1 /*
2 ** IA64 System Bus Adapter (SBA) I/O MMU manager
3 **
4 ** (c) Copyright 2002-2005 Alex Williamson
5 ** (c) Copyright 2002-2003 Grant Grundler
6 ** (c) Copyright 2002-2005 Hewlett-Packard Company
7 **
8 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
9 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10 **
11 ** This program is free software; you can redistribute it and/or modify
12 ** it under the terms of the GNU General Public License as published by
13 ** the Free Software Foundation; either version 2 of the License, or
14 ** (at your option) any later version.
15 **
16 **
17 ** This module initializes the IOC (I/O Controller) found on HP
18 ** McKinley machines and their successors.
19 **
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/acpi.h>
34 #include <linux/efi.h>
35 #include <linux/nodemask.h>
36 #include <linux/bitops.h> /* hweight64() */
37 #include <linux/crash_dump.h>
38 #include <linux/iommu-helper.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/prefetch.h>
41
42 #include <asm/delay.h> /* ia64_get_itc() */
43 #include <asm/io.h>
44 #include <asm/page.h> /* PAGE_OFFSET */
45 #include <asm/dma.h>
46
47 #include <asm/acpi-ext.h>
48
49 extern int swiotlb_late_init_with_default_size (size_t size);
50
51 #define PFX "IOC: "
52
53 /*
54 ** Enabling timing search of the pdir resource map. Output in /proc.
55 ** Disabled by default to optimize performance.
56 */
57 #undef PDIR_SEARCH_TIMING
58
59 /*
60 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
61 ** not defined, all DMA will be 32bit and go through the TLB.
62 ** There's potentially a conflict in the bio merge code with us
63 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
64 ** appears to give more performance than bio-level virtual merging, we'll
65 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
66 ** completely restrict DMA to the IOMMU.
67 */
68 #define ALLOW_IOV_BYPASS
69
70 /*
71 ** This option specifically allows/disallows bypassing scatterlists with
72 ** multiple entries. Coalescing these entries can allow better DMA streaming
73 ** and in some cases shows better performance than entirely bypassing the
74 ** IOMMU. Performance increase on the order of 1-2% sequential output/input
75 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
76 */
77 #undef ALLOW_IOV_BYPASS_SG
78
79 /*
80 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
81 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
82 ** disconnect on 4k boundaries and prevent such issues. If the device is
83 ** particularly aggressive, this option will keep the entire pdir valid such
84 ** that prefetching will hit a valid address. This could severely impact
85 ** error containment, and is therefore off by default. The page that is
86 ** used for spill-over is poisoned, so that should help debugging somewhat.
87 */
88 #undef FULL_VALID_PDIR
89
90 #define ENABLE_MARK_CLEAN
91
92 /*
93 ** The number of debug flags is a clue - this code is fragile. NOTE: since
94 ** tightening the use of res_lock the resource bitmap and actual pdir are no
95 ** longer guaranteed to stay in sync. The sanity checking code isn't going to
96 ** like that.
97 */
98 #undef DEBUG_SBA_INIT
99 #undef DEBUG_SBA_RUN
100 #undef DEBUG_SBA_RUN_SG
101 #undef DEBUG_SBA_RESOURCE
102 #undef ASSERT_PDIR_SANITY
103 #undef DEBUG_LARGE_SG_ENTRIES
104 #undef DEBUG_BYPASS
105
106 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
107 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
108 #endif
109
110 #define SBA_INLINE __inline__
111 /* #define SBA_INLINE */
112
113 #ifdef DEBUG_SBA_INIT
114 #define DBG_INIT(x...) printk(x)
115 #else
116 #define DBG_INIT(x...)
117 #endif
118
119 #ifdef DEBUG_SBA_RUN
120 #define DBG_RUN(x...) printk(x)
121 #else
122 #define DBG_RUN(x...)
123 #endif
124
125 #ifdef DEBUG_SBA_RUN_SG
126 #define DBG_RUN_SG(x...) printk(x)
127 #else
128 #define DBG_RUN_SG(x...)
129 #endif
130
131
132 #ifdef DEBUG_SBA_RESOURCE
133 #define DBG_RES(x...) printk(x)
134 #else
135 #define DBG_RES(x...)
136 #endif
137
138 #ifdef DEBUG_BYPASS
139 #define DBG_BYPASS(x...) printk(x)
140 #else
141 #define DBG_BYPASS(x...)
142 #endif
143
144 #ifdef ASSERT_PDIR_SANITY
145 #define ASSERT(expr) \
146 if(!(expr)) { \
147 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
148 panic(#expr); \
149 }
150 #else
151 #define ASSERT(expr)
152 #endif
153
154 /*
155 ** The number of pdir entries to "free" before issuing
156 ** a read to PCOM register to flush out PCOM writes.
157 ** Interacts with allocation granularity (ie 4 or 8 entries
158 ** allocated and free'd/purged at a time might make this
159 ** less interesting).
160 */
161 #define DELAYED_RESOURCE_CNT 64
162
163 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
164
165 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
166 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
167 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
168 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
169 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
170
171 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
172
173 #define IOC_FUNC_ID 0x000
174 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
175 #define IOC_IBASE 0x300 /* IO TLB */
176 #define IOC_IMASK 0x308
177 #define IOC_PCOM 0x310
178 #define IOC_TCNFG 0x318
179 #define IOC_PDIR_BASE 0x320
180
181 #define IOC_ROPE0_CFG 0x500
182 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
183
184
185 /* AGP GART driver looks for this */
186 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
187
188 /*
189 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
190 **
191 ** Some IOCs (sx1000) can run at the above pages sizes, but are
192 ** really only supported using the IOC at a 4k page size.
193 **
194 ** iovp_size could only be greater than PAGE_SIZE if we are
195 ** confident the drivers really only touch the next physical
196 ** page iff that driver instance owns it.
197 */
198 static unsigned long iovp_size;
199 static unsigned long iovp_shift;
200 static unsigned long iovp_mask;
201
202 struct ioc {
203 void __iomem *ioc_hpa; /* I/O MMU base address */
204 char *res_map; /* resource map, bit == pdir entry */
205 u64 *pdir_base; /* physical base address */
206 unsigned long ibase; /* pdir IOV Space base */
207 unsigned long imask; /* pdir IOV Space mask */
208
209 unsigned long *res_hint; /* next avail IOVP - circular search */
210 unsigned long dma_mask;
211 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
212 /* clearing pdir to prevent races with allocations. */
213 unsigned int res_bitshift; /* from the RIGHT! */
214 unsigned int res_size; /* size of resource map in bytes */
215 #ifdef CONFIG_NUMA
216 unsigned int node; /* node where this IOC lives */
217 #endif
218 #if DELAYED_RESOURCE_CNT > 0
219 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
220 /* than res_lock for bigger systems. */
221 int saved_cnt;
222 struct sba_dma_pair {
223 dma_addr_t iova;
224 size_t size;
225 } saved[DELAYED_RESOURCE_CNT];
226 #endif
227
228 #ifdef PDIR_SEARCH_TIMING
229 #define SBA_SEARCH_SAMPLE 0x100
230 unsigned long avg_search[SBA_SEARCH_SAMPLE];
231 unsigned long avg_idx; /* current index into avg_search */
232 #endif
233
234 /* Stuff we don't need in performance path */
235 struct ioc *next; /* list of IOC's in system */
236 acpi_handle handle; /* for multiple IOC's */
237 const char *name;
238 unsigned int func_id;
239 unsigned int rev; /* HW revision of chip */
240 u32 iov_size;
241 unsigned int pdir_size; /* in bytes, determined by IOV Space size */
242 struct pci_dev *sac_only_dev;
243 };
244
245 static struct ioc *ioc_list, *ioc_found;
246 static int reserve_sba_gart = 1;
247
248 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
249 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
250
251 #define sba_sg_address(sg) sg_virt((sg))
252
253 #ifdef FULL_VALID_PDIR
254 static u64 prefetch_spill_page;
255 #endif
256
257 #ifdef CONFIG_PCI
258 # define GET_IOC(dev) ((dev_is_pci(dev)) \
259 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
260 #else
261 # define GET_IOC(dev) NULL
262 #endif
263
264 /*
265 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
266 ** (or rather not merge) DMAs into manageable chunks.
267 ** On parisc, this is more of the software/tuning constraint
268 ** rather than the HW. I/O MMU allocation algorithms can be
269 ** faster with smaller sizes (to some degree).
270 */
271 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
272
273 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
274
275 /************************************
276 ** SBA register read and write support
277 **
278 ** BE WARNED: register writes are posted.
279 ** (ie follow writes which must reach HW with a read)
280 **
281 */
282 #define READ_REG(addr) __raw_readq(addr)
283 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
284
285 #ifdef DEBUG_SBA_INIT
286
287 /**
288 * sba_dump_tlb - debugging only - print IOMMU operating parameters
289 * @hpa: base address of the IOMMU
290 *
291 * Print the size/location of the IO MMU PDIR.
292 */
293 static void
sba_dump_tlb(char * hpa)294 sba_dump_tlb(char *hpa)
295 {
296 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
297 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
298 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
299 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
300 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
301 DBG_INIT("\n");
302 }
303 #endif
304
305
306 #ifdef ASSERT_PDIR_SANITY
307
308 /**
309 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
310 * @ioc: IO MMU structure which owns the pdir we are interested in.
311 * @msg: text to print ont the output line.
312 * @pide: pdir index.
313 *
314 * Print one entry of the IO MMU PDIR in human readable form.
315 */
316 static void
sba_dump_pdir_entry(struct ioc * ioc,char * msg,uint pide)317 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
318 {
319 /* start printing from lowest pde in rval */
320 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
321 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
322 uint rcnt;
323
324 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
325 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
326
327 rcnt = 0;
328 while (rcnt < BITS_PER_LONG) {
329 printk(KERN_DEBUG "%s %2d %p %016Lx\n",
330 (rcnt == (pide & (BITS_PER_LONG - 1)))
331 ? " -->" : " ",
332 rcnt, ptr, (unsigned long long) *ptr );
333 rcnt++;
334 ptr++;
335 }
336 printk(KERN_DEBUG "%s", msg);
337 }
338
339
340 /**
341 * sba_check_pdir - debugging only - consistency checker
342 * @ioc: IO MMU structure which owns the pdir we are interested in.
343 * @msg: text to print ont the output line.
344 *
345 * Verify the resource map and pdir state is consistent
346 */
347 static int
sba_check_pdir(struct ioc * ioc,char * msg)348 sba_check_pdir(struct ioc *ioc, char *msg)
349 {
350 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
351 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
352 u64 *pptr = ioc->pdir_base; /* pdir ptr */
353 uint pide = 0;
354
355 while (rptr < rptr_end) {
356 u64 rval;
357 int rcnt; /* number of bits we might check */
358
359 rval = *rptr;
360 rcnt = 64;
361
362 while (rcnt) {
363 /* Get last byte and highest bit from that */
364 u32 pde = ((u32)((*pptr >> (63)) & 0x1));
365 if ((rval & 0x1) ^ pde)
366 {
367 /*
368 ** BUMMER! -- res_map != pdir --
369 ** Dump rval and matching pdir entries
370 */
371 sba_dump_pdir_entry(ioc, msg, pide);
372 return(1);
373 }
374 rcnt--;
375 rval >>= 1; /* try the next bit */
376 pptr++;
377 pide++;
378 }
379 rptr++; /* look at next word of res_map */
380 }
381 /* It'd be nice if we always got here :^) */
382 return 0;
383 }
384
385
386 /**
387 * sba_dump_sg - debugging only - print Scatter-Gather list
388 * @ioc: IO MMU structure which owns the pdir we are interested in.
389 * @startsg: head of the SG list
390 * @nents: number of entries in SG list
391 *
392 * print the SG list so we can verify it's correct by hand.
393 */
394 static void
sba_dump_sg(struct ioc * ioc,struct scatterlist * startsg,int nents)395 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
396 {
397 while (nents-- > 0) {
398 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
399 startsg->dma_address, startsg->dma_length,
400 sba_sg_address(startsg));
401 startsg = sg_next(startsg);
402 }
403 }
404
405 static void
sba_check_sg(struct ioc * ioc,struct scatterlist * startsg,int nents)406 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
407 {
408 struct scatterlist *the_sg = startsg;
409 int the_nents = nents;
410
411 while (the_nents-- > 0) {
412 if (sba_sg_address(the_sg) == 0x0UL)
413 sba_dump_sg(NULL, startsg, nents);
414 the_sg = sg_next(the_sg);
415 }
416 }
417
418 #endif /* ASSERT_PDIR_SANITY */
419
420
421
422
423 /**************************************************************
424 *
425 * I/O Pdir Resource Management
426 *
427 * Bits set in the resource map are in use.
428 * Each bit can represent a number of pages.
429 * LSbs represent lower addresses (IOVA's).
430 *
431 ***************************************************************/
432 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
433
434 /* Convert from IOVP to IOVA and vice versa. */
435 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
436 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
437
438 #define PDIR_ENTRY_SIZE sizeof(u64)
439
440 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
441
442 #define RESMAP_MASK(n) ~(~0UL << (n))
443 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
444
445
446 /**
447 * For most cases the normal get_order is sufficient, however it limits us
448 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
449 * It only incurs about 1 clock cycle to use this one with the static variable
450 * and makes the code more intuitive.
451 */
452 static SBA_INLINE int
get_iovp_order(unsigned long size)453 get_iovp_order (unsigned long size)
454 {
455 long double d = size - 1;
456 long order;
457
458 order = ia64_getf_exp(d);
459 order = order - iovp_shift - 0xffff + 1;
460 if (order < 0)
461 order = 0;
462 return order;
463 }
464
ptr_to_pide(struct ioc * ioc,unsigned long * res_ptr,unsigned int bitshiftcnt)465 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
466 unsigned int bitshiftcnt)
467 {
468 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
469 + bitshiftcnt;
470 }
471
472 /**
473 * sba_search_bitmap - find free space in IO PDIR resource bitmap
474 * @ioc: IO MMU structure which owns the pdir we are interested in.
475 * @bits_wanted: number of entries we need.
476 * @use_hint: use res_hint to indicate where to start looking
477 *
478 * Find consecutive free bits in resource bitmap.
479 * Each bit represents one entry in the IO Pdir.
480 * Cool perf optimization: search for log2(size) bits at a time.
481 */
482 static SBA_INLINE unsigned long
sba_search_bitmap(struct ioc * ioc,struct device * dev,unsigned long bits_wanted,int use_hint)483 sba_search_bitmap(struct ioc *ioc, struct device *dev,
484 unsigned long bits_wanted, int use_hint)
485 {
486 unsigned long *res_ptr;
487 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
488 unsigned long flags, pide = ~0UL, tpide;
489 unsigned long boundary_size;
490 unsigned long shift;
491 int ret;
492
493 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
494 ASSERT(res_ptr < res_end);
495
496 boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
497 boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
498
499 BUG_ON(ioc->ibase & ~iovp_mask);
500 shift = ioc->ibase >> iovp_shift;
501
502 spin_lock_irqsave(&ioc->res_lock, flags);
503
504 /* Allow caller to force a search through the entire resource space */
505 if (likely(use_hint)) {
506 res_ptr = ioc->res_hint;
507 } else {
508 res_ptr = (ulong *)ioc->res_map;
509 ioc->res_bitshift = 0;
510 }
511
512 /*
513 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
514 * if a TLB entry is purged while in use. sba_mark_invalid()
515 * purges IOTLB entries in power-of-two sizes, so we also
516 * allocate IOVA space in power-of-two sizes.
517 */
518 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
519
520 if (likely(bits_wanted == 1)) {
521 unsigned int bitshiftcnt;
522 for(; res_ptr < res_end ; res_ptr++) {
523 if (likely(*res_ptr != ~0UL)) {
524 bitshiftcnt = ffz(*res_ptr);
525 *res_ptr |= (1UL << bitshiftcnt);
526 pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
527 ioc->res_bitshift = bitshiftcnt + bits_wanted;
528 goto found_it;
529 }
530 }
531 goto not_found;
532
533 }
534
535 if (likely(bits_wanted <= BITS_PER_LONG/2)) {
536 /*
537 ** Search the resource bit map on well-aligned values.
538 ** "o" is the alignment.
539 ** We need the alignment to invalidate I/O TLB using
540 ** SBA HW features in the unmap path.
541 */
542 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
543 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
544 unsigned long mask, base_mask;
545
546 base_mask = RESMAP_MASK(bits_wanted);
547 mask = base_mask << bitshiftcnt;
548
549 DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
550 for(; res_ptr < res_end ; res_ptr++)
551 {
552 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
553 ASSERT(0 != mask);
554 for (; mask ; mask <<= o, bitshiftcnt += o) {
555 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
556 ret = iommu_is_span_boundary(tpide, bits_wanted,
557 shift,
558 boundary_size);
559 if ((0 == ((*res_ptr) & mask)) && !ret) {
560 *res_ptr |= mask; /* mark resources busy! */
561 pide = tpide;
562 ioc->res_bitshift = bitshiftcnt + bits_wanted;
563 goto found_it;
564 }
565 }
566
567 bitshiftcnt = 0;
568 mask = base_mask;
569
570 }
571
572 } else {
573 int qwords, bits, i;
574 unsigned long *end;
575
576 qwords = bits_wanted >> 6; /* /64 */
577 bits = bits_wanted - (qwords * BITS_PER_LONG);
578
579 end = res_end - qwords;
580
581 for (; res_ptr < end; res_ptr++) {
582 tpide = ptr_to_pide(ioc, res_ptr, 0);
583 ret = iommu_is_span_boundary(tpide, bits_wanted,
584 shift, boundary_size);
585 if (ret)
586 goto next_ptr;
587 for (i = 0 ; i < qwords ; i++) {
588 if (res_ptr[i] != 0)
589 goto next_ptr;
590 }
591 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
592 continue;
593
594 /* Found it, mark it */
595 for (i = 0 ; i < qwords ; i++)
596 res_ptr[i] = ~0UL;
597 res_ptr[i] |= RESMAP_MASK(bits);
598
599 pide = tpide;
600 res_ptr += qwords;
601 ioc->res_bitshift = bits;
602 goto found_it;
603 next_ptr:
604 ;
605 }
606 }
607
608 not_found:
609 prefetch(ioc->res_map);
610 ioc->res_hint = (unsigned long *) ioc->res_map;
611 ioc->res_bitshift = 0;
612 spin_unlock_irqrestore(&ioc->res_lock, flags);
613 return (pide);
614
615 found_it:
616 ioc->res_hint = res_ptr;
617 spin_unlock_irqrestore(&ioc->res_lock, flags);
618 return (pide);
619 }
620
621
622 /**
623 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
624 * @ioc: IO MMU structure which owns the pdir we are interested in.
625 * @size: number of bytes to create a mapping for
626 *
627 * Given a size, find consecutive unmarked and then mark those bits in the
628 * resource bit map.
629 */
630 static int
sba_alloc_range(struct ioc * ioc,struct device * dev,size_t size)631 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
632 {
633 unsigned int pages_needed = size >> iovp_shift;
634 #ifdef PDIR_SEARCH_TIMING
635 unsigned long itc_start;
636 #endif
637 unsigned long pide;
638
639 ASSERT(pages_needed);
640 ASSERT(0 == (size & ~iovp_mask));
641
642 #ifdef PDIR_SEARCH_TIMING
643 itc_start = ia64_get_itc();
644 #endif
645 /*
646 ** "seek and ye shall find"...praying never hurts either...
647 */
648 pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
649 if (unlikely(pide >= (ioc->res_size << 3))) {
650 pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
651 if (unlikely(pide >= (ioc->res_size << 3))) {
652 #if DELAYED_RESOURCE_CNT > 0
653 unsigned long flags;
654
655 /*
656 ** With delayed resource freeing, we can give this one more shot. We're
657 ** getting close to being in trouble here, so do what we can to make this
658 ** one count.
659 */
660 spin_lock_irqsave(&ioc->saved_lock, flags);
661 if (ioc->saved_cnt > 0) {
662 struct sba_dma_pair *d;
663 int cnt = ioc->saved_cnt;
664
665 d = &(ioc->saved[ioc->saved_cnt - 1]);
666
667 spin_lock(&ioc->res_lock);
668 while (cnt--) {
669 sba_mark_invalid(ioc, d->iova, d->size);
670 sba_free_range(ioc, d->iova, d->size);
671 d--;
672 }
673 ioc->saved_cnt = 0;
674 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
675 spin_unlock(&ioc->res_lock);
676 }
677 spin_unlock_irqrestore(&ioc->saved_lock, flags);
678
679 pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
680 if (unlikely(pide >= (ioc->res_size << 3))) {
681 printk(KERN_WARNING "%s: I/O MMU @ %p is"
682 "out of mapping resources, %u %u %lx\n",
683 __func__, ioc->ioc_hpa, ioc->res_size,
684 pages_needed, dma_get_seg_boundary(dev));
685 return -1;
686 }
687 #else
688 printk(KERN_WARNING "%s: I/O MMU @ %p is"
689 "out of mapping resources, %u %u %lx\n",
690 __func__, ioc->ioc_hpa, ioc->res_size,
691 pages_needed, dma_get_seg_boundary(dev));
692 return -1;
693 #endif
694 }
695 }
696
697 #ifdef PDIR_SEARCH_TIMING
698 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
699 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
700 #endif
701
702 prefetchw(&(ioc->pdir_base[pide]));
703
704 #ifdef ASSERT_PDIR_SANITY
705 /* verify the first enable bit is clear */
706 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
707 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
708 }
709 #endif
710
711 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
712 __func__, size, pages_needed, pide,
713 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
714 ioc->res_bitshift );
715
716 return (pide);
717 }
718
719
720 /**
721 * sba_free_range - unmark bits in IO PDIR resource bitmap
722 * @ioc: IO MMU structure which owns the pdir we are interested in.
723 * @iova: IO virtual address which was previously allocated.
724 * @size: number of bytes to create a mapping for
725 *
726 * clear bits in the ioc's resource map
727 */
728 static SBA_INLINE void
sba_free_range(struct ioc * ioc,dma_addr_t iova,size_t size)729 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
730 {
731 unsigned long iovp = SBA_IOVP(ioc, iova);
732 unsigned int pide = PDIR_INDEX(iovp);
733 unsigned int ridx = pide >> 3; /* convert bit to byte address */
734 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
735 int bits_not_wanted = size >> iovp_shift;
736 unsigned long m;
737
738 /* Round up to power-of-two size: see AR2305 note above */
739 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
740 for (; bits_not_wanted > 0 ; res_ptr++) {
741
742 if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
743
744 /* these mappings start 64bit aligned */
745 *res_ptr = 0UL;
746 bits_not_wanted -= BITS_PER_LONG;
747 pide += BITS_PER_LONG;
748
749 } else {
750
751 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
752 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
753 bits_not_wanted = 0;
754
755 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
756 bits_not_wanted, m, pide, res_ptr, *res_ptr);
757
758 ASSERT(m != 0);
759 ASSERT(bits_not_wanted);
760 ASSERT((*res_ptr & m) == m); /* verify same bits are set */
761 *res_ptr &= ~m;
762 }
763 }
764 }
765
766
767 /**************************************************************
768 *
769 * "Dynamic DMA Mapping" support (aka "Coherent I/O")
770 *
771 ***************************************************************/
772
773 /**
774 * sba_io_pdir_entry - fill in one IO PDIR entry
775 * @pdir_ptr: pointer to IO PDIR entry
776 * @vba: Virtual CPU address of buffer to map
777 *
778 * SBA Mapping Routine
779 *
780 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
781 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
782 * Each IO Pdir entry consists of 8 bytes as shown below
783 * (LSB == bit 0):
784 *
785 * 63 40 11 7 0
786 * +-+---------------------+----------------------------------+----+--------+
787 * |V| U | PPN[39:12] | U | FF |
788 * +-+---------------------+----------------------------------+----+--------+
789 *
790 * V == Valid Bit
791 * U == Unused
792 * PPN == Physical Page Number
793 *
794 * The physical address fields are filled with the results of virt_to_phys()
795 * on the vba.
796 */
797
798 #if 1
799 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
800 | 0x8000000000000000ULL)
801 #else
802 void SBA_INLINE
sba_io_pdir_entry(u64 * pdir_ptr,unsigned long vba)803 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
804 {
805 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
806 }
807 #endif
808
809 #ifdef ENABLE_MARK_CLEAN
810 /**
811 * Since DMA is i-cache coherent, any (complete) pages that were written via
812 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
813 * flush them when they get mapped into an executable vm-area.
814 */
815 static void
mark_clean(void * addr,size_t size)816 mark_clean (void *addr, size_t size)
817 {
818 unsigned long pg_addr, end;
819
820 pg_addr = PAGE_ALIGN((unsigned long) addr);
821 end = (unsigned long) addr + size;
822 while (pg_addr + PAGE_SIZE <= end) {
823 struct page *page = virt_to_page((void *)pg_addr);
824 set_bit(PG_arch_1, &page->flags);
825 pg_addr += PAGE_SIZE;
826 }
827 }
828 #endif
829
830 /**
831 * sba_mark_invalid - invalidate one or more IO PDIR entries
832 * @ioc: IO MMU structure which owns the pdir we are interested in.
833 * @iova: IO Virtual Address mapped earlier
834 * @byte_cnt: number of bytes this mapping covers.
835 *
836 * Marking the IO PDIR entry(ies) as Invalid and invalidate
837 * corresponding IO TLB entry. The PCOM (Purge Command Register)
838 * is to purge stale entries in the IO TLB when unmapping entries.
839 *
840 * The PCOM register supports purging of multiple pages, with a minium
841 * of 1 page and a maximum of 2GB. Hardware requires the address be
842 * aligned to the size of the range being purged. The size of the range
843 * must be a power of 2. The "Cool perf optimization" in the
844 * allocation routine helps keep that true.
845 */
846 static SBA_INLINE void
sba_mark_invalid(struct ioc * ioc,dma_addr_t iova,size_t byte_cnt)847 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
848 {
849 u32 iovp = (u32) SBA_IOVP(ioc,iova);
850
851 int off = PDIR_INDEX(iovp);
852
853 /* Must be non-zero and rounded up */
854 ASSERT(byte_cnt > 0);
855 ASSERT(0 == (byte_cnt & ~iovp_mask));
856
857 #ifdef ASSERT_PDIR_SANITY
858 /* Assert first pdir entry is set */
859 if (!(ioc->pdir_base[off] >> 60)) {
860 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
861 }
862 #endif
863
864 if (byte_cnt <= iovp_size)
865 {
866 ASSERT(off < ioc->pdir_size);
867
868 iovp |= iovp_shift; /* set "size" field for PCOM */
869
870 #ifndef FULL_VALID_PDIR
871 /*
872 ** clear I/O PDIR entry "valid" bit
873 ** Do NOT clear the rest - save it for debugging.
874 ** We should only clear bits that have previously
875 ** been enabled.
876 */
877 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
878 #else
879 /*
880 ** If we want to maintain the PDIR as valid, put in
881 ** the spill page so devices prefetching won't
882 ** cause a hard fail.
883 */
884 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
885 #endif
886 } else {
887 u32 t = get_iovp_order(byte_cnt) + iovp_shift;
888
889 iovp |= t;
890 ASSERT(t <= 31); /* 2GB! Max value of "size" field */
891
892 do {
893 /* verify this pdir entry is enabled */
894 ASSERT(ioc->pdir_base[off] >> 63);
895 #ifndef FULL_VALID_PDIR
896 /* clear I/O Pdir entry "valid" bit first */
897 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
898 #else
899 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
900 #endif
901 off++;
902 byte_cnt -= iovp_size;
903 } while (byte_cnt > 0);
904 }
905
906 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
907 }
908
909 /**
910 * sba_map_single_attrs - map one buffer and return IOVA for DMA
911 * @dev: instance of PCI owned by the driver that's asking.
912 * @addr: driver buffer to map.
913 * @size: number of bytes to map in driver buffer.
914 * @dir: R/W or both.
915 * @attrs: optional dma attributes
916 *
917 * See Documentation/DMA-API-HOWTO.txt
918 */
sba_map_page(struct device * dev,struct page * page,unsigned long poff,size_t size,enum dma_data_direction dir,unsigned long attrs)919 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
920 unsigned long poff, size_t size,
921 enum dma_data_direction dir,
922 unsigned long attrs)
923 {
924 struct ioc *ioc;
925 void *addr = page_address(page) + poff;
926 dma_addr_t iovp;
927 dma_addr_t offset;
928 u64 *pdir_start;
929 int pide;
930 #ifdef ASSERT_PDIR_SANITY
931 unsigned long flags;
932 #endif
933 #ifdef ALLOW_IOV_BYPASS
934 unsigned long pci_addr = virt_to_phys(addr);
935 #endif
936
937 #ifdef ALLOW_IOV_BYPASS
938 ASSERT(to_pci_dev(dev)->dma_mask);
939 /*
940 ** Check if the PCI device can DMA to ptr... if so, just return ptr
941 */
942 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
943 /*
944 ** Device is bit capable of DMA'ing to the buffer...
945 ** just return the PCI address of ptr
946 */
947 DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: "
948 "0x%lx/0x%lx\n",
949 to_pci_dev(dev)->dma_mask, pci_addr);
950 return pci_addr;
951 }
952 #endif
953 ioc = GET_IOC(dev);
954 ASSERT(ioc);
955
956 prefetch(ioc->res_hint);
957
958 ASSERT(size > 0);
959 ASSERT(size <= DMA_CHUNK_SIZE);
960
961 /* save offset bits */
962 offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
963
964 /* round up to nearest iovp_size */
965 size = (size + offset + ~iovp_mask) & iovp_mask;
966
967 #ifdef ASSERT_PDIR_SANITY
968 spin_lock_irqsave(&ioc->res_lock, flags);
969 if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()"))
970 panic("Sanity check failed");
971 spin_unlock_irqrestore(&ioc->res_lock, flags);
972 #endif
973
974 pide = sba_alloc_range(ioc, dev, size);
975 if (pide < 0)
976 return 0;
977
978 iovp = (dma_addr_t) pide << iovp_shift;
979
980 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
981
982 pdir_start = &(ioc->pdir_base[pide]);
983
984 while (size > 0) {
985 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
986 sba_io_pdir_entry(pdir_start, (unsigned long) addr);
987
988 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
989
990 addr += iovp_size;
991 size -= iovp_size;
992 pdir_start++;
993 }
994 /* force pdir update */
995 wmb();
996
997 /* form complete address */
998 #ifdef ASSERT_PDIR_SANITY
999 spin_lock_irqsave(&ioc->res_lock, flags);
1000 sba_check_pdir(ioc,"Check after sba_map_single_attrs()");
1001 spin_unlock_irqrestore(&ioc->res_lock, flags);
1002 #endif
1003 return SBA_IOVA(ioc, iovp, offset);
1004 }
1005
sba_map_single_attrs(struct device * dev,void * addr,size_t size,enum dma_data_direction dir,unsigned long attrs)1006 static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr,
1007 size_t size, enum dma_data_direction dir,
1008 unsigned long attrs)
1009 {
1010 return sba_map_page(dev, virt_to_page(addr),
1011 (unsigned long)addr & ~PAGE_MASK, size, dir, attrs);
1012 }
1013
1014 #ifdef ENABLE_MARK_CLEAN
1015 static SBA_INLINE void
sba_mark_clean(struct ioc * ioc,dma_addr_t iova,size_t size)1016 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1017 {
1018 u32 iovp = (u32) SBA_IOVP(ioc,iova);
1019 int off = PDIR_INDEX(iovp);
1020 void *addr;
1021
1022 if (size <= iovp_size) {
1023 addr = phys_to_virt(ioc->pdir_base[off] &
1024 ~0xE000000000000FFFULL);
1025 mark_clean(addr, size);
1026 } else {
1027 do {
1028 addr = phys_to_virt(ioc->pdir_base[off] &
1029 ~0xE000000000000FFFULL);
1030 mark_clean(addr, min(size, iovp_size));
1031 off++;
1032 size -= iovp_size;
1033 } while (size > 0);
1034 }
1035 }
1036 #endif
1037
1038 /**
1039 * sba_unmap_single_attrs - unmap one IOVA and free resources
1040 * @dev: instance of PCI owned by the driver that's asking.
1041 * @iova: IOVA of driver buffer previously mapped.
1042 * @size: number of bytes mapped in driver buffer.
1043 * @dir: R/W or both.
1044 * @attrs: optional dma attributes
1045 *
1046 * See Documentation/DMA-API-HOWTO.txt
1047 */
sba_unmap_page(struct device * dev,dma_addr_t iova,size_t size,enum dma_data_direction dir,unsigned long attrs)1048 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1049 enum dma_data_direction dir, unsigned long attrs)
1050 {
1051 struct ioc *ioc;
1052 #if DELAYED_RESOURCE_CNT > 0
1053 struct sba_dma_pair *d;
1054 #endif
1055 unsigned long flags;
1056 dma_addr_t offset;
1057
1058 ioc = GET_IOC(dev);
1059 ASSERT(ioc);
1060
1061 #ifdef ALLOW_IOV_BYPASS
1062 if (likely((iova & ioc->imask) != ioc->ibase)) {
1063 /*
1064 ** Address does not fall w/in IOVA, must be bypassing
1065 */
1066 DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n",
1067 iova);
1068
1069 #ifdef ENABLE_MARK_CLEAN
1070 if (dir == DMA_FROM_DEVICE) {
1071 mark_clean(phys_to_virt(iova), size);
1072 }
1073 #endif
1074 return;
1075 }
1076 #endif
1077 offset = iova & ~iovp_mask;
1078
1079 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1080
1081 iova ^= offset; /* clear offset bits */
1082 size += offset;
1083 size = ROUNDUP(size, iovp_size);
1084
1085 #ifdef ENABLE_MARK_CLEAN
1086 if (dir == DMA_FROM_DEVICE)
1087 sba_mark_clean(ioc, iova, size);
1088 #endif
1089
1090 #if DELAYED_RESOURCE_CNT > 0
1091 spin_lock_irqsave(&ioc->saved_lock, flags);
1092 d = &(ioc->saved[ioc->saved_cnt]);
1093 d->iova = iova;
1094 d->size = size;
1095 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1096 int cnt = ioc->saved_cnt;
1097 spin_lock(&ioc->res_lock);
1098 while (cnt--) {
1099 sba_mark_invalid(ioc, d->iova, d->size);
1100 sba_free_range(ioc, d->iova, d->size);
1101 d--;
1102 }
1103 ioc->saved_cnt = 0;
1104 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1105 spin_unlock(&ioc->res_lock);
1106 }
1107 spin_unlock_irqrestore(&ioc->saved_lock, flags);
1108 #else /* DELAYED_RESOURCE_CNT == 0 */
1109 spin_lock_irqsave(&ioc->res_lock, flags);
1110 sba_mark_invalid(ioc, iova, size);
1111 sba_free_range(ioc, iova, size);
1112 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1113 spin_unlock_irqrestore(&ioc->res_lock, flags);
1114 #endif /* DELAYED_RESOURCE_CNT == 0 */
1115 }
1116
sba_unmap_single_attrs(struct device * dev,dma_addr_t iova,size_t size,enum dma_data_direction dir,unsigned long attrs)1117 void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size,
1118 enum dma_data_direction dir, unsigned long attrs)
1119 {
1120 sba_unmap_page(dev, iova, size, dir, attrs);
1121 }
1122
1123 /**
1124 * sba_alloc_coherent - allocate/map shared mem for DMA
1125 * @dev: instance of PCI owned by the driver that's asking.
1126 * @size: number of bytes mapped in driver buffer.
1127 * @dma_handle: IOVA of new buffer.
1128 *
1129 * See Documentation/DMA-API-HOWTO.txt
1130 */
1131 static void *
sba_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)1132 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1133 gfp_t flags, unsigned long attrs)
1134 {
1135 struct ioc *ioc;
1136 void *addr;
1137
1138 ioc = GET_IOC(dev);
1139 ASSERT(ioc);
1140
1141 #ifdef CONFIG_NUMA
1142 {
1143 struct page *page;
1144
1145 page = alloc_pages_node(ioc->node, flags, get_order(size));
1146 if (unlikely(!page))
1147 return NULL;
1148
1149 addr = page_address(page);
1150 }
1151 #else
1152 addr = (void *) __get_free_pages(flags, get_order(size));
1153 #endif
1154 if (unlikely(!addr))
1155 return NULL;
1156
1157 memset(addr, 0, size);
1158 *dma_handle = virt_to_phys(addr);
1159
1160 #ifdef ALLOW_IOV_BYPASS
1161 ASSERT(dev->coherent_dma_mask);
1162 /*
1163 ** Check if the PCI device can DMA to ptr... if so, just return ptr
1164 */
1165 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1166 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1167 dev->coherent_dma_mask, *dma_handle);
1168
1169 return addr;
1170 }
1171 #endif
1172
1173 /*
1174 * If device can't bypass or bypass is disabled, pass the 32bit fake
1175 * device to map single to get an iova mapping.
1176 */
1177 *dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr,
1178 size, 0, 0);
1179
1180 return addr;
1181 }
1182
1183
1184 /**
1185 * sba_free_coherent - free/unmap shared mem for DMA
1186 * @dev: instance of PCI owned by the driver that's asking.
1187 * @size: number of bytes mapped in driver buffer.
1188 * @vaddr: virtual address IOVA of "consistent" buffer.
1189 * @dma_handler: IO virtual address of "consistent" buffer.
1190 *
1191 * See Documentation/DMA-API-HOWTO.txt
1192 */
sba_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)1193 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1194 dma_addr_t dma_handle, unsigned long attrs)
1195 {
1196 sba_unmap_single_attrs(dev, dma_handle, size, 0, 0);
1197 free_pages((unsigned long) vaddr, get_order(size));
1198 }
1199
1200
1201 /*
1202 ** Since 0 is a valid pdir_base index value, can't use that
1203 ** to determine if a value is valid or not. Use a flag to indicate
1204 ** the SG list entry contains a valid pdir index.
1205 */
1206 #define PIDE_FLAG 0x1UL
1207
1208 #ifdef DEBUG_LARGE_SG_ENTRIES
1209 int dump_run_sg = 0;
1210 #endif
1211
1212
1213 /**
1214 * sba_fill_pdir - write allocated SG entries into IO PDIR
1215 * @ioc: IO MMU structure which owns the pdir we are interested in.
1216 * @startsg: list of IOVA/size pairs
1217 * @nents: number of entries in startsg list
1218 *
1219 * Take preprocessed SG list and write corresponding entries
1220 * in the IO PDIR.
1221 */
1222
1223 static SBA_INLINE int
sba_fill_pdir(struct ioc * ioc,struct scatterlist * startsg,int nents)1224 sba_fill_pdir(
1225 struct ioc *ioc,
1226 struct scatterlist *startsg,
1227 int nents)
1228 {
1229 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1230 int n_mappings = 0;
1231 u64 *pdirp = NULL;
1232 unsigned long dma_offset = 0;
1233
1234 while (nents-- > 0) {
1235 int cnt = startsg->dma_length;
1236 startsg->dma_length = 0;
1237
1238 #ifdef DEBUG_LARGE_SG_ENTRIES
1239 if (dump_run_sg)
1240 printk(" %2d : %08lx/%05x %p\n",
1241 nents, startsg->dma_address, cnt,
1242 sba_sg_address(startsg));
1243 #else
1244 DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1245 nents, startsg->dma_address, cnt,
1246 sba_sg_address(startsg));
1247 #endif
1248 /*
1249 ** Look for the start of a new DMA stream
1250 */
1251 if (startsg->dma_address & PIDE_FLAG) {
1252 u32 pide = startsg->dma_address & ~PIDE_FLAG;
1253 dma_offset = (unsigned long) pide & ~iovp_mask;
1254 startsg->dma_address = 0;
1255 if (n_mappings)
1256 dma_sg = sg_next(dma_sg);
1257 dma_sg->dma_address = pide | ioc->ibase;
1258 pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1259 n_mappings++;
1260 }
1261
1262 /*
1263 ** Look for a VCONTIG chunk
1264 */
1265 if (cnt) {
1266 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1267 ASSERT(pdirp);
1268
1269 /* Since multiple Vcontig blocks could make up
1270 ** one DMA stream, *add* cnt to dma_len.
1271 */
1272 dma_sg->dma_length += cnt;
1273 cnt += dma_offset;
1274 dma_offset=0; /* only want offset on first chunk */
1275 cnt = ROUNDUP(cnt, iovp_size);
1276 do {
1277 sba_io_pdir_entry(pdirp, vaddr);
1278 vaddr += iovp_size;
1279 cnt -= iovp_size;
1280 pdirp++;
1281 } while (cnt > 0);
1282 }
1283 startsg = sg_next(startsg);
1284 }
1285 /* force pdir update */
1286 wmb();
1287
1288 #ifdef DEBUG_LARGE_SG_ENTRIES
1289 dump_run_sg = 0;
1290 #endif
1291 return(n_mappings);
1292 }
1293
1294
1295 /*
1296 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1297 ** "start of next" are both on an IOV page boundary.
1298 **
1299 ** (shift left is a quick trick to mask off upper bits)
1300 */
1301 #define DMA_CONTIG(__X, __Y) \
1302 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1303
1304
1305 /**
1306 * sba_coalesce_chunks - preprocess the SG list
1307 * @ioc: IO MMU structure which owns the pdir we are interested in.
1308 * @startsg: list of IOVA/size pairs
1309 * @nents: number of entries in startsg list
1310 *
1311 * First pass is to walk the SG list and determine where the breaks are
1312 * in the DMA stream. Allocates PDIR entries but does not fill them.
1313 * Returns the number of DMA chunks.
1314 *
1315 * Doing the fill separate from the coalescing/allocation keeps the
1316 * code simpler. Future enhancement could make one pass through
1317 * the sglist do both.
1318 */
1319 static SBA_INLINE int
sba_coalesce_chunks(struct ioc * ioc,struct device * dev,struct scatterlist * startsg,int nents)1320 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1321 struct scatterlist *startsg,
1322 int nents)
1323 {
1324 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1325 unsigned long vcontig_len; /* len of VCONTIG chunk */
1326 unsigned long vcontig_end;
1327 struct scatterlist *dma_sg; /* next DMA stream head */
1328 unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1329 int n_mappings = 0;
1330 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1331 int idx;
1332
1333 while (nents > 0) {
1334 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1335
1336 /*
1337 ** Prepare for first/next DMA stream
1338 */
1339 dma_sg = vcontig_sg = startsg;
1340 dma_len = vcontig_len = vcontig_end = startsg->length;
1341 vcontig_end += vaddr;
1342 dma_offset = vaddr & ~iovp_mask;
1343
1344 /* PARANOID: clear entries */
1345 startsg->dma_address = startsg->dma_length = 0;
1346
1347 /*
1348 ** This loop terminates one iteration "early" since
1349 ** it's always looking one "ahead".
1350 */
1351 while (--nents > 0) {
1352 unsigned long vaddr; /* tmp */
1353
1354 startsg = sg_next(startsg);
1355
1356 /* PARANOID */
1357 startsg->dma_address = startsg->dma_length = 0;
1358
1359 /* catch brokenness in SCSI layer */
1360 ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1361
1362 /*
1363 ** First make sure current dma stream won't
1364 ** exceed DMA_CHUNK_SIZE if we coalesce the
1365 ** next entry.
1366 */
1367 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1368 > DMA_CHUNK_SIZE)
1369 break;
1370
1371 if (dma_len + startsg->length > max_seg_size)
1372 break;
1373
1374 /*
1375 ** Then look for virtually contiguous blocks.
1376 **
1377 ** append the next transaction?
1378 */
1379 vaddr = (unsigned long) sba_sg_address(startsg);
1380 if (vcontig_end == vaddr)
1381 {
1382 vcontig_len += startsg->length;
1383 vcontig_end += startsg->length;
1384 dma_len += startsg->length;
1385 continue;
1386 }
1387
1388 #ifdef DEBUG_LARGE_SG_ENTRIES
1389 dump_run_sg = (vcontig_len > iovp_size);
1390 #endif
1391
1392 /*
1393 ** Not virtually contiguous.
1394 ** Terminate prev chunk.
1395 ** Start a new chunk.
1396 **
1397 ** Once we start a new VCONTIG chunk, dma_offset
1398 ** can't change. And we need the offset from the first
1399 ** chunk - not the last one. Ergo Successive chunks
1400 ** must start on page boundaries and dove tail
1401 ** with it's predecessor.
1402 */
1403 vcontig_sg->dma_length = vcontig_len;
1404
1405 vcontig_sg = startsg;
1406 vcontig_len = startsg->length;
1407
1408 /*
1409 ** 3) do the entries end/start on page boundaries?
1410 ** Don't update vcontig_end until we've checked.
1411 */
1412 if (DMA_CONTIG(vcontig_end, vaddr))
1413 {
1414 vcontig_end = vcontig_len + vaddr;
1415 dma_len += vcontig_len;
1416 continue;
1417 } else {
1418 break;
1419 }
1420 }
1421
1422 /*
1423 ** End of DMA Stream
1424 ** Terminate last VCONTIG block.
1425 ** Allocate space for DMA stream.
1426 */
1427 vcontig_sg->dma_length = vcontig_len;
1428 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1429 ASSERT(dma_len <= DMA_CHUNK_SIZE);
1430 idx = sba_alloc_range(ioc, dev, dma_len);
1431 if (idx < 0) {
1432 dma_sg->dma_length = 0;
1433 return -1;
1434 }
1435 dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1436 | dma_offset);
1437 n_mappings++;
1438 }
1439
1440 return n_mappings;
1441 }
1442
1443 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1444 int nents, enum dma_data_direction dir,
1445 unsigned long attrs);
1446 /**
1447 * sba_map_sg - map Scatter/Gather list
1448 * @dev: instance of PCI owned by the driver that's asking.
1449 * @sglist: array of buffer/length pairs
1450 * @nents: number of entries in list
1451 * @dir: R/W or both.
1452 * @attrs: optional dma attributes
1453 *
1454 * See Documentation/DMA-API-HOWTO.txt
1455 */
sba_map_sg_attrs(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)1456 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1457 int nents, enum dma_data_direction dir,
1458 unsigned long attrs)
1459 {
1460 struct ioc *ioc;
1461 int coalesced, filled = 0;
1462 #ifdef ASSERT_PDIR_SANITY
1463 unsigned long flags;
1464 #endif
1465 #ifdef ALLOW_IOV_BYPASS_SG
1466 struct scatterlist *sg;
1467 #endif
1468
1469 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1470 ioc = GET_IOC(dev);
1471 ASSERT(ioc);
1472
1473 #ifdef ALLOW_IOV_BYPASS_SG
1474 ASSERT(to_pci_dev(dev)->dma_mask);
1475 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1476 for_each_sg(sglist, sg, nents, filled) {
1477 sg->dma_length = sg->length;
1478 sg->dma_address = virt_to_phys(sba_sg_address(sg));
1479 }
1480 return filled;
1481 }
1482 #endif
1483 /* Fast path single entry scatterlists. */
1484 if (nents == 1) {
1485 sglist->dma_length = sglist->length;
1486 sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs);
1487 return 1;
1488 }
1489
1490 #ifdef ASSERT_PDIR_SANITY
1491 spin_lock_irqsave(&ioc->res_lock, flags);
1492 if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1493 {
1494 sba_dump_sg(ioc, sglist, nents);
1495 panic("Check before sba_map_sg_attrs()");
1496 }
1497 spin_unlock_irqrestore(&ioc->res_lock, flags);
1498 #endif
1499
1500 prefetch(ioc->res_hint);
1501
1502 /*
1503 ** First coalesce the chunks and allocate I/O pdir space
1504 **
1505 ** If this is one DMA stream, we can properly map using the
1506 ** correct virtual address associated with each DMA page.
1507 ** w/o this association, we wouldn't have coherent DMA!
1508 ** Access to the virtual address is what forces a two pass algorithm.
1509 */
1510 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1511 if (coalesced < 0) {
1512 sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1513 return 0;
1514 }
1515
1516 /*
1517 ** Program the I/O Pdir
1518 **
1519 ** map the virtual addresses to the I/O Pdir
1520 ** o dma_address will contain the pdir index
1521 ** o dma_len will contain the number of bytes to map
1522 ** o address contains the virtual address.
1523 */
1524 filled = sba_fill_pdir(ioc, sglist, nents);
1525
1526 #ifdef ASSERT_PDIR_SANITY
1527 spin_lock_irqsave(&ioc->res_lock, flags);
1528 if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1529 {
1530 sba_dump_sg(ioc, sglist, nents);
1531 panic("Check after sba_map_sg_attrs()\n");
1532 }
1533 spin_unlock_irqrestore(&ioc->res_lock, flags);
1534 #endif
1535
1536 ASSERT(coalesced == filled);
1537 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1538
1539 return filled;
1540 }
1541
1542 /**
1543 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1544 * @dev: instance of PCI owned by the driver that's asking.
1545 * @sglist: array of buffer/length pairs
1546 * @nents: number of entries in list
1547 * @dir: R/W or both.
1548 * @attrs: optional dma attributes
1549 *
1550 * See Documentation/DMA-API-HOWTO.txt
1551 */
sba_unmap_sg_attrs(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)1552 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1553 int nents, enum dma_data_direction dir,
1554 unsigned long attrs)
1555 {
1556 #ifdef ASSERT_PDIR_SANITY
1557 struct ioc *ioc;
1558 unsigned long flags;
1559 #endif
1560
1561 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1562 __func__, nents, sba_sg_address(sglist), sglist->length);
1563
1564 #ifdef ASSERT_PDIR_SANITY
1565 ioc = GET_IOC(dev);
1566 ASSERT(ioc);
1567
1568 spin_lock_irqsave(&ioc->res_lock, flags);
1569 sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1570 spin_unlock_irqrestore(&ioc->res_lock, flags);
1571 #endif
1572
1573 while (nents && sglist->dma_length) {
1574
1575 sba_unmap_single_attrs(dev, sglist->dma_address,
1576 sglist->dma_length, dir, attrs);
1577 sglist = sg_next(sglist);
1578 nents--;
1579 }
1580
1581 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1582
1583 #ifdef ASSERT_PDIR_SANITY
1584 spin_lock_irqsave(&ioc->res_lock, flags);
1585 sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1586 spin_unlock_irqrestore(&ioc->res_lock, flags);
1587 #endif
1588
1589 }
1590
1591 /**************************************************************
1592 *
1593 * Initialization and claim
1594 *
1595 ***************************************************************/
1596
1597 static void
ioc_iova_init(struct ioc * ioc)1598 ioc_iova_init(struct ioc *ioc)
1599 {
1600 int tcnfg;
1601 int agp_found = 0;
1602 struct pci_dev *device = NULL;
1603 #ifdef FULL_VALID_PDIR
1604 unsigned long index;
1605 #endif
1606
1607 /*
1608 ** Firmware programs the base and size of a "safe IOVA space"
1609 ** (one that doesn't overlap memory or LMMIO space) in the
1610 ** IBASE and IMASK registers.
1611 */
1612 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1613 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1614
1615 ioc->iov_size = ~ioc->imask + 1;
1616
1617 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1618 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1619 ioc->iov_size >> 20);
1620
1621 switch (iovp_size) {
1622 case 4*1024: tcnfg = 0; break;
1623 case 8*1024: tcnfg = 1; break;
1624 case 16*1024: tcnfg = 2; break;
1625 case 64*1024: tcnfg = 3; break;
1626 default:
1627 panic(PFX "Unsupported IOTLB page size %ldK",
1628 iovp_size >> 10);
1629 break;
1630 }
1631 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1632
1633 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1634 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1635 get_order(ioc->pdir_size));
1636 if (!ioc->pdir_base)
1637 panic(PFX "Couldn't allocate I/O Page Table\n");
1638
1639 memset(ioc->pdir_base, 0, ioc->pdir_size);
1640
1641 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1642 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1643
1644 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1645 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1646
1647 /*
1648 ** If an AGP device is present, only use half of the IOV space
1649 ** for PCI DMA. Unfortunately we can't know ahead of time
1650 ** whether GART support will actually be used, for now we
1651 ** can just key on an AGP device found in the system.
1652 ** We program the next pdir index after we stop w/ a key for
1653 ** the GART code to handshake on.
1654 */
1655 for_each_pci_dev(device)
1656 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1657
1658 if (agp_found && reserve_sba_gart) {
1659 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1660 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1661 ioc->pdir_size /= 2;
1662 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1663 }
1664 #ifdef FULL_VALID_PDIR
1665 /*
1666 ** Check to see if the spill page has been allocated, we don't need more than
1667 ** one across multiple SBAs.
1668 */
1669 if (!prefetch_spill_page) {
1670 char *spill_poison = "SBAIOMMU POISON";
1671 int poison_size = 16;
1672 void *poison_addr, *addr;
1673
1674 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1675 if (!addr)
1676 panic(PFX "Couldn't allocate PDIR spill page\n");
1677
1678 poison_addr = addr;
1679 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1680 memcpy(poison_addr, spill_poison, poison_size);
1681
1682 prefetch_spill_page = virt_to_phys(addr);
1683
1684 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1685 }
1686 /*
1687 ** Set all the PDIR entries valid w/ the spill page as the target
1688 */
1689 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1690 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1691 #endif
1692
1693 /* Clear I/O TLB of any possible entries */
1694 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1695 READ_REG(ioc->ioc_hpa + IOC_PCOM);
1696
1697 /* Enable IOVA translation */
1698 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1699 READ_REG(ioc->ioc_hpa + IOC_IBASE);
1700 }
1701
1702 static void __init
ioc_resource_init(struct ioc * ioc)1703 ioc_resource_init(struct ioc *ioc)
1704 {
1705 spin_lock_init(&ioc->res_lock);
1706 #if DELAYED_RESOURCE_CNT > 0
1707 spin_lock_init(&ioc->saved_lock);
1708 #endif
1709
1710 /* resource map size dictated by pdir_size */
1711 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1712 ioc->res_size >>= 3; /* convert bit count to byte count */
1713 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1714
1715 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1716 get_order(ioc->res_size));
1717 if (!ioc->res_map)
1718 panic(PFX "Couldn't allocate resource map\n");
1719
1720 memset(ioc->res_map, 0, ioc->res_size);
1721 /* next available IOVP - circular search */
1722 ioc->res_hint = (unsigned long *) ioc->res_map;
1723
1724 #ifdef ASSERT_PDIR_SANITY
1725 /* Mark first bit busy - ie no IOVA 0 */
1726 ioc->res_map[0] = 0x1;
1727 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1728 #endif
1729 #ifdef FULL_VALID_PDIR
1730 /* Mark the last resource used so we don't prefetch beyond IOVA space */
1731 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1732 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1733 | prefetch_spill_page);
1734 #endif
1735
1736 DBG_INIT("%s() res_map %x %p\n", __func__,
1737 ioc->res_size, (void *) ioc->res_map);
1738 }
1739
1740 static void __init
ioc_sac_init(struct ioc * ioc)1741 ioc_sac_init(struct ioc *ioc)
1742 {
1743 struct pci_dev *sac = NULL;
1744 struct pci_controller *controller = NULL;
1745
1746 /*
1747 * pci_alloc_coherent() must return a DMA address which is
1748 * SAC (single address cycle) addressable, so allocate a
1749 * pseudo-device to enforce that.
1750 */
1751 sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1752 if (!sac)
1753 panic(PFX "Couldn't allocate struct pci_dev");
1754
1755 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1756 if (!controller)
1757 panic(PFX "Couldn't allocate struct pci_controller");
1758
1759 controller->iommu = ioc;
1760 sac->sysdata = controller;
1761 sac->dma_mask = 0xFFFFFFFFUL;
1762 #ifdef CONFIG_PCI
1763 sac->dev.bus = &pci_bus_type;
1764 #endif
1765 ioc->sac_only_dev = sac;
1766 }
1767
1768 static void __init
ioc_zx1_init(struct ioc * ioc)1769 ioc_zx1_init(struct ioc *ioc)
1770 {
1771 unsigned long rope_config;
1772 unsigned int i;
1773
1774 if (ioc->rev < 0x20)
1775 panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1776
1777 /* 38 bit memory controller + extra bit for range displaced by MMIO */
1778 ioc->dma_mask = (0x1UL << 39) - 1;
1779
1780 /*
1781 ** Clear ROPE(N)_CONFIG AO bit.
1782 ** Disables "NT Ordering" (~= !"Relaxed Ordering")
1783 ** Overrides bit 1 in DMA Hint Sets.
1784 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1785 */
1786 for (i=0; i<(8*8); i+=8) {
1787 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1788 rope_config &= ~IOC_ROPE_AO;
1789 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1790 }
1791 }
1792
1793 typedef void (initfunc)(struct ioc *);
1794
1795 struct ioc_iommu {
1796 u32 func_id;
1797 char *name;
1798 initfunc *init;
1799 };
1800
1801 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1802 { ZX1_IOC_ID, "zx1", ioc_zx1_init },
1803 { ZX2_IOC_ID, "zx2", NULL },
1804 { SX1000_IOC_ID, "sx1000", NULL },
1805 { SX2000_IOC_ID, "sx2000", NULL },
1806 };
1807
ioc_init(unsigned long hpa,struct ioc * ioc)1808 static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
1809 {
1810 struct ioc_iommu *info;
1811
1812 ioc->next = ioc_list;
1813 ioc_list = ioc;
1814
1815 ioc->ioc_hpa = ioremap(hpa, 0x1000);
1816
1817 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1818 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1819 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1820
1821 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1822 if (ioc->func_id == info->func_id) {
1823 ioc->name = info->name;
1824 if (info->init)
1825 (info->init)(ioc);
1826 }
1827 }
1828
1829 iovp_size = (1 << iovp_shift);
1830 iovp_mask = ~(iovp_size - 1);
1831
1832 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1833 PAGE_SIZE >> 10, iovp_size >> 10);
1834
1835 if (!ioc->name) {
1836 ioc->name = kmalloc(24, GFP_KERNEL);
1837 if (ioc->name)
1838 sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1839 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1840 else
1841 ioc->name = "Unknown";
1842 }
1843
1844 ioc_iova_init(ioc);
1845 ioc_resource_init(ioc);
1846 ioc_sac_init(ioc);
1847
1848 printk(KERN_INFO PFX
1849 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1850 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1851 hpa, ioc->iov_size >> 20, ioc->ibase);
1852 }
1853
1854
1855
1856 /**************************************************************************
1857 **
1858 ** SBA initialization code (HW and SW)
1859 **
1860 ** o identify SBA chip itself
1861 ** o FIXME: initialize DMA hints for reasonable defaults
1862 **
1863 **************************************************************************/
1864
1865 #ifdef CONFIG_PROC_FS
1866 static void *
ioc_start(struct seq_file * s,loff_t * pos)1867 ioc_start(struct seq_file *s, loff_t *pos)
1868 {
1869 struct ioc *ioc;
1870 loff_t n = *pos;
1871
1872 for (ioc = ioc_list; ioc; ioc = ioc->next)
1873 if (!n--)
1874 return ioc;
1875
1876 return NULL;
1877 }
1878
1879 static void *
ioc_next(struct seq_file * s,void * v,loff_t * pos)1880 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1881 {
1882 struct ioc *ioc = v;
1883
1884 ++*pos;
1885 return ioc->next;
1886 }
1887
1888 static void
ioc_stop(struct seq_file * s,void * v)1889 ioc_stop(struct seq_file *s, void *v)
1890 {
1891 }
1892
1893 static int
ioc_show(struct seq_file * s,void * v)1894 ioc_show(struct seq_file *s, void *v)
1895 {
1896 struct ioc *ioc = v;
1897 unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1898 int i, used = 0;
1899
1900 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1901 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1902 #ifdef CONFIG_NUMA
1903 if (ioc->node != NUMA_NO_NODE)
1904 seq_printf(s, "NUMA node : %d\n", ioc->node);
1905 #endif
1906 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1907 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1908
1909 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1910 used += hweight64(*res_ptr);
1911
1912 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1913 seq_printf(s, "PDIR used : %d entries\n", used);
1914
1915 #ifdef PDIR_SEARCH_TIMING
1916 {
1917 unsigned long i = 0, avg = 0, min, max;
1918 min = max = ioc->avg_search[0];
1919 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1920 avg += ioc->avg_search[i];
1921 if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1922 if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1923 }
1924 avg /= SBA_SEARCH_SAMPLE;
1925 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1926 min, avg, max);
1927 }
1928 #endif
1929 #ifndef ALLOW_IOV_BYPASS
1930 seq_printf(s, "IOVA bypass disabled\n");
1931 #endif
1932 return 0;
1933 }
1934
1935 static const struct seq_operations ioc_seq_ops = {
1936 .start = ioc_start,
1937 .next = ioc_next,
1938 .stop = ioc_stop,
1939 .show = ioc_show
1940 };
1941
1942 static void __init
ioc_proc_init(void)1943 ioc_proc_init(void)
1944 {
1945 struct proc_dir_entry *dir;
1946
1947 dir = proc_mkdir("bus/mckinley", NULL);
1948 if (!dir)
1949 return;
1950
1951 proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1952 }
1953 #endif
1954
1955 static void
sba_connect_bus(struct pci_bus * bus)1956 sba_connect_bus(struct pci_bus *bus)
1957 {
1958 acpi_handle handle, parent;
1959 acpi_status status;
1960 struct ioc *ioc;
1961
1962 if (!PCI_CONTROLLER(bus))
1963 panic(PFX "no sysdata on bus %d!\n", bus->number);
1964
1965 if (PCI_CONTROLLER(bus)->iommu)
1966 return;
1967
1968 handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1969 if (!handle)
1970 return;
1971
1972 /*
1973 * The IOC scope encloses PCI root bridges in the ACPI
1974 * namespace, so work our way out until we find an IOC we
1975 * claimed previously.
1976 */
1977 do {
1978 for (ioc = ioc_list; ioc; ioc = ioc->next)
1979 if (ioc->handle == handle) {
1980 PCI_CONTROLLER(bus)->iommu = ioc;
1981 return;
1982 }
1983
1984 status = acpi_get_parent(handle, &parent);
1985 handle = parent;
1986 } while (ACPI_SUCCESS(status));
1987
1988 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1989 }
1990
1991 static void __init
sba_map_ioc_to_node(struct ioc * ioc,acpi_handle handle)1992 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1993 {
1994 #ifdef CONFIG_NUMA
1995 unsigned int node;
1996
1997 node = acpi_get_node(handle);
1998 if (node != NUMA_NO_NODE && !node_online(node))
1999 node = NUMA_NO_NODE;
2000
2001 ioc->node = node;
2002 #endif
2003 }
2004
acpi_sba_ioc_add(struct ioc * ioc)2005 static void __init acpi_sba_ioc_add(struct ioc *ioc)
2006 {
2007 acpi_handle handle = ioc->handle;
2008 acpi_status status;
2009 u64 hpa, length;
2010 struct acpi_device_info *adi;
2011
2012 ioc_found = ioc->next;
2013 status = hp_acpi_csr_space(handle, &hpa, &length);
2014 if (ACPI_FAILURE(status))
2015 goto err;
2016
2017 status = acpi_get_object_info(handle, &adi);
2018 if (ACPI_FAILURE(status))
2019 goto err;
2020
2021 /*
2022 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
2023 * root bridges, and its CSR space includes the IOC function.
2024 */
2025 if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2026 hpa += ZX1_IOC_OFFSET;
2027 /* zx1 based systems default to kernel page size iommu pages */
2028 if (!iovp_shift)
2029 iovp_shift = min(PAGE_SHIFT, 16);
2030 }
2031 kfree(adi);
2032
2033 /*
2034 * default anything not caught above or specified on cmdline to 4k
2035 * iommu page size
2036 */
2037 if (!iovp_shift)
2038 iovp_shift = 12;
2039
2040 ioc_init(hpa, ioc);
2041 /* setup NUMA node association */
2042 sba_map_ioc_to_node(ioc, handle);
2043 return;
2044
2045 err:
2046 kfree(ioc);
2047 }
2048
2049 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2050 {"HWP0001", 0},
2051 {"HWP0004", 0},
2052 {"", 0},
2053 };
2054
acpi_sba_ioc_attach(struct acpi_device * device,const struct acpi_device_id * not_used)2055 static int acpi_sba_ioc_attach(struct acpi_device *device,
2056 const struct acpi_device_id *not_used)
2057 {
2058 struct ioc *ioc;
2059
2060 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2061 if (!ioc)
2062 return -ENOMEM;
2063
2064 ioc->next = ioc_found;
2065 ioc_found = ioc;
2066 ioc->handle = device->handle;
2067 return 1;
2068 }
2069
2070
2071 static struct acpi_scan_handler acpi_sba_ioc_handler = {
2072 .ids = hp_ioc_iommu_device_ids,
2073 .attach = acpi_sba_ioc_attach,
2074 };
2075
acpi_sba_ioc_init_acpi(void)2076 static int __init acpi_sba_ioc_init_acpi(void)
2077 {
2078 return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2079 }
2080 /* This has to run before acpi_scan_init(). */
2081 arch_initcall(acpi_sba_ioc_init_acpi);
2082
2083 extern const struct dma_map_ops swiotlb_dma_ops;
2084
2085 static int __init
sba_init(void)2086 sba_init(void)
2087 {
2088 if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2089 return 0;
2090
2091 #if defined(CONFIG_IA64_GENERIC)
2092 /* If we are booting a kdump kernel, the sba_iommu will
2093 * cause devices that were not shutdown properly to MCA
2094 * as soon as they are turned back on. Our only option for
2095 * a successful kdump kernel boot is to use the swiotlb.
2096 */
2097 if (is_kdump_kernel()) {
2098 dma_ops = &swiotlb_dma_ops;
2099 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2100 panic("Unable to initialize software I/O TLB:"
2101 " Try machvec=dig boot option");
2102 machvec_init("dig");
2103 return 0;
2104 }
2105 #endif
2106
2107 /*
2108 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2109 * routine, but that only happens if acpi_scan_init() has already run.
2110 */
2111 while (ioc_found)
2112 acpi_sba_ioc_add(ioc_found);
2113
2114 if (!ioc_list) {
2115 #ifdef CONFIG_IA64_GENERIC
2116 /*
2117 * If we didn't find something sba_iommu can claim, we
2118 * need to setup the swiotlb and switch to the dig machvec.
2119 */
2120 dma_ops = &swiotlb_dma_ops;
2121 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2122 panic("Unable to find SBA IOMMU or initialize "
2123 "software I/O TLB: Try machvec=dig boot option");
2124 machvec_init("dig");
2125 #else
2126 panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2127 #endif
2128 return 0;
2129 }
2130
2131 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2132 /*
2133 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2134 * buffer setup to support devices with smaller DMA masks than
2135 * sba_iommu can handle.
2136 */
2137 if (ia64_platform_is("hpzx1_swiotlb")) {
2138 extern void hwsw_init(void);
2139
2140 hwsw_init();
2141 }
2142 #endif
2143
2144 #ifdef CONFIG_PCI
2145 {
2146 struct pci_bus *b = NULL;
2147 while ((b = pci_find_next_bus(b)) != NULL)
2148 sba_connect_bus(b);
2149 }
2150 #endif
2151
2152 #ifdef CONFIG_PROC_FS
2153 ioc_proc_init();
2154 #endif
2155 return 0;
2156 }
2157
2158 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2159
2160 static int __init
nosbagart(char * str)2161 nosbagart(char *str)
2162 {
2163 reserve_sba_gart = 0;
2164 return 1;
2165 }
2166
sba_dma_supported(struct device * dev,u64 mask)2167 static int sba_dma_supported (struct device *dev, u64 mask)
2168 {
2169 /* make sure it's at least 32bit capable */
2170 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2171 }
2172
sba_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)2173 static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
2174 {
2175 return 0;
2176 }
2177
2178 __setup("nosbagart", nosbagart);
2179
2180 static int __init
sba_page_override(char * str)2181 sba_page_override(char *str)
2182 {
2183 unsigned long page_size;
2184
2185 page_size = memparse(str, &str);
2186 switch (page_size) {
2187 case 4096:
2188 case 8192:
2189 case 16384:
2190 case 65536:
2191 iovp_shift = ffs(page_size) - 1;
2192 break;
2193 default:
2194 printk("%s: unknown/unsupported iommu page size %ld\n",
2195 __func__, page_size);
2196 }
2197
2198 return 1;
2199 }
2200
2201 __setup("sbapagesize=",sba_page_override);
2202
2203 const struct dma_map_ops sba_dma_ops = {
2204 .alloc = sba_alloc_coherent,
2205 .free = sba_free_coherent,
2206 .map_page = sba_map_page,
2207 .unmap_page = sba_unmap_page,
2208 .map_sg = sba_map_sg_attrs,
2209 .unmap_sg = sba_unmap_sg_attrs,
2210 .sync_single_for_cpu = machvec_dma_sync_single,
2211 .sync_sg_for_cpu = machvec_dma_sync_sg,
2212 .sync_single_for_device = machvec_dma_sync_single,
2213 .sync_sg_for_device = machvec_dma_sync_sg,
2214 .dma_supported = sba_dma_supported,
2215 .mapping_error = sba_dma_mapping_error,
2216 };
2217
sba_dma_init(void)2218 void sba_dma_init(void)
2219 {
2220 dma_ops = &sba_dma_ops;
2221 }
2222