1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * include/asm-xtensa/pgtable.h
4 *
5 * Copyright (C) 2001 - 2013 Tensilica Inc.
6 */
7
8 #ifndef _XTENSA_PGTABLE_H
9 #define _XTENSA_PGTABLE_H
10
11 #define __ARCH_USE_5LEVEL_HACK
12 #include <asm/page.h>
13 #include <asm/kmem_layout.h>
14 #include <asm-generic/pgtable-nopmd.h>
15
16 /*
17 * We only use two ring levels, user and kernel space.
18 */
19
20 #ifdef CONFIG_MMU
21 #define USER_RING 1 /* user ring level */
22 #else
23 #define USER_RING 0
24 #endif
25 #define KERNEL_RING 0 /* kernel ring level */
26
27 /*
28 * The Xtensa architecture port of Linux has a two-level page table system,
29 * i.e. the logical three-level Linux page table layout is folded.
30 * Each task has the following memory page tables:
31 *
32 * PGD table (page directory), ie. 3rd-level page table:
33 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
34 * (Architectures that don't have the PMD folded point to the PMD tables)
35 *
36 * The pointer to the PGD table for a given task can be retrieved from
37 * the task structure (struct task_struct*) t, e.g. current():
38 * (t->mm ? t->mm : t->active_mm)->pgd
39 *
40 * PMD tables (page middle-directory), ie. 2nd-level page tables:
41 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
42 *
43 * PTE tables (page table entry), ie. 1st-level page tables:
44 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
45 * invalid_pte_table for absent mappings.
46 *
47 * The individual pages are 4 kB big with special pages for the empty_zero_page.
48 */
49
50 #define PGDIR_SHIFT 22
51 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
52 #define PGDIR_MASK (~(PGDIR_SIZE-1))
53
54 /*
55 * Entries per page directory level: we use two-level, so
56 * we don't really have any PMD directory physically.
57 */
58 #define PTRS_PER_PTE 1024
59 #define PTRS_PER_PTE_SHIFT 10
60 #define PTRS_PER_PGD 1024
61 #define PGD_ORDER 0
62 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
63 #define FIRST_USER_ADDRESS 0UL
64 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
65
66 #ifdef CONFIG_MMU
67 /*
68 * Virtual memory area. We keep a distance to other memory regions to be
69 * on the safe side. We also use this area for cache aliasing.
70 */
71 #define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
72 #define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
73 #define TLBTEMP_BASE_1 (VMALLOC_END + 1)
74 #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
75 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
76 #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
77 #else
78 #define TLBTEMP_SIZE ICACHE_WAY_SIZE
79 #endif
80
81 #else
82
83 #define VMALLOC_START __XTENSA_UL_CONST(0)
84 #define VMALLOC_END __XTENSA_UL_CONST(0xffffffff)
85
86 #endif
87
88 /*
89 * For the Xtensa architecture, the PTE layout is as follows:
90 *
91 * 31------12 11 10-9 8-6 5-4 3-2 1-0
92 * +-----------------------------------------+
93 * | | Software | HARDWARE |
94 * | PPN | ADW | RI |Attribute|
95 * +-----------------------------------------+
96 * pte_none | MBZ | 01 | 11 | 00 |
97 * +-----------------------------------------+
98 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
99 * +- - - - - - - - - - - - - - - - - - - - -+
100 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
101 * +-----------------------------------------+
102 * swap | index | type | 01 | 11 | 00 |
103 * +-----------------------------------------+
104 *
105 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
106 * +-----------------------------------------+
107 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
108 * +-----------------------------------------+
109 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
110 * +-----------------------------------------+
111 *
112 * Legend:
113 * PPN Physical Page Number
114 * ADW software: accessed (young) / dirty / writable
115 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
116 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
117 * (11 is invalid and used to mark pages that are not present)
118 * w page is writable (hw)
119 * x page is executable (hw)
120 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
121 * (note that the index is always non-zero)
122 * type swap type (5 bits -> 32 types)
123 *
124 * Notes:
125 * - (PROT_NONE) is a special case of 'present' but causes an exception for
126 * any access (read, write, and execute).
127 * - 'multihit-exception' has the highest priority of all MMU exceptions,
128 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
129 * - on older hardware, the exectuable flag was not supported and
130 * used as a 'valid' flag, so it needs to be always set.
131 * - we need to keep track of certain flags in software (dirty and young)
132 * to do this, we use write exceptions and have a separate software w-flag.
133 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
134 */
135
136 #define _PAGE_ATTRIB_MASK 0xf
137
138 #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
139 #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
140
141 #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
142 #define _PAGE_CA_WB (1<<2) /* write-back */
143 #define _PAGE_CA_WT (2<<2) /* write-through */
144 #define _PAGE_CA_MASK (3<<2)
145 #define _PAGE_CA_INVALID (3<<2)
146
147 /* We use invalid attribute values to distinguish special pte entries */
148 #if XCHAL_HW_VERSION_MAJOR < 2000
149 #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
150 #define _PAGE_NONE 0x04
151 #else
152 #define _PAGE_HW_VALID 0x00
153 #define _PAGE_NONE 0x0f
154 #endif
155
156 #define _PAGE_USER (1<<4) /* user access (ring=1) */
157
158 /* Software */
159 #define _PAGE_WRITABLE_BIT 6
160 #define _PAGE_WRITABLE (1<<6) /* software: page writable */
161 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
162 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
163
164 #ifdef CONFIG_MMU
165
166 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
167 #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
168
169 #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
170 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
171 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
172 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
173 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
174 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
175 #define PAGE_SHARED_EXEC \
176 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
177 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
178 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT)
179 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
180
181 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
182 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
183 #else
184 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
185 #endif
186
187 #else /* no mmu */
188
189 # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
190 # define PAGE_NONE __pgprot(0)
191 # define PAGE_SHARED __pgprot(0)
192 # define PAGE_COPY __pgprot(0)
193 # define PAGE_READONLY __pgprot(0)
194 # define PAGE_KERNEL __pgprot(0)
195
196 #endif
197
198 /*
199 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
200 * the MMU can't do page protection for execute, and considers that the same as
201 * read. Also, write permissions may imply read permissions.
202 * What follows is the closest we can get by reasonable means..
203 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
204 */
205 #define __P000 PAGE_NONE /* private --- */
206 #define __P001 PAGE_READONLY /* private --r */
207 #define __P010 PAGE_COPY /* private -w- */
208 #define __P011 PAGE_COPY /* private -wr */
209 #define __P100 PAGE_READONLY_EXEC /* private x-- */
210 #define __P101 PAGE_READONLY_EXEC /* private x-r */
211 #define __P110 PAGE_COPY_EXEC /* private xw- */
212 #define __P111 PAGE_COPY_EXEC /* private xwr */
213
214 #define __S000 PAGE_NONE /* shared --- */
215 #define __S001 PAGE_READONLY /* shared --r */
216 #define __S010 PAGE_SHARED /* shared -w- */
217 #define __S011 PAGE_SHARED /* shared -wr */
218 #define __S100 PAGE_READONLY_EXEC /* shared x-- */
219 #define __S101 PAGE_READONLY_EXEC /* shared x-r */
220 #define __S110 PAGE_SHARED_EXEC /* shared xw- */
221 #define __S111 PAGE_SHARED_EXEC /* shared xwr */
222
223 #ifndef __ASSEMBLY__
224
225 #define pte_ERROR(e) \
226 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
227 #define pgd_ERROR(e) \
228 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
229
230 extern unsigned long empty_zero_page[1024];
231
232 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
233
234 #ifdef CONFIG_MMU
235 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
236 extern void paging_init(void);
237 #else
238 # define swapper_pg_dir NULL
paging_init(void)239 static inline void paging_init(void) { }
240 #endif
241
242 /*
243 * The pmd contains the kernel virtual address of the pte page.
244 */
245 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
246 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
247
248 /*
249 * pte status.
250 */
251 # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
252 #if XCHAL_HW_VERSION_MAJOR < 2000
253 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
254 #else
255 # define pte_present(pte) \
256 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
257 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
258 #endif
259 #define pte_clear(mm,addr,ptep) \
260 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
261
262 #define pmd_none(pmd) (!pmd_val(pmd))
263 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
264 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
265 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
266
pte_write(pte_t pte)267 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
pte_dirty(pte_t pte)268 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)269 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
pte_special(pte_t pte)270 static inline int pte_special(pte_t pte) { return 0; }
271
pte_wrprotect(pte_t pte)272 static inline pte_t pte_wrprotect(pte_t pte)
273 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
pte_mkclean(pte_t pte)274 static inline pte_t pte_mkclean(pte_t pte)
275 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
pte_mkold(pte_t pte)276 static inline pte_t pte_mkold(pte_t pte)
277 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkdirty(pte_t pte)278 static inline pte_t pte_mkdirty(pte_t pte)
279 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)280 static inline pte_t pte_mkyoung(pte_t pte)
281 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)282 static inline pte_t pte_mkwrite(pte_t pte)
283 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
pte_mkspecial(pte_t pte)284 static inline pte_t pte_mkspecial(pte_t pte)
285 { return pte; }
286
287 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
288
289 /*
290 * Conversion functions: convert a page and protection to a page entry,
291 * and a page entry and page directory to the page they refer to.
292 */
293
294 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
295 #define pte_same(a,b) (pte_val(a) == pte_val(b))
296 #define pte_page(x) pfn_to_page(pte_pfn(x))
297 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
298 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
299
pte_modify(pte_t pte,pgprot_t newprot)300 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
301 {
302 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
303 }
304
305 /*
306 * Certain architectures need to do special things when pte's
307 * within a page table are directly modified. Thus, the following
308 * hook is made available.
309 */
update_pte(pte_t * ptep,pte_t pteval)310 static inline void update_pte(pte_t *ptep, pte_t pteval)
311 {
312 *ptep = pteval;
313 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
314 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
315 #endif
316
317 }
318
319 struct mm_struct;
320
321 static inline void
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)322 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
323 {
324 update_pte(ptep, pteval);
325 }
326
set_pte(pte_t * ptep,pte_t pteval)327 static inline void set_pte(pte_t *ptep, pte_t pteval)
328 {
329 update_pte(ptep, pteval);
330 }
331
332 static inline void
set_pmd(pmd_t * pmdp,pmd_t pmdval)333 set_pmd(pmd_t *pmdp, pmd_t pmdval)
334 {
335 *pmdp = pmdval;
336 }
337
338 struct vm_area_struct;
339
340 static inline int
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)341 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
342 pte_t *ptep)
343 {
344 pte_t pte = *ptep;
345 if (!pte_young(pte))
346 return 0;
347 update_pte(ptep, pte_mkold(pte));
348 return 1;
349 }
350
351 static inline pte_t
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)352 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
353 {
354 pte_t pte = *ptep;
355 pte_clear(mm, addr, ptep);
356 return pte;
357 }
358
359 static inline void
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)360 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
361 {
362 pte_t pte = *ptep;
363 update_pte(ptep, pte_wrprotect(pte));
364 }
365
366 /* to find an entry in a kernel page-table-directory */
367 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
368
369 /* to find an entry in a page-table-directory */
370 #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
371
372 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
373
374 /* Find an entry in the second-level page table.. */
375 #define pmd_offset(dir,address) ((pmd_t*)(dir))
376
377 /* Find an entry in the third-level page table.. */
378 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
379 #define pte_offset_kernel(dir,addr) \
380 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
381 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
382 #define pte_unmap(pte) do { } while (0)
383
384
385 /*
386 * Encode and decode a swap and file entry.
387 */
388 #define SWP_TYPE_BITS 5
389 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
390
391 #define __swp_type(entry) (((entry).val >> 6) & 0x1f)
392 #define __swp_offset(entry) ((entry).val >> 11)
393 #define __swp_entry(type,offs) \
394 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
395 _PAGE_CA_INVALID | _PAGE_USER})
396 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
397 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
398
399 #endif /* !defined (__ASSEMBLY__) */
400
401
402 #ifdef __ASSEMBLY__
403
404 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
405 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
406 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
407 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
408 *
409 * Note: We require an additional temporary register which can be the same as
410 * the register that holds the address.
411 *
412 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
413 *
414 */
415 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
416 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
417
418 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
419 _PGD_INDEX(tmp, adr); \
420 addx4 mm, tmp, mm
421
422 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
423 srli pmd, pmd, PAGE_SHIFT; \
424 slli pmd, pmd, PAGE_SHIFT; \
425 addx4 pmd, tmp, pmd
426
427 #else
428
429 #define kern_addr_valid(addr) (1)
430
431 extern void update_mmu_cache(struct vm_area_struct * vma,
432 unsigned long address, pte_t *ptep);
433
434 typedef pte_t *pte_addr_t;
435
436 #endif /* !defined (__ASSEMBLY__) */
437
438 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
439 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
440 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
441 #define __HAVE_ARCH_PTEP_MKDIRTY
442 #define __HAVE_ARCH_PTE_SAME
443 /* We provide our own get_unmapped_area to cope with
444 * SHM area cache aliasing for userland.
445 */
446 #define HAVE_ARCH_UNMAPPED_AREA
447
448 #include <asm-generic/pgtable.h>
449
450 #endif /* _XTENSA_PGTABLE_H */
451