1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Common code for 32 and 64-bit NUMA */
3 #include <linux/acpi.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/string.h>
7 #include <linux/init.h>
8 #include <linux/memblock.h>
9 #include <linux/mmzone.h>
10 #include <linux/ctype.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14
15 #include <asm/e820/api.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/amd_nb.h>
19
20 #include "numa_internal.h"
21
22 int numa_off;
23 nodemask_t numa_nodes_parsed __initdata;
24
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
27
28 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
29 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
30
31 static int numa_distance_cnt;
32 static u8 *numa_distance;
33
numa_setup(char * opt)34 static __init int numa_setup(char *opt)
35 {
36 if (!opt)
37 return -EINVAL;
38 if (!strncmp(opt, "off", 3))
39 numa_off = 1;
40 if (!strncmp(opt, "fake=", 5))
41 return numa_emu_cmdline(opt + 5);
42 if (!strncmp(opt, "noacpi", 6))
43 disable_srat();
44 if (!strncmp(opt, "nohmat", 6))
45 disable_hmat();
46 return 0;
47 }
48 early_param("numa", numa_setup);
49
50 /*
51 * apicid, cpu, node mappings
52 */
53 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
54 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
55 };
56
numa_cpu_node(int cpu)57 int numa_cpu_node(int cpu)
58 {
59 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
60
61 if (apicid != BAD_APICID)
62 return __apicid_to_node[apicid];
63 return NUMA_NO_NODE;
64 }
65
66 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
67 EXPORT_SYMBOL(node_to_cpumask_map);
68
69 /*
70 * Map cpu index to node index
71 */
72 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
73 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
74
numa_set_node(int cpu,int node)75 void numa_set_node(int cpu, int node)
76 {
77 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
78
79 /* early setting, no percpu area yet */
80 if (cpu_to_node_map) {
81 cpu_to_node_map[cpu] = node;
82 return;
83 }
84
85 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
86 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
87 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
88 dump_stack();
89 return;
90 }
91 #endif
92 per_cpu(x86_cpu_to_node_map, cpu) = node;
93
94 set_cpu_numa_node(cpu, node);
95 }
96
numa_clear_node(int cpu)97 void numa_clear_node(int cpu)
98 {
99 numa_set_node(cpu, NUMA_NO_NODE);
100 }
101
102 /*
103 * Allocate node_to_cpumask_map based on number of available nodes
104 * Requires node_possible_map to be valid.
105 *
106 * Note: cpumask_of_node() is not valid until after this is done.
107 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
108 */
setup_node_to_cpumask_map(void)109 void __init setup_node_to_cpumask_map(void)
110 {
111 unsigned int node;
112
113 /* setup nr_node_ids if not done yet */
114 if (nr_node_ids == MAX_NUMNODES)
115 setup_nr_node_ids();
116
117 /* allocate the map */
118 for (node = 0; node < nr_node_ids; node++)
119 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
120
121 /* cpumask_of_node() will now work */
122 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
123 }
124
numa_add_memblk_to(int nid,u64 start,u64 end,struct numa_meminfo * mi)125 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
126 struct numa_meminfo *mi)
127 {
128 /* ignore zero length blks */
129 if (start == end)
130 return 0;
131
132 /* whine about and ignore invalid blks */
133 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
134 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
135 nid, start, end - 1);
136 return 0;
137 }
138
139 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
140 pr_err("too many memblk ranges\n");
141 return -EINVAL;
142 }
143
144 mi->blk[mi->nr_blks].start = start;
145 mi->blk[mi->nr_blks].end = end;
146 mi->blk[mi->nr_blks].nid = nid;
147 mi->nr_blks++;
148 return 0;
149 }
150
151 /**
152 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
153 * @idx: Index of memblk to remove
154 * @mi: numa_meminfo to remove memblk from
155 *
156 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
157 * decrementing @mi->nr_blks.
158 */
numa_remove_memblk_from(int idx,struct numa_meminfo * mi)159 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
160 {
161 mi->nr_blks--;
162 memmove(&mi->blk[idx], &mi->blk[idx + 1],
163 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
164 }
165
166 /**
167 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
168 * @dst: numa_meminfo to append block to
169 * @idx: Index of memblk to remove
170 * @src: numa_meminfo to remove memblk from
171 */
numa_move_tail_memblk(struct numa_meminfo * dst,int idx,struct numa_meminfo * src)172 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
173 struct numa_meminfo *src)
174 {
175 dst->blk[dst->nr_blks++] = src->blk[idx];
176 numa_remove_memblk_from(idx, src);
177 }
178
179 /**
180 * numa_add_memblk - Add one numa_memblk to numa_meminfo
181 * @nid: NUMA node ID of the new memblk
182 * @start: Start address of the new memblk
183 * @end: End address of the new memblk
184 *
185 * Add a new memblk to the default numa_meminfo.
186 *
187 * RETURNS:
188 * 0 on success, -errno on failure.
189 */
numa_add_memblk(int nid,u64 start,u64 end)190 int __init numa_add_memblk(int nid, u64 start, u64 end)
191 {
192 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
193 }
194
195 /* Allocate NODE_DATA for a node on the local memory */
alloc_node_data(int nid)196 static void __init alloc_node_data(int nid)
197 {
198 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
199 u64 nd_pa;
200 void *nd;
201 int tnid;
202
203 /*
204 * Allocate node data. Try node-local memory and then any node.
205 * Never allocate in DMA zone.
206 */
207 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
208 if (!nd_pa) {
209 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
210 nd_size, nid);
211 return;
212 }
213 nd = __va(nd_pa);
214
215 /* report and initialize */
216 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
217 nd_pa, nd_pa + nd_size - 1);
218 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
219 if (tnid != nid)
220 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
221
222 node_data[nid] = nd;
223 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
224
225 node_set_online(nid);
226 }
227
228 /**
229 * numa_cleanup_meminfo - Cleanup a numa_meminfo
230 * @mi: numa_meminfo to clean up
231 *
232 * Sanitize @mi by merging and removing unnecessary memblks. Also check for
233 * conflicts and clear unused memblks.
234 *
235 * RETURNS:
236 * 0 on success, -errno on failure.
237 */
numa_cleanup_meminfo(struct numa_meminfo * mi)238 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
239 {
240 const u64 low = 0;
241 const u64 high = PFN_PHYS(max_pfn);
242 int i, j, k;
243
244 /* first, trim all entries */
245 for (i = 0; i < mi->nr_blks; i++) {
246 struct numa_memblk *bi = &mi->blk[i];
247
248 /* move / save reserved memory ranges */
249 if (!memblock_overlaps_region(&memblock.memory,
250 bi->start, bi->end - bi->start)) {
251 numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
252 continue;
253 }
254
255 /* make sure all non-reserved blocks are inside the limits */
256 bi->start = max(bi->start, low);
257 bi->end = min(bi->end, high);
258
259 /* and there's no empty block */
260 if (bi->start >= bi->end)
261 numa_remove_memblk_from(i--, mi);
262 }
263
264 /* merge neighboring / overlapping entries */
265 for (i = 0; i < mi->nr_blks; i++) {
266 struct numa_memblk *bi = &mi->blk[i];
267
268 for (j = i + 1; j < mi->nr_blks; j++) {
269 struct numa_memblk *bj = &mi->blk[j];
270 u64 start, end;
271
272 /*
273 * See whether there are overlapping blocks. Whine
274 * about but allow overlaps of the same nid. They
275 * will be merged below.
276 */
277 if (bi->end > bj->start && bi->start < bj->end) {
278 if (bi->nid != bj->nid) {
279 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
280 bi->nid, bi->start, bi->end - 1,
281 bj->nid, bj->start, bj->end - 1);
282 return -EINVAL;
283 }
284 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
285 bi->nid, bi->start, bi->end - 1,
286 bj->start, bj->end - 1);
287 }
288
289 /*
290 * Join together blocks on the same node, holes
291 * between which don't overlap with memory on other
292 * nodes.
293 */
294 if (bi->nid != bj->nid)
295 continue;
296 start = min(bi->start, bj->start);
297 end = max(bi->end, bj->end);
298 for (k = 0; k < mi->nr_blks; k++) {
299 struct numa_memblk *bk = &mi->blk[k];
300
301 if (bi->nid == bk->nid)
302 continue;
303 if (start < bk->end && end > bk->start)
304 break;
305 }
306 if (k < mi->nr_blks)
307 continue;
308 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
309 bi->nid, bi->start, bi->end - 1, bj->start,
310 bj->end - 1, start, end - 1);
311 bi->start = start;
312 bi->end = end;
313 numa_remove_memblk_from(j--, mi);
314 }
315 }
316
317 /* clear unused ones */
318 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
319 mi->blk[i].start = mi->blk[i].end = 0;
320 mi->blk[i].nid = NUMA_NO_NODE;
321 }
322
323 return 0;
324 }
325
326 /*
327 * Set nodes, which have memory in @mi, in *@nodemask.
328 */
numa_nodemask_from_meminfo(nodemask_t * nodemask,const struct numa_meminfo * mi)329 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
330 const struct numa_meminfo *mi)
331 {
332 int i;
333
334 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
335 if (mi->blk[i].start != mi->blk[i].end &&
336 mi->blk[i].nid != NUMA_NO_NODE)
337 node_set(mi->blk[i].nid, *nodemask);
338 }
339
340 /**
341 * numa_reset_distance - Reset NUMA distance table
342 *
343 * The current table is freed. The next numa_set_distance() call will
344 * create a new one.
345 */
numa_reset_distance(void)346 void __init numa_reset_distance(void)
347 {
348 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
349
350 /* numa_distance could be 1LU marking allocation failure, test cnt */
351 if (numa_distance_cnt)
352 memblock_free(__pa(numa_distance), size);
353 numa_distance_cnt = 0;
354 numa_distance = NULL; /* enable table creation */
355 }
356
numa_alloc_distance(void)357 static int __init numa_alloc_distance(void)
358 {
359 nodemask_t nodes_parsed;
360 size_t size;
361 int i, j, cnt = 0;
362 u64 phys;
363
364 /* size the new table and allocate it */
365 nodes_parsed = numa_nodes_parsed;
366 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
367
368 for_each_node_mask(i, nodes_parsed)
369 cnt = i;
370 cnt++;
371 size = cnt * cnt * sizeof(numa_distance[0]);
372
373 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
374 size, PAGE_SIZE);
375 if (!phys) {
376 pr_warn("Warning: can't allocate distance table!\n");
377 /* don't retry until explicitly reset */
378 numa_distance = (void *)1LU;
379 return -ENOMEM;
380 }
381 memblock_reserve(phys, size);
382
383 numa_distance = __va(phys);
384 numa_distance_cnt = cnt;
385
386 /* fill with the default distances */
387 for (i = 0; i < cnt; i++)
388 for (j = 0; j < cnt; j++)
389 numa_distance[i * cnt + j] = i == j ?
390 LOCAL_DISTANCE : REMOTE_DISTANCE;
391 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
392
393 return 0;
394 }
395
396 /**
397 * numa_set_distance - Set NUMA distance from one NUMA to another
398 * @from: the 'from' node to set distance
399 * @to: the 'to' node to set distance
400 * @distance: NUMA distance
401 *
402 * Set the distance from node @from to @to to @distance. If distance table
403 * doesn't exist, one which is large enough to accommodate all the currently
404 * known nodes will be created.
405 *
406 * If such table cannot be allocated, a warning is printed and further
407 * calls are ignored until the distance table is reset with
408 * numa_reset_distance().
409 *
410 * If @from or @to is higher than the highest known node or lower than zero
411 * at the time of table creation or @distance doesn't make sense, the call
412 * is ignored.
413 * This is to allow simplification of specific NUMA config implementations.
414 */
numa_set_distance(int from,int to,int distance)415 void __init numa_set_distance(int from, int to, int distance)
416 {
417 if (!numa_distance && numa_alloc_distance() < 0)
418 return;
419
420 if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
421 from < 0 || to < 0) {
422 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
423 from, to, distance);
424 return;
425 }
426
427 if ((u8)distance != distance ||
428 (from == to && distance != LOCAL_DISTANCE)) {
429 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
430 from, to, distance);
431 return;
432 }
433
434 numa_distance[from * numa_distance_cnt + to] = distance;
435 }
436
__node_distance(int from,int to)437 int __node_distance(int from, int to)
438 {
439 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
440 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
441 return numa_distance[from * numa_distance_cnt + to];
442 }
443 EXPORT_SYMBOL(__node_distance);
444
445 /*
446 * Sanity check to catch more bad NUMA configurations (they are amazingly
447 * common). Make sure the nodes cover all memory.
448 */
numa_meminfo_cover_memory(const struct numa_meminfo * mi)449 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
450 {
451 u64 numaram, e820ram;
452 int i;
453
454 numaram = 0;
455 for (i = 0; i < mi->nr_blks; i++) {
456 u64 s = mi->blk[i].start >> PAGE_SHIFT;
457 u64 e = mi->blk[i].end >> PAGE_SHIFT;
458 numaram += e - s;
459 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
460 if ((s64)numaram < 0)
461 numaram = 0;
462 }
463
464 e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
465
466 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
467 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
468 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
469 (numaram << PAGE_SHIFT) >> 20,
470 (e820ram << PAGE_SHIFT) >> 20);
471 return false;
472 }
473 return true;
474 }
475
476 /*
477 * Mark all currently memblock-reserved physical memory (which covers the
478 * kernel's own memory ranges) as hot-unswappable.
479 */
numa_clear_kernel_node_hotplug(void)480 static void __init numa_clear_kernel_node_hotplug(void)
481 {
482 nodemask_t reserved_nodemask = NODE_MASK_NONE;
483 struct memblock_region *mb_region;
484 int i;
485
486 /*
487 * We have to do some preprocessing of memblock regions, to
488 * make them suitable for reservation.
489 *
490 * At this time, all memory regions reserved by memblock are
491 * used by the kernel, but those regions are not split up
492 * along node boundaries yet, and don't necessarily have their
493 * node ID set yet either.
494 *
495 * So iterate over all memory known to the x86 architecture,
496 * and use those ranges to set the nid in memblock.reserved.
497 * This will split up the memblock regions along node
498 * boundaries and will set the node IDs as well.
499 */
500 for (i = 0; i < numa_meminfo.nr_blks; i++) {
501 struct numa_memblk *mb = numa_meminfo.blk + i;
502 int ret;
503
504 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
505 WARN_ON_ONCE(ret);
506 }
507
508 /*
509 * Now go over all reserved memblock regions, to construct a
510 * node mask of all kernel reserved memory areas.
511 *
512 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
513 * numa_meminfo might not include all memblock.reserved
514 * memory ranges, because quirks such as trim_snb_memory()
515 * reserve specific pages for Sandy Bridge graphics. ]
516 */
517 for_each_reserved_mem_region(mb_region) {
518 int nid = memblock_get_region_node(mb_region);
519
520 if (nid != MAX_NUMNODES)
521 node_set(nid, reserved_nodemask);
522 }
523
524 /*
525 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
526 * belonging to the reserved node mask.
527 *
528 * Note that this will include memory regions that reside
529 * on nodes that contain kernel memory - entire nodes
530 * become hot-unpluggable:
531 */
532 for (i = 0; i < numa_meminfo.nr_blks; i++) {
533 struct numa_memblk *mb = numa_meminfo.blk + i;
534
535 if (!node_isset(mb->nid, reserved_nodemask))
536 continue;
537
538 memblock_clear_hotplug(mb->start, mb->end - mb->start);
539 }
540 }
541
numa_register_memblks(struct numa_meminfo * mi)542 static int __init numa_register_memblks(struct numa_meminfo *mi)
543 {
544 int i, nid;
545
546 /* Account for nodes with cpus and no memory */
547 node_possible_map = numa_nodes_parsed;
548 numa_nodemask_from_meminfo(&node_possible_map, mi);
549 if (WARN_ON(nodes_empty(node_possible_map)))
550 return -EINVAL;
551
552 for (i = 0; i < mi->nr_blks; i++) {
553 struct numa_memblk *mb = &mi->blk[i];
554 memblock_set_node(mb->start, mb->end - mb->start,
555 &memblock.memory, mb->nid);
556 }
557
558 /*
559 * At very early time, the kernel have to use some memory such as
560 * loading the kernel image. We cannot prevent this anyway. So any
561 * node the kernel resides in should be un-hotpluggable.
562 *
563 * And when we come here, alloc node data won't fail.
564 */
565 numa_clear_kernel_node_hotplug();
566
567 /*
568 * If sections array is gonna be used for pfn -> nid mapping, check
569 * whether its granularity is fine enough.
570 */
571 if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
572 unsigned long pfn_align = node_map_pfn_alignment();
573
574 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
575 pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
576 PFN_PHYS(pfn_align) >> 20,
577 PFN_PHYS(PAGES_PER_SECTION) >> 20);
578 return -EINVAL;
579 }
580 }
581 if (!numa_meminfo_cover_memory(mi))
582 return -EINVAL;
583
584 /* Finally register nodes. */
585 for_each_node_mask(nid, node_possible_map) {
586 u64 start = PFN_PHYS(max_pfn);
587 u64 end = 0;
588
589 for (i = 0; i < mi->nr_blks; i++) {
590 if (nid != mi->blk[i].nid)
591 continue;
592 start = min(mi->blk[i].start, start);
593 end = max(mi->blk[i].end, end);
594 }
595
596 if (start >= end)
597 continue;
598
599 /*
600 * Don't confuse VM with a node that doesn't have the
601 * minimum amount of memory:
602 */
603 if (end && (end - start) < NODE_MIN_SIZE)
604 continue;
605
606 alloc_node_data(nid);
607 }
608
609 /* Dump memblock with node info and return. */
610 memblock_dump_all();
611 return 0;
612 }
613
614 /*
615 * There are unfortunately some poorly designed mainboards around that
616 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
617 * mapping. To avoid this fill in the mapping for all possible CPUs,
618 * as the number of CPUs is not known yet. We round robin the existing
619 * nodes.
620 */
numa_init_array(void)621 static void __init numa_init_array(void)
622 {
623 int rr, i;
624
625 rr = first_node(node_online_map);
626 for (i = 0; i < nr_cpu_ids; i++) {
627 if (early_cpu_to_node(i) != NUMA_NO_NODE)
628 continue;
629 numa_set_node(i, rr);
630 rr = next_node_in(rr, node_online_map);
631 }
632 }
633
numa_init(int (* init_func)(void))634 static int __init numa_init(int (*init_func)(void))
635 {
636 int i;
637 int ret;
638
639 for (i = 0; i < MAX_LOCAL_APIC; i++)
640 set_apicid_to_node(i, NUMA_NO_NODE);
641
642 nodes_clear(numa_nodes_parsed);
643 nodes_clear(node_possible_map);
644 nodes_clear(node_online_map);
645 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
646 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
647 MAX_NUMNODES));
648 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
649 MAX_NUMNODES));
650 /* In case that parsing SRAT failed. */
651 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
652 numa_reset_distance();
653
654 ret = init_func();
655 if (ret < 0)
656 return ret;
657
658 /*
659 * We reset memblock back to the top-down direction
660 * here because if we configured ACPI_NUMA, we have
661 * parsed SRAT in init_func(). It is ok to have the
662 * reset here even if we did't configure ACPI_NUMA
663 * or acpi numa init fails and fallbacks to dummy
664 * numa init.
665 */
666 memblock_set_bottom_up(false);
667
668 ret = numa_cleanup_meminfo(&numa_meminfo);
669 if (ret < 0)
670 return ret;
671
672 numa_emulation(&numa_meminfo, numa_distance_cnt);
673
674 ret = numa_register_memblks(&numa_meminfo);
675 if (ret < 0)
676 return ret;
677
678 for (i = 0; i < nr_cpu_ids; i++) {
679 int nid = early_cpu_to_node(i);
680
681 if (nid == NUMA_NO_NODE)
682 continue;
683 if (!node_online(nid))
684 numa_clear_node(i);
685 }
686 numa_init_array();
687
688 return 0;
689 }
690
691 /**
692 * dummy_numa_init - Fallback dummy NUMA init
693 *
694 * Used if there's no underlying NUMA architecture, NUMA initialization
695 * fails, or NUMA is disabled on the command line.
696 *
697 * Must online at least one node and add memory blocks that cover all
698 * allowed memory. This function must not fail.
699 */
dummy_numa_init(void)700 static int __init dummy_numa_init(void)
701 {
702 printk(KERN_INFO "%s\n",
703 numa_off ? "NUMA turned off" : "No NUMA configuration found");
704 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
705 0LLU, PFN_PHYS(max_pfn) - 1);
706
707 node_set(0, numa_nodes_parsed);
708 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
709
710 return 0;
711 }
712
713 /**
714 * x86_numa_init - Initialize NUMA
715 *
716 * Try each configured NUMA initialization method until one succeeds. The
717 * last fallback is dummy single node config encompassing whole memory and
718 * never fails.
719 */
x86_numa_init(void)720 void __init x86_numa_init(void)
721 {
722 if (!numa_off) {
723 #ifdef CONFIG_ACPI_NUMA
724 if (!numa_init(x86_acpi_numa_init))
725 return;
726 #endif
727 #ifdef CONFIG_AMD_NUMA
728 if (!numa_init(amd_numa_init))
729 return;
730 #endif
731 }
732
733 numa_init(dummy_numa_init);
734 }
735
init_memory_less_node(int nid)736 static void __init init_memory_less_node(int nid)
737 {
738 /* Allocate and initialize node data. Memory-less node is now online.*/
739 alloc_node_data(nid);
740 free_area_init_memoryless_node(nid);
741
742 /*
743 * All zonelists will be built later in start_kernel() after per cpu
744 * areas are initialized.
745 */
746 }
747
748 /*
749 * A node may exist which has one or more Generic Initiators but no CPUs and no
750 * memory.
751 *
752 * This function must be called after init_cpu_to_node(), to ensure that any
753 * memoryless CPU nodes have already been brought online, and before the
754 * node_data[nid] is needed for zone list setup in build_all_zonelists().
755 *
756 * When this function is called, any nodes containing either memory and/or CPUs
757 * will already be online and there is no need to do anything extra, even if
758 * they also contain one or more Generic Initiators.
759 */
init_gi_nodes(void)760 void __init init_gi_nodes(void)
761 {
762 int nid;
763
764 for_each_node_state(nid, N_GENERIC_INITIATOR)
765 if (!node_online(nid))
766 init_memory_less_node(nid);
767 }
768
769 /*
770 * Setup early cpu_to_node.
771 *
772 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
773 * and apicid_to_node[] tables have valid entries for a CPU.
774 * This means we skip cpu_to_node[] initialisation for NUMA
775 * emulation and faking node case (when running a kernel compiled
776 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
777 * is already initialized in a round robin manner at numa_init_array,
778 * prior to this call, and this initialization is good enough
779 * for the fake NUMA cases.
780 *
781 * Called before the per_cpu areas are setup.
782 */
init_cpu_to_node(void)783 void __init init_cpu_to_node(void)
784 {
785 int cpu;
786 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
787
788 BUG_ON(cpu_to_apicid == NULL);
789
790 for_each_possible_cpu(cpu) {
791 int node = numa_cpu_node(cpu);
792
793 if (node == NUMA_NO_NODE)
794 continue;
795
796 if (!node_online(node))
797 init_memory_less_node(node);
798
799 numa_set_node(cpu, node);
800 }
801 }
802
803 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
804
805 # ifndef CONFIG_NUMA_EMU
numa_add_cpu(int cpu)806 void numa_add_cpu(int cpu)
807 {
808 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
809 }
810
numa_remove_cpu(int cpu)811 void numa_remove_cpu(int cpu)
812 {
813 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
814 }
815 # endif /* !CONFIG_NUMA_EMU */
816
817 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
818
__cpu_to_node(int cpu)819 int __cpu_to_node(int cpu)
820 {
821 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
822 printk(KERN_WARNING
823 "cpu_to_node(%d): usage too early!\n", cpu);
824 dump_stack();
825 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
826 }
827 return per_cpu(x86_cpu_to_node_map, cpu);
828 }
829 EXPORT_SYMBOL(__cpu_to_node);
830
831 /*
832 * Same function as cpu_to_node() but used if called before the
833 * per_cpu areas are setup.
834 */
early_cpu_to_node(int cpu)835 int early_cpu_to_node(int cpu)
836 {
837 if (early_per_cpu_ptr(x86_cpu_to_node_map))
838 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
839
840 if (!cpu_possible(cpu)) {
841 printk(KERN_WARNING
842 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
843 dump_stack();
844 return NUMA_NO_NODE;
845 }
846 return per_cpu(x86_cpu_to_node_map, cpu);
847 }
848
debug_cpumask_set_cpu(int cpu,int node,bool enable)849 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
850 {
851 struct cpumask *mask;
852
853 if (node == NUMA_NO_NODE) {
854 /* early_cpu_to_node() already emits a warning and trace */
855 return;
856 }
857 mask = node_to_cpumask_map[node];
858 if (!mask) {
859 pr_err("node_to_cpumask_map[%i] NULL\n", node);
860 dump_stack();
861 return;
862 }
863
864 if (enable)
865 cpumask_set_cpu(cpu, mask);
866 else
867 cpumask_clear_cpu(cpu, mask);
868
869 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
870 enable ? "numa_add_cpu" : "numa_remove_cpu",
871 cpu, node, cpumask_pr_args(mask));
872 return;
873 }
874
875 # ifndef CONFIG_NUMA_EMU
numa_set_cpumask(int cpu,bool enable)876 static void numa_set_cpumask(int cpu, bool enable)
877 {
878 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
879 }
880
numa_add_cpu(int cpu)881 void numa_add_cpu(int cpu)
882 {
883 numa_set_cpumask(cpu, true);
884 }
885
numa_remove_cpu(int cpu)886 void numa_remove_cpu(int cpu)
887 {
888 numa_set_cpumask(cpu, false);
889 }
890 # endif /* !CONFIG_NUMA_EMU */
891
892 /*
893 * Returns a pointer to the bitmask of CPUs on Node 'node'.
894 */
cpumask_of_node(int node)895 const struct cpumask *cpumask_of_node(int node)
896 {
897 if ((unsigned)node >= nr_node_ids) {
898 printk(KERN_WARNING
899 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
900 node, nr_node_ids);
901 dump_stack();
902 return cpu_none_mask;
903 }
904 if (node_to_cpumask_map[node] == NULL) {
905 printk(KERN_WARNING
906 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
907 node);
908 dump_stack();
909 return cpu_online_mask;
910 }
911 return node_to_cpumask_map[node];
912 }
913 EXPORT_SYMBOL(cpumask_of_node);
914
915 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
916
917 #ifdef CONFIG_NUMA_KEEP_MEMINFO
meminfo_to_nid(struct numa_meminfo * mi,u64 start)918 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
919 {
920 int i;
921
922 for (i = 0; i < mi->nr_blks; i++)
923 if (mi->blk[i].start <= start && mi->blk[i].end > start)
924 return mi->blk[i].nid;
925 return NUMA_NO_NODE;
926 }
927
phys_to_target_node(phys_addr_t start)928 int phys_to_target_node(phys_addr_t start)
929 {
930 int nid = meminfo_to_nid(&numa_meminfo, start);
931
932 /*
933 * Prefer online nodes, but if reserved memory might be
934 * hot-added continue the search with reserved ranges.
935 */
936 if (nid != NUMA_NO_NODE)
937 return nid;
938
939 return meminfo_to_nid(&numa_reserved_meminfo, start);
940 }
941 EXPORT_SYMBOL_GPL(phys_to_target_node);
942
memory_add_physaddr_to_nid(u64 start)943 int memory_add_physaddr_to_nid(u64 start)
944 {
945 int nid = meminfo_to_nid(&numa_meminfo, start);
946
947 if (nid == NUMA_NO_NODE)
948 nid = numa_meminfo.blk[0].nid;
949 return nid;
950 }
951 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
952 #endif
953