1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31 };
32
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
update_page_count(int level,long count)35 static inline void update_page_count(int level, long count)
36 {
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39 }
40
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43
44 /*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51 /*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65
66 #define FIRST_USER_ADDRESS 0UL
67
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79 /*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
90
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR MODULES_VADDR
96 #define MODULES_END MODULES_END
97 #define MODULES_LEN (1UL << 31)
98
is_module_addr(void * addr)99 static inline int is_module_addr(void *addr)
100 {
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
107 }
108
109 /*
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
114 *
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
118 *
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
123 *
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
128 *
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
138 *
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
143 *
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
150 *
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
158 */
159
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
163 #define _PAGE_INVALID 0x400 /* HW invalid bit */
164 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
165
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
168 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
169 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170 #define _PAGE_READ 0x010 /* SW pte read bit */
171 #define _PAGE_WRITE 0x020 /* SW pte write bit */
172 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174
175 #ifdef CONFIG_MEM_SOFT_DIRTY
176 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
177 #else
178 #define _PAGE_SOFT_DIRTY 0x000
179 #endif
180
181 /* Set of bits not changed in pte_modify */
182 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
184
185 /*
186 * handle_pte_fault uses pte_present and pte_none to find out the pte type
187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
188 * distinguish present from not-present ptes. It is changed only with the page
189 * table lock held.
190 *
191 * The following table gives the different possible bit combinations for
192 * the pte hardware and software bits in the last 12 bits of a pte
193 * (. unassigned bit, x don't care, t swap type):
194 *
195 * 842100000000
196 * 000084210000
197 * 000000008421
198 * .IR.uswrdy.p
199 * empty .10.00000000
200 * swap .11..ttttt.0
201 * prot-none, clean, old .11.xx0000.1
202 * prot-none, clean, young .11.xx0001.1
203 * prot-none, dirty, old .11.xx0010.1
204 * prot-none, dirty, young .11.xx0011.1
205 * read-only, clean, old .11.xx0100.1
206 * read-only, clean, young .01.xx0101.1
207 * read-only, dirty, old .11.xx0110.1
208 * read-only, dirty, young .01.xx0111.1
209 * read-write, clean, old .11.xx1100.1
210 * read-write, clean, young .01.xx1101.1
211 * read-write, dirty, old .10.xx1110.1
212 * read-write, dirty, young .00.xx1111.1
213 * HW-bits: R read-only, I invalid
214 * SW-bits: p present, y young, d dirty, r read, w write, s special,
215 * u unused, l large
216 *
217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
220 */
221
222 /* Bits in the segment/region table address-space-control-element */
223 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
224 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
225 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
226 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
227 #define _ASCE_REAL_SPACE 0x20 /* real space control */
228 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
229 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
230 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
231 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
232 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
233 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
234
235 /* Bits in the region table entry */
236 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
237 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
238 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
239 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
240 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
241 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
242 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
243 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
244 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
245 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
246
247 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
248 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
249 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
250 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
251 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
252 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
253
254 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
255 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
256 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
257 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
258 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
259 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
260
261 #ifdef CONFIG_MEM_SOFT_DIRTY
262 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
263 #else
264 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
265 #endif
266
267 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
268 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
269
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
275 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
276 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
277 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
278 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
279 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
280
281 #define _SEGMENT_ENTRY (0)
282 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
283
284 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
285 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
286 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
287 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
288 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
289
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
292 #else
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
294 #endif
295
296 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
297 #define _PAGE_ENTRIES 256 /* number of page table entries */
298
299 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
300 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
301
302 #define _REGION1_SHIFT 53
303 #define _REGION2_SHIFT 42
304 #define _REGION3_SHIFT 31
305 #define _SEGMENT_SHIFT 20
306
307 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
308 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
309 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
310 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
311 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
312
313 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
314 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
315 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
316 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
317
318 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
319 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
320 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
321 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
322
323 #define PMD_SHIFT _SEGMENT_SHIFT
324 #define PUD_SHIFT _REGION3_SHIFT
325 #define P4D_SHIFT _REGION2_SHIFT
326 #define PGDIR_SHIFT _REGION1_SHIFT
327
328 #define PMD_SIZE _SEGMENT_SIZE
329 #define PUD_SIZE _REGION3_SIZE
330 #define P4D_SIZE _REGION2_SIZE
331 #define PGDIR_SIZE _REGION1_SIZE
332
333 #define PMD_MASK _SEGMENT_MASK
334 #define PUD_MASK _REGION3_MASK
335 #define P4D_MASK _REGION2_MASK
336 #define PGDIR_MASK _REGION1_MASK
337
338 #define PTRS_PER_PTE _PAGE_ENTRIES
339 #define PTRS_PER_PMD _CRST_ENTRIES
340 #define PTRS_PER_PUD _CRST_ENTRIES
341 #define PTRS_PER_P4D _CRST_ENTRIES
342 #define PTRS_PER_PGD _CRST_ENTRIES
343
344 /*
345 * Segment table and region3 table entry encoding
346 * (R = read-only, I = invalid, y = young bit):
347 * dy..R...I...wr
348 * prot-none, clean, old 00..1...1...00
349 * prot-none, clean, young 01..1...1...00
350 * prot-none, dirty, old 10..1...1...00
351 * prot-none, dirty, young 11..1...1...00
352 * read-only, clean, old 00..1...1...01
353 * read-only, clean, young 01..1...0...01
354 * read-only, dirty, old 10..1...1...01
355 * read-only, dirty, young 11..1...0...01
356 * read-write, clean, old 00..1...1...11
357 * read-write, clean, young 01..1...0...11
358 * read-write, dirty, old 10..0...1...11
359 * read-write, dirty, young 11..0...0...11
360 * The segment table origin is used to distinguish empty (origin==0) from
361 * read-write, old segment table entries (origin!=0)
362 * HW-bits: R read-only, I invalid
363 * SW-bits: y young, d dirty, r read, w write
364 */
365
366 /* Page status table bits for virtualization */
367 #define PGSTE_ACC_BITS 0xf000000000000000UL
368 #define PGSTE_FP_BIT 0x0800000000000000UL
369 #define PGSTE_PCL_BIT 0x0080000000000000UL
370 #define PGSTE_HR_BIT 0x0040000000000000UL
371 #define PGSTE_HC_BIT 0x0020000000000000UL
372 #define PGSTE_GR_BIT 0x0004000000000000UL
373 #define PGSTE_GC_BIT 0x0002000000000000UL
374 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
375 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
376 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
377
378 /* Guest Page State used for virtualization */
379 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
380 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
381 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
382 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
383 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
384 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
385 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
386
387 /*
388 * A user page table pointer has the space-switch-event bit, the
389 * private-space-control bit and the storage-alteration-event-control
390 * bit set. A kernel page table pointer doesn't need them.
391 */
392 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
393 _ASCE_ALT_EVENT)
394
395 /*
396 * Page protection definitions.
397 */
398 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
399 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
400 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407
408 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
410 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
413 _PAGE_PROTECT | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY)
416
417 /*
418 * On s390 the page table entry has an invalid bit and a read-only bit.
419 * Read permission implies execute permission and write permission
420 * implies read permission.
421 */
422 /*xwr*/
423 #define __P000 PAGE_NONE
424 #define __P001 PAGE_RO
425 #define __P010 PAGE_RO
426 #define __P011 PAGE_RO
427 #define __P100 PAGE_RX
428 #define __P101 PAGE_RX
429 #define __P110 PAGE_RX
430 #define __P111 PAGE_RX
431
432 #define __S000 PAGE_NONE
433 #define __S001 PAGE_RO
434 #define __S010 PAGE_RW
435 #define __S011 PAGE_RW
436 #define __S100 PAGE_RX
437 #define __S101 PAGE_RX
438 #define __S110 PAGE_RWX
439 #define __S111 PAGE_RWX
440
441 /*
442 * Segment entry (large page) protection definitions.
443 */
444 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
445 _SEGMENT_ENTRY_PROTECT)
446 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
447 _SEGMENT_ENTRY_READ | \
448 _SEGMENT_ENTRY_NOEXEC)
449 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
450 _SEGMENT_ENTRY_READ)
451 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_WRITE | \
453 _SEGMENT_ENTRY_NOEXEC)
454 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
455 _SEGMENT_ENTRY_WRITE)
456 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE | \
460 _SEGMENT_ENTRY_YOUNG | \
461 _SEGMENT_ENTRY_DIRTY | \
462 _SEGMENT_ENTRY_NOEXEC)
463 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
464 _SEGMENT_ENTRY_LARGE | \
465 _SEGMENT_ENTRY_READ | \
466 _SEGMENT_ENTRY_YOUNG | \
467 _SEGMENT_ENTRY_PROTECT | \
468 _SEGMENT_ENTRY_NOEXEC)
469
470 /*
471 * Region3 entry (large page) protection definitions.
472 */
473
474 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 _REGION3_ENTRY_LARGE | \
476 _REGION3_ENTRY_READ | \
477 _REGION3_ENTRY_WRITE | \
478 _REGION3_ENTRY_YOUNG | \
479 _REGION3_ENTRY_DIRTY | \
480 _REGION_ENTRY_NOEXEC)
481 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
482 _REGION3_ENTRY_LARGE | \
483 _REGION3_ENTRY_READ | \
484 _REGION3_ENTRY_YOUNG | \
485 _REGION_ENTRY_PROTECT | \
486 _REGION_ENTRY_NOEXEC)
487
mm_has_pgste(struct mm_struct * mm)488 static inline int mm_has_pgste(struct mm_struct *mm)
489 {
490 #ifdef CONFIG_PGSTE
491 if (unlikely(mm->context.has_pgste))
492 return 1;
493 #endif
494 return 0;
495 }
496
mm_alloc_pgste(struct mm_struct * mm)497 static inline int mm_alloc_pgste(struct mm_struct *mm)
498 {
499 #ifdef CONFIG_PGSTE
500 if (unlikely(mm->context.alloc_pgste))
501 return 1;
502 #endif
503 return 0;
504 }
505
506 /*
507 * In the case that a guest uses storage keys
508 * faults should no longer be backed by zero pages
509 */
510 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)511 static inline int mm_uses_skeys(struct mm_struct *mm)
512 {
513 #ifdef CONFIG_PGSTE
514 if (mm->context.uses_skeys)
515 return 1;
516 #endif
517 return 0;
518 }
519
csp(unsigned int * ptr,unsigned int old,unsigned int new)520 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
521 {
522 register unsigned long reg2 asm("2") = old;
523 register unsigned long reg3 asm("3") = new;
524 unsigned long address = (unsigned long)ptr | 1;
525
526 asm volatile(
527 " csp %0,%3"
528 : "+d" (reg2), "+m" (*ptr)
529 : "d" (reg3), "d" (address)
530 : "cc");
531 }
532
cspg(unsigned long * ptr,unsigned long old,unsigned long new)533 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
534 {
535 register unsigned long reg2 asm("2") = old;
536 register unsigned long reg3 asm("3") = new;
537 unsigned long address = (unsigned long)ptr | 1;
538
539 asm volatile(
540 " .insn rre,0xb98a0000,%0,%3"
541 : "+d" (reg2), "+m" (*ptr)
542 : "d" (reg3), "d" (address)
543 : "cc");
544 }
545
546 #define CRDTE_DTT_PAGE 0x00UL
547 #define CRDTE_DTT_SEGMENT 0x10UL
548 #define CRDTE_DTT_REGION3 0x14UL
549 #define CRDTE_DTT_REGION2 0x18UL
550 #define CRDTE_DTT_REGION1 0x1cUL
551
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)552 static inline void crdte(unsigned long old, unsigned long new,
553 unsigned long table, unsigned long dtt,
554 unsigned long address, unsigned long asce)
555 {
556 register unsigned long reg2 asm("2") = old;
557 register unsigned long reg3 asm("3") = new;
558 register unsigned long reg4 asm("4") = table | dtt;
559 register unsigned long reg5 asm("5") = address;
560
561 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
562 : "+d" (reg2)
563 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
564 : "memory", "cc");
565 }
566
567 /*
568 * pgd/p4d/pud/pmd/pte query functions
569 */
pgd_folded(pgd_t pgd)570 static inline int pgd_folded(pgd_t pgd)
571 {
572 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
573 }
574
pgd_present(pgd_t pgd)575 static inline int pgd_present(pgd_t pgd)
576 {
577 if (pgd_folded(pgd))
578 return 1;
579 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
580 }
581
pgd_none(pgd_t pgd)582 static inline int pgd_none(pgd_t pgd)
583 {
584 if (pgd_folded(pgd))
585 return 0;
586 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
587 }
588
pgd_bad(pgd_t pgd)589 static inline int pgd_bad(pgd_t pgd)
590 {
591 /*
592 * With dynamic page table levels the pgd can be a region table
593 * entry or a segment table entry. Check for the bit that are
594 * invalid for either table entry.
595 */
596 unsigned long mask =
597 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
598 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
599 return (pgd_val(pgd) & mask) != 0;
600 }
601
p4d_folded(p4d_t p4d)602 static inline int p4d_folded(p4d_t p4d)
603 {
604 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
605 }
606
p4d_present(p4d_t p4d)607 static inline int p4d_present(p4d_t p4d)
608 {
609 if (p4d_folded(p4d))
610 return 1;
611 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
612 }
613
p4d_none(p4d_t p4d)614 static inline int p4d_none(p4d_t p4d)
615 {
616 if (p4d_folded(p4d))
617 return 0;
618 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
619 }
620
p4d_pfn(p4d_t p4d)621 static inline unsigned long p4d_pfn(p4d_t p4d)
622 {
623 unsigned long origin_mask;
624
625 origin_mask = _REGION_ENTRY_ORIGIN;
626 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
627 }
628
pud_folded(pud_t pud)629 static inline int pud_folded(pud_t pud)
630 {
631 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
632 }
633
pud_present(pud_t pud)634 static inline int pud_present(pud_t pud)
635 {
636 if (pud_folded(pud))
637 return 1;
638 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
639 }
640
pud_none(pud_t pud)641 static inline int pud_none(pud_t pud)
642 {
643 if (pud_folded(pud))
644 return 0;
645 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
646 }
647
pud_large(pud_t pud)648 static inline int pud_large(pud_t pud)
649 {
650 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
651 return 0;
652 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
653 }
654
pud_pfn(pud_t pud)655 static inline unsigned long pud_pfn(pud_t pud)
656 {
657 unsigned long origin_mask;
658
659 origin_mask = _REGION_ENTRY_ORIGIN;
660 if (pud_large(pud))
661 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
662 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
663 }
664
pmd_large(pmd_t pmd)665 static inline int pmd_large(pmd_t pmd)
666 {
667 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
668 }
669
pmd_bad(pmd_t pmd)670 static inline int pmd_bad(pmd_t pmd)
671 {
672 if (pmd_large(pmd))
673 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
674 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
675 }
676
pud_bad(pud_t pud)677 static inline int pud_bad(pud_t pud)
678 {
679 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
680 return pmd_bad(__pmd(pud_val(pud)));
681 if (pud_large(pud))
682 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
683 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
684 }
685
p4d_bad(p4d_t p4d)686 static inline int p4d_bad(p4d_t p4d)
687 {
688 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
689 return pud_bad(__pud(p4d_val(p4d)));
690 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
691 }
692
pmd_present(pmd_t pmd)693 static inline int pmd_present(pmd_t pmd)
694 {
695 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
696 }
697
pmd_none(pmd_t pmd)698 static inline int pmd_none(pmd_t pmd)
699 {
700 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
701 }
702
pmd_pfn(pmd_t pmd)703 static inline unsigned long pmd_pfn(pmd_t pmd)
704 {
705 unsigned long origin_mask;
706
707 origin_mask = _SEGMENT_ENTRY_ORIGIN;
708 if (pmd_large(pmd))
709 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
710 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
711 }
712
713 #define pmd_write pmd_write
pmd_write(pmd_t pmd)714 static inline int pmd_write(pmd_t pmd)
715 {
716 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
717 }
718
pmd_dirty(pmd_t pmd)719 static inline int pmd_dirty(pmd_t pmd)
720 {
721 int dirty = 1;
722 if (pmd_large(pmd))
723 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
724 return dirty;
725 }
726
pmd_young(pmd_t pmd)727 static inline int pmd_young(pmd_t pmd)
728 {
729 int young = 1;
730 if (pmd_large(pmd))
731 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
732 return young;
733 }
734
pte_present(pte_t pte)735 static inline int pte_present(pte_t pte)
736 {
737 /* Bit pattern: (pte & 0x001) == 0x001 */
738 return (pte_val(pte) & _PAGE_PRESENT) != 0;
739 }
740
pte_none(pte_t pte)741 static inline int pte_none(pte_t pte)
742 {
743 /* Bit pattern: pte == 0x400 */
744 return pte_val(pte) == _PAGE_INVALID;
745 }
746
pte_swap(pte_t pte)747 static inline int pte_swap(pte_t pte)
748 {
749 /* Bit pattern: (pte & 0x201) == 0x200 */
750 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
751 == _PAGE_PROTECT;
752 }
753
pte_special(pte_t pte)754 static inline int pte_special(pte_t pte)
755 {
756 return (pte_val(pte) & _PAGE_SPECIAL);
757 }
758
759 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)760 static inline int pte_same(pte_t a, pte_t b)
761 {
762 return pte_val(a) == pte_val(b);
763 }
764
765 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)766 static inline int pte_protnone(pte_t pte)
767 {
768 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
769 }
770
pmd_protnone(pmd_t pmd)771 static inline int pmd_protnone(pmd_t pmd)
772 {
773 /* pmd_large(pmd) implies pmd_present(pmd) */
774 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
775 }
776 #endif
777
pte_soft_dirty(pte_t pte)778 static inline int pte_soft_dirty(pte_t pte)
779 {
780 return pte_val(pte) & _PAGE_SOFT_DIRTY;
781 }
782 #define pte_swp_soft_dirty pte_soft_dirty
783
pte_mksoft_dirty(pte_t pte)784 static inline pte_t pte_mksoft_dirty(pte_t pte)
785 {
786 pte_val(pte) |= _PAGE_SOFT_DIRTY;
787 return pte;
788 }
789 #define pte_swp_mksoft_dirty pte_mksoft_dirty
790
pte_clear_soft_dirty(pte_t pte)791 static inline pte_t pte_clear_soft_dirty(pte_t pte)
792 {
793 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
794 return pte;
795 }
796 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
797
pmd_soft_dirty(pmd_t pmd)798 static inline int pmd_soft_dirty(pmd_t pmd)
799 {
800 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
801 }
802
pmd_mksoft_dirty(pmd_t pmd)803 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
804 {
805 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
806 return pmd;
807 }
808
pmd_clear_soft_dirty(pmd_t pmd)809 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
810 {
811 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
812 return pmd;
813 }
814
815 /*
816 * query functions pte_write/pte_dirty/pte_young only work if
817 * pte_present() is true. Undefined behaviour if not..
818 */
pte_write(pte_t pte)819 static inline int pte_write(pte_t pte)
820 {
821 return (pte_val(pte) & _PAGE_WRITE) != 0;
822 }
823
pte_dirty(pte_t pte)824 static inline int pte_dirty(pte_t pte)
825 {
826 return (pte_val(pte) & _PAGE_DIRTY) != 0;
827 }
828
pte_young(pte_t pte)829 static inline int pte_young(pte_t pte)
830 {
831 return (pte_val(pte) & _PAGE_YOUNG) != 0;
832 }
833
834 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)835 static inline int pte_unused(pte_t pte)
836 {
837 return pte_val(pte) & _PAGE_UNUSED;
838 }
839
840 /*
841 * pgd/pmd/pte modification functions
842 */
843
pgd_clear(pgd_t * pgd)844 static inline void pgd_clear(pgd_t *pgd)
845 {
846 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
847 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
848 }
849
p4d_clear(p4d_t * p4d)850 static inline void p4d_clear(p4d_t *p4d)
851 {
852 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
853 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
854 }
855
pud_clear(pud_t * pud)856 static inline void pud_clear(pud_t *pud)
857 {
858 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
859 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
860 }
861
pmd_clear(pmd_t * pmdp)862 static inline void pmd_clear(pmd_t *pmdp)
863 {
864 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
865 }
866
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)867 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
868 {
869 pte_val(*ptep) = _PAGE_INVALID;
870 }
871
872 /*
873 * The following pte modification functions only work if
874 * pte_present() is true. Undefined behaviour if not..
875 */
pte_modify(pte_t pte,pgprot_t newprot)876 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
877 {
878 pte_val(pte) &= _PAGE_CHG_MASK;
879 pte_val(pte) |= pgprot_val(newprot);
880 /*
881 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
882 * has the invalid bit set, clear it again for readable, young pages
883 */
884 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
885 pte_val(pte) &= ~_PAGE_INVALID;
886 /*
887 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
888 * protection bit set, clear it again for writable, dirty pages
889 */
890 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
891 pte_val(pte) &= ~_PAGE_PROTECT;
892 return pte;
893 }
894
pte_wrprotect(pte_t pte)895 static inline pte_t pte_wrprotect(pte_t pte)
896 {
897 pte_val(pte) &= ~_PAGE_WRITE;
898 pte_val(pte) |= _PAGE_PROTECT;
899 return pte;
900 }
901
pte_mkwrite(pte_t pte)902 static inline pte_t pte_mkwrite(pte_t pte)
903 {
904 pte_val(pte) |= _PAGE_WRITE;
905 if (pte_val(pte) & _PAGE_DIRTY)
906 pte_val(pte) &= ~_PAGE_PROTECT;
907 return pte;
908 }
909
pte_mkclean(pte_t pte)910 static inline pte_t pte_mkclean(pte_t pte)
911 {
912 pte_val(pte) &= ~_PAGE_DIRTY;
913 pte_val(pte) |= _PAGE_PROTECT;
914 return pte;
915 }
916
pte_mkdirty(pte_t pte)917 static inline pte_t pte_mkdirty(pte_t pte)
918 {
919 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
920 if (pte_val(pte) & _PAGE_WRITE)
921 pte_val(pte) &= ~_PAGE_PROTECT;
922 return pte;
923 }
924
pte_mkold(pte_t pte)925 static inline pte_t pte_mkold(pte_t pte)
926 {
927 pte_val(pte) &= ~_PAGE_YOUNG;
928 pte_val(pte) |= _PAGE_INVALID;
929 return pte;
930 }
931
pte_mkyoung(pte_t pte)932 static inline pte_t pte_mkyoung(pte_t pte)
933 {
934 pte_val(pte) |= _PAGE_YOUNG;
935 if (pte_val(pte) & _PAGE_READ)
936 pte_val(pte) &= ~_PAGE_INVALID;
937 return pte;
938 }
939
pte_mkspecial(pte_t pte)940 static inline pte_t pte_mkspecial(pte_t pte)
941 {
942 pte_val(pte) |= _PAGE_SPECIAL;
943 return pte;
944 }
945
946 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)947 static inline pte_t pte_mkhuge(pte_t pte)
948 {
949 pte_val(pte) |= _PAGE_LARGE;
950 return pte;
951 }
952 #endif
953
954 #define IPTE_GLOBAL 0
955 #define IPTE_LOCAL 1
956
957 #define IPTE_NODAT 0x400
958 #define IPTE_GUEST_ASCE 0x800
959
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)960 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
961 unsigned long opt, unsigned long asce,
962 int local)
963 {
964 unsigned long pto = (unsigned long) ptep;
965
966 if (__builtin_constant_p(opt) && opt == 0) {
967 /* Invalidation + TLB flush for the pte */
968 asm volatile(
969 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
970 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
971 [m4] "i" (local));
972 return;
973 }
974
975 /* Invalidate ptes with options + TLB flush of the ptes */
976 opt = opt | (asce & _ASCE_ORIGIN);
977 asm volatile(
978 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
979 : [r2] "+a" (address), [r3] "+a" (opt)
980 : [r1] "a" (pto), [m4] "i" (local) : "memory");
981 }
982
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)983 static inline void __ptep_ipte_range(unsigned long address, int nr,
984 pte_t *ptep, int local)
985 {
986 unsigned long pto = (unsigned long) ptep;
987
988 /* Invalidate a range of ptes + TLB flush of the ptes */
989 do {
990 asm volatile(
991 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
992 : [r2] "+a" (address), [r3] "+a" (nr)
993 : [r1] "a" (pto), [m4] "i" (local) : "memory");
994 } while (nr != 255);
995 }
996
997 /*
998 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
999 * both clear the TLB for the unmapped pte. The reason is that
1000 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1001 * to modify an active pte. The sequence is
1002 * 1) ptep_get_and_clear
1003 * 2) set_pte_at
1004 * 3) flush_tlb_range
1005 * On s390 the tlb needs to get flushed with the modification of the pte
1006 * if the pte is active. The only way how this can be implemented is to
1007 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1008 * is a nop.
1009 */
1010 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1011 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1012
1013 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1014 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1015 unsigned long addr, pte_t *ptep)
1016 {
1017 pte_t pte = *ptep;
1018
1019 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1020 return pte_young(pte);
1021 }
1022
1023 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1024 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1025 unsigned long address, pte_t *ptep)
1026 {
1027 return ptep_test_and_clear_young(vma, address, ptep);
1028 }
1029
1030 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1031 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1032 unsigned long addr, pte_t *ptep)
1033 {
1034 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1035 }
1036
1037 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1038 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1039 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1040
1041 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1042 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1043 unsigned long addr, pte_t *ptep)
1044 {
1045 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1046 }
1047
1048 /*
1049 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1050 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1051 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1052 * cannot be accessed while the batched unmap is running. In this case
1053 * full==1 and a simple pte_clear is enough. See tlb.h.
1054 */
1055 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1056 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1057 unsigned long addr,
1058 pte_t *ptep, int full)
1059 {
1060 if (full) {
1061 pte_t pte = *ptep;
1062 *ptep = __pte(_PAGE_INVALID);
1063 return pte;
1064 }
1065 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1066 }
1067
1068 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1069 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1070 unsigned long addr, pte_t *ptep)
1071 {
1072 pte_t pte = *ptep;
1073
1074 if (pte_write(pte))
1075 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1076 }
1077
1078 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1079 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1080 unsigned long addr, pte_t *ptep,
1081 pte_t entry, int dirty)
1082 {
1083 if (pte_same(*ptep, entry))
1084 return 0;
1085 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1086 return 1;
1087 }
1088
1089 /*
1090 * Additional functions to handle KVM guest page tables
1091 */
1092 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1093 pte_t *ptep, pte_t entry);
1094 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1095 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1096 pte_t *ptep, unsigned long bits);
1097 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1098 pte_t *ptep, int prot, unsigned long bit);
1099 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1100 pte_t *ptep , int reset);
1101 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1102 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1103 pte_t *sptep, pte_t *tptep, pte_t pte);
1104 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1105
1106 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1107 pte_t *ptep);
1108 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1109 unsigned char key, bool nq);
1110 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1111 unsigned char key, unsigned char *oldkey,
1112 bool nq, bool mr, bool mc);
1113 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1114 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1115 unsigned char *key);
1116
1117 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1118 unsigned long bits, unsigned long value);
1119 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1120 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1121 unsigned long *oldpte, unsigned long *oldpgste);
1122 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1123 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1124 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1125 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1126
1127 /*
1128 * Certain architectures need to do special things when PTEs
1129 * within a page table are directly modified. Thus, the following
1130 * hook is made available.
1131 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1132 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1133 pte_t *ptep, pte_t entry)
1134 {
1135 if (!MACHINE_HAS_NX)
1136 pte_val(entry) &= ~_PAGE_NOEXEC;
1137 if (pte_present(entry))
1138 pte_val(entry) &= ~_PAGE_UNUSED;
1139 if (mm_has_pgste(mm))
1140 ptep_set_pte_at(mm, addr, ptep, entry);
1141 else
1142 *ptep = entry;
1143 }
1144
1145 /*
1146 * Conversion functions: convert a page and protection to a page entry,
1147 * and a page entry and page directory to the page they refer to.
1148 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1149 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1150 {
1151 pte_t __pte;
1152 pte_val(__pte) = physpage + pgprot_val(pgprot);
1153 return pte_mkyoung(__pte);
1154 }
1155
mk_pte(struct page * page,pgprot_t pgprot)1156 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1157 {
1158 unsigned long physpage = page_to_phys(page);
1159 pte_t __pte = mk_pte_phys(physpage, pgprot);
1160
1161 if (pte_write(__pte) && PageDirty(page))
1162 __pte = pte_mkdirty(__pte);
1163 return __pte;
1164 }
1165
1166 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1167 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1168 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1169 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1170 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1171
1172 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1173 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1174
1175 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1176 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1177 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1178 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1179
p4d_offset(pgd_t * pgd,unsigned long address)1180 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1181 {
1182 p4d_t *p4d = (p4d_t *) pgd;
1183
1184 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1185 p4d = (p4d_t *) pgd_deref(*pgd);
1186 return p4d + p4d_index(address);
1187 }
1188
pud_offset(p4d_t * p4d,unsigned long address)1189 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1190 {
1191 pud_t *pud = (pud_t *) p4d;
1192
1193 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1194 pud = (pud_t *) p4d_deref(*p4d);
1195 return pud + pud_index(address);
1196 }
1197
pmd_offset(pud_t * pud,unsigned long address)1198 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1199 {
1200 pmd_t *pmd = (pmd_t *) pud;
1201
1202 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1203 pmd = (pmd_t *) pud_deref(*pud);
1204 return pmd + pmd_index(address);
1205 }
1206
1207 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1208 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1209 #define pte_page(x) pfn_to_page(pte_pfn(x))
1210
1211 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1212 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1213 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1214
1215 /* Find an entry in the lowest level page table.. */
1216 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1217 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1218 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1219 #define pte_unmap(pte) do { } while (0)
1220
pmd_wrprotect(pmd_t pmd)1221 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1222 {
1223 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1224 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1225 return pmd;
1226 }
1227
pmd_mkwrite(pmd_t pmd)1228 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1229 {
1230 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1231 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1232 return pmd;
1233 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1234 return pmd;
1235 }
1236
pmd_mkclean(pmd_t pmd)1237 static inline pmd_t pmd_mkclean(pmd_t pmd)
1238 {
1239 if (pmd_large(pmd)) {
1240 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1241 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1242 }
1243 return pmd;
1244 }
1245
pmd_mkdirty(pmd_t pmd)1246 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1247 {
1248 if (pmd_large(pmd)) {
1249 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1250 _SEGMENT_ENTRY_SOFT_DIRTY;
1251 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1252 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1253 }
1254 return pmd;
1255 }
1256
pud_wrprotect(pud_t pud)1257 static inline pud_t pud_wrprotect(pud_t pud)
1258 {
1259 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1260 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1261 return pud;
1262 }
1263
pud_mkwrite(pud_t pud)1264 static inline pud_t pud_mkwrite(pud_t pud)
1265 {
1266 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1267 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1268 return pud;
1269 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1270 return pud;
1271 }
1272
pud_mkclean(pud_t pud)1273 static inline pud_t pud_mkclean(pud_t pud)
1274 {
1275 if (pud_large(pud)) {
1276 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1277 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1278 }
1279 return pud;
1280 }
1281
pud_mkdirty(pud_t pud)1282 static inline pud_t pud_mkdirty(pud_t pud)
1283 {
1284 if (pud_large(pud)) {
1285 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1286 _REGION3_ENTRY_SOFT_DIRTY;
1287 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1288 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1289 }
1290 return pud;
1291 }
1292
1293 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1294 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1295 {
1296 /*
1297 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1298 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1299 */
1300 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1301 return pgprot_val(SEGMENT_NONE);
1302 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1303 return pgprot_val(SEGMENT_RO);
1304 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1305 return pgprot_val(SEGMENT_RX);
1306 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1307 return pgprot_val(SEGMENT_RW);
1308 return pgprot_val(SEGMENT_RWX);
1309 }
1310
pmd_mkyoung(pmd_t pmd)1311 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1312 {
1313 if (pmd_large(pmd)) {
1314 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1315 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1316 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1317 }
1318 return pmd;
1319 }
1320
pmd_mkold(pmd_t pmd)1321 static inline pmd_t pmd_mkold(pmd_t pmd)
1322 {
1323 if (pmd_large(pmd)) {
1324 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1325 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1326 }
1327 return pmd;
1328 }
1329
pmd_modify(pmd_t pmd,pgprot_t newprot)1330 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1331 {
1332 if (pmd_large(pmd)) {
1333 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1334 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1335 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1336 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1337 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1338 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1339 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1340 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1341 return pmd;
1342 }
1343 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1344 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1345 return pmd;
1346 }
1347
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1348 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1349 {
1350 pmd_t __pmd;
1351 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1352 return __pmd;
1353 }
1354
1355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1356
__pmdp_csp(pmd_t * pmdp)1357 static inline void __pmdp_csp(pmd_t *pmdp)
1358 {
1359 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1360 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1361 }
1362
1363 #define IDTE_GLOBAL 0
1364 #define IDTE_LOCAL 1
1365
1366 #define IDTE_PTOA 0x0800
1367 #define IDTE_NODAT 0x1000
1368 #define IDTE_GUEST_ASCE 0x2000
1369
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1370 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1371 unsigned long opt, unsigned long asce,
1372 int local)
1373 {
1374 unsigned long sto;
1375
1376 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1377 if (__builtin_constant_p(opt) && opt == 0) {
1378 /* flush without guest asce */
1379 asm volatile(
1380 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1381 : "+m" (*pmdp)
1382 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1383 [m4] "i" (local)
1384 : "cc" );
1385 } else {
1386 /* flush with guest asce */
1387 asm volatile(
1388 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1389 : "+m" (*pmdp)
1390 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1391 [r3] "a" (asce), [m4] "i" (local)
1392 : "cc" );
1393 }
1394 }
1395
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1396 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1397 unsigned long opt, unsigned long asce,
1398 int local)
1399 {
1400 unsigned long r3o;
1401
1402 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1403 r3o |= _ASCE_TYPE_REGION3;
1404 if (__builtin_constant_p(opt) && opt == 0) {
1405 /* flush without guest asce */
1406 asm volatile(
1407 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1408 : "+m" (*pudp)
1409 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1410 [m4] "i" (local)
1411 : "cc");
1412 } else {
1413 /* flush with guest asce */
1414 asm volatile(
1415 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1416 : "+m" (*pudp)
1417 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1418 [r3] "a" (asce), [m4] "i" (local)
1419 : "cc" );
1420 }
1421 }
1422
1423 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1424 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1425 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1426
1427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1428
1429 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1430 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1431 pgtable_t pgtable);
1432
1433 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1434 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1435
1436 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1437 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1438 unsigned long addr, pmd_t *pmdp,
1439 pmd_t entry, int dirty)
1440 {
1441 VM_BUG_ON(addr & ~HPAGE_MASK);
1442
1443 entry = pmd_mkyoung(entry);
1444 if (dirty)
1445 entry = pmd_mkdirty(entry);
1446 if (pmd_val(*pmdp) == pmd_val(entry))
1447 return 0;
1448 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1449 return 1;
1450 }
1451
1452 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1453 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1454 unsigned long addr, pmd_t *pmdp)
1455 {
1456 pmd_t pmd = *pmdp;
1457
1458 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1459 return pmd_young(pmd);
1460 }
1461
1462 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1463 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1464 unsigned long addr, pmd_t *pmdp)
1465 {
1466 VM_BUG_ON(addr & ~HPAGE_MASK);
1467 return pmdp_test_and_clear_young(vma, addr, pmdp);
1468 }
1469
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1470 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1471 pmd_t *pmdp, pmd_t entry)
1472 {
1473 if (!MACHINE_HAS_NX)
1474 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1475 *pmdp = entry;
1476 }
1477
pmd_mkhuge(pmd_t pmd)1478 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1479 {
1480 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1481 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1482 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1483 return pmd;
1484 }
1485
1486 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1487 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1488 unsigned long addr, pmd_t *pmdp)
1489 {
1490 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1491 }
1492
1493 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,int full)1494 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1495 unsigned long addr,
1496 pmd_t *pmdp, int full)
1497 {
1498 if (full) {
1499 pmd_t pmd = *pmdp;
1500 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1501 return pmd;
1502 }
1503 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1504 }
1505
1506 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1507 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1508 unsigned long addr, pmd_t *pmdp)
1509 {
1510 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1511 }
1512
1513 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1514 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1515 unsigned long addr, pmd_t *pmdp)
1516 {
1517 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1518
1519 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1520 }
1521
1522 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1523 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1524 unsigned long addr, pmd_t *pmdp)
1525 {
1526 pmd_t pmd = *pmdp;
1527
1528 if (pmd_write(pmd))
1529 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1530 }
1531
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1532 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1533 unsigned long address,
1534 pmd_t *pmdp)
1535 {
1536 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1537 }
1538 #define pmdp_collapse_flush pmdp_collapse_flush
1539
1540 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1541 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1542
pmd_trans_huge(pmd_t pmd)1543 static inline int pmd_trans_huge(pmd_t pmd)
1544 {
1545 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1546 }
1547
1548 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1549 static inline int has_transparent_hugepage(void)
1550 {
1551 return MACHINE_HAS_EDAT1 ? 1 : 0;
1552 }
1553 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1554
1555 /*
1556 * 64 bit swap entry format:
1557 * A page-table entry has some bits we have to treat in a special way.
1558 * Bits 52 and bit 55 have to be zero, otherwise a specification
1559 * exception will occur instead of a page translation exception. The
1560 * specification exception has the bad habit not to store necessary
1561 * information in the lowcore.
1562 * Bits 54 and 63 are used to indicate the page type.
1563 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1564 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1565 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1566 * for the offset.
1567 * | offset |01100|type |00|
1568 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1569 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1570 */
1571
1572 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1573 #define __SWP_OFFSET_SHIFT 12
1574 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1575 #define __SWP_TYPE_SHIFT 2
1576
mk_swap_pte(unsigned long type,unsigned long offset)1577 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1578 {
1579 pte_t pte;
1580
1581 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1582 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1583 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1584 return pte;
1585 }
1586
__swp_type(swp_entry_t entry)1587 static inline unsigned long __swp_type(swp_entry_t entry)
1588 {
1589 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1590 }
1591
__swp_offset(swp_entry_t entry)1592 static inline unsigned long __swp_offset(swp_entry_t entry)
1593 {
1594 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1595 }
1596
__swp_entry(unsigned long type,unsigned long offset)1597 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1598 {
1599 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1600 }
1601
1602 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1603 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1604
1605 #define kern_addr_valid(addr) (1)
1606
1607 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1608 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1609 extern int s390_enable_sie(void);
1610 extern int s390_enable_skey(void);
1611 extern void s390_reset_cmma(struct mm_struct *mm);
1612
1613 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1614 #define HAVE_ARCH_UNMAPPED_AREA
1615 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1616
1617 /*
1618 * No page table caches to initialise
1619 */
pgtable_cache_init(void)1620 static inline void pgtable_cache_init(void) { }
check_pgt_cache(void)1621 static inline void check_pgt_cache(void) { }
1622
1623 #include <asm-generic/pgtable.h>
1624
1625 #endif /* _S390_PAGE_H */
1626