1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_32_PGTABLE_H
4
5 #include <asm-generic/pgtable-nopmd.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/sched.h>
9 #include <linux/threads.h>
10 #include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */
11
12 #ifdef CONFIG_44x
13 extern int icache_44x_need_flush;
14 #endif
15
16 #endif /* __ASSEMBLY__ */
17
18 #define PTE_INDEX_SIZE PTE_SHIFT
19 #define PMD_INDEX_SIZE 0
20 #define PUD_INDEX_SIZE 0
21 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
22
23 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
24 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
25
26 #ifndef __ASSEMBLY__
27 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
28 #define PMD_TABLE_SIZE 0
29 #define PUD_TABLE_SIZE 0
30 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
31
32 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
33 #endif /* __ASSEMBLY__ */
34
35 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
36 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
37
38 /*
39 * The normal case is that PTEs are 32-bits and we have a 1-page
40 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
41 *
42 * For any >32-bit physical address platform, we can use the following
43 * two level page table layout where the pgdir is 8KB and the MS 13 bits
44 * are an index to the second level table. The combined pgdir/pmd first
45 * level has 2048 entries and the second level has 512 64-bit PTE entries.
46 * -Matt
47 */
48 /* PGDIR_SHIFT determines what a top-level page table entry can map */
49 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
50 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
51 #define PGDIR_MASK (~(PGDIR_SIZE-1))
52
53 /* Bits to mask out from a PGD to get to the PUD page */
54 #define PGD_MASKED_BITS 0
55
56 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
57
58 #define pte_ERROR(e) \
59 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
60 (unsigned long long)pte_val(e))
61 #define pgd_ERROR(e) \
62 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
63
64 #ifndef __ASSEMBLY__
65
66 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
67
68 #endif /* !__ASSEMBLY__ */
69
70
71 /*
72 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
73 * value (for now) on others, from where we can start layout kernel
74 * virtual space that goes below PKMAP and FIXMAP
75 */
76 #include <asm/fixmap.h>
77
78 /*
79 * ioremap_bot starts at that address. Early ioremaps move down from there,
80 * until mem_init() at which point this becomes the top of the vmalloc
81 * and ioremap space
82 */
83 #ifdef CONFIG_HIGHMEM
84 #define IOREMAP_TOP PKMAP_BASE
85 #else
86 #define IOREMAP_TOP FIXADDR_START
87 #endif
88
89 /* PPC32 shares vmalloc area with ioremap */
90 #define IOREMAP_START VMALLOC_START
91 #define IOREMAP_END VMALLOC_END
92
93 /*
94 * Just any arbitrary offset to the start of the vmalloc VM area: the
95 * current 16MB value just means that there will be a 64MB "hole" after the
96 * physical memory until the kernel virtual memory starts. That means that
97 * any out-of-bounds memory accesses will hopefully be caught.
98 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
99 * area for the same reason. ;)
100 *
101 * We no longer map larger than phys RAM with the BATs so we don't have
102 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
103 * about clashes between our early calls to ioremap() that start growing down
104 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
105 * from VMALLOC_START). For this reason we have ioremap_bot to check when
106 * we actually run into our mappings setup in the early boot with the VM
107 * system. This really does become a problem for machines with good amounts
108 * of RAM. -- Cort
109 */
110 #define VMALLOC_OFFSET (0x1000000) /* 16M */
111 #ifdef PPC_PIN_SIZE
112 #define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
113 #else
114 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
115 #endif
116
117 #ifdef CONFIG_KASAN_VMALLOC
118 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
119 #else
120 #define VMALLOC_END ioremap_bot
121 #endif
122
123 /*
124 * Bits in a linux-style PTE. These match the bits in the
125 * (hardware-defined) PowerPC PTE as closely as possible.
126 */
127
128 #if defined(CONFIG_40x)
129 #include <asm/nohash/32/pte-40x.h>
130 #elif defined(CONFIG_44x)
131 #include <asm/nohash/32/pte-44x.h>
132 #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
133 #include <asm/nohash/pte-book3e.h>
134 #elif defined(CONFIG_FSL_BOOKE)
135 #include <asm/nohash/32/pte-fsl-booke.h>
136 #elif defined(CONFIG_PPC_8xx)
137 #include <asm/nohash/32/pte-8xx.h>
138 #endif
139
140 /*
141 * Location of the PFN in the PTE. Most 32-bit platforms use the same
142 * as _PAGE_SHIFT here (ie, naturally aligned).
143 * Platform who don't just pre-define the value so we don't override it here.
144 */
145 #ifndef PTE_RPN_SHIFT
146 #define PTE_RPN_SHIFT (PAGE_SHIFT)
147 #endif
148
149 /*
150 * The mask covered by the RPN must be a ULL on 32-bit platforms with
151 * 64-bit PTEs.
152 */
153 #if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
154 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
155 #define MAX_POSSIBLE_PHYSMEM_BITS 36
156 #else
157 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
158 #define MAX_POSSIBLE_PHYSMEM_BITS 32
159 #endif
160
161 /*
162 * _PAGE_CHG_MASK masks of bits that are to be preserved across
163 * pgprot changes.
164 */
165 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
166
167 #ifndef __ASSEMBLY__
168
169 #define pte_clear(mm, addr, ptep) \
170 do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
171
172 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte)173 static inline pte_t pte_mkwrite(pte_t pte)
174 {
175 return __pte(pte_val(pte) | _PAGE_RW);
176 }
177 #endif
178
pte_mkdirty(pte_t pte)179 static inline pte_t pte_mkdirty(pte_t pte)
180 {
181 return __pte(pte_val(pte) | _PAGE_DIRTY);
182 }
183
pte_mkyoung(pte_t pte)184 static inline pte_t pte_mkyoung(pte_t pte)
185 {
186 return __pte(pte_val(pte) | _PAGE_ACCESSED);
187 }
188
189 #ifndef pte_wrprotect
pte_wrprotect(pte_t pte)190 static inline pte_t pte_wrprotect(pte_t pte)
191 {
192 return __pte(pte_val(pte) & ~_PAGE_RW);
193 }
194 #endif
195
pte_mkexec(pte_t pte)196 static inline pte_t pte_mkexec(pte_t pte)
197 {
198 return __pte(pte_val(pte) | _PAGE_EXEC);
199 }
200
201 #define pmd_none(pmd) (!pmd_val(pmd))
202 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
203 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
pmd_clear(pmd_t * pmdp)204 static inline void pmd_clear(pmd_t *pmdp)
205 {
206 *pmdp = __pmd(0);
207 }
208
209 /*
210 * PTE updates. This function is called whenever an existing
211 * valid PTE is updated. This does -not- include set_pte_at()
212 * which nowadays only sets a new PTE.
213 *
214 * Depending on the type of MMU, we may need to use atomic updates
215 * and the PTE may be either 32 or 64 bit wide. In the later case,
216 * when using atomic updates, only the low part of the PTE is
217 * accessed atomically.
218 *
219 * In addition, on 44x, we also maintain a global flag indicating
220 * that an executable user mapping was modified, which is needed
221 * to properly flush the virtually tagged instruction cache of
222 * those implementations.
223 *
224 * On the 8xx, the page tables are a bit special. For 16k pages, we have
225 * 4 identical entries. For 512k pages, we have 128 entries as if it was
226 * 4k pages, but they are flagged as 512k pages for the hardware.
227 * For other page sizes, we have a single entry in the table.
228 */
229 #ifdef CONFIG_PPC_8xx
230 static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
231 static int hugepd_ok(hugepd_t hpd);
232
number_of_cells_per_pte(pmd_t * pmd,pte_basic_t val,int huge)233 static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
234 {
235 if (!huge)
236 return PAGE_SIZE / SZ_4K;
237 else if (hugepd_ok(*((hugepd_t *)pmd)))
238 return 1;
239 else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
240 return SZ_16K / SZ_4K;
241 else
242 return SZ_512K / SZ_4K;
243 }
244
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)245 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
246 unsigned long clr, unsigned long set, int huge)
247 {
248 pte_basic_t *entry = &p->pte;
249 pte_basic_t old = pte_val(*p);
250 pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
251 int num, i;
252 pmd_t *pmd = pmd_off(mm, addr);
253
254 num = number_of_cells_per_pte(pmd, new, huge);
255
256 for (i = 0; i < num; i++, entry++, new += SZ_4K)
257 *entry = new;
258
259 return old;
260 }
261
262 #ifdef CONFIG_PPC_16K_PAGES
263 #define __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)264 static inline pte_t ptep_get(pte_t *ptep)
265 {
266 pte_basic_t val = READ_ONCE(ptep->pte);
267 pte_t pte = {val, val, val, val};
268
269 return pte;
270 }
271 #endif /* CONFIG_PPC_16K_PAGES */
272
273 #else
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)274 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
275 unsigned long clr, unsigned long set, int huge)
276 {
277 pte_basic_t old = pte_val(*p);
278 pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
279
280 *p = __pte(new);
281
282 #ifdef CONFIG_44x
283 if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
284 icache_44x_need_flush = 1;
285 #endif
286 return old;
287 }
288 #endif
289
290 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)291 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
292 unsigned long addr, pte_t *ptep)
293 {
294 unsigned long old;
295 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
296 return (old & _PAGE_ACCESSED) != 0;
297 }
298 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
299 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
300
301 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)302 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
303 pte_t *ptep)
304 {
305 return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
306 }
307
308 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)309 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
310 pte_t *ptep)
311 {
312 unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0)));
313 unsigned long set = pte_val(pte_wrprotect(__pte(0)));
314
315 pte_update(mm, addr, ptep, clr, set, 0);
316 }
317
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)318 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
319 pte_t *ptep, pte_t entry,
320 unsigned long address,
321 int psize)
322 {
323 pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
324 pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
325 unsigned long set = pte_val(entry) & pte_val(pte_set);
326 unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr);
327 int huge = psize > mmu_virtual_psize ? 1 : 0;
328
329 pte_update(vma->vm_mm, address, ptep, clr, set, huge);
330
331 flush_tlb_page(vma, address);
332 }
333
pte_young(pte_t pte)334 static inline int pte_young(pte_t pte)
335 {
336 return pte_val(pte) & _PAGE_ACCESSED;
337 }
338
339 #define __HAVE_ARCH_PTE_SAME
340 #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0)
341
342 /*
343 * Note that on Book E processors, the pmd contains the kernel virtual
344 * (lowmem) address of the pte page. The physical address is less useful
345 * because everything runs with translation enabled (even the TLB miss
346 * handler). On everything else the pmd contains the physical address
347 * of the pte page. -- paulus
348 */
349 #ifndef CONFIG_BOOKE
350 #define pmd_page(pmd) \
351 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
352 #else
353 #define pmd_page_vaddr(pmd) \
354 ((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
355 #define pmd_page(pmd) \
356 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
357 #endif
358
359 /*
360 * Encode and decode a swap entry.
361 * Note that the bits we use in a PTE for representing a swap entry
362 * must not include the _PAGE_PRESENT bit.
363 * -- paulus
364 */
365 #define __swp_type(entry) ((entry).val & 0x1f)
366 #define __swp_offset(entry) ((entry).val >> 5)
367 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
368 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
369 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
370
371 #endif /* !__ASSEMBLY__ */
372
373 #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
374