1 /*
2 pd.c (c) 1997-8 Grant R. Guenther <grant@torque.net>
3 Under the terms of the GNU General Public License.
4
5 This is the high-level driver for parallel port IDE hard
6 drives based on chips supported by the paride module.
7
8 By default, the driver will autoprobe for a single parallel
9 port IDE drive, but if their individual parameters are
10 specified, the driver can handle up to 4 drives.
11
12 The behaviour of the pd driver can be altered by setting
13 some parameters from the insmod command line. The following
14 parameters are adjustable:
15
16 drive0 These four arguments can be arrays of
17 drive1 1-8 integers as follows:
18 drive2
19 drive3 <prt>,<pro>,<uni>,<mod>,<geo>,<sby>,<dly>,<slv>
20
21 Where,
22
23 <prt> is the base of the parallel port address for
24 the corresponding drive. (required)
25
26 <pro> is the protocol number for the adapter that
27 supports this drive. These numbers are
28 logged by 'paride' when the protocol modules
29 are initialised. (0 if not given)
30
31 <uni> for those adapters that support chained
32 devices, this is the unit selector for the
33 chain of devices on the given port. It should
34 be zero for devices that don't support chaining.
35 (0 if not given)
36
37 <mod> this can be -1 to choose the best mode, or one
38 of the mode numbers supported by the adapter.
39 (-1 if not given)
40
41 <geo> this defaults to 0 to indicate that the driver
42 should use the CHS geometry provided by the drive
43 itself. If set to 1, the driver will provide
44 a logical geometry with 64 heads and 32 sectors
45 per track, to be consistent with most SCSI
46 drivers. (0 if not given)
47
48 <sby> set this to zero to disable the power saving
49 standby mode, if needed. (1 if not given)
50
51 <dly> some parallel ports require the driver to
52 go more slowly. -1 sets a default value that
53 should work with the chosen protocol. Otherwise,
54 set this to a small integer, the larger it is
55 the slower the port i/o. In some cases, setting
56 this to zero will speed up the device. (default -1)
57
58 <slv> IDE disks can be jumpered to master or slave.
59 Set this to 0 to choose the master drive, 1 to
60 choose the slave, -1 (the default) to choose the
61 first drive found.
62
63
64 major You may use this parameter to override the
65 default major number (45) that this driver
66 will use. Be sure to change the device
67 name as well.
68
69 name This parameter is a character string that
70 contains the name the kernel will use for this
71 device (in /proc output, for instance).
72 (default "pd")
73
74 cluster The driver will attempt to aggregate requests
75 for adjacent blocks into larger multi-block
76 clusters. The maximum cluster size (in 512
77 byte sectors) is set with this parameter.
78 (default 64)
79
80 verbose This parameter controls the amount of logging
81 that the driver will do. Set it to 0 for
82 normal operation, 1 to see autoprobe progress
83 messages, or 2 to see additional debugging
84 output. (default 0)
85
86 nice This parameter controls the driver's use of
87 idle CPU time, at the expense of some speed.
88
89 If this driver is built into the kernel, you can use kernel
90 the following command line parameters, with the same values
91 as the corresponding module parameters listed above:
92
93 pd.drive0
94 pd.drive1
95 pd.drive2
96 pd.drive3
97 pd.cluster
98 pd.nice
99
100 In addition, you can use the parameter pd.disable to disable
101 the driver entirely.
102
103 */
104
105 /* Changes:
106
107 1.01 GRG 1997.01.24 Restored pd_reset()
108 Added eject ioctl
109 1.02 GRG 1998.05.06 SMP spinlock changes,
110 Added slave support
111 1.03 GRG 1998.06.16 Eliminate an Ugh.
112 1.04 GRG 1998.08.15 Extra debugging, use HZ in loop timing
113 1.05 GRG 1998.09.24 Added jumbo support
114
115 */
116
117 #define PD_VERSION "1.05"
118 #define PD_MAJOR 45
119 #define PD_NAME "pd"
120 #define PD_UNITS 4
121
122 /* Here are things one can override from the insmod command.
123 Most are autoprobed by paride unless set here. Verbose is off
124 by default.
125
126 */
127 #include <linux/types.h>
128
129 static int verbose = 0;
130 static int major = PD_MAJOR;
131 static char *name = PD_NAME;
132 static int cluster = 64;
133 static int nice = 0;
134 static int disable = 0;
135
136 static int drive0[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
137 static int drive1[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
138 static int drive2[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
139 static int drive3[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
140
141 static int (*drives[4])[8] = {&drive0, &drive1, &drive2, &drive3};
142
143 enum {D_PRT, D_PRO, D_UNI, D_MOD, D_GEO, D_SBY, D_DLY, D_SLV};
144
145 /* end of parameters */
146
147 #include <linux/init.h>
148 #include <linux/module.h>
149 #include <linux/gfp.h>
150 #include <linux/fs.h>
151 #include <linux/delay.h>
152 #include <linux/hdreg.h>
153 #include <linux/cdrom.h> /* for the eject ioctl */
154 #include <linux/blk-mq.h>
155 #include <linux/blkpg.h>
156 #include <linux/kernel.h>
157 #include <linux/mutex.h>
158 #include <linux/uaccess.h>
159 #include <linux/workqueue.h>
160
161 static DEFINE_MUTEX(pd_mutex);
162 static DEFINE_SPINLOCK(pd_lock);
163
164 module_param(verbose, int, 0);
165 module_param(major, int, 0);
166 module_param(name, charp, 0);
167 module_param(cluster, int, 0);
168 module_param(nice, int, 0);
169 module_param_array(drive0, int, NULL, 0);
170 module_param_array(drive1, int, NULL, 0);
171 module_param_array(drive2, int, NULL, 0);
172 module_param_array(drive3, int, NULL, 0);
173
174 #include "paride.h"
175
176 #define PD_BITS 4
177
178 /* numbers for "SCSI" geometry */
179
180 #define PD_LOG_HEADS 64
181 #define PD_LOG_SECTS 32
182
183 #define PD_ID_OFF 54
184 #define PD_ID_LEN 14
185
186 #define PD_MAX_RETRIES 5
187 #define PD_TMO 800 /* interrupt timeout in jiffies */
188 #define PD_SPIN_DEL 50 /* spin delay in micro-seconds */
189
190 #define PD_SPIN (1000000*PD_TMO)/(HZ*PD_SPIN_DEL)
191
192 #define STAT_ERR 0x00001
193 #define STAT_INDEX 0x00002
194 #define STAT_ECC 0x00004
195 #define STAT_DRQ 0x00008
196 #define STAT_SEEK 0x00010
197 #define STAT_WRERR 0x00020
198 #define STAT_READY 0x00040
199 #define STAT_BUSY 0x00080
200
201 #define ERR_AMNF 0x00100
202 #define ERR_TK0NF 0x00200
203 #define ERR_ABRT 0x00400
204 #define ERR_MCR 0x00800
205 #define ERR_IDNF 0x01000
206 #define ERR_MC 0x02000
207 #define ERR_UNC 0x04000
208 #define ERR_TMO 0x10000
209
210 #define IDE_READ 0x20
211 #define IDE_WRITE 0x30
212 #define IDE_READ_VRFY 0x40
213 #define IDE_INIT_DEV_PARMS 0x91
214 #define IDE_STANDBY 0x96
215 #define IDE_ACKCHANGE 0xdb
216 #define IDE_DOORLOCK 0xde
217 #define IDE_DOORUNLOCK 0xdf
218 #define IDE_IDENTIFY 0xec
219 #define IDE_EJECT 0xed
220
221 #define PD_NAMELEN 8
222
223 struct pd_unit {
224 struct pi_adapter pia; /* interface to paride layer */
225 struct pi_adapter *pi;
226 int access; /* count of active opens ... */
227 int capacity; /* Size of this volume in sectors */
228 int heads; /* physical geometry */
229 int sectors;
230 int cylinders;
231 int can_lba;
232 int drive; /* master=0 slave=1 */
233 int changed; /* Have we seen a disk change ? */
234 int removable; /* removable media device ? */
235 int standby;
236 int alt_geom;
237 char name[PD_NAMELEN]; /* pda, pdb, etc ... */
238 struct gendisk *gd;
239 struct blk_mq_tag_set tag_set;
240 struct list_head rq_list;
241 };
242
243 static struct pd_unit pd[PD_UNITS];
244
245 struct pd_req {
246 /* for REQ_OP_DRV_IN: */
247 enum action (*func)(struct pd_unit *disk);
248 };
249
250 static char pd_scratch[512]; /* scratch block buffer */
251
252 static char *pd_errs[17] = { "ERR", "INDEX", "ECC", "DRQ", "SEEK", "WRERR",
253 "READY", "BUSY", "AMNF", "TK0NF", "ABRT", "MCR",
254 "IDNF", "MC", "UNC", "???", "TMO"
255 };
256
257 static void *par_drv; /* reference of parport driver */
258
status_reg(struct pd_unit * disk)259 static inline int status_reg(struct pd_unit *disk)
260 {
261 return pi_read_regr(disk->pi, 1, 6);
262 }
263
read_reg(struct pd_unit * disk,int reg)264 static inline int read_reg(struct pd_unit *disk, int reg)
265 {
266 return pi_read_regr(disk->pi, 0, reg);
267 }
268
write_status(struct pd_unit * disk,int val)269 static inline void write_status(struct pd_unit *disk, int val)
270 {
271 pi_write_regr(disk->pi, 1, 6, val);
272 }
273
write_reg(struct pd_unit * disk,int reg,int val)274 static inline void write_reg(struct pd_unit *disk, int reg, int val)
275 {
276 pi_write_regr(disk->pi, 0, reg, val);
277 }
278
DRIVE(struct pd_unit * disk)279 static inline u8 DRIVE(struct pd_unit *disk)
280 {
281 return 0xa0+0x10*disk->drive;
282 }
283
284 /* ide command interface */
285
pd_print_error(struct pd_unit * disk,char * msg,int status)286 static void pd_print_error(struct pd_unit *disk, char *msg, int status)
287 {
288 int i;
289
290 printk("%s: %s: status = 0x%x =", disk->name, msg, status);
291 for (i = 0; i < ARRAY_SIZE(pd_errs); i++)
292 if (status & (1 << i))
293 printk(" %s", pd_errs[i]);
294 printk("\n");
295 }
296
pd_reset(struct pd_unit * disk)297 static void pd_reset(struct pd_unit *disk)
298 { /* called only for MASTER drive */
299 write_status(disk, 4);
300 udelay(50);
301 write_status(disk, 0);
302 udelay(250);
303 }
304
305 #define DBMSG(msg) ((verbose>1)?(msg):NULL)
306
pd_wait_for(struct pd_unit * disk,int w,char * msg)307 static int pd_wait_for(struct pd_unit *disk, int w, char *msg)
308 { /* polled wait */
309 int k, r, e;
310
311 k = 0;
312 while (k < PD_SPIN) {
313 r = status_reg(disk);
314 k++;
315 if (((r & w) == w) && !(r & STAT_BUSY))
316 break;
317 udelay(PD_SPIN_DEL);
318 }
319 e = (read_reg(disk, 1) << 8) + read_reg(disk, 7);
320 if (k >= PD_SPIN)
321 e |= ERR_TMO;
322 if ((e & (STAT_ERR | ERR_TMO)) && (msg != NULL))
323 pd_print_error(disk, msg, e);
324 return e;
325 }
326
pd_send_command(struct pd_unit * disk,int n,int s,int h,int c0,int c1,int func)327 static void pd_send_command(struct pd_unit *disk, int n, int s, int h, int c0, int c1, int func)
328 {
329 write_reg(disk, 6, DRIVE(disk) + h);
330 write_reg(disk, 1, 0); /* the IDE task file */
331 write_reg(disk, 2, n);
332 write_reg(disk, 3, s);
333 write_reg(disk, 4, c0);
334 write_reg(disk, 5, c1);
335 write_reg(disk, 7, func);
336
337 udelay(1);
338 }
339
pd_ide_command(struct pd_unit * disk,int func,int block,int count)340 static void pd_ide_command(struct pd_unit *disk, int func, int block, int count)
341 {
342 int c1, c0, h, s;
343
344 if (disk->can_lba) {
345 s = block & 255;
346 c0 = (block >>= 8) & 255;
347 c1 = (block >>= 8) & 255;
348 h = ((block >>= 8) & 15) + 0x40;
349 } else {
350 s = (block % disk->sectors) + 1;
351 h = (block /= disk->sectors) % disk->heads;
352 c0 = (block /= disk->heads) % 256;
353 c1 = (block >>= 8);
354 }
355 pd_send_command(disk, count, s, h, c0, c1, func);
356 }
357
358 /* The i/o request engine */
359
360 enum action {Fail = 0, Ok = 1, Hold, Wait};
361
362 static struct request *pd_req; /* current request */
363 static enum action (*phase)(void);
364
365 static void run_fsm(void);
366
367 static void ps_tq_int(struct work_struct *work);
368
369 static DECLARE_DELAYED_WORK(fsm_tq, ps_tq_int);
370
schedule_fsm(void)371 static void schedule_fsm(void)
372 {
373 if (!nice)
374 schedule_delayed_work(&fsm_tq, 0);
375 else
376 schedule_delayed_work(&fsm_tq, nice-1);
377 }
378
ps_tq_int(struct work_struct * work)379 static void ps_tq_int(struct work_struct *work)
380 {
381 run_fsm();
382 }
383
384 static enum action do_pd_io_start(void);
385 static enum action pd_special(void);
386 static enum action do_pd_read_start(void);
387 static enum action do_pd_write_start(void);
388 static enum action do_pd_read_drq(void);
389 static enum action do_pd_write_done(void);
390
391 static int pd_queue;
392 static int pd_claimed;
393
394 static struct pd_unit *pd_current; /* current request's drive */
395 static PIA *pi_current; /* current request's PIA */
396
set_next_request(void)397 static int set_next_request(void)
398 {
399 struct gendisk *disk;
400 struct request_queue *q;
401 int old_pos = pd_queue;
402
403 do {
404 disk = pd[pd_queue].gd;
405 q = disk ? disk->queue : NULL;
406 if (++pd_queue == PD_UNITS)
407 pd_queue = 0;
408 if (q) {
409 struct pd_unit *disk = q->queuedata;
410
411 if (list_empty(&disk->rq_list))
412 continue;
413
414 pd_req = list_first_entry(&disk->rq_list,
415 struct request,
416 queuelist);
417 list_del_init(&pd_req->queuelist);
418 blk_mq_start_request(pd_req);
419 break;
420 }
421 } while (pd_queue != old_pos);
422
423 return pd_req != NULL;
424 }
425
run_fsm(void)426 static void run_fsm(void)
427 {
428 while (1) {
429 enum action res;
430 int stop = 0;
431
432 if (!phase) {
433 pd_current = pd_req->q->disk->private_data;
434 pi_current = pd_current->pi;
435 phase = do_pd_io_start;
436 }
437
438 switch (pd_claimed) {
439 case 0:
440 pd_claimed = 1;
441 if (!pi_schedule_claimed(pi_current, run_fsm))
442 return;
443 fallthrough;
444 case 1:
445 pd_claimed = 2;
446 pi_current->proto->connect(pi_current);
447 }
448
449 switch(res = phase()) {
450 case Ok: case Fail: {
451 blk_status_t err;
452
453 err = res == Ok ? 0 : BLK_STS_IOERR;
454 pi_disconnect(pi_current);
455 pd_claimed = 0;
456 phase = NULL;
457 spin_lock_irq(&pd_lock);
458 if (!blk_update_request(pd_req, err,
459 blk_rq_cur_bytes(pd_req))) {
460 __blk_mq_end_request(pd_req, err);
461 pd_req = NULL;
462 stop = !set_next_request();
463 }
464 spin_unlock_irq(&pd_lock);
465 if (stop)
466 return;
467 }
468 fallthrough;
469 case Hold:
470 schedule_fsm();
471 return;
472 case Wait:
473 pi_disconnect(pi_current);
474 pd_claimed = 0;
475 }
476 }
477 }
478
479 static int pd_retries = 0; /* i/o error retry count */
480 static int pd_block; /* address of next requested block */
481 static int pd_count; /* number of blocks still to do */
482 static int pd_run; /* sectors in current cluster */
483 static char *pd_buf; /* buffer for request in progress */
484
do_pd_io_start(void)485 static enum action do_pd_io_start(void)
486 {
487 switch (req_op(pd_req)) {
488 case REQ_OP_DRV_IN:
489 phase = pd_special;
490 return pd_special();
491 case REQ_OP_READ:
492 case REQ_OP_WRITE:
493 pd_block = blk_rq_pos(pd_req);
494 pd_count = blk_rq_cur_sectors(pd_req);
495 if (pd_block + pd_count > get_capacity(pd_req->q->disk))
496 return Fail;
497 pd_run = blk_rq_sectors(pd_req);
498 pd_buf = bio_data(pd_req->bio);
499 pd_retries = 0;
500 if (req_op(pd_req) == REQ_OP_READ)
501 return do_pd_read_start();
502 else
503 return do_pd_write_start();
504 default:
505 break;
506 }
507 return Fail;
508 }
509
pd_special(void)510 static enum action pd_special(void)
511 {
512 struct pd_req *req = blk_mq_rq_to_pdu(pd_req);
513
514 return req->func(pd_current);
515 }
516
pd_next_buf(void)517 static int pd_next_buf(void)
518 {
519 unsigned long saved_flags;
520
521 pd_count--;
522 pd_run--;
523 pd_buf += 512;
524 pd_block++;
525 if (!pd_run)
526 return 1;
527 if (pd_count)
528 return 0;
529 spin_lock_irqsave(&pd_lock, saved_flags);
530 if (!blk_update_request(pd_req, 0, blk_rq_cur_bytes(pd_req))) {
531 __blk_mq_end_request(pd_req, 0);
532 pd_req = NULL;
533 pd_count = 0;
534 pd_buf = NULL;
535 } else {
536 pd_count = blk_rq_cur_sectors(pd_req);
537 pd_buf = bio_data(pd_req->bio);
538 }
539 spin_unlock_irqrestore(&pd_lock, saved_flags);
540 return !pd_count;
541 }
542
543 static unsigned long pd_timeout;
544
do_pd_read_start(void)545 static enum action do_pd_read_start(void)
546 {
547 if (pd_wait_for(pd_current, STAT_READY, "do_pd_read") & STAT_ERR) {
548 if (pd_retries < PD_MAX_RETRIES) {
549 pd_retries++;
550 return Wait;
551 }
552 return Fail;
553 }
554 pd_ide_command(pd_current, IDE_READ, pd_block, pd_run);
555 phase = do_pd_read_drq;
556 pd_timeout = jiffies + PD_TMO;
557 return Hold;
558 }
559
do_pd_write_start(void)560 static enum action do_pd_write_start(void)
561 {
562 if (pd_wait_for(pd_current, STAT_READY, "do_pd_write") & STAT_ERR) {
563 if (pd_retries < PD_MAX_RETRIES) {
564 pd_retries++;
565 return Wait;
566 }
567 return Fail;
568 }
569 pd_ide_command(pd_current, IDE_WRITE, pd_block, pd_run);
570 while (1) {
571 if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_write_drq") & STAT_ERR) {
572 if (pd_retries < PD_MAX_RETRIES) {
573 pd_retries++;
574 return Wait;
575 }
576 return Fail;
577 }
578 pi_write_block(pd_current->pi, pd_buf, 512);
579 if (pd_next_buf())
580 break;
581 }
582 phase = do_pd_write_done;
583 pd_timeout = jiffies + PD_TMO;
584 return Hold;
585 }
586
pd_ready(void)587 static inline int pd_ready(void)
588 {
589 return !(status_reg(pd_current) & STAT_BUSY);
590 }
591
do_pd_read_drq(void)592 static enum action do_pd_read_drq(void)
593 {
594 if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
595 return Hold;
596
597 while (1) {
598 if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_read_drq") & STAT_ERR) {
599 if (pd_retries < PD_MAX_RETRIES) {
600 pd_retries++;
601 phase = do_pd_read_start;
602 return Wait;
603 }
604 return Fail;
605 }
606 pi_read_block(pd_current->pi, pd_buf, 512);
607 if (pd_next_buf())
608 break;
609 }
610 return Ok;
611 }
612
do_pd_write_done(void)613 static enum action do_pd_write_done(void)
614 {
615 if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
616 return Hold;
617
618 if (pd_wait_for(pd_current, STAT_READY, "do_pd_write_done") & STAT_ERR) {
619 if (pd_retries < PD_MAX_RETRIES) {
620 pd_retries++;
621 phase = do_pd_write_start;
622 return Wait;
623 }
624 return Fail;
625 }
626 return Ok;
627 }
628
629 /* special io requests */
630
631 /* According to the ATA standard, the default CHS geometry should be
632 available following a reset. Some Western Digital drives come up
633 in a mode where only LBA addresses are accepted until the device
634 parameters are initialised.
635 */
636
pd_init_dev_parms(struct pd_unit * disk)637 static void pd_init_dev_parms(struct pd_unit *disk)
638 {
639 pd_wait_for(disk, 0, DBMSG("before init_dev_parms"));
640 pd_send_command(disk, disk->sectors, 0, disk->heads - 1, 0, 0,
641 IDE_INIT_DEV_PARMS);
642 udelay(300);
643 pd_wait_for(disk, 0, "Initialise device parameters");
644 }
645
pd_door_lock(struct pd_unit * disk)646 static enum action pd_door_lock(struct pd_unit *disk)
647 {
648 if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
649 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORLOCK);
650 pd_wait_for(disk, STAT_READY, "Lock done");
651 }
652 return Ok;
653 }
654
pd_door_unlock(struct pd_unit * disk)655 static enum action pd_door_unlock(struct pd_unit *disk)
656 {
657 if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
658 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
659 pd_wait_for(disk, STAT_READY, "Lock done");
660 }
661 return Ok;
662 }
663
pd_eject(struct pd_unit * disk)664 static enum action pd_eject(struct pd_unit *disk)
665 {
666 pd_wait_for(disk, 0, DBMSG("before unlock on eject"));
667 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
668 pd_wait_for(disk, 0, DBMSG("after unlock on eject"));
669 pd_wait_for(disk, 0, DBMSG("before eject"));
670 pd_send_command(disk, 0, 0, 0, 0, 0, IDE_EJECT);
671 pd_wait_for(disk, 0, DBMSG("after eject"));
672 return Ok;
673 }
674
pd_media_check(struct pd_unit * disk)675 static enum action pd_media_check(struct pd_unit *disk)
676 {
677 int r = pd_wait_for(disk, STAT_READY, DBMSG("before media_check"));
678 if (!(r & STAT_ERR)) {
679 pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
680 r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after READ_VRFY"));
681 } else
682 disk->changed = 1; /* say changed if other error */
683 if (r & ERR_MC) {
684 disk->changed = 1;
685 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_ACKCHANGE);
686 pd_wait_for(disk, STAT_READY, DBMSG("RDY after ACKCHANGE"));
687 pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
688 r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after VRFY"));
689 }
690 return Ok;
691 }
692
pd_standby_off(struct pd_unit * disk)693 static void pd_standby_off(struct pd_unit *disk)
694 {
695 pd_wait_for(disk, 0, DBMSG("before STANDBY"));
696 pd_send_command(disk, 0, 0, 0, 0, 0, IDE_STANDBY);
697 pd_wait_for(disk, 0, DBMSG("after STANDBY"));
698 }
699
pd_identify(struct pd_unit * disk)700 static enum action pd_identify(struct pd_unit *disk)
701 {
702 int j;
703 char id[PD_ID_LEN + 1];
704
705 /* WARNING: here there may be dragons. reset() applies to both drives,
706 but we call it only on probing the MASTER. This should allow most
707 common configurations to work, but be warned that a reset can clear
708 settings on the SLAVE drive.
709 */
710
711 if (disk->drive == 0)
712 pd_reset(disk);
713
714 write_reg(disk, 6, DRIVE(disk));
715 pd_wait_for(disk, 0, DBMSG("before IDENT"));
716 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_IDENTIFY);
717
718 if (pd_wait_for(disk, STAT_DRQ, DBMSG("IDENT DRQ")) & STAT_ERR)
719 return Fail;
720 pi_read_block(disk->pi, pd_scratch, 512);
721 disk->can_lba = pd_scratch[99] & 2;
722 disk->sectors = le16_to_cpu(*(__le16 *) (pd_scratch + 12));
723 disk->heads = le16_to_cpu(*(__le16 *) (pd_scratch + 6));
724 disk->cylinders = le16_to_cpu(*(__le16 *) (pd_scratch + 2));
725 if (disk->can_lba)
726 disk->capacity = le32_to_cpu(*(__le32 *) (pd_scratch + 120));
727 else
728 disk->capacity = disk->sectors * disk->heads * disk->cylinders;
729
730 for (j = 0; j < PD_ID_LEN; j++)
731 id[j ^ 1] = pd_scratch[j + PD_ID_OFF];
732 j = PD_ID_LEN - 1;
733 while ((j >= 0) && (id[j] <= 0x20))
734 j--;
735 j++;
736 id[j] = 0;
737
738 disk->removable = pd_scratch[0] & 0x80;
739
740 printk("%s: %s, %s, %d blocks [%dM], (%d/%d/%d), %s media\n",
741 disk->name, id,
742 disk->drive ? "slave" : "master",
743 disk->capacity, disk->capacity / 2048,
744 disk->cylinders, disk->heads, disk->sectors,
745 disk->removable ? "removable" : "fixed");
746
747 if (disk->capacity)
748 pd_init_dev_parms(disk);
749 if (!disk->standby)
750 pd_standby_off(disk);
751
752 return Ok;
753 }
754
755 /* end of io request engine */
756
pd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)757 static blk_status_t pd_queue_rq(struct blk_mq_hw_ctx *hctx,
758 const struct blk_mq_queue_data *bd)
759 {
760 struct pd_unit *disk = hctx->queue->queuedata;
761
762 spin_lock_irq(&pd_lock);
763 if (!pd_req) {
764 pd_req = bd->rq;
765 blk_mq_start_request(pd_req);
766 } else
767 list_add_tail(&bd->rq->queuelist, &disk->rq_list);
768 spin_unlock_irq(&pd_lock);
769
770 run_fsm();
771 return BLK_STS_OK;
772 }
773
pd_special_command(struct pd_unit * disk,enum action (* func)(struct pd_unit * disk))774 static int pd_special_command(struct pd_unit *disk,
775 enum action (*func)(struct pd_unit *disk))
776 {
777 struct request *rq;
778 struct pd_req *req;
779
780 rq = blk_mq_alloc_request(disk->gd->queue, REQ_OP_DRV_IN, 0);
781 if (IS_ERR(rq))
782 return PTR_ERR(rq);
783 req = blk_mq_rq_to_pdu(rq);
784
785 req->func = func;
786 blk_execute_rq(rq, false);
787 blk_mq_free_request(rq);
788 return 0;
789 }
790
791 /* kernel glue structures */
792
pd_open(struct block_device * bdev,fmode_t mode)793 static int pd_open(struct block_device *bdev, fmode_t mode)
794 {
795 struct pd_unit *disk = bdev->bd_disk->private_data;
796
797 mutex_lock(&pd_mutex);
798 disk->access++;
799
800 if (disk->removable) {
801 pd_special_command(disk, pd_media_check);
802 pd_special_command(disk, pd_door_lock);
803 }
804 mutex_unlock(&pd_mutex);
805 return 0;
806 }
807
pd_getgeo(struct block_device * bdev,struct hd_geometry * geo)808 static int pd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
809 {
810 struct pd_unit *disk = bdev->bd_disk->private_data;
811
812 if (disk->alt_geom) {
813 geo->heads = PD_LOG_HEADS;
814 geo->sectors = PD_LOG_SECTS;
815 geo->cylinders = disk->capacity / (geo->heads * geo->sectors);
816 } else {
817 geo->heads = disk->heads;
818 geo->sectors = disk->sectors;
819 geo->cylinders = disk->cylinders;
820 }
821
822 return 0;
823 }
824
pd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)825 static int pd_ioctl(struct block_device *bdev, fmode_t mode,
826 unsigned int cmd, unsigned long arg)
827 {
828 struct pd_unit *disk = bdev->bd_disk->private_data;
829
830 switch (cmd) {
831 case CDROMEJECT:
832 mutex_lock(&pd_mutex);
833 if (disk->access == 1)
834 pd_special_command(disk, pd_eject);
835 mutex_unlock(&pd_mutex);
836 return 0;
837 default:
838 return -EINVAL;
839 }
840 }
841
pd_release(struct gendisk * p,fmode_t mode)842 static void pd_release(struct gendisk *p, fmode_t mode)
843 {
844 struct pd_unit *disk = p->private_data;
845
846 mutex_lock(&pd_mutex);
847 if (!--disk->access && disk->removable)
848 pd_special_command(disk, pd_door_unlock);
849 mutex_unlock(&pd_mutex);
850 }
851
pd_check_events(struct gendisk * p,unsigned int clearing)852 static unsigned int pd_check_events(struct gendisk *p, unsigned int clearing)
853 {
854 struct pd_unit *disk = p->private_data;
855 int r;
856 if (!disk->removable)
857 return 0;
858 pd_special_command(disk, pd_media_check);
859 r = disk->changed;
860 disk->changed = 0;
861 return r ? DISK_EVENT_MEDIA_CHANGE : 0;
862 }
863
864 static const struct block_device_operations pd_fops = {
865 .owner = THIS_MODULE,
866 .open = pd_open,
867 .release = pd_release,
868 .ioctl = pd_ioctl,
869 .compat_ioctl = pd_ioctl,
870 .getgeo = pd_getgeo,
871 .check_events = pd_check_events,
872 };
873
874 /* probing */
875
876 static const struct blk_mq_ops pd_mq_ops = {
877 .queue_rq = pd_queue_rq,
878 };
879
pd_probe_drive(struct pd_unit * disk,int autoprobe,int port,int mode,int unit,int protocol,int delay)880 static int pd_probe_drive(struct pd_unit *disk, int autoprobe, int port,
881 int mode, int unit, int protocol, int delay)
882 {
883 int index = disk - pd;
884 int *parm = *drives[index];
885 struct gendisk *p;
886 int ret;
887
888 disk->pi = &disk->pia;
889 disk->access = 0;
890 disk->changed = 1;
891 disk->capacity = 0;
892 disk->drive = parm[D_SLV];
893 snprintf(disk->name, PD_NAMELEN, "%s%c", name, 'a' + index);
894 disk->alt_geom = parm[D_GEO];
895 disk->standby = parm[D_SBY];
896 INIT_LIST_HEAD(&disk->rq_list);
897
898 if (!pi_init(disk->pi, autoprobe, port, mode, unit, protocol, delay,
899 pd_scratch, PI_PD, verbose, disk->name))
900 return -ENXIO;
901
902 memset(&disk->tag_set, 0, sizeof(disk->tag_set));
903 disk->tag_set.ops = &pd_mq_ops;
904 disk->tag_set.cmd_size = sizeof(struct pd_req);
905 disk->tag_set.nr_hw_queues = 1;
906 disk->tag_set.nr_maps = 1;
907 disk->tag_set.queue_depth = 2;
908 disk->tag_set.numa_node = NUMA_NO_NODE;
909 disk->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
910 ret = blk_mq_alloc_tag_set(&disk->tag_set);
911 if (ret)
912 goto pi_release;
913
914 p = blk_mq_alloc_disk(&disk->tag_set, disk);
915 if (IS_ERR(p)) {
916 ret = PTR_ERR(p);
917 goto free_tag_set;
918 }
919 disk->gd = p;
920
921 strcpy(p->disk_name, disk->name);
922 p->fops = &pd_fops;
923 p->major = major;
924 p->first_minor = (disk - pd) << PD_BITS;
925 p->minors = 1 << PD_BITS;
926 p->events = DISK_EVENT_MEDIA_CHANGE;
927 p->private_data = disk;
928 blk_queue_max_hw_sectors(p->queue, cluster);
929 blk_queue_bounce_limit(p->queue, BLK_BOUNCE_HIGH);
930
931 if (disk->drive == -1) {
932 for (disk->drive = 0; disk->drive <= 1; disk->drive++) {
933 ret = pd_special_command(disk, pd_identify);
934 if (ret == 0)
935 break;
936 }
937 } else {
938 ret = pd_special_command(disk, pd_identify);
939 }
940 if (ret)
941 goto put_disk;
942 set_capacity(disk->gd, disk->capacity);
943 ret = add_disk(disk->gd);
944 if (ret)
945 goto cleanup_disk;
946 return 0;
947 cleanup_disk:
948 put_disk(disk->gd);
949 put_disk:
950 put_disk(p);
951 disk->gd = NULL;
952 free_tag_set:
953 blk_mq_free_tag_set(&disk->tag_set);
954 pi_release:
955 pi_release(disk->pi);
956 return ret;
957 }
958
pd_init(void)959 static int __init pd_init(void)
960 {
961 int found = 0, unit, pd_drive_count = 0;
962 struct pd_unit *disk;
963
964 if (disable)
965 return -ENODEV;
966
967 if (register_blkdev(major, name))
968 return -ENODEV;
969
970 printk("%s: %s version %s, major %d, cluster %d, nice %d\n",
971 name, name, PD_VERSION, major, cluster, nice);
972
973 par_drv = pi_register_driver(name);
974 if (!par_drv) {
975 pr_err("failed to register %s driver\n", name);
976 goto out_unregister_blkdev;
977 }
978
979 for (unit = 0; unit < PD_UNITS; unit++) {
980 int *parm = *drives[unit];
981
982 if (parm[D_PRT])
983 pd_drive_count++;
984 }
985
986 if (pd_drive_count == 0) { /* nothing spec'd - so autoprobe for 1 */
987 if (!pd_probe_drive(pd, 1, -1, -1, -1, -1, -1))
988 found++;
989 } else {
990 for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
991 int *parm = *drives[unit];
992 if (!parm[D_PRT])
993 continue;
994 if (!pd_probe_drive(disk, 0, parm[D_PRT], parm[D_MOD],
995 parm[D_UNI], parm[D_PRO], parm[D_DLY]))
996 found++;
997 }
998 }
999 if (!found) {
1000 printk("%s: no valid drive found\n", name);
1001 goto out_pi_unregister_driver;
1002 }
1003
1004 return 0;
1005
1006 out_pi_unregister_driver:
1007 pi_unregister_driver(par_drv);
1008 out_unregister_blkdev:
1009 unregister_blkdev(major, name);
1010 return -ENODEV;
1011 }
1012
pd_exit(void)1013 static void __exit pd_exit(void)
1014 {
1015 struct pd_unit *disk;
1016 int unit;
1017 unregister_blkdev(major, name);
1018 for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
1019 struct gendisk *p = disk->gd;
1020 if (p) {
1021 disk->gd = NULL;
1022 del_gendisk(p);
1023 put_disk(p);
1024 blk_mq_free_tag_set(&disk->tag_set);
1025 pi_release(disk->pi);
1026 }
1027 }
1028 }
1029
1030 MODULE_LICENSE("GPL");
1031 module_init(pd_init)
1032 module_exit(pd_exit)
1033