1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31 };
32
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
update_page_count(int level,long count)35 static inline void update_page_count(int level, long count)
36 {
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39 }
40
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43
44 /*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51 /*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65
66 #define FIRST_USER_ADDRESS 0UL
67
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79 /*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 #define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
90 extern struct page *vmemmap;
91
92 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR MODULES_VADDR
97 #define MODULES_END MODULES_END
98 #define MODULES_LEN (1UL << 31)
99
is_module_addr(void * addr)100 static inline int is_module_addr(void *addr)
101 {
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108 }
109
110 /*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161 /* Hardware bits in the page table entry */
162 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
164 #define _PAGE_INVALID 0x400 /* HW invalid bit */
165 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167 /* Software bits in the page table entry */
168 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
169 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
170 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171 #define _PAGE_READ 0x010 /* SW pte read bit */
172 #define _PAGE_WRITE 0x020 /* SW pte write bit */
173 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
181
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186 /*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228 #define _ASCE_REAL_SPACE 0x20 /* real space control */
229 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
243 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
267
268 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
300
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
308
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
329
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
334
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
339
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
345
346 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
347
348 /*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS 0xf000000000000000UL
372 #define PGSTE_FP_BIT 0x0800000000000000UL
373 #define PGSTE_PCL_BIT 0x0080000000000000UL
374 #define PGSTE_HR_BIT 0x0040000000000000UL
375 #define PGSTE_HC_BIT 0x0020000000000000UL
376 #define PGSTE_GR_BIT 0x0004000000000000UL
377 #define PGSTE_GC_BIT 0x0002000000000000UL
378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391 /*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399 /*
400 * Page protection definitions.
401 */
402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421 /*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427 #define __P000 PAGE_NONE
428 #define __P001 PAGE_RO
429 #define __P010 PAGE_RO
430 #define __P011 PAGE_RO
431 #define __P100 PAGE_RX
432 #define __P101 PAGE_RX
433 #define __P110 PAGE_RX
434 #define __P111 PAGE_RX
435
436 #define __S000 PAGE_NONE
437 #define __S001 PAGE_RO
438 #define __S010 PAGE_RW
439 #define __S011 PAGE_RW
440 #define __S100 PAGE_RX
441 #define __S101 PAGE_RX
442 #define __S110 PAGE_RWX
443 #define __S111 PAGE_RWX
444
445 /*
446 * Segment entry (large page) protection definitions.
447 */
448 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
479
480 /*
481 * Region3 entry (large page) protection definitions.
482 */
483
484 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
mm_p4d_folded(struct mm_struct * mm)498 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 {
500 return mm->context.asce_limit <= _REGION1_SIZE;
501 }
502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
mm_pud_folded(struct mm_struct * mm)504 static inline bool mm_pud_folded(struct mm_struct *mm)
505 {
506 return mm->context.asce_limit <= _REGION2_SIZE;
507 }
508 #define mm_pud_folded(mm) mm_pud_folded(mm)
509
mm_pmd_folded(struct mm_struct * mm)510 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 {
512 return mm->context.asce_limit <= _REGION3_SIZE;
513 }
514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
mm_has_pgste(struct mm_struct * mm)516 static inline int mm_has_pgste(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521 #endif
522 return 0;
523 }
524
mm_alloc_pgste(struct mm_struct * mm)525 static inline int mm_alloc_pgste(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_PGSTE
528 if (unlikely(mm->context.alloc_pgste))
529 return 1;
530 #endif
531 return 0;
532 }
533
534 /*
535 * In the case that a guest uses storage keys
536 * faults should no longer be backed by zero pages
537 */
538 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)539 static inline int mm_uses_skeys(struct mm_struct *mm)
540 {
541 #ifdef CONFIG_PGSTE
542 if (mm->context.uses_skeys)
543 return 1;
544 #endif
545 return 0;
546 }
547
csp(unsigned int * ptr,unsigned int old,unsigned int new)548 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
549 {
550 register unsigned long reg2 asm("2") = old;
551 register unsigned long reg3 asm("3") = new;
552 unsigned long address = (unsigned long)ptr | 1;
553
554 asm volatile(
555 " csp %0,%3"
556 : "+d" (reg2), "+m" (*ptr)
557 : "d" (reg3), "d" (address)
558 : "cc");
559 }
560
cspg(unsigned long * ptr,unsigned long old,unsigned long new)561 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
562 {
563 register unsigned long reg2 asm("2") = old;
564 register unsigned long reg3 asm("3") = new;
565 unsigned long address = (unsigned long)ptr | 1;
566
567 asm volatile(
568 " .insn rre,0xb98a0000,%0,%3"
569 : "+d" (reg2), "+m" (*ptr)
570 : "d" (reg3), "d" (address)
571 : "cc");
572 }
573
574 #define CRDTE_DTT_PAGE 0x00UL
575 #define CRDTE_DTT_SEGMENT 0x10UL
576 #define CRDTE_DTT_REGION3 0x14UL
577 #define CRDTE_DTT_REGION2 0x18UL
578 #define CRDTE_DTT_REGION1 0x1cUL
579
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)580 static inline void crdte(unsigned long old, unsigned long new,
581 unsigned long table, unsigned long dtt,
582 unsigned long address, unsigned long asce)
583 {
584 register unsigned long reg2 asm("2") = old;
585 register unsigned long reg3 asm("3") = new;
586 register unsigned long reg4 asm("4") = table | dtt;
587 register unsigned long reg5 asm("5") = address;
588
589 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
590 : "+d" (reg2)
591 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
592 : "memory", "cc");
593 }
594
595 /*
596 * pgd/p4d/pud/pmd/pte query functions
597 */
pgd_folded(pgd_t pgd)598 static inline int pgd_folded(pgd_t pgd)
599 {
600 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
601 }
602
pgd_present(pgd_t pgd)603 static inline int pgd_present(pgd_t pgd)
604 {
605 if (pgd_folded(pgd))
606 return 1;
607 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
608 }
609
pgd_none(pgd_t pgd)610 static inline int pgd_none(pgd_t pgd)
611 {
612 if (pgd_folded(pgd))
613 return 0;
614 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
615 }
616
pgd_bad(pgd_t pgd)617 static inline int pgd_bad(pgd_t pgd)
618 {
619 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
620 return 0;
621 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
622 }
623
pgd_pfn(pgd_t pgd)624 static inline unsigned long pgd_pfn(pgd_t pgd)
625 {
626 unsigned long origin_mask;
627
628 origin_mask = _REGION_ENTRY_ORIGIN;
629 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
630 }
631
p4d_folded(p4d_t p4d)632 static inline int p4d_folded(p4d_t p4d)
633 {
634 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
635 }
636
p4d_present(p4d_t p4d)637 static inline int p4d_present(p4d_t p4d)
638 {
639 if (p4d_folded(p4d))
640 return 1;
641 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
642 }
643
p4d_none(p4d_t p4d)644 static inline int p4d_none(p4d_t p4d)
645 {
646 if (p4d_folded(p4d))
647 return 0;
648 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
649 }
650
p4d_pfn(p4d_t p4d)651 static inline unsigned long p4d_pfn(p4d_t p4d)
652 {
653 unsigned long origin_mask;
654
655 origin_mask = _REGION_ENTRY_ORIGIN;
656 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
657 }
658
pud_folded(pud_t pud)659 static inline int pud_folded(pud_t pud)
660 {
661 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
662 }
663
pud_present(pud_t pud)664 static inline int pud_present(pud_t pud)
665 {
666 if (pud_folded(pud))
667 return 1;
668 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
669 }
670
pud_none(pud_t pud)671 static inline int pud_none(pud_t pud)
672 {
673 if (pud_folded(pud))
674 return 0;
675 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
676 }
677
pud_large(pud_t pud)678 static inline int pud_large(pud_t pud)
679 {
680 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
681 return 0;
682 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
683 }
684
pud_pfn(pud_t pud)685 static inline unsigned long pud_pfn(pud_t pud)
686 {
687 unsigned long origin_mask;
688
689 origin_mask = _REGION_ENTRY_ORIGIN;
690 if (pud_large(pud))
691 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
692 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
693 }
694
pmd_large(pmd_t pmd)695 static inline int pmd_large(pmd_t pmd)
696 {
697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698 }
699
pmd_bad(pmd_t pmd)700 static inline int pmd_bad(pmd_t pmd)
701 {
702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
703 return 1;
704 if (pmd_large(pmd))
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707 }
708
pud_bad(pud_t pud)709 static inline int pud_bad(pud_t pud)
710 {
711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712
713 if (type > _REGION_ENTRY_TYPE_R3)
714 return 1;
715 if (type < _REGION_ENTRY_TYPE_R3)
716 return 0;
717 if (pud_large(pud))
718 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
719 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
720 }
721
p4d_bad(p4d_t p4d)722 static inline int p4d_bad(p4d_t p4d)
723 {
724 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
725
726 if (type > _REGION_ENTRY_TYPE_R2)
727 return 1;
728 if (type < _REGION_ENTRY_TYPE_R2)
729 return 0;
730 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
731 }
732
pmd_present(pmd_t pmd)733 static inline int pmd_present(pmd_t pmd)
734 {
735 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
736 }
737
pmd_none(pmd_t pmd)738 static inline int pmd_none(pmd_t pmd)
739 {
740 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
741 }
742
pmd_pfn(pmd_t pmd)743 static inline unsigned long pmd_pfn(pmd_t pmd)
744 {
745 unsigned long origin_mask;
746
747 origin_mask = _SEGMENT_ENTRY_ORIGIN;
748 if (pmd_large(pmd))
749 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
750 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
751 }
752
753 #define pmd_write pmd_write
pmd_write(pmd_t pmd)754 static inline int pmd_write(pmd_t pmd)
755 {
756 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
757 }
758
pmd_dirty(pmd_t pmd)759 static inline int pmd_dirty(pmd_t pmd)
760 {
761 int dirty = 1;
762 if (pmd_large(pmd))
763 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 return dirty;
765 }
766
pmd_young(pmd_t pmd)767 static inline int pmd_young(pmd_t pmd)
768 {
769 int young = 1;
770 if (pmd_large(pmd))
771 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
772 return young;
773 }
774
pte_present(pte_t pte)775 static inline int pte_present(pte_t pte)
776 {
777 /* Bit pattern: (pte & 0x001) == 0x001 */
778 return (pte_val(pte) & _PAGE_PRESENT) != 0;
779 }
780
pte_none(pte_t pte)781 static inline int pte_none(pte_t pte)
782 {
783 /* Bit pattern: pte == 0x400 */
784 return pte_val(pte) == _PAGE_INVALID;
785 }
786
pte_swap(pte_t pte)787 static inline int pte_swap(pte_t pte)
788 {
789 /* Bit pattern: (pte & 0x201) == 0x200 */
790 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
791 == _PAGE_PROTECT;
792 }
793
pte_special(pte_t pte)794 static inline int pte_special(pte_t pte)
795 {
796 return (pte_val(pte) & _PAGE_SPECIAL);
797 }
798
799 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)800 static inline int pte_same(pte_t a, pte_t b)
801 {
802 return pte_val(a) == pte_val(b);
803 }
804
805 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)806 static inline int pte_protnone(pte_t pte)
807 {
808 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
809 }
810
pmd_protnone(pmd_t pmd)811 static inline int pmd_protnone(pmd_t pmd)
812 {
813 /* pmd_large(pmd) implies pmd_present(pmd) */
814 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
815 }
816 #endif
817
pte_soft_dirty(pte_t pte)818 static inline int pte_soft_dirty(pte_t pte)
819 {
820 return pte_val(pte) & _PAGE_SOFT_DIRTY;
821 }
822 #define pte_swp_soft_dirty pte_soft_dirty
823
pte_mksoft_dirty(pte_t pte)824 static inline pte_t pte_mksoft_dirty(pte_t pte)
825 {
826 pte_val(pte) |= _PAGE_SOFT_DIRTY;
827 return pte;
828 }
829 #define pte_swp_mksoft_dirty pte_mksoft_dirty
830
pte_clear_soft_dirty(pte_t pte)831 static inline pte_t pte_clear_soft_dirty(pte_t pte)
832 {
833 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
834 return pte;
835 }
836 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
837
pmd_soft_dirty(pmd_t pmd)838 static inline int pmd_soft_dirty(pmd_t pmd)
839 {
840 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
841 }
842
pmd_mksoft_dirty(pmd_t pmd)843 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
844 {
845 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
846 return pmd;
847 }
848
pmd_clear_soft_dirty(pmd_t pmd)849 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
850 {
851 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
852 return pmd;
853 }
854
855 /*
856 * query functions pte_write/pte_dirty/pte_young only work if
857 * pte_present() is true. Undefined behaviour if not..
858 */
pte_write(pte_t pte)859 static inline int pte_write(pte_t pte)
860 {
861 return (pte_val(pte) & _PAGE_WRITE) != 0;
862 }
863
pte_dirty(pte_t pte)864 static inline int pte_dirty(pte_t pte)
865 {
866 return (pte_val(pte) & _PAGE_DIRTY) != 0;
867 }
868
pte_young(pte_t pte)869 static inline int pte_young(pte_t pte)
870 {
871 return (pte_val(pte) & _PAGE_YOUNG) != 0;
872 }
873
874 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)875 static inline int pte_unused(pte_t pte)
876 {
877 return pte_val(pte) & _PAGE_UNUSED;
878 }
879
880 /*
881 * pgd/pmd/pte modification functions
882 */
883
pgd_clear(pgd_t * pgd)884 static inline void pgd_clear(pgd_t *pgd)
885 {
886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888 }
889
p4d_clear(p4d_t * p4d)890 static inline void p4d_clear(p4d_t *p4d)
891 {
892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894 }
895
pud_clear(pud_t * pud)896 static inline void pud_clear(pud_t *pud)
897 {
898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900 }
901
pmd_clear(pmd_t * pmdp)902 static inline void pmd_clear(pmd_t *pmdp)
903 {
904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905 }
906
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)907 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908 {
909 pte_val(*ptep) = _PAGE_INVALID;
910 }
911
912 /*
913 * The following pte modification functions only work if
914 * pte_present() is true. Undefined behaviour if not..
915 */
pte_modify(pte_t pte,pgprot_t newprot)916 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917 {
918 pte_val(pte) &= _PAGE_CHG_MASK;
919 pte_val(pte) |= pgprot_val(newprot);
920 /*
921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 * has the invalid bit set, clear it again for readable, young pages
923 */
924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 pte_val(pte) &= ~_PAGE_INVALID;
926 /*
927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 * protection bit set, clear it again for writable, dirty pages
929 */
930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 pte_val(pte) &= ~_PAGE_PROTECT;
932 return pte;
933 }
934
pte_wrprotect(pte_t pte)935 static inline pte_t pte_wrprotect(pte_t pte)
936 {
937 pte_val(pte) &= ~_PAGE_WRITE;
938 pte_val(pte) |= _PAGE_PROTECT;
939 return pte;
940 }
941
pte_mkwrite(pte_t pte)942 static inline pte_t pte_mkwrite(pte_t pte)
943 {
944 pte_val(pte) |= _PAGE_WRITE;
945 if (pte_val(pte) & _PAGE_DIRTY)
946 pte_val(pte) &= ~_PAGE_PROTECT;
947 return pte;
948 }
949
pte_mkclean(pte_t pte)950 static inline pte_t pte_mkclean(pte_t pte)
951 {
952 pte_val(pte) &= ~_PAGE_DIRTY;
953 pte_val(pte) |= _PAGE_PROTECT;
954 return pte;
955 }
956
pte_mkdirty(pte_t pte)957 static inline pte_t pte_mkdirty(pte_t pte)
958 {
959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 if (pte_val(pte) & _PAGE_WRITE)
961 pte_val(pte) &= ~_PAGE_PROTECT;
962 return pte;
963 }
964
pte_mkold(pte_t pte)965 static inline pte_t pte_mkold(pte_t pte)
966 {
967 pte_val(pte) &= ~_PAGE_YOUNG;
968 pte_val(pte) |= _PAGE_INVALID;
969 return pte;
970 }
971
pte_mkyoung(pte_t pte)972 static inline pte_t pte_mkyoung(pte_t pte)
973 {
974 pte_val(pte) |= _PAGE_YOUNG;
975 if (pte_val(pte) & _PAGE_READ)
976 pte_val(pte) &= ~_PAGE_INVALID;
977 return pte;
978 }
979
pte_mkspecial(pte_t pte)980 static inline pte_t pte_mkspecial(pte_t pte)
981 {
982 pte_val(pte) |= _PAGE_SPECIAL;
983 return pte;
984 }
985
986 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)987 static inline pte_t pte_mkhuge(pte_t pte)
988 {
989 pte_val(pte) |= _PAGE_LARGE;
990 return pte;
991 }
992 #endif
993
994 #define IPTE_GLOBAL 0
995 #define IPTE_LOCAL 1
996
997 #define IPTE_NODAT 0x400
998 #define IPTE_GUEST_ASCE 0x800
999
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1000 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 unsigned long opt, unsigned long asce,
1002 int local)
1003 {
1004 unsigned long pto = (unsigned long) ptep;
1005
1006 if (__builtin_constant_p(opt) && opt == 0) {
1007 /* Invalidation + TLB flush for the pte */
1008 asm volatile(
1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 [m4] "i" (local));
1012 return;
1013 }
1014
1015 /* Invalidate ptes with options + TLB flush of the ptes */
1016 opt = opt | (asce & _ASCE_ORIGIN);
1017 asm volatile(
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (opt)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1021 }
1022
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1023 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 pte_t *ptep, int local)
1025 {
1026 unsigned long pto = (unsigned long) ptep;
1027
1028 /* Invalidate a range of ptes + TLB flush of the ptes */
1029 do {
1030 asm volatile(
1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 : [r2] "+a" (address), [r3] "+a" (nr)
1033 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 } while (nr != 255);
1035 }
1036
1037 /*
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 * 1) ptep_get_and_clear
1043 * 2) set_pte_at
1044 * 3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048 * is a nop.
1049 */
1050 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052
1053 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1054 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *ptep)
1056 {
1057 pte_t pte = *ptep;
1058
1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 return pte_young(pte);
1061 }
1062
1063 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1064 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pte_t *ptep)
1066 {
1067 return ptep_test_and_clear_young(vma, address, ptep);
1068 }
1069
1070 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1071 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 unsigned long addr, pte_t *ptep)
1073 {
1074 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1075 }
1076
1077 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1078 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1079 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1080 pte_t *, pte_t, pte_t);
1081
1082 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1083 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1084 unsigned long addr, pte_t *ptep)
1085 {
1086 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1087 }
1088
1089 /*
1090 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1091 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1092 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1093 * cannot be accessed while the batched unmap is running. In this case
1094 * full==1 and a simple pte_clear is enough. See tlb.h.
1095 */
1096 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1097 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1098 unsigned long addr,
1099 pte_t *ptep, int full)
1100 {
1101 if (full) {
1102 pte_t pte = *ptep;
1103 *ptep = __pte(_PAGE_INVALID);
1104 return pte;
1105 }
1106 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1107 }
1108
1109 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1110 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1111 unsigned long addr, pte_t *ptep)
1112 {
1113 pte_t pte = *ptep;
1114
1115 if (pte_write(pte))
1116 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1117 }
1118
1119 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1120 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1121 unsigned long addr, pte_t *ptep,
1122 pte_t entry, int dirty)
1123 {
1124 if (pte_same(*ptep, entry))
1125 return 0;
1126 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1127 return 1;
1128 }
1129
1130 /*
1131 * Additional functions to handle KVM guest page tables
1132 */
1133 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1134 pte_t *ptep, pte_t entry);
1135 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1136 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1137 pte_t *ptep, unsigned long bits);
1138 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1139 pte_t *ptep, int prot, unsigned long bit);
1140 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1141 pte_t *ptep , int reset);
1142 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1143 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1144 pte_t *sptep, pte_t *tptep, pte_t pte);
1145 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1146
1147 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1148 pte_t *ptep);
1149 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1150 unsigned char key, bool nq);
1151 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152 unsigned char key, unsigned char *oldkey,
1153 bool nq, bool mr, bool mc);
1154 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1155 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156 unsigned char *key);
1157
1158 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1159 unsigned long bits, unsigned long value);
1160 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1161 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1162 unsigned long *oldpte, unsigned long *oldpgste);
1163 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1164 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1165 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1166 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1167
1168 /*
1169 * Certain architectures need to do special things when PTEs
1170 * within a page table are directly modified. Thus, the following
1171 * hook is made available.
1172 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1173 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1174 pte_t *ptep, pte_t entry)
1175 {
1176 if (!MACHINE_HAS_NX)
1177 pte_val(entry) &= ~_PAGE_NOEXEC;
1178 if (pte_present(entry))
1179 pte_val(entry) &= ~_PAGE_UNUSED;
1180 if (mm_has_pgste(mm))
1181 ptep_set_pte_at(mm, addr, ptep, entry);
1182 else
1183 *ptep = entry;
1184 }
1185
1186 /*
1187 * Conversion functions: convert a page and protection to a page entry,
1188 * and a page entry and page directory to the page they refer to.
1189 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1190 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1191 {
1192 pte_t __pte;
1193 pte_val(__pte) = physpage + pgprot_val(pgprot);
1194 return pte_mkyoung(__pte);
1195 }
1196
mk_pte(struct page * page,pgprot_t pgprot)1197 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1198 {
1199 unsigned long physpage = page_to_phys(page);
1200 pte_t __pte = mk_pte_phys(physpage, pgprot);
1201
1202 if (pte_write(__pte) && PageDirty(page))
1203 __pte = pte_mkdirty(__pte);
1204 return __pte;
1205 }
1206
1207 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1208 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1209 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1210 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1211 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1212
1213 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1214 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1215 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1216 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1217
1218 /*
1219 * The pgd_offset function *always* adds the index for the top-level
1220 * region/segment table. This is done to get a sequence like the
1221 * following to work:
1222 * pgdp = pgd_offset(current->mm, addr);
1223 * pgd = READ_ONCE(*pgdp);
1224 * p4dp = p4d_offset(&pgd, addr);
1225 * ...
1226 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1227 * only add an index if they dereferenced the pointer.
1228 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1229 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1230 {
1231 unsigned long rste;
1232 unsigned int shift;
1233
1234 /* Get the first entry of the top level table */
1235 rste = pgd_val(*pgd);
1236 /* Pick up the shift from the table type of the first entry */
1237 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1238 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1239 }
1240
1241 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1242 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243
p4d_offset(pgd_t * pgd,unsigned long address)1244 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1245 {
1246 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1247 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1248 return (p4d_t *) pgd;
1249 }
1250
pud_offset(p4d_t * p4d,unsigned long address)1251 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1252 {
1253 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1254 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1255 return (pud_t *) p4d;
1256 }
1257
pmd_offset(pud_t * pud,unsigned long address)1258 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1259 {
1260 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1261 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1262 return (pmd_t *) pud;
1263 }
1264
pte_offset(pmd_t * pmd,unsigned long address)1265 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1266 {
1267 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1268 }
1269
1270 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1271 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1272
pte_unmap(pte_t * pte)1273 static inline void pte_unmap(pte_t *pte) { }
1274
gup_fast_permitted(unsigned long start,unsigned long end)1275 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1276 {
1277 return end <= current->mm->context.asce_limit;
1278 }
1279 #define gup_fast_permitted gup_fast_permitted
1280
1281 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1282 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1283 #define pte_page(x) pfn_to_page(pte_pfn(x))
1284
1285 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1286 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1287 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1288 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1289
pmd_wrprotect(pmd_t pmd)1290 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1291 {
1292 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1293 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1294 return pmd;
1295 }
1296
pmd_mkwrite(pmd_t pmd)1297 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1298 {
1299 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1300 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1301 return pmd;
1302 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1303 return pmd;
1304 }
1305
pmd_mkclean(pmd_t pmd)1306 static inline pmd_t pmd_mkclean(pmd_t pmd)
1307 {
1308 if (pmd_large(pmd)) {
1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1310 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1311 }
1312 return pmd;
1313 }
1314
pmd_mkdirty(pmd_t pmd)1315 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1316 {
1317 if (pmd_large(pmd)) {
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1319 _SEGMENT_ENTRY_SOFT_DIRTY;
1320 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1321 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1322 }
1323 return pmd;
1324 }
1325
pud_wrprotect(pud_t pud)1326 static inline pud_t pud_wrprotect(pud_t pud)
1327 {
1328 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1329 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1330 return pud;
1331 }
1332
pud_mkwrite(pud_t pud)1333 static inline pud_t pud_mkwrite(pud_t pud)
1334 {
1335 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1336 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1337 return pud;
1338 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1339 return pud;
1340 }
1341
pud_mkclean(pud_t pud)1342 static inline pud_t pud_mkclean(pud_t pud)
1343 {
1344 if (pud_large(pud)) {
1345 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1346 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1347 }
1348 return pud;
1349 }
1350
pud_mkdirty(pud_t pud)1351 static inline pud_t pud_mkdirty(pud_t pud)
1352 {
1353 if (pud_large(pud)) {
1354 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1355 _REGION3_ENTRY_SOFT_DIRTY;
1356 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1357 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1358 }
1359 return pud;
1360 }
1361
1362 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1363 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1364 {
1365 /*
1366 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1367 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1368 */
1369 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1370 return pgprot_val(SEGMENT_NONE);
1371 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1372 return pgprot_val(SEGMENT_RO);
1373 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1374 return pgprot_val(SEGMENT_RX);
1375 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1376 return pgprot_val(SEGMENT_RW);
1377 return pgprot_val(SEGMENT_RWX);
1378 }
1379
pmd_mkyoung(pmd_t pmd)1380 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1381 {
1382 if (pmd_large(pmd)) {
1383 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1384 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1385 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1386 }
1387 return pmd;
1388 }
1389
pmd_mkold(pmd_t pmd)1390 static inline pmd_t pmd_mkold(pmd_t pmd)
1391 {
1392 if (pmd_large(pmd)) {
1393 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1394 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1395 }
1396 return pmd;
1397 }
1398
pmd_modify(pmd_t pmd,pgprot_t newprot)1399 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1400 {
1401 if (pmd_large(pmd)) {
1402 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1403 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1404 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1405 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1406 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1407 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1408 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1409 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1410 return pmd;
1411 }
1412 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1413 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1414 return pmd;
1415 }
1416
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1417 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1418 {
1419 pmd_t __pmd;
1420 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1421 return __pmd;
1422 }
1423
1424 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1425
__pmdp_csp(pmd_t * pmdp)1426 static inline void __pmdp_csp(pmd_t *pmdp)
1427 {
1428 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1429 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430 }
1431
1432 #define IDTE_GLOBAL 0
1433 #define IDTE_LOCAL 1
1434
1435 #define IDTE_PTOA 0x0800
1436 #define IDTE_NODAT 0x1000
1437 #define IDTE_GUEST_ASCE 0x2000
1438
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1439 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1440 unsigned long opt, unsigned long asce,
1441 int local)
1442 {
1443 unsigned long sto;
1444
1445 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1446 if (__builtin_constant_p(opt) && opt == 0) {
1447 /* flush without guest asce */
1448 asm volatile(
1449 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1450 : "+m" (*pmdp)
1451 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1452 [m4] "i" (local)
1453 : "cc" );
1454 } else {
1455 /* flush with guest asce */
1456 asm volatile(
1457 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1458 : "+m" (*pmdp)
1459 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1460 [r3] "a" (asce), [m4] "i" (local)
1461 : "cc" );
1462 }
1463 }
1464
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1465 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1466 unsigned long opt, unsigned long asce,
1467 int local)
1468 {
1469 unsigned long r3o;
1470
1471 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1472 r3o |= _ASCE_TYPE_REGION3;
1473 if (__builtin_constant_p(opt) && opt == 0) {
1474 /* flush without guest asce */
1475 asm volatile(
1476 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1477 : "+m" (*pudp)
1478 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1479 [m4] "i" (local)
1480 : "cc");
1481 } else {
1482 /* flush with guest asce */
1483 asm volatile(
1484 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1485 : "+m" (*pudp)
1486 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1487 [r3] "a" (asce), [m4] "i" (local)
1488 : "cc" );
1489 }
1490 }
1491
1492 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1493 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1494 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1495
1496 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1497
1498 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1499 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1500 pgtable_t pgtable);
1501
1502 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1503 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1504
1505 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1506 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1507 unsigned long addr, pmd_t *pmdp,
1508 pmd_t entry, int dirty)
1509 {
1510 VM_BUG_ON(addr & ~HPAGE_MASK);
1511
1512 entry = pmd_mkyoung(entry);
1513 if (dirty)
1514 entry = pmd_mkdirty(entry);
1515 if (pmd_val(*pmdp) == pmd_val(entry))
1516 return 0;
1517 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1518 return 1;
1519 }
1520
1521 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1522 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523 unsigned long addr, pmd_t *pmdp)
1524 {
1525 pmd_t pmd = *pmdp;
1526
1527 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1528 return pmd_young(pmd);
1529 }
1530
1531 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1532 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1533 unsigned long addr, pmd_t *pmdp)
1534 {
1535 VM_BUG_ON(addr & ~HPAGE_MASK);
1536 return pmdp_test_and_clear_young(vma, addr, pmdp);
1537 }
1538
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1539 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1540 pmd_t *pmdp, pmd_t entry)
1541 {
1542 if (!MACHINE_HAS_NX)
1543 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1544 *pmdp = entry;
1545 }
1546
pmd_mkhuge(pmd_t pmd)1547 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1548 {
1549 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1550 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1551 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1552 return pmd;
1553 }
1554
1555 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1556 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1557 unsigned long addr, pmd_t *pmdp)
1558 {
1559 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560 }
1561
1562 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,int full)1563 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1564 unsigned long addr,
1565 pmd_t *pmdp, int full)
1566 {
1567 if (full) {
1568 pmd_t pmd = *pmdp;
1569 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1570 return pmd;
1571 }
1572 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573 }
1574
1575 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1576 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1577 unsigned long addr, pmd_t *pmdp)
1578 {
1579 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580 }
1581
1582 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1583 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1584 unsigned long addr, pmd_t *pmdp)
1585 {
1586 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1587
1588 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589 }
1590
1591 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1592 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1593 unsigned long addr, pmd_t *pmdp)
1594 {
1595 pmd_t pmd = *pmdp;
1596
1597 if (pmd_write(pmd))
1598 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599 }
1600
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1601 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1602 unsigned long address,
1603 pmd_t *pmdp)
1604 {
1605 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1606 }
1607 #define pmdp_collapse_flush pmdp_collapse_flush
1608
1609 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1610 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1611
pmd_trans_huge(pmd_t pmd)1612 static inline int pmd_trans_huge(pmd_t pmd)
1613 {
1614 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615 }
1616
1617 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1618 static inline int has_transparent_hugepage(void)
1619 {
1620 return MACHINE_HAS_EDAT1 ? 1 : 0;
1621 }
1622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623
1624 /*
1625 * 64 bit swap entry format:
1626 * A page-table entry has some bits we have to treat in a special way.
1627 * Bits 52 and bit 55 have to be zero, otherwise a specification
1628 * exception will occur instead of a page translation exception. The
1629 * specification exception has the bad habit not to store necessary
1630 * information in the lowcore.
1631 * Bits 54 and 63 are used to indicate the page type.
1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1635 * for the offset.
1636 * | offset |01100|type |00|
1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1639 */
1640
1641 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1642 #define __SWP_OFFSET_SHIFT 12
1643 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1644 #define __SWP_TYPE_SHIFT 2
1645
mk_swap_pte(unsigned long type,unsigned long offset)1646 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1647 {
1648 pte_t pte;
1649
1650 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1651 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1652 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1653 return pte;
1654 }
1655
__swp_type(swp_entry_t entry)1656 static inline unsigned long __swp_type(swp_entry_t entry)
1657 {
1658 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659 }
1660
__swp_offset(swp_entry_t entry)1661 static inline unsigned long __swp_offset(swp_entry_t entry)
1662 {
1663 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664 }
1665
__swp_entry(unsigned long type,unsigned long offset)1666 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1667 {
1668 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669 }
1670
1671 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1672 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1673
1674 #define kern_addr_valid(addr) (1)
1675
1676 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1677 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1678 extern int s390_enable_sie(void);
1679 extern int s390_enable_skey(void);
1680 extern void s390_reset_cmma(struct mm_struct *mm);
1681
1682 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1683 #define HAVE_ARCH_UNMAPPED_AREA
1684 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685
1686 #include <asm-generic/pgtable.h>
1687
1688 #endif /* _S390_PAGE_H */
1689