1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * include/asm-xtensa/pgtable.h
4  *
5  * Copyright (C) 2001 - 2013 Tensilica Inc.
6  */
7 
8 #ifndef _XTENSA_PGTABLE_H
9 #define _XTENSA_PGTABLE_H
10 
11 #define __ARCH_USE_5LEVEL_HACK
12 #include <asm/page.h>
13 #include <asm/kmem_layout.h>
14 #include <asm-generic/pgtable-nopmd.h>
15 
16 /*
17  * We only use two ring levels, user and kernel space.
18  */
19 
20 #ifdef CONFIG_MMU
21 #define USER_RING		1	/* user ring level */
22 #else
23 #define USER_RING		0
24 #endif
25 #define KERNEL_RING		0	/* kernel ring level */
26 
27 /*
28  * The Xtensa architecture port of Linux has a two-level page table system,
29  * i.e. the logical three-level Linux page table layout is folded.
30  * Each task has the following memory page tables:
31  *
32  *   PGD table (page directory), ie. 3rd-level page table:
33  *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
34  *	(Architectures that don't have the PMD folded point to the PMD tables)
35  *
36  *	The pointer to the PGD table for a given task can be retrieved from
37  *	the task structure (struct task_struct*) t, e.g. current():
38  *	  (t->mm ? t->mm : t->active_mm)->pgd
39  *
40  *   PMD tables (page middle-directory), ie. 2nd-level page tables:
41  *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
42  *
43  *   PTE tables (page table entry), ie. 1st-level page tables:
44  *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
45  *	invalid_pte_table for absent mappings.
46  *
47  * The individual pages are 4 kB big with special pages for the empty_zero_page.
48  */
49 
50 #define PGDIR_SHIFT	22
51 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
52 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
53 
54 /*
55  * Entries per page directory level: we use two-level, so
56  * we don't really have any PMD directory physically.
57  */
58 #define PTRS_PER_PTE		1024
59 #define PTRS_PER_PTE_SHIFT	10
60 #define PTRS_PER_PGD		1024
61 #define PGD_ORDER		0
62 #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
63 #define FIRST_USER_ADDRESS	0UL
64 #define FIRST_USER_PGD_NR	(FIRST_USER_ADDRESS >> PGDIR_SHIFT)
65 
66 #ifdef CONFIG_MMU
67 /*
68  * Virtual memory area. We keep a distance to other memory regions to be
69  * on the safe side. We also use this area for cache aliasing.
70  */
71 #define VMALLOC_START		(XCHAL_KSEG_CACHED_VADDR - 0x10000000)
72 #define VMALLOC_END		(VMALLOC_START + 0x07FEFFFF)
73 #define TLBTEMP_BASE_1		(VMALLOC_END + 1)
74 #define TLBTEMP_BASE_2		(TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
75 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
76 #define TLBTEMP_SIZE		(2 * DCACHE_WAY_SIZE)
77 #else
78 #define TLBTEMP_SIZE		ICACHE_WAY_SIZE
79 #endif
80 
81 #else
82 
83 #define VMALLOC_START		__XTENSA_UL_CONST(0)
84 #define VMALLOC_END		__XTENSA_UL_CONST(0xffffffff)
85 
86 #endif
87 
88 /*
89  * For the Xtensa architecture, the PTE layout is as follows:
90  *
91  *		31------12  11  10-9   8-6  5-4  3-2  1-0
92  *		+-----------------------------------------+
93  *		|           |   Software   |   HARDWARE   |
94  *		|    PPN    |          ADW | RI |Attribute|
95  *		+-----------------------------------------+
96  *   pte_none	|             MBZ          | 01 | 11 | 00 |
97  *		+-----------------------------------------+
98  *   present	|    PPN    | 0 | 00 | ADW | RI | CA | wx |
99  *		+- - - - - - - - - - - - - - - - - - - - -+
100  *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 11 | 11 |
101  *		+-----------------------------------------+
102  *   swap	|     index     |   type   | 01 | 11 | 00 |
103  *		+-----------------------------------------+
104  *
105  * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
106  *		+-----------------------------------------+
107  *   present	|    PPN    | 0 | 00 | ADW | RI | CA | w1 |
108  *		+-----------------------------------------+
109  *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 01 | 00 |
110  *		+-----------------------------------------+
111  *
112  *  Legend:
113  *   PPN        Physical Page Number
114  *   ADW	software: accessed (young) / dirty / writable
115  *   RI         ring (0=privileged, 1=user, 2 and 3 are unused)
116  *   CA		cache attribute: 00 bypass, 01 writeback, 10 writethrough
117  *		(11 is invalid and used to mark pages that are not present)
118  *   w		page is writable (hw)
119  *   x		page is executable (hw)
120  *   index      swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
121  *		(note that the index is always non-zero)
122  *   type       swap type (5 bits -> 32 types)
123  *
124  *  Notes:
125  *   - (PROT_NONE) is a special case of 'present' but causes an exception for
126  *     any access (read, write, and execute).
127  *   - 'multihit-exception' has the highest priority of all MMU exceptions,
128  *     so the ring must be set to 'RING_USER' even for 'non-present' pages.
129  *   - on older hardware, the exectuable flag was not supported and
130  *     used as a 'valid' flag, so it needs to be always set.
131  *   - we need to keep track of certain flags in software (dirty and young)
132  *     to do this, we use write exceptions and have a separate software w-flag.
133  *   - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
134  */
135 
136 #define _PAGE_ATTRIB_MASK	0xf
137 
138 #define _PAGE_HW_EXEC		(1<<0)	/* hardware: page is executable */
139 #define _PAGE_HW_WRITE		(1<<1)	/* hardware: page is writable */
140 
141 #define _PAGE_CA_BYPASS		(0<<2)	/* bypass, non-speculative */
142 #define _PAGE_CA_WB		(1<<2)	/* write-back */
143 #define _PAGE_CA_WT		(2<<2)	/* write-through */
144 #define _PAGE_CA_MASK		(3<<2)
145 #define _PAGE_CA_INVALID	(3<<2)
146 
147 /* We use invalid attribute values to distinguish special pte entries */
148 #if XCHAL_HW_VERSION_MAJOR < 2000
149 #define _PAGE_HW_VALID		0x01	/* older HW needed this bit set */
150 #define _PAGE_NONE		0x04
151 #else
152 #define _PAGE_HW_VALID		0x00
153 #define _PAGE_NONE		0x0f
154 #endif
155 
156 #define _PAGE_USER		(1<<4)	/* user access (ring=1) */
157 
158 /* Software */
159 #define _PAGE_WRITABLE_BIT	6
160 #define _PAGE_WRITABLE		(1<<6)	/* software: page writable */
161 #define _PAGE_DIRTY		(1<<7)	/* software: page dirty */
162 #define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */
163 
164 #ifdef CONFIG_MMU
165 
166 #define _PAGE_CHG_MASK	   (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
167 #define _PAGE_PRESENT	   (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
168 
169 #define PAGE_NONE	   __pgprot(_PAGE_NONE | _PAGE_USER)
170 #define PAGE_COPY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
171 #define PAGE_COPY_EXEC	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
172 #define PAGE_READONLY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
173 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
174 #define PAGE_SHARED	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
175 #define PAGE_SHARED_EXEC \
176 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
177 #define PAGE_KERNEL	   __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
178 #define PAGE_KERNEL_RO	   __pgprot(_PAGE_PRESENT)
179 #define PAGE_KERNEL_EXEC   __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
180 
181 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
182 # define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
183 #else
184 # define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
185 #endif
186 
187 #else /* no mmu */
188 
189 # define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
190 # define PAGE_NONE       __pgprot(0)
191 # define PAGE_SHARED     __pgprot(0)
192 # define PAGE_COPY       __pgprot(0)
193 # define PAGE_READONLY   __pgprot(0)
194 # define PAGE_KERNEL     __pgprot(0)
195 
196 #endif
197 
198 /*
199  * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
200  * the MMU can't do page protection for execute, and considers that the same as
201  * read.  Also, write permissions may imply read permissions.
202  * What follows is the closest we can get by reasonable means..
203  * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
204  */
205 #define __P000	PAGE_NONE		/* private --- */
206 #define __P001	PAGE_READONLY		/* private --r */
207 #define __P010	PAGE_COPY		/* private -w- */
208 #define __P011	PAGE_COPY		/* private -wr */
209 #define __P100	PAGE_READONLY_EXEC	/* private x-- */
210 #define __P101	PAGE_READONLY_EXEC	/* private x-r */
211 #define __P110	PAGE_COPY_EXEC		/* private xw- */
212 #define __P111	PAGE_COPY_EXEC		/* private xwr */
213 
214 #define __S000	PAGE_NONE		/* shared  --- */
215 #define __S001	PAGE_READONLY		/* shared  --r */
216 #define __S010	PAGE_SHARED		/* shared  -w- */
217 #define __S011	PAGE_SHARED		/* shared  -wr */
218 #define __S100	PAGE_READONLY_EXEC	/* shared  x-- */
219 #define __S101	PAGE_READONLY_EXEC	/* shared  x-r */
220 #define __S110	PAGE_SHARED_EXEC	/* shared  xw- */
221 #define __S111	PAGE_SHARED_EXEC	/* shared  xwr */
222 
223 #ifndef __ASSEMBLY__
224 
225 #define pte_ERROR(e) \
226 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
227 #define pgd_ERROR(e) \
228 	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
229 
230 extern unsigned long empty_zero_page[1024];
231 
232 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
233 
234 #ifdef CONFIG_MMU
235 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
236 extern void paging_init(void);
237 #else
238 # define swapper_pg_dir NULL
paging_init(void)239 static inline void paging_init(void) { }
240 #endif
241 
242 /*
243  * The pmd contains the kernel virtual address of the pte page.
244  */
245 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
246 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
247 
248 /*
249  * pte status.
250  */
251 # define pte_none(pte)	 (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
252 #if XCHAL_HW_VERSION_MAJOR < 2000
253 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
254 #else
255 # define pte_present(pte)						\
256 	(((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)		\
257 	 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
258 #endif
259 #define pte_clear(mm,addr,ptep)						\
260 	do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
261 
262 #define pmd_none(pmd)	 (!pmd_val(pmd))
263 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
264 #define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK)
265 #define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0)
266 
pte_write(pte_t pte)267 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
pte_dirty(pte_t pte)268 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)269 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
pte_special(pte_t pte)270 static inline int pte_special(pte_t pte) { return 0; }
271 
pte_wrprotect(pte_t pte)272 static inline pte_t pte_wrprotect(pte_t pte)
273 	{ pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
pte_mkclean(pte_t pte)274 static inline pte_t pte_mkclean(pte_t pte)
275 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
pte_mkold(pte_t pte)276 static inline pte_t pte_mkold(pte_t pte)
277 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkdirty(pte_t pte)278 static inline pte_t pte_mkdirty(pte_t pte)
279 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)280 static inline pte_t pte_mkyoung(pte_t pte)
281 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)282 static inline pte_t pte_mkwrite(pte_t pte)
283 	{ pte_val(pte) |= _PAGE_WRITABLE; return pte; }
pte_mkspecial(pte_t pte)284 static inline pte_t pte_mkspecial(pte_t pte)
285 	{ return pte; }
286 
287 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
288 
289 /*
290  * Conversion functions: convert a page and protection to a page entry,
291  * and a page entry and page directory to the page they refer to.
292  */
293 
294 #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
295 #define pte_same(a,b)		(pte_val(a) == pte_val(b))
296 #define pte_page(x)		pfn_to_page(pte_pfn(x))
297 #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
298 #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
299 
pte_modify(pte_t pte,pgprot_t newprot)300 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
301 {
302 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
303 }
304 
305 /*
306  * Certain architectures need to do special things when pte's
307  * within a page table are directly modified.  Thus, the following
308  * hook is made available.
309  */
update_pte(pte_t * ptep,pte_t pteval)310 static inline void update_pte(pte_t *ptep, pte_t pteval)
311 {
312 	*ptep = pteval;
313 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
314 	__asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
315 #endif
316 
317 }
318 
319 struct mm_struct;
320 
321 static inline void
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)322 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
323 {
324 	update_pte(ptep, pteval);
325 }
326 
set_pte(pte_t * ptep,pte_t pteval)327 static inline void set_pte(pte_t *ptep, pte_t pteval)
328 {
329 	update_pte(ptep, pteval);
330 }
331 
332 static inline void
set_pmd(pmd_t * pmdp,pmd_t pmdval)333 set_pmd(pmd_t *pmdp, pmd_t pmdval)
334 {
335 	*pmdp = pmdval;
336 }
337 
338 struct vm_area_struct;
339 
340 static inline int
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)341 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
342 			  pte_t *ptep)
343 {
344 	pte_t pte = *ptep;
345 	if (!pte_young(pte))
346 		return 0;
347 	update_pte(ptep, pte_mkold(pte));
348 	return 1;
349 }
350 
351 static inline pte_t
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)352 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
353 {
354 	pte_t pte = *ptep;
355 	pte_clear(mm, addr, ptep);
356 	return pte;
357 }
358 
359 static inline void
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)360 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
361 {
362 	pte_t pte = *ptep;
363 	update_pte(ptep, pte_wrprotect(pte));
364 }
365 
366 /* to find an entry in a kernel page-table-directory */
367 #define pgd_offset_k(address)	pgd_offset(&init_mm, address)
368 
369 /* to find an entry in a page-table-directory */
370 #define pgd_offset(mm,address)	((mm)->pgd + pgd_index(address))
371 
372 #define pgd_index(address)	((address) >> PGDIR_SHIFT)
373 
374 /* Find an entry in the second-level page table.. */
375 #define pmd_offset(dir,address) ((pmd_t*)(dir))
376 
377 /* Find an entry in the third-level page table.. */
378 #define pte_index(address)	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
379 #define pte_offset_kernel(dir,addr) 					\
380 	((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
381 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr))
382 #define pte_unmap(pte)		do { } while (0)
383 
384 
385 /*
386  * Encode and decode a swap and file entry.
387  */
388 #define SWP_TYPE_BITS		5
389 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
390 
391 #define __swp_type(entry)	(((entry).val >> 6) & 0x1f)
392 #define __swp_offset(entry)	((entry).val >> 11)
393 #define __swp_entry(type,offs)	\
394 	((swp_entry_t){((type) << 6) | ((offs) << 11) | \
395 	 _PAGE_CA_INVALID | _PAGE_USER})
396 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
397 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
398 
399 #endif /*  !defined (__ASSEMBLY__) */
400 
401 
402 #ifdef __ASSEMBLY__
403 
404 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
405  *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
406  *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
407  *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
408  *
409  * Note: We require an additional temporary register which can be the same as
410  *       the register that holds the address.
411  *
412  * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
413  *
414  */
415 #define _PGD_INDEX(rt,rs)	extui	rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
416 #define _PTE_INDEX(rt,rs)	extui	rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
417 
418 #define _PGD_OFFSET(mm,adr,tmp)		l32i	mm, mm, MM_PGD;		\
419 					_PGD_INDEX(tmp, adr);		\
420 					addx4	mm, tmp, mm
421 
422 #define _PTE_OFFSET(pmd,adr,tmp)	_PTE_INDEX(tmp, adr);		\
423 					srli	pmd, pmd, PAGE_SHIFT;	\
424 					slli	pmd, pmd, PAGE_SHIFT;	\
425 					addx4	pmd, tmp, pmd
426 
427 #else
428 
429 #define kern_addr_valid(addr)	(1)
430 
431 extern  void update_mmu_cache(struct vm_area_struct * vma,
432 			      unsigned long address, pte_t *ptep);
433 
434 typedef pte_t *pte_addr_t;
435 
436 #endif /* !defined (__ASSEMBLY__) */
437 
438 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
439 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
440 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
441 #define __HAVE_ARCH_PTEP_MKDIRTY
442 #define __HAVE_ARCH_PTE_SAME
443 /* We provide our own get_unmapped_area to cope with
444  * SHM area cache aliasing for userland.
445  */
446 #define HAVE_ARCH_UNMAPPED_AREA
447 
448 #include <asm-generic/pgtable.h>
449 
450 #endif /* _XTENSA_PGTABLE_H */
451