (!host)
5446 return NULL;
5447
5448 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5449 struct ata_port *ap = host->ports[i];
5450
5451 if (ppi[j])
5452 pi = ppi[j++];
5453
5454 ap->pio_mask = pi->pio_mask;
5455 ap->mwdma_mask = pi->mwdma_mask;
5456 ap->udma_mask = pi->udma_mask;
5457 ap->flags |= pi->flags;
5458 ap->link.flags |= pi->link_flags;
5459 ap->ops = pi->port_ops;
5460
5461 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5462 host->ops = pi->port_ops;
5463 }
5464
5465 return host;
5466 }
5467 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5468
ata_host_stop(struct device * gendev,void * res)5469 static void ata_host_stop(struct device *gendev, void *res)
5470 {
5471 struct ata_host *host = dev_get_drvdata(gendev);
5472 int i;
5473
5474 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5475
5476 for (i = 0; i < host->n_ports; i++) {
5477 struct ata_port *ap = host->ports[i];
5478
5479 if (ap->ops->port_stop)
5480 ap->ops->port_stop(ap);
5481 }
5482
5483 if (host->ops->host_stop)
5484 host->ops->host_stop(host);
5485 }
5486
5487 /**
5488 * ata_finalize_port_ops - finalize ata_port_operations
5489 * @ops: ata_port_operations to finalize
5490 *
5491 * An ata_port_operations can inherit from another ops and that
5492 * ops can again inherit from another. This can go on as many
5493 * times as necessary as long as there is no loop in the
5494 * inheritance chain.
5495 *
5496 * Ops tables are finalized when the host is started. NULL or
5497 * unspecified entries are inherited from the closet ancestor
5498 * which has the method and the entry is populated with it.
5499 * After finalization, the ops table directly points to all the
5500 * methods and ->inherits is no longer necessary and cleared.
5501 *
5502 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5503 *
5504 * LOCKING:
5505 * None.
5506 */
ata_finalize_port_ops(struct ata_port_operations * ops)5507 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5508 {
5509 static DEFINE_SPINLOCK(lock);
5510 const struct ata_port_operations *cur;
5511 void **begin = (void **)ops;
5512 void **end = (void **)&ops->inherits;
5513 void **pp;
5514
5515 if (!ops || !ops->inherits)
5516 return;
5517
5518 spin_lock(&lock);
5519
5520 for (cur = ops->inherits; cur; cur = cur->inherits) {
5521 void **inherit = (void **)cur;
5522
5523 for (pp = begin; pp < end; pp++, inherit++)
5524 if (!*pp)
5525 *pp = *inherit;
5526 }
5527
5528 for (pp = begin; pp < end; pp++)
5529 if (IS_ERR(*pp))
5530 *pp = NULL;
5531
5532 ops->inherits = NULL;
5533
5534 spin_unlock(&lock);
5535 }
5536
5537 /**
5538 * ata_host_start - start and freeze ports of an ATA host
5539 * @host: ATA host to start ports for
5540 *
5541 * Start and then freeze ports of @host. Started status is
5542 * recorded in host->flags, so this function can be called
5543 * multiple times. Ports are guaranteed to get started only
5544 * once. If host->ops isn't initialized yet, its set to the
5545 * first non-dummy port ops.
5546 *
5547 * LOCKING:
5548 * Inherited from calling layer (may sleep).
5549 *
5550 * RETURNS:
5551 * 0 if all ports are started successfully, -errno otherwise.
5552 */
ata_host_start(struct ata_host * host)5553 int ata_host_start(struct ata_host *host)
5554 {
5555 int have_stop = 0;
5556 void *start_dr = NULL;
5557 int i, rc;
5558
5559 if (host->flags & ATA_HOST_STARTED)
5560 return 0;
5561
5562 ata_finalize_port_ops(host->ops);
5563
5564 for (i = 0; i < host->n_ports; i++) {
5565 struct ata_port *ap = host->ports[i];
5566
5567 ata_finalize_port_ops(ap->ops);
5568
5569 if (!host->ops && !ata_port_is_dummy(ap))
5570 host->ops = ap->ops;
5571
5572 if (ap->ops->port_stop)
5573 have_stop = 1;
5574 }
5575
5576 if (host->ops->host_stop)
5577 have_stop = 1;
5578
5579 if (have_stop) {
5580 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5581 if (!start_dr)
5582 return -ENOMEM;
5583 }
5584
5585 for (i = 0; i < host->n_ports; i++) {
5586 struct ata_port *ap = host->ports[i];
5587
5588 if (ap->ops->port_start) {
5589 rc = ap->ops->port_start(ap);
5590 if (rc) {
5591 if (rc != -ENODEV)
5592 dev_err(host->dev,
5593 "failed to start port %d (errno=%d)\n",
5594 i, rc);
5595 goto err_out;
5596 }
5597 }
5598 ata_eh_freeze_port(ap);
5599 }
5600
5601 if (start_dr)
5602 devres_add(host->dev, start_dr);
5603 host->flags |= ATA_HOST_STARTED;
5604 return 0;
5605
5606 err_out:
5607 while (--i >= 0) {
5608 struct ata_port *ap = host->ports[i];
5609
5610 if (ap->ops->port_stop)
5611 ap->ops->port_stop(ap);
5612 }
5613 devres_free(start_dr);
5614 return rc;
5615 }
5616 EXPORT_SYMBOL_GPL(ata_host_start);
5617
5618 /**
5619 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5620 * @host: host to initialize
5621 * @dev: device host is attached to
5622 * @ops: port_ops
5623 *
5624 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5625 void ata_host_init(struct ata_host *host, struct device *dev,
5626 struct ata_port_operations *ops)
5627 {
5628 spin_lock_init(&host->lock);
5629 mutex_init(&host->eh_mutex);
5630 host->n_tags = ATA_MAX_QUEUE;
5631 host->dev = dev;
5632 host->ops = ops;
5633 kref_init(&host->kref);
5634 }
5635 EXPORT_SYMBOL_GPL(ata_host_init);
5636
__ata_port_probe(struct ata_port * ap)5637 void __ata_port_probe(struct ata_port *ap)
5638 {
5639 struct ata_eh_info *ehi = &ap->link.eh_info;
5640 unsigned long flags;
5641
5642 /* kick EH for boot probing */
5643 spin_lock_irqsave(ap->lock, flags);
5644
5645 ehi->probe_mask |= ATA_ALL_DEVICES;
5646 ehi->action |= ATA_EH_RESET;
5647 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5648
5649 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5650 ap->pflags |= ATA_PFLAG_LOADING;
5651 ata_port_schedule_eh(ap);
5652
5653 spin_unlock_irqrestore(ap->lock, flags);
5654 }
5655
ata_port_probe(struct ata_port * ap)5656 int ata_port_probe(struct ata_port *ap)
5657 {
5658 int rc = 0;
5659
5660 if (ap->ops->error_handler) {
5661 __ata_port_probe(ap);
5662 ata_port_wait_eh(ap);
5663 } else {
5664 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5665 rc = ata_bus_probe(ap);
5666 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5667 }
5668 return rc;
5669 }
5670
5671
async_port_probe(void * data,async_cookie_t cookie)5672 static void async_port_probe(void *data, async_cookie_t cookie)
5673 {
5674 struct ata_port *ap = data;
5675
5676 /*
5677 * If we're not allowed to scan this host in parallel,
5678 * we need to wait until all previous scans have completed
5679 * before going further.
5680 * Jeff Garzik says this is only within a controller, so we
5681 * don't need to wait for port 0, only for later ports.
5682 */
5683 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5684 async_synchronize_cookie(cookie);
5685
5686 (void)ata_port_probe(ap);
5687
5688 /* in order to keep device order, we need to synchronize at this point */
5689 async_synchronize_cookie(cookie);
5690
5691 ata_scsi_scan_host(ap, 1);
5692 }
5693
5694 /**
5695 * ata_host_register - register initialized ATA host
5696 * @host: ATA host to register
5697 * @sht: template for SCSI host
5698 *
5699 * Register initialized ATA host. @host is allocated using
5700 * ata_host_alloc() and fully initialized by LLD. This function
5701 * starts ports, registers @host with ATA and SCSI layers and
5702 * probe registered devices.
5703 *
5704 * LOCKING:
5705 * Inherited from calling layer (may sleep).
5706 *
5707 * RETURNS:
5708 * 0 on success, -errno otherwise.
5709 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5710 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5711 {
5712 int i, rc;
5713
5714 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5715
5716 /* host must have been started */
5717 if (!(host->flags & ATA_HOST_STARTED)) {
5718 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5719 WARN_ON(1);
5720 return -EINVAL;
5721 }
5722
5723 /* Blow away unused ports. This happens when LLD can't
5724 * determine the exact number of ports to allocate at
5725 * allocation time.
5726 */
5727 for (i = host->n_ports; host->ports[i]; i++)
5728 kfree(host->ports[i]);
5729
5730 /* give ports names and add SCSI hosts */
5731 for (i = 0; i < host->n_ports; i++) {
5732 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5733 host->ports[i]->local_port_no = i + 1;
5734 }
5735
5736 /* Create associated sysfs transport objects */
5737 for (i = 0; i < host->n_ports; i++) {
5738 rc = ata_tport_add(host->dev,host->ports[i]);
5739 if (rc) {
5740 goto err_tadd;
5741 }
5742 }
5743
5744 rc = ata_scsi_add_hosts(host, sht);
5745 if (rc)
5746 goto err_tadd;
5747
5748 /* set cable, sata_spd_limit and report */
5749 for (i = 0; i < host->n_ports; i++) {
5750 struct ata_port *ap = host->ports[i];
5751 unsigned long xfer_mask;
5752
5753 /* set SATA cable type if still unset */
5754 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5755 ap->cbl = ATA_CBL_SATA;
5756
5757 /* init sata_spd_limit to the current value */
5758 sata_link_init_spd(&ap->link);
5759 if (ap->slave_link)
5760 sata_link_init_spd(ap->slave_link);
5761
5762 /* print per-port info to dmesg */
5763 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5764 ap->udma_mask);
5765
5766 if (!ata_port_is_dummy(ap)) {
5767 ata_port_info(ap, "%cATA max %s %s\n",
5768 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5769 ata_mode_string(xfer_mask),
5770 ap->link.eh_info.desc);
5771 ata_ehi_clear_desc(&ap->link.eh_info);
5772 } else
5773 ata_port_info(ap, "DUMMY\n");
5774 }
5775
5776 /* perform each probe asynchronously */
5777 for (i = 0; i < host->n_ports; i++) {
5778 struct ata_port *ap = host->ports[i];
5779 ap->cookie = async_schedule(async_port_probe, ap);
5780 }
5781
5782 return 0;
5783
5784 err_tadd:
5785 while (--i >= 0) {
5786 ata_tport_delete(host->ports[i]);
5787 }
5788 return rc;
5789
5790 }
5791 EXPORT_SYMBOL_GPL(ata_host_register);
5792
5793 /**
5794 * ata_host_activate - start host, request IRQ and register it
5795 * @host: target ATA host
5796 * @irq: IRQ to request
5797 * @irq_handler: irq_handler used when requesting IRQ
5798 * @irq_flags: irq_flags used when requesting IRQ
5799 * @sht: scsi_host_template to use when registering the host
5800 *
5801 * After allocating an ATA host and initializing it, most libata
5802 * LLDs perform three steps to activate the host - start host,
5803 * request IRQ and register it. This helper takes necessary
5804 * arguments and performs the three steps in one go.
5805 *
5806 * An invalid IRQ skips the IRQ registration and expects the host to
5807 * have set polling mode on the port. In this case, @irq_handler
5808 * should be NULL.
5809 *
5810 * LOCKING:
5811 * Inherited from calling layer (may sleep).
5812 *
5813 * RETURNS:
5814 * 0 on success, -errno otherwise.
5815 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5816 int ata_host_activate(struct ata_host *host, int irq,
5817 irq_handler_t irq_handler, unsigned long irq_flags,
5818 struct scsi_host_template *sht)
5819 {
5820 int i, rc;
5821 char *irq_desc;
5822
5823 rc = ata_host_start(host);
5824 if (rc)
5825 return rc;
5826
5827 /* Special case for polling mode */
5828 if (!irq) {
5829 WARN_ON(irq_handler);
5830 return ata_host_register(host, sht);
5831 }
5832
5833 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5834 dev_driver_string(host->dev),
5835 dev_name(host->dev));
5836 if (!irq_desc)
5837 return -ENOMEM;
5838
5839 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5840 irq_desc, host);
5841 if (rc)
5842 return rc;
5843
5844 for (i = 0; i < host->n_ports; i++)
5845 ata_port_desc(host->ports[i], "irq %d", irq);
5846
5847 rc = ata_host_register(host, sht);
5848 /* if failed, just free the IRQ and leave ports alone */
5849 if (rc)
5850 devm_free_irq(host->dev, irq, host);
5851
5852 return rc;
5853 }
5854 EXPORT_SYMBOL_GPL(ata_host_activate);
5855
5856 /**
5857 * ata_port_detach - Detach ATA port in preparation of device removal
5858 * @ap: ATA port to be detached
5859 *
5860 * Detach all ATA devices and the associated SCSI devices of @ap;
5861 * then, remove the associated SCSI host. @ap is guaranteed to
5862 * be quiescent on return from this function.
5863 *
5864 * LOCKING:
5865 * Kernel thread context (may sleep).
5866 */
ata_port_detach(struct ata_port * ap)5867 static void ata_port_detach(struct ata_port *ap)
5868 {
5869 unsigned long flags;
5870 struct ata_link *link;
5871 struct ata_device *dev;
5872
5873 if (!ap->ops->error_handler)
5874 goto skip_eh;
5875
5876 /* tell EH we're leaving & flush EH */
5877 spin_lock_irqsave(ap->lock, flags);
5878 ap->pflags |= ATA_PFLAG_UNLOADING;
5879 ata_port_schedule_eh(ap);
5880 spin_unlock_irqrestore(ap->lock, flags);
5881
5882 /* wait till EH commits suicide */
5883 ata_port_wait_eh(ap);
5884
5885 /* it better be dead now */
5886 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5887
5888 cancel_delayed_work_sync(&ap->hotplug_task);
5889
5890 skip_eh:
5891 /* clean up zpodd on port removal */
5892 ata_for_each_link(link, ap, HOST_FIRST) {
5893 ata_for_each_dev(dev, link, ALL) {
5894 if (zpodd_dev_enabled(dev))
5895 zpodd_exit(dev);
5896 }
5897 }
5898 if (ap->pmp_link) {
5899 int i;
5900 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5901 ata_tlink_delete(&ap->pmp_link[i]);
5902 }
5903 /* remove the associated SCSI host */
5904 scsi_remove_host(ap->scsi_host);
5905 ata_tport_delete(ap);
5906 }
5907
5908 /**
5909 * ata_host_detach - Detach all ports of an ATA host
5910 * @host: Host to detach
5911 *
5912 * Detach all ports of @host.
5913 *
5914 * LOCKING:
5915 * Kernel thread context (may sleep).
5916 */
ata_host_detach(struct ata_host * host)5917 void ata_host_detach(struct ata_host *host)
5918 {
5919 int i;
5920
5921 for (i = 0; i < host->n_ports; i++) {
5922 /* Ensure ata_port probe has completed */
5923 async_synchronize_cookie(host->ports[i]->cookie + 1);
5924 ata_port_detach(host->ports[i]);
5925 }
5926
5927 /* the host is dead now, dissociate ACPI */
5928 ata_acpi_dissociate(host);
5929 }
5930 EXPORT_SYMBOL_GPL(ata_host_detach);
5931
5932 #ifdef CONFIG_PCI
5933
5934 /**
5935 * ata_pci_remove_one - PCI layer callback for device removal
5936 * @pdev: PCI device that was removed
5937 *
5938 * PCI layer indicates to libata via this hook that hot-unplug or
5939 * module unload event has occurred. Detach all ports. Resource
5940 * release is handled via devres.
5941 *
5942 * LOCKING:
5943 * Inherited from PCI layer (may sleep).
5944 */
ata_pci_remove_one(struct pci_dev * pdev)5945 void ata_pci_remove_one(struct pci_dev *pdev)
5946 {
5947 struct ata_host *host = pci_get_drvdata(pdev);
5948
5949 ata_host_detach(host);
5950 }
5951 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5952
ata_pci_shutdown_one(struct pci_dev * pdev)5953 void ata_pci_shutdown_one(struct pci_dev *pdev)
5954 {
5955 struct ata_host *host = pci_get_drvdata(pdev);
5956 int i;
5957
5958 for (i = 0; i < host->n_ports; i++) {
5959 struct ata_port *ap = host->ports[i];
5960
5961 ap->pflags |= ATA_PFLAG_FROZEN;
5962
5963 /* Disable port interrupts */
5964 if (ap->ops->freeze)
5965 ap->ops->freeze(ap);
5966
5967 /* Stop the port DMA engines */
5968 if (ap->ops->port_stop)
5969 ap->ops->port_stop(ap);
5970 }
5971 }
5972 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
5973
5974 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)5975 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5976 {
5977 unsigned long tmp = 0;
5978
5979 switch (bits->width) {
5980 case 1: {
5981 u8 tmp8 = 0;
5982 pci_read_config_byte(pdev, bits->reg, &tmp8);
5983 tmp = tmp8;
5984 break;
5985 }
5986 case 2: {
5987 u16 tmp16 = 0;
5988 pci_read_config_word(pdev, bits->reg, &tmp16);
5989 tmp = tmp16;
5990 break;
5991 }
5992 case 4: {
5993 u32 tmp32 = 0;
5994 pci_read_config_dword(pdev, bits->reg, &tmp32);
5995 tmp = tmp32;
5996 break;
5997 }
5998
5999 default:
6000 return -EINVAL;
6001 }
6002
6003 tmp &= bits->mask;
6004
6005 return (tmp == bits->val) ? 1 : 0;
6006 }
6007 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6008
6009 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6010 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6011 {
6012 pci_save_state(pdev);
6013 pci_disable_device(pdev);
6014
6015 if (mesg.event & PM_EVENT_SLEEP)
6016 pci_set_power_state(pdev, PCI_D3hot);
6017 }
6018 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6019
ata_pci_device_do_resume(struct pci_dev * pdev)6020 int ata_pci_device_do_resume(struct pci_dev *pdev)
6021 {
6022 int rc;
6023
6024 pci_set_power_state(pdev, PCI_D0);
6025 pci_restore_state(pdev);
6026
6027 rc = pcim_enable_device(pdev);
6028 if (rc) {
6029 dev_err(&pdev->dev,
6030 "failed to enable device after resume (%d)\n", rc);
6031 return rc;
6032 }
6033
6034 pci_set_master(pdev);
6035 return 0;
6036 }
6037 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6038
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6039 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6040 {
6041 struct ata_host *host = pci_get_drvdata(pdev);
6042 int rc = 0;
6043
6044 rc = ata_host_suspend(host, mesg);
6045 if (rc)
6046 return rc;
6047
6048 ata_pci_device_do_suspend(pdev, mesg);
6049
6050 return 0;
6051 }
6052 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6053
ata_pci_device_resume(struct pci_dev * pdev)6054 int ata_pci_device_resume(struct pci_dev *pdev)
6055 {
6056 struct ata_host *host = pci_get_drvdata(pdev);
6057 int rc;
6058
6059 rc = ata_pci_device_do_resume(pdev);
6060 if (rc == 0)
6061 ata_host_resume(host);
6062 return rc;
6063 }
6064 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6065 #endif /* CONFIG_PM */
6066 #endif /* CONFIG_PCI */
6067
6068 /**
6069 * ata_platform_remove_one - Platform layer callback for device removal
6070 * @pdev: Platform device that was removed
6071 *
6072 * Platform layer indicates to libata via this hook that hot-unplug or
6073 * module unload event has occurred. Detach all ports. Resource
6074 * release is handled via devres.
6075 *
6076 * LOCKING:
6077 * Inherited from platform layer (may sleep).
6078 */
ata_platform_remove_one(struct platform_device * pdev)6079 int ata_platform_remove_one(struct platform_device *pdev)
6080 {
6081 struct ata_host *host = platform_get_drvdata(pdev);
6082
6083 ata_host_detach(host);
6084
6085 return 0;
6086 }
6087 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6088
6089 #ifdef CONFIG_ATA_FORCE
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6090 static int __init ata_parse_force_one(char **cur,
6091 struct ata_force_ent *force_ent,
6092 const char **reason)
6093 {
6094 static const struct ata_force_param force_tbl[] __initconst = {
6095 { "40c", .cbl = ATA_CBL_PATA40 },
6096 { "80c", .cbl = ATA_CBL_PATA80 },
6097 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6098 { "unk", .cbl = ATA_CBL_PATA_UNK },
6099 { "ign", .cbl = ATA_CBL_PATA_IGN },
6100 { "sata", .cbl = ATA_CBL_SATA },
6101 { "1.5Gbps", .spd_limit = 1 },
6102 { "3.0Gbps", .spd_limit = 2 },
6103 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6104 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6105 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6106 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6107 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6108 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6109 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6110 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6111 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6112 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6113 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6114 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6115 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6116 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6117 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6118 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6119 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6120 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6121 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6122 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6123 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6124 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6125 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6126 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6127 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6128 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6129 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6130 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6131 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6132 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6133 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6134 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6135 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6136 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6137 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6138 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6139 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6140 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6141 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6142 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6143 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6144 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6145 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6146 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6147 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6148 };
6149 char *start = *cur, *p = *cur;
6150 char *id, *val, *endp;
6151 const struct ata_force_param *match_fp = NULL;
6152 int nr_matches = 0, i;
6153
6154 /* find where this param ends and update *cur */
6155 while (*p != '\0' && *p != ',')
6156 p++;
6157
6158 if (*p == '\0')
6159 *cur = p;
6160 else
6161 *cur = p + 1;
6162
6163 *p = '\0';
6164
6165 /* parse */
6166 p = strchr(start, ':');
6167 if (!p) {
6168 val = strstrip(start);
6169 goto parse_val;
6170 }
6171 *p = '\0';
6172
6173 id = strstrip(start);
6174 val = strstrip(p + 1);
6175
6176 /* parse id */
6177 p = strchr(id, '.');
6178 if (p) {
6179 *p++ = '\0';
6180 force_ent->device = simple_strtoul(p, &endp, 10);
6181 if (p == endp || *endp != '\0') {
6182 *reason = "invalid device";
6183 return -EINVAL;
6184 }
6185 }
6186
6187 force_ent->port = simple_strtoul(id, &endp, 10);
6188 if (id == endp || *endp != '\0') {
6189 *reason = "invalid port/link";
6190 return -EINVAL;
6191 }
6192
6193 parse_val:
6194 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6195 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6196 const struct ata_force_param *fp = &force_tbl[i];
6197
6198 if (strncasecmp(val, fp->name, strlen(val)))
6199 continue;
6200
6201 nr_matches++;
6202 match_fp = fp;
6203
6204 if (strcasecmp(val, fp->name) == 0) {
6205 nr_matches = 1;
6206 break;
6207 }
6208 }
6209
6210 if (!nr_matches) {
6211 *reason = "unknown value";
6212 return -EINVAL;
6213 }
6214 if (nr_matches > 1) {
6215 *reason = "ambiguous value";
6216 return -EINVAL;
6217 }
6218
6219 force_ent->param = *match_fp;
6220
6221 return 0;
6222 }
6223
ata_parse_force_param(void)6224 static void __init ata_parse_force_param(void)
6225 {
6226 int idx = 0, size = 1;
6227 int last_port = -1, last_device = -1;
6228 char *p, *cur, *next;
6229
6230 /* calculate maximum number of params and allocate force_tbl */
6231 for (p = ata_force_param_buf; *p; p++)
6232 if (*p == ',')
6233 size++;
6234
6235 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6236 if (!ata_force_tbl) {
6237 printk(KERN_WARNING "ata: failed to extend force table, "
6238 "libata.force ignored\n");
6239 return;
6240 }
6241
6242 /* parse and populate the table */
6243 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6244 const char *reason = "";
6245 struct ata_force_ent te = { .port = -1, .device = -1 };
6246
6247 next = cur;
6248 if (ata_parse_force_one(&next, &te, &reason)) {
6249 printk(KERN_WARNING "ata: failed to parse force "
6250 "parameter \"%s\" (%s)\n",
6251 cur, reason);
6252 continue;
6253 }
6254
6255 if (te.port == -1) {
6256 te.port = last_port;
6257 te.device = last_device;
6258 }
6259
6260 ata_force_tbl[idx++] = te;
6261
6262 last_port = te.port;
6263 last_device = te.device;
6264 }
6265
6266 ata_force_tbl_size = idx;
6267 }
6268
ata_free_force_param(void)6269 static void ata_free_force_param(void)
6270 {
6271 kfree(ata_force_tbl);
6272 }
6273 #else
ata_parse_force_param(void)6274 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6275 static inline void ata_free_force_param(void) { }
6276 #endif
6277
ata_init(void)6278 static int __init ata_init(void)
6279 {
6280 int rc;
6281
6282 ata_parse_force_param();
6283
6284 rc = ata_sff_init();
6285 if (rc) {
6286 ata_free_force_param();
6287 return rc;
6288 }
6289
6290 libata_transport_init();
6291 ata_scsi_transport_template = ata_attach_transport();
6292 if (!ata_scsi_transport_template) {
6293 ata_sff_exit();
6294 rc = -ENOMEM;
6295 goto err_out;
6296 }
6297
6298 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6299 return 0;
6300
6301 err_out:
6302 return rc;
6303 }
6304
ata_exit(void)6305 static void __exit ata_exit(void)
6306 {
6307 ata_release_transport(ata_scsi_transport_template);
6308 libata_transport_exit();
6309 ata_sff_exit();
6310 ata_free_force_param();
6311 }
6312
6313 subsys_initcall(ata_init);
6314 module_exit(ata_exit);
6315
6316 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6317
ata_ratelimit(void)6318 int ata_ratelimit(void)
6319 {
6320 return __ratelimit(&ratelimit);
6321 }
6322 EXPORT_SYMBOL_GPL(ata_ratelimit);
6323
6324 /**
6325 * ata_msleep - ATA EH owner aware msleep
6326 * @ap: ATA port to attribute the sleep to
6327 * @msecs: duration to sleep in milliseconds
6328 *
6329 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6330 * ownership is released before going to sleep and reacquired
6331 * after the sleep is complete. IOW, other ports sharing the
6332 * @ap->host will be allowed to own the EH while this task is
6333 * sleeping.
6334 *
6335 * LOCKING:
6336 * Might sleep.
6337 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6338 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6339 {
6340 bool owns_eh = ap && ap->host->eh_owner == current;
6341
6342 if (owns_eh)
6343 ata_eh_release(ap);
6344
6345 if (msecs < 20) {
6346 unsigned long usecs = msecs * USEC_PER_MSEC;
6347 usleep_range(usecs, usecs + 50);
6348 } else {
6349 msleep(msecs);
6350 }
6351
6352 if (owns_eh)
6353 ata_eh_acquire(ap);
6354 }
6355 EXPORT_SYMBOL_GPL(ata_msleep);
6356
6357 /**
6358 * ata_wait_register - wait until register value changes
6359 * @ap: ATA port to wait register for, can be NULL
6360 * @reg: IO-mapped register
6361 * @mask: Mask to apply to read register value
6362 * @val: Wait condition
6363 * @interval: polling interval in milliseconds
6364 * @timeout: timeout in milliseconds
6365 *
6366 * Waiting for some bits of register to change is a common
6367 * operation for ATA controllers. This function reads 32bit LE
6368 * IO-mapped register @reg and tests for the following condition.
6369 *
6370 * (*@reg & mask) != val
6371 *
6372 * If the condition is met, it returns; otherwise, the process is
6373 * repeated after @interval_msec until timeout.
6374 *
6375 * LOCKING:
6376 * Kernel thread context (may sleep)
6377 *
6378 * RETURNS:
6379 * The final register value.
6380 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6381 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6382 unsigned long interval, unsigned long timeout)
6383 {
6384 unsigned long deadline;
6385 u32 tmp;
6386
6387 tmp = ioread32(reg);
6388
6389 /* Calculate timeout _after_ the first read to make sure
6390 * preceding writes reach the controller before starting to
6391 * eat away the timeout.
6392 */
6393 deadline = ata_deadline(jiffies, timeout);
6394
6395 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6396 ata_msleep(ap, interval);
6397 tmp = ioread32(reg);
6398 }
6399
6400 return tmp;
6401 }
6402 EXPORT_SYMBOL_GPL(ata_wait_register);
6403
6404 /*
6405 * Dummy port_ops
6406 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6407 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6408 {
6409 return AC_ERR_SYSTEM;
6410 }
6411
ata_dummy_error_handler(struct ata_port * ap)6412 static void ata_dummy_error_handler(struct ata_port *ap)
6413 {
6414 /* truly dummy */
6415 }
6416
6417 struct ata_port_operations ata_dummy_port_ops = {
6418 .qc_prep = ata_noop_qc_prep,
6419 .qc_issue = ata_dummy_qc_issue,
6420 .error_handler = ata_dummy_error_handler,
6421 .sched_eh = ata_std_sched_eh,
6422 .end_eh = ata_std_end_eh,
6423 };
6424 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6425
6426 const struct ata_port_info ata_dummy_port_info = {
6427 .port_ops = &ata_dummy_port_ops,
6428 };
6429 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6430
6431 /*
6432 * Utility print functions
6433 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)6434 void ata_port_printk(const struct ata_port *ap, const char *level,
6435 const char *fmt, ...)
6436 {
6437 struct va_format vaf;
6438 va_list args;
6439
6440 va_start(args, fmt);
6441
6442 vaf.fmt = fmt;
6443 vaf.va = &args;
6444
6445 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6446
6447 va_end(args);
6448 }
6449 EXPORT_SYMBOL(ata_port_printk);
6450
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)6451 void ata_link_printk(const struct ata_link *link, const char *level,
6452 const char *fmt, ...)
6453 {
6454 struct va_format vaf;
6455 va_list args;
6456
6457 va_start(args, fmt);
6458
6459 vaf.fmt = fmt;
6460 vaf.va = &args;
6461
6462 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6463 printk("%sata%u.%02u: %pV",
6464 level, link->ap->print_id, link->pmp, &vaf);
6465 else
6466 printk("%sata%u: %pV",
6467 level, link->ap->print_id, &vaf);
6468
6469 va_end(args);
6470 }
6471 EXPORT_SYMBOL(ata_link_printk);
6472
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)6473 void ata_dev_printk(const struct ata_device *dev, const char *level,
6474 const char *fmt, ...)
6475 {
6476 struct va_format vaf;
6477 va_list args;
6478
6479 va_start(args, fmt);
6480
6481 vaf.fmt = fmt;
6482 vaf.va = &args;
6483
6484 printk("%sata%u.%02u: %pV",
6485 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6486 &vaf);
6487
6488 va_end(args);
6489 }
6490 EXPORT_SYMBOL(ata_dev_printk);
6491
ata_print_version(const struct device * dev,const char * version)6492 void ata_print_version(const struct device *dev, const char *version)
6493 {
6494 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6495 }
6496 EXPORT_SYMBOL(ata_print_version);
6497