1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Queued spinlock
4  *
5  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6  * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7  * (C) Copyright 2015 Intel Corp.
8  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
9  *
10  * Authors: Waiman Long <longman@redhat.com>
11  *          Peter Zijlstra <peterz@infradead.org>
12  */
13 
14 #ifndef _GEN_PV_LOCK_SLOWPATH
15 
16 #include <linux/smp.h>
17 #include <linux/bug.h>
18 #include <linux/cpumask.h>
19 #include <linux/percpu.h>
20 #include <linux/hardirq.h>
21 #include <linux/mutex.h>
22 #include <linux/prefetch.h>
23 #include <asm/byteorder.h>
24 #include <asm/qspinlock.h>
25 
26 /*
27  * Include queued spinlock statistics code
28  */
29 #include "qspinlock_stat.h"
30 
31 /*
32  * The basic principle of a queue-based spinlock can best be understood
33  * by studying a classic queue-based spinlock implementation called the
34  * MCS lock. The paper below provides a good description for this kind
35  * of lock.
36  *
37  * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
38  *
39  * This queued spinlock implementation is based on the MCS lock, however to make
40  * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
41  * API, we must modify it somehow.
42  *
43  * In particular; where the traditional MCS lock consists of a tail pointer
44  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
45  * unlock the next pending (next->locked), we compress both these: {tail,
46  * next->locked} into a single u32 value.
47  *
48  * Since a spinlock disables recursion of its own context and there is a limit
49  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
50  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
51  * we can encode the tail by combining the 2-bit nesting level with the cpu
52  * number. With one byte for the lock value and 3 bytes for the tail, only a
53  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
54  * we extend it to a full byte to achieve better performance for architectures
55  * that support atomic byte write.
56  *
57  * We also change the first spinner to spin on the lock bit instead of its
58  * node; whereby avoiding the need to carry a node from lock to unlock, and
59  * preserving existing lock API. This also makes the unlock code simpler and
60  * faster.
61  *
62  * N.B. The current implementation only supports architectures that allow
63  *      atomic operations on smaller 8-bit and 16-bit data types.
64  *
65  */
66 
67 #include "mcs_spinlock.h"
68 #define MAX_NODES	4
69 
70 /*
71  * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
72  * size and four of them will fit nicely in one 64-byte cacheline. For
73  * pvqspinlock, however, we need more space for extra data. To accommodate
74  * that, we insert two more long words to pad it up to 32 bytes. IOW, only
75  * two of them can fit in a cacheline in this case. That is OK as it is rare
76  * to have more than 2 levels of slowpath nesting in actual use. We don't
77  * want to penalize pvqspinlocks to optimize for a rare case in native
78  * qspinlocks.
79  */
80 struct qnode {
81 	struct mcs_spinlock mcs;
82 #ifdef CONFIG_PARAVIRT_SPINLOCKS
83 	long reserved[2];
84 #endif
85 };
86 
87 /*
88  * The pending bit spinning loop count.
89  * This heuristic is used to limit the number of lockword accesses
90  * made by atomic_cond_read_relaxed when waiting for the lock to
91  * transition out of the "== _Q_PENDING_VAL" state. We don't spin
92  * indefinitely because there's no guarantee that we'll make forward
93  * progress.
94  */
95 #ifndef _Q_PENDING_LOOPS
96 #define _Q_PENDING_LOOPS	1
97 #endif
98 
99 /*
100  * Per-CPU queue node structures; we can never have more than 4 nested
101  * contexts: task, softirq, hardirq, nmi.
102  *
103  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
104  *
105  * PV doubles the storage and uses the second cacheline for PV state.
106  */
107 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
108 
109 /*
110  * We must be able to distinguish between no-tail and the tail at 0:0,
111  * therefore increment the cpu number by one.
112  */
113 
encode_tail(int cpu,int idx)114 static inline __pure u32 encode_tail(int cpu, int idx)
115 {
116 	u32 tail;
117 
118 	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
119 	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
120 
121 	return tail;
122 }
123 
decode_tail(u32 tail)124 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
125 {
126 	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
127 	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
128 
129 	return per_cpu_ptr(&qnodes[idx].mcs, cpu);
130 }
131 
132 static inline __pure
grab_mcs_node(struct mcs_spinlock * base,int idx)133 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
134 {
135 	return &((struct qnode *)base + idx)->mcs;
136 }
137 
138 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
139 
140 #if _Q_PENDING_BITS == 8
141 /**
142  * clear_pending - clear the pending bit.
143  * @lock: Pointer to queued spinlock structure
144  *
145  * *,1,* -> *,0,*
146  */
clear_pending(struct qspinlock * lock)147 static __always_inline void clear_pending(struct qspinlock *lock)
148 {
149 	WRITE_ONCE(lock->pending, 0);
150 }
151 
152 /**
153  * clear_pending_set_locked - take ownership and clear the pending bit.
154  * @lock: Pointer to queued spinlock structure
155  *
156  * *,1,0 -> *,0,1
157  *
158  * Lock stealing is not allowed if this function is used.
159  */
clear_pending_set_locked(struct qspinlock * lock)160 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
161 {
162 	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
163 }
164 
165 /*
166  * xchg_tail - Put in the new queue tail code word & retrieve previous one
167  * @lock : Pointer to queued spinlock structure
168  * @tail : The new queue tail code word
169  * Return: The previous queue tail code word
170  *
171  * xchg(lock, tail), which heads an address dependency
172  *
173  * p,*,* -> n,*,* ; prev = xchg(lock, node)
174  */
xchg_tail(struct qspinlock * lock,u32 tail)175 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
176 {
177 	/*
178 	 * We can use relaxed semantics since the caller ensures that the
179 	 * MCS node is properly initialized before updating the tail.
180 	 */
181 	return (u32)xchg_relaxed(&lock->tail,
182 				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
183 }
184 
185 #else /* _Q_PENDING_BITS == 8 */
186 
187 /**
188  * clear_pending - clear the pending bit.
189  * @lock: Pointer to queued spinlock structure
190  *
191  * *,1,* -> *,0,*
192  */
clear_pending(struct qspinlock * lock)193 static __always_inline void clear_pending(struct qspinlock *lock)
194 {
195 	atomic_andnot(_Q_PENDING_VAL, &lock->val);
196 }
197 
198 /**
199  * clear_pending_set_locked - take ownership and clear the pending bit.
200  * @lock: Pointer to queued spinlock structure
201  *
202  * *,1,0 -> *,0,1
203  */
clear_pending_set_locked(struct qspinlock * lock)204 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
205 {
206 	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
207 }
208 
209 /**
210  * xchg_tail - Put in the new queue tail code word & retrieve previous one
211  * @lock : Pointer to queued spinlock structure
212  * @tail : The new queue tail code word
213  * Return: The previous queue tail code word
214  *
215  * xchg(lock, tail)
216  *
217  * p,*,* -> n,*,* ; prev = xchg(lock, node)
218  */
xchg_tail(struct qspinlock * lock,u32 tail)219 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
220 {
221 	u32 old, new, val = atomic_read(&lock->val);
222 
223 	for (;;) {
224 		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
225 		/*
226 		 * We can use relaxed semantics since the caller ensures that
227 		 * the MCS node is properly initialized before updating the
228 		 * tail.
229 		 */
230 		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
231 		if (old == val)
232 			break;
233 
234 		val = old;
235 	}
236 	return old;
237 }
238 #endif /* _Q_PENDING_BITS == 8 */
239 
240 /**
241  * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
242  * @lock : Pointer to queued spinlock structure
243  * Return: The previous lock value
244  *
245  * *,*,* -> *,1,*
246  */
247 #ifndef queued_fetch_set_pending_acquire
queued_fetch_set_pending_acquire(struct qspinlock * lock)248 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
249 {
250 	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
251 }
252 #endif
253 
254 /**
255  * set_locked - Set the lock bit and own the lock
256  * @lock: Pointer to queued spinlock structure
257  *
258  * *,*,0 -> *,0,1
259  */
set_locked(struct qspinlock * lock)260 static __always_inline void set_locked(struct qspinlock *lock)
261 {
262 	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
263 }
264 
265 
266 /*
267  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
268  * all the PV callbacks.
269  */
270 
__pv_init_node(struct mcs_spinlock * node)271 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
__pv_wait_node(struct mcs_spinlock * node,struct mcs_spinlock * prev)272 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
273 					   struct mcs_spinlock *prev) { }
__pv_kick_node(struct qspinlock * lock,struct mcs_spinlock * node)274 static __always_inline void __pv_kick_node(struct qspinlock *lock,
275 					   struct mcs_spinlock *node) { }
__pv_wait_head_or_lock(struct qspinlock * lock,struct mcs_spinlock * node)276 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
277 						   struct mcs_spinlock *node)
278 						   { return 0; }
279 
280 #define pv_enabled()		false
281 
282 #define pv_init_node		__pv_init_node
283 #define pv_wait_node		__pv_wait_node
284 #define pv_kick_node		__pv_kick_node
285 #define pv_wait_head_or_lock	__pv_wait_head_or_lock
286 
287 #ifdef CONFIG_PARAVIRT_SPINLOCKS
288 #define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
289 #endif
290 
291 #endif /* _GEN_PV_LOCK_SLOWPATH */
292 
293 /**
294  * queued_spin_lock_slowpath - acquire the queued spinlock
295  * @lock: Pointer to queued spinlock structure
296  * @val: Current value of the queued spinlock 32-bit word
297  *
298  * (queue tail, pending bit, lock value)
299  *
300  *              fast     :    slow                                  :    unlock
301  *                       :                                          :
302  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
303  *                       :       | ^--------.------.             /  :
304  *                       :       v           \      \            |  :
305  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
306  *                       :       | ^--'              |           |  :
307  *                       :       v                   |           |  :
308  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
309  *   queue               :       | ^--'                          |  :
310  *                       :       v                               |  :
311  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
312  *   queue               :         ^--'                             :
313  */
queued_spin_lock_slowpath(struct qspinlock * lock,u32 val)314 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
315 {
316 	struct mcs_spinlock *prev, *next, *node;
317 	u32 old, tail;
318 	int idx;
319 
320 	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
321 
322 	if (pv_enabled())
323 		goto pv_queue;
324 
325 	if (virt_spin_lock(lock))
326 		return;
327 
328 	/*
329 	 * Wait for in-progress pending->locked hand-overs with a bounded
330 	 * number of spins so that we guarantee forward progress.
331 	 *
332 	 * 0,1,0 -> 0,0,1
333 	 */
334 	if (val == _Q_PENDING_VAL) {
335 		int cnt = _Q_PENDING_LOOPS;
336 		val = atomic_cond_read_relaxed(&lock->val,
337 					       (VAL != _Q_PENDING_VAL) || !cnt--);
338 	}
339 
340 	/*
341 	 * If we observe any contention; queue.
342 	 */
343 	if (val & ~_Q_LOCKED_MASK)
344 		goto queue;
345 
346 	/*
347 	 * trylock || pending
348 	 *
349 	 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
350 	 */
351 	val = queued_fetch_set_pending_acquire(lock);
352 
353 	/*
354 	 * If we observe contention, there is a concurrent locker.
355 	 *
356 	 * Undo and queue; our setting of PENDING might have made the
357 	 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
358 	 * on @next to become !NULL.
359 	 */
360 	if (unlikely(val & ~_Q_LOCKED_MASK)) {
361 
362 		/* Undo PENDING if we set it. */
363 		if (!(val & _Q_PENDING_MASK))
364 			clear_pending(lock);
365 
366 		goto queue;
367 	}
368 
369 	/*
370 	 * We're pending, wait for the owner to go away.
371 	 *
372 	 * 0,1,1 -> 0,1,0
373 	 *
374 	 * this wait loop must be a load-acquire such that we match the
375 	 * store-release that clears the locked bit and create lock
376 	 * sequentiality; this is because not all
377 	 * clear_pending_set_locked() implementations imply full
378 	 * barriers.
379 	 */
380 	if (val & _Q_LOCKED_MASK)
381 		atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
382 
383 	/*
384 	 * take ownership and clear the pending bit.
385 	 *
386 	 * 0,1,0 -> 0,0,1
387 	 */
388 	clear_pending_set_locked(lock);
389 	lockevent_inc(lock_pending);
390 	return;
391 
392 	/*
393 	 * End of pending bit optimistic spinning and beginning of MCS
394 	 * queuing.
395 	 */
396 queue:
397 	lockevent_inc(lock_slowpath);
398 pv_queue:
399 	node = this_cpu_ptr(&qnodes[0].mcs);
400 	idx = node->count++;
401 	tail = encode_tail(smp_processor_id(), idx);
402 
403 	/*
404 	 * 4 nodes are allocated based on the assumption that there will
405 	 * not be nested NMIs taking spinlocks. That may not be true in
406 	 * some architectures even though the chance of needing more than
407 	 * 4 nodes will still be extremely unlikely. When that happens,
408 	 * we fall back to spinning on the lock directly without using
409 	 * any MCS node. This is not the most elegant solution, but is
410 	 * simple enough.
411 	 */
412 	if (unlikely(idx >= MAX_NODES)) {
413 		lockevent_inc(lock_no_node);
414 		while (!queued_spin_trylock(lock))
415 			cpu_relax();
416 		goto release;
417 	}
418 
419 	node = grab_mcs_node(node, idx);
420 
421 	/*
422 	 * Keep counts of non-zero index values:
423 	 */
424 	lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
425 
426 	/*
427 	 * Ensure that we increment the head node->count before initialising
428 	 * the actual node. If the compiler is kind enough to reorder these
429 	 * stores, then an IRQ could overwrite our assignments.
430 	 */
431 	barrier();
432 
433 	node->locked = 0;
434 	node->next = NULL;
435 	pv_init_node(node);
436 
437 	/*
438 	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
439 	 * attempt the trylock once more in the hope someone let go while we
440 	 * weren't watching.
441 	 */
442 	if (queued_spin_trylock(lock))
443 		goto release;
444 
445 	/*
446 	 * Ensure that the initialisation of @node is complete before we
447 	 * publish the updated tail via xchg_tail() and potentially link
448 	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
449 	 */
450 	smp_wmb();
451 
452 	/*
453 	 * Publish the updated tail.
454 	 * We have already touched the queueing cacheline; don't bother with
455 	 * pending stuff.
456 	 *
457 	 * p,*,* -> n,*,*
458 	 */
459 	old = xchg_tail(lock, tail);
460 	next = NULL;
461 
462 	/*
463 	 * if there was a previous node; link it and wait until reaching the
464 	 * head of the waitqueue.
465 	 */
466 	if (old & _Q_TAIL_MASK) {
467 		prev = decode_tail(old);
468 
469 		/* Link @node into the waitqueue. */
470 		WRITE_ONCE(prev->next, node);
471 
472 		pv_wait_node(node, prev);
473 		arch_mcs_spin_lock_contended(&node->locked);
474 
475 		/*
476 		 * While waiting for the MCS lock, the next pointer may have
477 		 * been set by another lock waiter. We optimistically load
478 		 * the next pointer & prefetch the cacheline for writing
479 		 * to reduce latency in the upcoming MCS unlock operation.
480 		 */
481 		next = READ_ONCE(node->next);
482 		if (next)
483 			prefetchw(next);
484 	}
485 
486 	/*
487 	 * we're at the head of the waitqueue, wait for the owner & pending to
488 	 * go away.
489 	 *
490 	 * *,x,y -> *,0,0
491 	 *
492 	 * this wait loop must use a load-acquire such that we match the
493 	 * store-release that clears the locked bit and create lock
494 	 * sequentiality; this is because the set_locked() function below
495 	 * does not imply a full barrier.
496 	 *
497 	 * The PV pv_wait_head_or_lock function, if active, will acquire
498 	 * the lock and return a non-zero value. So we have to skip the
499 	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
500 	 * been designated yet, there is no way for the locked value to become
501 	 * _Q_SLOW_VAL. So both the set_locked() and the
502 	 * atomic_cmpxchg_relaxed() calls will be safe.
503 	 *
504 	 * If PV isn't active, 0 will be returned instead.
505 	 *
506 	 */
507 	if ((val = pv_wait_head_or_lock(lock, node)))
508 		goto locked;
509 
510 	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
511 
512 locked:
513 	/*
514 	 * claim the lock:
515 	 *
516 	 * n,0,0 -> 0,0,1 : lock, uncontended
517 	 * *,*,0 -> *,*,1 : lock, contended
518 	 *
519 	 * If the queue head is the only one in the queue (lock value == tail)
520 	 * and nobody is pending, clear the tail code and grab the lock.
521 	 * Otherwise, we only need to grab the lock.
522 	 */
523 
524 	/*
525 	 * In the PV case we might already have _Q_LOCKED_VAL set, because
526 	 * of lock stealing; therefore we must also allow:
527 	 *
528 	 * n,0,1 -> 0,0,1
529 	 *
530 	 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
531 	 *       above wait condition, therefore any concurrent setting of
532 	 *       PENDING will make the uncontended transition fail.
533 	 */
534 	if ((val & _Q_TAIL_MASK) == tail) {
535 		if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
536 			goto release; /* No contention */
537 	}
538 
539 	/*
540 	 * Either somebody is queued behind us or _Q_PENDING_VAL got set
541 	 * which will then detect the remaining tail and queue behind us
542 	 * ensuring we'll see a @next.
543 	 */
544 	set_locked(lock);
545 
546 	/*
547 	 * contended path; wait for next if not observed yet, release.
548 	 */
549 	if (!next)
550 		next = smp_cond_load_relaxed(&node->next, (VAL));
551 
552 	arch_mcs_spin_unlock_contended(&next->locked);
553 	pv_kick_node(lock, next);
554 
555 release:
556 	/*
557 	 * release the node
558 	 */
559 	__this_cpu_dec(qnodes[0].mcs.count);
560 }
561 EXPORT_SYMBOL(queued_spin_lock_slowpath);
562 
563 /*
564  * Generate the paravirt code for queued_spin_unlock_slowpath().
565  */
566 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
567 #define _GEN_PV_LOCK_SLOWPATH
568 
569 #undef  pv_enabled
570 #define pv_enabled()	true
571 
572 #undef pv_init_node
573 #undef pv_wait_node
574 #undef pv_kick_node
575 #undef pv_wait_head_or_lock
576 
577 #undef  queued_spin_lock_slowpath
578 #define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
579 
580 #include "qspinlock_paravirt.h"
581 #include "qspinlock.c"
582 
583 #endif
584