1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35
36 /*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42 #define NET_IP_ALIGN 0
43
44 #define HBP_NUM 4
45
46 /*
47 * These alignment constraints are for performance in the vSMP case,
48 * but in the task_struct case we must also meet hardware imposed
49 * alignment requirements of the FPU state:
50 */
51 #ifdef CONFIG_X86_VSMP
52 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
53 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
54 #else
55 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
56 # define ARCH_MIN_MMSTRUCT_ALIGN 0
57 #endif
58
59 enum tlb_infos {
60 ENTRIES,
61 NR_INFO
62 };
63
64 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
65 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
66 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
67 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
71
72 /*
73 * CPU type and hardware bug flags. Kept separately for each CPU.
74 * Members of this structure are referenced in head_32.S, so think twice
75 * before touching them. [mj]
76 */
77
78 struct cpuinfo_x86 {
79 __u8 x86; /* CPU family */
80 __u8 x86_vendor; /* CPU vendor */
81 __u8 x86_model;
82 __u8 x86_stepping;
83 #ifdef CONFIG_X86_64
84 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
85 int x86_tlbsize;
86 #endif
87 __u8 x86_virt_bits;
88 __u8 x86_phys_bits;
89 /* CPUID returned core id bits: */
90 __u8 x86_coreid_bits;
91 __u8 cu_id;
92 /* Max extended CPUID function supported: */
93 __u32 extended_cpuid_level;
94 /* Maximum supported CPUID level, -1=no CPUID: */
95 int cpuid_level;
96 __u32 x86_capability[NCAPINTS + NBUGINTS];
97 char x86_vendor_id[16];
98 char x86_model_id[64];
99 /* in KB - valid for CPUS which support this call: */
100 unsigned int x86_cache_size;
101 int x86_cache_alignment; /* In bytes */
102 /* Cache QoS architectural values: */
103 int x86_cache_max_rmid; /* max index */
104 int x86_cache_occ_scale; /* scale to bytes */
105 int x86_power;
106 unsigned long loops_per_jiffy;
107 /* cpuid returned max cores value: */
108 u16 x86_max_cores;
109 u16 apicid;
110 u16 initial_apicid;
111 u16 x86_clflush_size;
112 /* number of cores as seen by the OS: */
113 u16 booted_cores;
114 /* Physical processor id: */
115 u16 phys_proc_id;
116 /* Logical processor id: */
117 u16 logical_proc_id;
118 /* Core id: */
119 u16 cpu_core_id;
120 u16 cpu_die_id;
121 u16 logical_die_id;
122 /* Index into per_cpu list: */
123 u16 cpu_index;
124 u32 microcode;
125 /* Address space bits used by the cache internally */
126 u8 x86_cache_bits;
127 unsigned initialized : 1;
128 } __randomize_layout;
129
130 struct cpuid_regs {
131 u32 eax, ebx, ecx, edx;
132 };
133
134 enum cpuid_regs_idx {
135 CPUID_EAX = 0,
136 CPUID_EBX,
137 CPUID_ECX,
138 CPUID_EDX,
139 };
140
141 #define X86_VENDOR_INTEL 0
142 #define X86_VENDOR_CYRIX 1
143 #define X86_VENDOR_AMD 2
144 #define X86_VENDOR_UMC 3
145 #define X86_VENDOR_CENTAUR 5
146 #define X86_VENDOR_TRANSMETA 7
147 #define X86_VENDOR_NSC 8
148 #define X86_VENDOR_HYGON 9
149 #define X86_VENDOR_ZHAOXIN 10
150 #define X86_VENDOR_NUM 11
151
152 #define X86_VENDOR_UNKNOWN 0xff
153
154 /*
155 * capabilities of CPUs
156 */
157 extern struct cpuinfo_x86 boot_cpu_data;
158 extern struct cpuinfo_x86 new_cpu_data;
159
160 extern struct x86_hw_tss doublefault_tss;
161 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
162 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
163
164 #ifdef CONFIG_SMP
165 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
166 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
167 #else
168 #define cpu_info boot_cpu_data
169 #define cpu_data(cpu) boot_cpu_data
170 #endif
171
172 extern const struct seq_operations cpuinfo_op;
173
174 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
175
176 extern void cpu_detect(struct cpuinfo_x86 *c);
177
l1tf_pfn_limit(void)178 static inline unsigned long long l1tf_pfn_limit(void)
179 {
180 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
181 }
182
183 extern void early_cpu_init(void);
184 extern void identify_boot_cpu(void);
185 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
186 extern void print_cpu_info(struct cpuinfo_x86 *);
187 void print_cpu_msr(struct cpuinfo_x86 *);
188
189 #ifdef CONFIG_X86_32
190 extern int have_cpuid_p(void);
191 #else
have_cpuid_p(void)192 static inline int have_cpuid_p(void)
193 {
194 return 1;
195 }
196 #endif
native_cpuid(unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)197 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
198 unsigned int *ecx, unsigned int *edx)
199 {
200 /* ecx is often an input as well as an output. */
201 asm volatile("cpuid"
202 : "=a" (*eax),
203 "=b" (*ebx),
204 "=c" (*ecx),
205 "=d" (*edx)
206 : "0" (*eax), "2" (*ecx)
207 : "memory");
208 }
209
210 #define native_cpuid_reg(reg) \
211 static inline unsigned int native_cpuid_##reg(unsigned int op) \
212 { \
213 unsigned int eax = op, ebx, ecx = 0, edx; \
214 \
215 native_cpuid(&eax, &ebx, &ecx, &edx); \
216 \
217 return reg; \
218 }
219
220 /*
221 * Native CPUID functions returning a single datum.
222 */
223 native_cpuid_reg(eax)
native_cpuid_reg(ebx)224 native_cpuid_reg(ebx)
225 native_cpuid_reg(ecx)
226 native_cpuid_reg(edx)
227
228 /*
229 * Friendlier CR3 helpers.
230 */
231 static inline unsigned long read_cr3_pa(void)
232 {
233 return __read_cr3() & CR3_ADDR_MASK;
234 }
235
native_read_cr3_pa(void)236 static inline unsigned long native_read_cr3_pa(void)
237 {
238 return __native_read_cr3() & CR3_ADDR_MASK;
239 }
240
load_cr3(pgd_t * pgdir)241 static inline void load_cr3(pgd_t *pgdir)
242 {
243 write_cr3(__sme_pa(pgdir));
244 }
245
246 /*
247 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
248 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
249 * unrelated to the task-switch mechanism:
250 */
251 #ifdef CONFIG_X86_32
252 /* This is the TSS defined by the hardware. */
253 struct x86_hw_tss {
254 unsigned short back_link, __blh;
255 unsigned long sp0;
256 unsigned short ss0, __ss0h;
257 unsigned long sp1;
258
259 /*
260 * We don't use ring 1, so ss1 is a convenient scratch space in
261 * the same cacheline as sp0. We use ss1 to cache the value in
262 * MSR_IA32_SYSENTER_CS. When we context switch
263 * MSR_IA32_SYSENTER_CS, we first check if the new value being
264 * written matches ss1, and, if it's not, then we wrmsr the new
265 * value and update ss1.
266 *
267 * The only reason we context switch MSR_IA32_SYSENTER_CS is
268 * that we set it to zero in vm86 tasks to avoid corrupting the
269 * stack if we were to go through the sysenter path from vm86
270 * mode.
271 */
272 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
273
274 unsigned short __ss1h;
275 unsigned long sp2;
276 unsigned short ss2, __ss2h;
277 unsigned long __cr3;
278 unsigned long ip;
279 unsigned long flags;
280 unsigned long ax;
281 unsigned long cx;
282 unsigned long dx;
283 unsigned long bx;
284 unsigned long sp;
285 unsigned long bp;
286 unsigned long si;
287 unsigned long di;
288 unsigned short es, __esh;
289 unsigned short cs, __csh;
290 unsigned short ss, __ssh;
291 unsigned short ds, __dsh;
292 unsigned short fs, __fsh;
293 unsigned short gs, __gsh;
294 unsigned short ldt, __ldth;
295 unsigned short trace;
296 unsigned short io_bitmap_base;
297
298 } __attribute__((packed));
299 #else
300 struct x86_hw_tss {
301 u32 reserved1;
302 u64 sp0;
303
304 /*
305 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
306 * Linux does not use ring 1, so sp1 is not otherwise needed.
307 */
308 u64 sp1;
309
310 /*
311 * Since Linux does not use ring 2, the 'sp2' slot is unused by
312 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
313 * the user RSP value.
314 */
315 u64 sp2;
316
317 u64 reserved2;
318 u64 ist[7];
319 u32 reserved3;
320 u32 reserved4;
321 u16 reserved5;
322 u16 io_bitmap_base;
323
324 } __attribute__((packed));
325 #endif
326
327 /*
328 * IO-bitmap sizes:
329 */
330 #define IO_BITMAP_BITS 65536
331 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
332 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
333 #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
334 #define INVALID_IO_BITMAP_OFFSET 0x8000
335
336 struct entry_stack {
337 unsigned long words[64];
338 };
339
340 struct entry_stack_page {
341 struct entry_stack stack;
342 } __aligned(PAGE_SIZE);
343
344 struct tss_struct {
345 /*
346 * The fixed hardware portion. This must not cross a page boundary
347 * at risk of violating the SDM's advice and potentially triggering
348 * errata.
349 */
350 struct x86_hw_tss x86_tss;
351
352 /*
353 * The extra 1 is there because the CPU will access an
354 * additional byte beyond the end of the IO permission
355 * bitmap. The extra byte must be all 1 bits, and must
356 * be within the limit.
357 */
358 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
359 } __aligned(PAGE_SIZE);
360
361 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
362
363 /*
364 * sizeof(unsigned long) coming from an extra "long" at the end
365 * of the iobitmap.
366 *
367 * -1? seg base+limit should be pointing to the address of the
368 * last valid byte
369 */
370 #define __KERNEL_TSS_LIMIT \
371 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
372
373 /* Per CPU interrupt stacks */
374 struct irq_stack {
375 char stack[IRQ_STACK_SIZE];
376 } __aligned(IRQ_STACK_SIZE);
377
378 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
379
380 #ifdef CONFIG_X86_32
381 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
382 #else
383 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
384 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
385 #endif
386
387 #ifdef CONFIG_X86_64
388 struct fixed_percpu_data {
389 /*
390 * GCC hardcodes the stack canary as %gs:40. Since the
391 * irq_stack is the object at %gs:0, we reserve the bottom
392 * 48 bytes of the irq stack for the canary.
393 */
394 char gs_base[40];
395 unsigned long stack_canary;
396 };
397
398 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
399 DECLARE_INIT_PER_CPU(fixed_percpu_data);
400
cpu_kernelmode_gs_base(int cpu)401 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
402 {
403 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
404 }
405
406 DECLARE_PER_CPU(unsigned int, irq_count);
407 extern asmlinkage void ignore_sysret(void);
408
409 #if IS_ENABLED(CONFIG_KVM)
410 /* Save actual FS/GS selectors and bases to current->thread */
411 void save_fsgs_for_kvm(void);
412 #endif
413 #else /* X86_64 */
414 #ifdef CONFIG_STACKPROTECTOR
415 /*
416 * Make sure stack canary segment base is cached-aligned:
417 * "For Intel Atom processors, avoid non zero segment base address
418 * that is not aligned to cache line boundary at all cost."
419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
420 */
421 struct stack_canary {
422 char __pad[20]; /* canary at %gs:20 */
423 unsigned long canary;
424 };
425 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
426 #endif
427 /* Per CPU softirq stack pointer */
428 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
429 #endif /* X86_64 */
430
431 extern unsigned int fpu_kernel_xstate_size;
432 extern unsigned int fpu_user_xstate_size;
433
434 struct perf_event;
435
436 typedef struct {
437 unsigned long seg;
438 } mm_segment_t;
439
440 struct thread_struct {
441 /* Cached TLS descriptors: */
442 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
443 #ifdef CONFIG_X86_32
444 unsigned long sp0;
445 #endif
446 unsigned long sp;
447 #ifdef CONFIG_X86_32
448 unsigned long sysenter_cs;
449 #else
450 unsigned short es;
451 unsigned short ds;
452 unsigned short fsindex;
453 unsigned short gsindex;
454 #endif
455
456 #ifdef CONFIG_X86_64
457 unsigned long fsbase;
458 unsigned long gsbase;
459 #else
460 /*
461 * XXX: this could presumably be unsigned short. Alternatively,
462 * 32-bit kernels could be taught to use fsindex instead.
463 */
464 unsigned long fs;
465 unsigned long gs;
466 #endif
467
468 /* Save middle states of ptrace breakpoints */
469 struct perf_event *ptrace_bps[HBP_NUM];
470 /* Debug status used for traps, single steps, etc... */
471 unsigned long debugreg6;
472 /* Keep track of the exact dr7 value set by the user */
473 unsigned long ptrace_dr7;
474 /* Fault info: */
475 unsigned long cr2;
476 unsigned long trap_nr;
477 unsigned long error_code;
478 #ifdef CONFIG_VM86
479 /* Virtual 86 mode info */
480 struct vm86 *vm86;
481 #endif
482 /* IO permissions: */
483 unsigned long *io_bitmap_ptr;
484 unsigned long iopl;
485 /* Max allowed port in the bitmap, in bytes: */
486 unsigned io_bitmap_max;
487
488 mm_segment_t addr_limit;
489
490 unsigned int sig_on_uaccess_err:1;
491 unsigned int uaccess_err:1; /* uaccess failed */
492
493 /* Floating point and extended processor state */
494 struct fpu fpu;
495 /*
496 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
497 * the end.
498 */
499 };
500
501 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
arch_thread_struct_whitelist(unsigned long * offset,unsigned long * size)502 static inline void arch_thread_struct_whitelist(unsigned long *offset,
503 unsigned long *size)
504 {
505 *offset = offsetof(struct thread_struct, fpu.state);
506 *size = fpu_kernel_xstate_size;
507 }
508
509 /*
510 * Thread-synchronous status.
511 *
512 * This is different from the flags in that nobody else
513 * ever touches our thread-synchronous status, so we don't
514 * have to worry about atomic accesses.
515 */
516 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
517
518 /*
519 * Set IOPL bits in EFLAGS from given mask
520 */
native_set_iopl_mask(unsigned mask)521 static inline void native_set_iopl_mask(unsigned mask)
522 {
523 #ifdef CONFIG_X86_32
524 unsigned int reg;
525
526 asm volatile ("pushfl;"
527 "popl %0;"
528 "andl %1, %0;"
529 "orl %2, %0;"
530 "pushl %0;"
531 "popfl"
532 : "=&r" (reg)
533 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
534 #endif
535 }
536
537 static inline void
native_load_sp0(unsigned long sp0)538 native_load_sp0(unsigned long sp0)
539 {
540 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
541 }
542
native_swapgs(void)543 static inline void native_swapgs(void)
544 {
545 #ifdef CONFIG_X86_64
546 asm volatile("swapgs" ::: "memory");
547 #endif
548 }
549
current_top_of_stack(void)550 static inline unsigned long current_top_of_stack(void)
551 {
552 /*
553 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
554 * and around vm86 mode and sp0 on x86_64 is special because of the
555 * entry trampoline.
556 */
557 return this_cpu_read_stable(cpu_current_top_of_stack);
558 }
559
on_thread_stack(void)560 static inline bool on_thread_stack(void)
561 {
562 return (unsigned long)(current_top_of_stack() -
563 current_stack_pointer) < THREAD_SIZE;
564 }
565
566 #ifdef CONFIG_PARAVIRT_XXL
567 #include <asm/paravirt.h>
568 #else
569 #define __cpuid native_cpuid
570
load_sp0(unsigned long sp0)571 static inline void load_sp0(unsigned long sp0)
572 {
573 native_load_sp0(sp0);
574 }
575
576 #define set_iopl_mask native_set_iopl_mask
577 #endif /* CONFIG_PARAVIRT_XXL */
578
579 /* Free all resources held by a thread. */
580 extern void release_thread(struct task_struct *);
581
582 unsigned long get_wchan(struct task_struct *p);
583
584 /*
585 * Generic CPUID function
586 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
587 * resulting in stale register contents being returned.
588 */
cpuid(unsigned int op,unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)589 static inline void cpuid(unsigned int op,
590 unsigned int *eax, unsigned int *ebx,
591 unsigned int *ecx, unsigned int *edx)
592 {
593 *eax = op;
594 *ecx = 0;
595 __cpuid(eax, ebx, ecx, edx);
596 }
597
598 /* Some CPUID calls want 'count' to be placed in ecx */
cpuid_count(unsigned int op,int count,unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)599 static inline void cpuid_count(unsigned int op, int count,
600 unsigned int *eax, unsigned int *ebx,
601 unsigned int *ecx, unsigned int *edx)
602 {
603 *eax = op;
604 *ecx = count;
605 __cpuid(eax, ebx, ecx, edx);
606 }
607
608 /*
609 * CPUID functions returning a single datum
610 */
cpuid_eax(unsigned int op)611 static inline unsigned int cpuid_eax(unsigned int op)
612 {
613 unsigned int eax, ebx, ecx, edx;
614
615 cpuid(op, &eax, &ebx, &ecx, &edx);
616
617 return eax;
618 }
619
cpuid_ebx(unsigned int op)620 static inline unsigned int cpuid_ebx(unsigned int op)
621 {
622 unsigned int eax, ebx, ecx, edx;
623
624 cpuid(op, &eax, &ebx, &ecx, &edx);
625
626 return ebx;
627 }
628
cpuid_ecx(unsigned int op)629 static inline unsigned int cpuid_ecx(unsigned int op)
630 {
631 unsigned int eax, ebx, ecx, edx;
632
633 cpuid(op, &eax, &ebx, &ecx, &edx);
634
635 return ecx;
636 }
637
cpuid_edx(unsigned int op)638 static inline unsigned int cpuid_edx(unsigned int op)
639 {
640 unsigned int eax, ebx, ecx, edx;
641
642 cpuid(op, &eax, &ebx, &ecx, &edx);
643
644 return edx;
645 }
646
647 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
rep_nop(void)648 static __always_inline void rep_nop(void)
649 {
650 asm volatile("rep; nop" ::: "memory");
651 }
652
cpu_relax(void)653 static __always_inline void cpu_relax(void)
654 {
655 rep_nop();
656 }
657
658 /*
659 * This function forces the icache and prefetched instruction stream to
660 * catch up with reality in two very specific cases:
661 *
662 * a) Text was modified using one virtual address and is about to be executed
663 * from the same physical page at a different virtual address.
664 *
665 * b) Text was modified on a different CPU, may subsequently be
666 * executed on this CPU, and you want to make sure the new version
667 * gets executed. This generally means you're calling this in a IPI.
668 *
669 * If you're calling this for a different reason, you're probably doing
670 * it wrong.
671 */
sync_core(void)672 static inline void sync_core(void)
673 {
674 /*
675 * There are quite a few ways to do this. IRET-to-self is nice
676 * because it works on every CPU, at any CPL (so it's compatible
677 * with paravirtualization), and it never exits to a hypervisor.
678 * The only down sides are that it's a bit slow (it seems to be
679 * a bit more than 2x slower than the fastest options) and that
680 * it unmasks NMIs. The "push %cs" is needed because, in
681 * paravirtual environments, __KERNEL_CS may not be a valid CS
682 * value when we do IRET directly.
683 *
684 * In case NMI unmasking or performance ever becomes a problem,
685 * the next best option appears to be MOV-to-CR2 and an
686 * unconditional jump. That sequence also works on all CPUs,
687 * but it will fault at CPL3 (i.e. Xen PV).
688 *
689 * CPUID is the conventional way, but it's nasty: it doesn't
690 * exist on some 486-like CPUs, and it usually exits to a
691 * hypervisor.
692 *
693 * Like all of Linux's memory ordering operations, this is a
694 * compiler barrier as well.
695 */
696 #ifdef CONFIG_X86_32
697 asm volatile (
698 "pushfl\n\t"
699 "pushl %%cs\n\t"
700 "pushl $1f\n\t"
701 "iret\n\t"
702 "1:"
703 : ASM_CALL_CONSTRAINT : : "memory");
704 #else
705 unsigned int tmp;
706
707 asm volatile (
708 UNWIND_HINT_SAVE
709 "mov %%ss, %0\n\t"
710 "pushq %q0\n\t"
711 "pushq %%rsp\n\t"
712 "addq $8, (%%rsp)\n\t"
713 "pushfq\n\t"
714 "mov %%cs, %0\n\t"
715 "pushq %q0\n\t"
716 "pushq $1f\n\t"
717 "iretq\n\t"
718 UNWIND_HINT_RESTORE
719 "1:"
720 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
721 #endif
722 }
723
724 extern void select_idle_routine(const struct cpuinfo_x86 *c);
725 extern void amd_e400_c1e_apic_setup(void);
726
727 extern unsigned long boot_option_idle_override;
728
729 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
730 IDLE_POLL};
731
732 extern void enable_sep_cpu(void);
733 extern int sysenter_setup(void);
734
735
736 /* Defined in head.S */
737 extern struct desc_ptr early_gdt_descr;
738
739 extern void switch_to_new_gdt(int);
740 extern void load_direct_gdt(int);
741 extern void load_fixmap_gdt(int);
742 extern void load_percpu_segment(int);
743 extern void cpu_init(void);
744 extern void cr4_init(void);
745
get_debugctlmsr(void)746 static inline unsigned long get_debugctlmsr(void)
747 {
748 unsigned long debugctlmsr = 0;
749
750 #ifndef CONFIG_X86_DEBUGCTLMSR
751 if (boot_cpu_data.x86 < 6)
752 return 0;
753 #endif
754 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
755
756 return debugctlmsr;
757 }
758
update_debugctlmsr(unsigned long debugctlmsr)759 static inline void update_debugctlmsr(unsigned long debugctlmsr)
760 {
761 #ifndef CONFIG_X86_DEBUGCTLMSR
762 if (boot_cpu_data.x86 < 6)
763 return;
764 #endif
765 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
766 }
767
768 extern void set_task_blockstep(struct task_struct *task, bool on);
769
770 /* Boot loader type from the setup header: */
771 extern int bootloader_type;
772 extern int bootloader_version;
773
774 extern char ignore_fpu_irq;
775
776 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
777 #define ARCH_HAS_PREFETCHW
778 #define ARCH_HAS_SPINLOCK_PREFETCH
779
780 #ifdef CONFIG_X86_32
781 # define BASE_PREFETCH ""
782 # define ARCH_HAS_PREFETCH
783 #else
784 # define BASE_PREFETCH "prefetcht0 %P1"
785 #endif
786
787 /*
788 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
789 *
790 * It's not worth to care about 3dnow prefetches for the K6
791 * because they are microcoded there and very slow.
792 */
prefetch(const void * x)793 static inline void prefetch(const void *x)
794 {
795 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
796 X86_FEATURE_XMM,
797 "m" (*(const char *)x));
798 }
799
800 /*
801 * 3dnow prefetch to get an exclusive cache line.
802 * Useful for spinlocks to avoid one state transition in the
803 * cache coherency protocol:
804 */
prefetchw(const void * x)805 static inline void prefetchw(const void *x)
806 {
807 alternative_input(BASE_PREFETCH, "prefetchw %P1",
808 X86_FEATURE_3DNOWPREFETCH,
809 "m" (*(const char *)x));
810 }
811
spin_lock_prefetch(const void * x)812 static inline void spin_lock_prefetch(const void *x)
813 {
814 prefetchw(x);
815 }
816
817 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
818 TOP_OF_KERNEL_STACK_PADDING)
819
820 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
821
822 #define task_pt_regs(task) \
823 ({ \
824 unsigned long __ptr = (unsigned long)task_stack_page(task); \
825 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
826 ((struct pt_regs *)__ptr) - 1; \
827 })
828
829 #ifdef CONFIG_X86_32
830 /*
831 * User space process size: 3GB (default).
832 */
833 #define IA32_PAGE_OFFSET PAGE_OFFSET
834 #define TASK_SIZE PAGE_OFFSET
835 #define TASK_SIZE_LOW TASK_SIZE
836 #define TASK_SIZE_MAX TASK_SIZE
837 #define DEFAULT_MAP_WINDOW TASK_SIZE
838 #define STACK_TOP TASK_SIZE
839 #define STACK_TOP_MAX STACK_TOP
840
841 #define INIT_THREAD { \
842 .sp0 = TOP_OF_INIT_STACK, \
843 .sysenter_cs = __KERNEL_CS, \
844 .io_bitmap_ptr = NULL, \
845 .addr_limit = KERNEL_DS, \
846 }
847
848 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
849
850 #else
851 /*
852 * User space process size. This is the first address outside the user range.
853 * There are a few constraints that determine this:
854 *
855 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
856 * address, then that syscall will enter the kernel with a
857 * non-canonical return address, and SYSRET will explode dangerously.
858 * We avoid this particular problem by preventing anything executable
859 * from being mapped at the maximum canonical address.
860 *
861 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
862 * CPUs malfunction if they execute code from the highest canonical page.
863 * They'll speculate right off the end of the canonical space, and
864 * bad things happen. This is worked around in the same way as the
865 * Intel problem.
866 *
867 * With page table isolation enabled, we map the LDT in ... [stay tuned]
868 */
869 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
870
871 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
872
873 /* This decides where the kernel will search for a free chunk of vm
874 * space during mmap's.
875 */
876 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
877 0xc0000000 : 0xFFFFe000)
878
879 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
880 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
881 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
882 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
883 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
884 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
885
886 #define STACK_TOP TASK_SIZE_LOW
887 #define STACK_TOP_MAX TASK_SIZE_MAX
888
889 #define INIT_THREAD { \
890 .addr_limit = KERNEL_DS, \
891 }
892
893 extern unsigned long KSTK_ESP(struct task_struct *task);
894
895 #endif /* CONFIG_X86_64 */
896
897 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
898 unsigned long new_sp);
899
900 /*
901 * This decides where the kernel will search for a free chunk of vm
902 * space during mmap's.
903 */
904 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
905 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
906
907 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
908
909 /* Get/set a process' ability to use the timestamp counter instruction */
910 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
911 #define SET_TSC_CTL(val) set_tsc_mode((val))
912
913 extern int get_tsc_mode(unsigned long adr);
914 extern int set_tsc_mode(unsigned int val);
915
916 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
917
918 /* Register/unregister a process' MPX related resource */
919 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
920 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
921
922 #ifdef CONFIG_X86_INTEL_MPX
923 extern int mpx_enable_management(void);
924 extern int mpx_disable_management(void);
925 #else
mpx_enable_management(void)926 static inline int mpx_enable_management(void)
927 {
928 return -EINVAL;
929 }
mpx_disable_management(void)930 static inline int mpx_disable_management(void)
931 {
932 return -EINVAL;
933 }
934 #endif /* CONFIG_X86_INTEL_MPX */
935
936 #ifdef CONFIG_CPU_SUP_AMD
937 extern u16 amd_get_nb_id(int cpu);
938 extern u32 amd_get_nodes_per_socket(void);
939 #else
amd_get_nb_id(int cpu)940 static inline u16 amd_get_nb_id(int cpu) { return 0; }
amd_get_nodes_per_socket(void)941 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
942 #endif
943
hypervisor_cpuid_base(const char * sig,uint32_t leaves)944 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
945 {
946 uint32_t base, eax, signature[3];
947
948 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
949 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
950
951 if (!memcmp(sig, signature, 12) &&
952 (leaves == 0 || ((eax - base) >= leaves)))
953 return base;
954 }
955
956 return 0;
957 }
958
959 extern unsigned long arch_align_stack(unsigned long sp);
960 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
961 extern void free_kernel_image_pages(void *begin, void *end);
962
963 void default_idle(void);
964 #ifdef CONFIG_XEN
965 bool xen_set_default_idle(void);
966 #else
967 #define xen_set_default_idle 0
968 #endif
969
970 void stop_this_cpu(void *dummy);
971 void df_debug(struct pt_regs *regs, long error_code);
972 void microcode_check(void);
973
974 enum l1tf_mitigations {
975 L1TF_MITIGATION_OFF,
976 L1TF_MITIGATION_FLUSH_NOWARN,
977 L1TF_MITIGATION_FLUSH,
978 L1TF_MITIGATION_FLUSH_NOSMT,
979 L1TF_MITIGATION_FULL,
980 L1TF_MITIGATION_FULL_FORCE
981 };
982
983 extern enum l1tf_mitigations l1tf_mitigation;
984
985 enum mds_mitigations {
986 MDS_MITIGATION_OFF,
987 MDS_MITIGATION_FULL,
988 MDS_MITIGATION_VMWERV,
989 };
990
991 enum taa_mitigations {
992 TAA_MITIGATION_OFF,
993 TAA_MITIGATION_UCODE_NEEDED,
994 TAA_MITIGATION_VERW,
995 TAA_MITIGATION_TSX_DISABLED,
996 };
997
998 #endif /* _ASM_X86_PROCESSOR_H */
999