1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/extable.h>
21 #include <asm/kprobes.h>
22 #include <asm/kvm_asm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/fpsimd.h>
27 #include <asm/debug-monitors.h>
28 #include <asm/processor.h>
29 #include <asm/thread_info.h>
30 
31 extern const char __hyp_panic_string[];
32 
33 extern struct exception_table_entry __start___kvm_ex_table;
34 extern struct exception_table_entry __stop___kvm_ex_table;
35 
36 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)37 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
38 {
39 	/*
40 	 * When the system doesn't support FP/SIMD, we cannot rely on
41 	 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
42 	 * abort on the very first access to FP and thus we should never
43 	 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
44 	 * trap the accesses.
45 	 */
46 	if (!system_supports_fpsimd() ||
47 	    vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
48 		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
49 				      KVM_ARM64_FP_HOST);
50 
51 	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
52 }
53 
54 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)55 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
56 {
57 	if (!vcpu_el1_is_32bit(vcpu))
58 		return;
59 
60 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
61 }
62 
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)63 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
64 {
65 	/*
66 	 * We are about to set CPTR_EL2.TFP to trap all floating point
67 	 * register accesses to EL2, however, the ARM ARM clearly states that
68 	 * traps are only taken to EL2 if the operation would not otherwise
69 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
70 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
71 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
72 	 * it will cause an exception.
73 	 */
74 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
75 		write_sysreg(1 << 30, fpexc32_el2);
76 		isb();
77 	}
78 }
79 
__activate_traps_common(struct kvm_vcpu * vcpu)80 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
81 {
82 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
83 	write_sysreg(1 << 15, hstr_el2);
84 
85 	/*
86 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
87 	 * PMSELR_EL0 to make sure it never contains the cycle
88 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
89 	 * EL1 instead of being trapped to EL2.
90 	 */
91 	write_sysreg(0, pmselr_el0);
92 	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
93 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
94 }
95 
__deactivate_traps_common(void)96 static inline void __deactivate_traps_common(void)
97 {
98 	write_sysreg(0, hstr_el2);
99 	write_sysreg(0, pmuserenr_el0);
100 }
101 
___activate_traps(struct kvm_vcpu * vcpu)102 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
103 {
104 	u64 hcr = vcpu->arch.hcr_el2;
105 
106 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
107 		hcr |= HCR_TVM;
108 
109 	write_sysreg(hcr, hcr_el2);
110 
111 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
112 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
113 }
114 
___deactivate_traps(struct kvm_vcpu * vcpu)115 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
116 {
117 	/*
118 	 * If we pended a virtual abort, preserve it until it gets
119 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
120 	 * the crucial bit is "On taking a vSError interrupt,
121 	 * HCR_EL2.VSE is cleared to 0."
122 	 */
123 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
124 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
125 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
126 	}
127 }
128 
__translate_far_to_hpfar(u64 far,u64 * hpfar)129 static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
130 {
131 	u64 par, tmp;
132 
133 	/*
134 	 * Resolve the IPA the hard way using the guest VA.
135 	 *
136 	 * Stage-1 translation already validated the memory access
137 	 * rights. As such, we can use the EL1 translation regime, and
138 	 * don't have to distinguish between EL0 and EL1 access.
139 	 *
140 	 * We do need to save/restore PAR_EL1 though, as we haven't
141 	 * saved the guest context yet, and we may return early...
142 	 */
143 	par = read_sysreg_par();
144 	if (!__kvm_at("s1e1r", far))
145 		tmp = read_sysreg_par();
146 	else
147 		tmp = SYS_PAR_EL1_F; /* back to the guest */
148 	write_sysreg(par, par_el1);
149 
150 	if (unlikely(tmp & SYS_PAR_EL1_F))
151 		return false; /* Translation failed, back to guest */
152 
153 	/* Convert PAR to HPFAR format */
154 	*hpfar = PAR_TO_HPFAR(tmp);
155 	return true;
156 }
157 
__populate_fault_info(struct kvm_vcpu * vcpu)158 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
159 {
160 	u8 ec;
161 	u64 esr;
162 	u64 hpfar, far;
163 
164 	esr = vcpu->arch.fault.esr_el2;
165 	ec = ESR_ELx_EC(esr);
166 
167 	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
168 		return true;
169 
170 	far = read_sysreg_el2(SYS_FAR);
171 
172 	/*
173 	 * The HPFAR can be invalid if the stage 2 fault did not
174 	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
175 	 * bit is clear) and one of the two following cases are true:
176 	 *   1. The fault was due to a permission fault
177 	 *   2. The processor carries errata 834220
178 	 *
179 	 * Therefore, for all non S1PTW faults where we either have a
180 	 * permission fault or the errata workaround is enabled, we
181 	 * resolve the IPA using the AT instruction.
182 	 */
183 	if (!(esr & ESR_ELx_S1PTW) &&
184 	    (cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
185 	     (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
186 		if (!__translate_far_to_hpfar(far, &hpfar))
187 			return false;
188 	} else {
189 		hpfar = read_sysreg(hpfar_el2);
190 	}
191 
192 	vcpu->arch.fault.far_el2 = far;
193 	vcpu->arch.fault.hpfar_el2 = hpfar;
194 	return true;
195 }
196 
197 /* Check for an FPSIMD/SVE trap and handle as appropriate */
__hyp_handle_fpsimd(struct kvm_vcpu * vcpu)198 static inline bool __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
199 {
200 	bool vhe, sve_guest, sve_host;
201 	u8 esr_ec;
202 
203 	if (!system_supports_fpsimd())
204 		return false;
205 
206 	/*
207 	 * Currently system_supports_sve() currently implies has_vhe(),
208 	 * so the check is redundant. However, has_vhe() can be determined
209 	 * statically and helps the compiler remove dead code.
210 	 */
211 	if (has_vhe() && system_supports_sve()) {
212 		sve_guest = vcpu_has_sve(vcpu);
213 		sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
214 		vhe = true;
215 	} else {
216 		sve_guest = false;
217 		sve_host = false;
218 		vhe = has_vhe();
219 	}
220 
221 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
222 	if (esr_ec != ESR_ELx_EC_FP_ASIMD &&
223 	    esr_ec != ESR_ELx_EC_SVE)
224 		return false;
225 
226 	/* Don't handle SVE traps for non-SVE vcpus here: */
227 	if (!sve_guest)
228 		if (esr_ec != ESR_ELx_EC_FP_ASIMD)
229 			return false;
230 
231 	/* Valid trap.  Switch the context: */
232 
233 	if (vhe) {
234 		u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
235 
236 		if (sve_guest)
237 			reg |= CPACR_EL1_ZEN;
238 
239 		write_sysreg(reg, cpacr_el1);
240 	} else {
241 		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
242 			     cptr_el2);
243 	}
244 
245 	isb();
246 
247 	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
248 		/*
249 		 * In the SVE case, VHE is assumed: it is enforced by
250 		 * Kconfig and kvm_arch_init().
251 		 */
252 		if (sve_host) {
253 			struct thread_struct *thread = container_of(
254 				vcpu->arch.host_fpsimd_state,
255 				struct thread_struct, uw.fpsimd_state);
256 
257 			sve_save_state(sve_pffr(thread),
258 				       &vcpu->arch.host_fpsimd_state->fpsr);
259 		} else {
260 			__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
261 		}
262 
263 		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
264 	}
265 
266 	if (sve_guest) {
267 		sve_load_state(vcpu_sve_pffr(vcpu),
268 			       &vcpu->arch.ctxt.fp_regs.fpsr,
269 			       sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
270 		write_sysreg_s(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR_EL12);
271 	} else {
272 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
273 	}
274 
275 	/* Skip restoring fpexc32 for AArch64 guests */
276 	if (!(read_sysreg(hcr_el2) & HCR_RW))
277 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
278 
279 	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
280 
281 	return true;
282 }
283 
handle_tx2_tvm(struct kvm_vcpu * vcpu)284 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
285 {
286 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
287 	int rt = kvm_vcpu_sys_get_rt(vcpu);
288 	u64 val = vcpu_get_reg(vcpu, rt);
289 
290 	/*
291 	 * The normal sysreg handling code expects to see the traps,
292 	 * let's not do anything here.
293 	 */
294 	if (vcpu->arch.hcr_el2 & HCR_TVM)
295 		return false;
296 
297 	switch (sysreg) {
298 	case SYS_SCTLR_EL1:
299 		write_sysreg_el1(val, SYS_SCTLR);
300 		break;
301 	case SYS_TTBR0_EL1:
302 		write_sysreg_el1(val, SYS_TTBR0);
303 		break;
304 	case SYS_TTBR1_EL1:
305 		write_sysreg_el1(val, SYS_TTBR1);
306 		break;
307 	case SYS_TCR_EL1:
308 		write_sysreg_el1(val, SYS_TCR);
309 		break;
310 	case SYS_ESR_EL1:
311 		write_sysreg_el1(val, SYS_ESR);
312 		break;
313 	case SYS_FAR_EL1:
314 		write_sysreg_el1(val, SYS_FAR);
315 		break;
316 	case SYS_AFSR0_EL1:
317 		write_sysreg_el1(val, SYS_AFSR0);
318 		break;
319 	case SYS_AFSR1_EL1:
320 		write_sysreg_el1(val, SYS_AFSR1);
321 		break;
322 	case SYS_MAIR_EL1:
323 		write_sysreg_el1(val, SYS_MAIR);
324 		break;
325 	case SYS_AMAIR_EL1:
326 		write_sysreg_el1(val, SYS_AMAIR);
327 		break;
328 	case SYS_CONTEXTIDR_EL1:
329 		write_sysreg_el1(val, SYS_CONTEXTIDR);
330 		break;
331 	default:
332 		return false;
333 	}
334 
335 	__kvm_skip_instr(vcpu);
336 	return true;
337 }
338 
esr_is_ptrauth_trap(u32 esr)339 static inline bool esr_is_ptrauth_trap(u32 esr)
340 {
341 	u32 ec = ESR_ELx_EC(esr);
342 
343 	if (ec == ESR_ELx_EC_PAC)
344 		return true;
345 
346 	if (ec != ESR_ELx_EC_SYS64)
347 		return false;
348 
349 	switch (esr_sys64_to_sysreg(esr)) {
350 	case SYS_APIAKEYLO_EL1:
351 	case SYS_APIAKEYHI_EL1:
352 	case SYS_APIBKEYLO_EL1:
353 	case SYS_APIBKEYHI_EL1:
354 	case SYS_APDAKEYLO_EL1:
355 	case SYS_APDAKEYHI_EL1:
356 	case SYS_APDBKEYLO_EL1:
357 	case SYS_APDBKEYHI_EL1:
358 	case SYS_APGAKEYLO_EL1:
359 	case SYS_APGAKEYHI_EL1:
360 		return true;
361 	}
362 
363 	return false;
364 }
365 
366 #define __ptrauth_save_key(ctxt, key)					\
367 	do {								\
368 	u64 __val;                                                      \
369 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
370 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
371 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
372 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
373 } while(0)
374 
375 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
376 
__hyp_handle_ptrauth(struct kvm_vcpu * vcpu)377 static inline bool __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
378 {
379 	struct kvm_cpu_context *ctxt;
380 	u64 val;
381 
382 	if (!vcpu_has_ptrauth(vcpu) ||
383 	    !esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
384 		return false;
385 
386 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
387 	__ptrauth_save_key(ctxt, APIA);
388 	__ptrauth_save_key(ctxt, APIB);
389 	__ptrauth_save_key(ctxt, APDA);
390 	__ptrauth_save_key(ctxt, APDB);
391 	__ptrauth_save_key(ctxt, APGA);
392 
393 	vcpu_ptrauth_enable(vcpu);
394 
395 	val = read_sysreg(hcr_el2);
396 	val |= (HCR_API | HCR_APK);
397 	write_sysreg(val, hcr_el2);
398 
399 	return true;
400 }
401 
402 /*
403  * Return true when we were able to fixup the guest exit and should return to
404  * the guest, false when we should restore the host state and return to the
405  * main run loop.
406  */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)407 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
408 {
409 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
410 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
411 
412 	/*
413 	 * We're using the raw exception code in order to only process
414 	 * the trap if no SError is pending. We will come back to the
415 	 * same PC once the SError has been injected, and replay the
416 	 * trapping instruction.
417 	 */
418 	if (*exit_code != ARM_EXCEPTION_TRAP)
419 		goto exit;
420 
421 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
422 	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
423 	    handle_tx2_tvm(vcpu))
424 		goto guest;
425 
426 	/*
427 	 * We trap the first access to the FP/SIMD to save the host context
428 	 * and restore the guest context lazily.
429 	 * If FP/SIMD is not implemented, handle the trap and inject an
430 	 * undefined instruction exception to the guest.
431 	 * Similarly for trapped SVE accesses.
432 	 */
433 	if (__hyp_handle_fpsimd(vcpu))
434 		goto guest;
435 
436 	if (__hyp_handle_ptrauth(vcpu))
437 		goto guest;
438 
439 	if (!__populate_fault_info(vcpu))
440 		goto guest;
441 
442 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
443 		bool valid;
444 
445 		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
446 			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
447 			kvm_vcpu_dabt_isvalid(vcpu) &&
448 			!kvm_vcpu_abt_issea(vcpu) &&
449 			!kvm_vcpu_abt_iss1tw(vcpu);
450 
451 		if (valid) {
452 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
453 
454 			if (ret == 1)
455 				goto guest;
456 
457 			/* Promote an illegal access to an SError.*/
458 			if (ret == -1)
459 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
460 
461 			goto exit;
462 		}
463 	}
464 
465 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
466 	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
467 	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
468 		int ret = __vgic_v3_perform_cpuif_access(vcpu);
469 
470 		if (ret == 1)
471 			goto guest;
472 	}
473 
474 exit:
475 	/* Return to the host kernel and handle the exit */
476 	return false;
477 
478 guest:
479 	/* Re-enter the guest */
480 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
481 	return true;
482 }
483 
__kvm_unexpected_el2_exception(void)484 static inline void __kvm_unexpected_el2_exception(void)
485 {
486 	extern char __guest_exit_panic[];
487 	unsigned long addr, fixup;
488 	struct exception_table_entry *entry, *end;
489 	unsigned long elr_el2 = read_sysreg(elr_el2);
490 
491 	entry = hyp_symbol_addr(__start___kvm_ex_table);
492 	end = hyp_symbol_addr(__stop___kvm_ex_table);
493 
494 	while (entry < end) {
495 		addr = (unsigned long)&entry->insn + entry->insn;
496 		fixup = (unsigned long)&entry->fixup + entry->fixup;
497 
498 		if (addr != elr_el2) {
499 			entry++;
500 			continue;
501 		}
502 
503 		write_sysreg(fixup, elr_el2);
504 		return;
505 	}
506 
507 	/* Trigger a panic after restoring the hyp context. */
508 	write_sysreg(__guest_exit_panic, elr_el2);
509 }
510 
511 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
512