1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
34
35 #include <uapi/linux/sched/types.h>
36
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
66
67 #include <asm/tlb.h>
68
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
71 #endif
72
73 #include "cpupri.h"
74 #include "cpudeadline.h"
75
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
78 #else
79 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
80 #endif
81
82 struct rq;
83 struct cpuidle_state;
84
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED 1
87 #define TASK_ON_RQ_MIGRATING 2
88
89 extern __read_mostly int scheduler_running;
90
91 extern unsigned long calc_load_update;
92 extern atomic_long_t calc_load_tasks;
93
94 extern void calc_global_load_tick(struct rq *this_rq);
95 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96
97 #ifdef CONFIG_SMP
98 extern void cpu_load_update_active(struct rq *this_rq);
99 #else
cpu_load_update_active(struct rq * this_rq)100 static inline void cpu_load_update_active(struct rq *this_rq) { }
101 #endif
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 /*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
118 *
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
121 */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
126 #else
127 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w) (w)
129 # define scale_load_down(w) (w)
130 #endif
131
132 /*
133 * Task weight (visible to users) and its load (invisible to users) have
134 * independent resolution, but they should be well calibrated. We use
135 * scale_load() and scale_load_down(w) to convert between them. The
136 * following must be true:
137 *
138 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139 *
140 */
141 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
142
143 /*
144 * Single value that decides SCHED_DEADLINE internal math precision.
145 * 10 -> just above 1us
146 * 9 -> just above 0.5us
147 */
148 #define DL_SCALE 10
149
150 /*
151 * Single value that denotes runtime == period, ie unlimited time.
152 */
153 #define RUNTIME_INF ((u64)~0ULL)
154
idle_policy(int policy)155 static inline int idle_policy(int policy)
156 {
157 return policy == SCHED_IDLE;
158 }
fair_policy(int policy)159 static inline int fair_policy(int policy)
160 {
161 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162 }
163
rt_policy(int policy)164 static inline int rt_policy(int policy)
165 {
166 return policy == SCHED_FIFO || policy == SCHED_RR;
167 }
168
dl_policy(int policy)169 static inline int dl_policy(int policy)
170 {
171 return policy == SCHED_DEADLINE;
172 }
valid_policy(int policy)173 static inline bool valid_policy(int policy)
174 {
175 return idle_policy(policy) || fair_policy(policy) ||
176 rt_policy(policy) || dl_policy(policy);
177 }
178
task_has_rt_policy(struct task_struct * p)179 static inline int task_has_rt_policy(struct task_struct *p)
180 {
181 return rt_policy(p->policy);
182 }
183
task_has_dl_policy(struct task_struct * p)184 static inline int task_has_dl_policy(struct task_struct *p)
185 {
186 return dl_policy(p->policy);
187 }
188
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190
191 /*
192 * !! For sched_setattr_nocheck() (kernel) only !!
193 *
194 * This is actually gross. :(
195 *
196 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197 * tasks, but still be able to sleep. We need this on platforms that cannot
198 * atomically change clock frequency. Remove once fast switching will be
199 * available on such platforms.
200 *
201 * SUGOV stands for SchedUtil GOVernor.
202 */
203 #define SCHED_FLAG_SUGOV 0x10000000
204
dl_entity_is_special(struct sched_dl_entity * dl_se)205 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206 {
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209 #else
210 return false;
211 #endif
212 }
213
214 /*
215 * Tells if entity @a should preempt entity @b.
216 */
217 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)218 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219 {
220 return dl_entity_is_special(a) ||
221 dl_time_before(a->deadline, b->deadline);
222 }
223
224 /*
225 * This is the priority-queue data structure of the RT scheduling class:
226 */
227 struct rt_prio_array {
228 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 struct list_head queue[MAX_RT_PRIO];
230 };
231
232 struct rt_bandwidth {
233 /* nests inside the rq lock: */
234 raw_spinlock_t rt_runtime_lock;
235 ktime_t rt_period;
236 u64 rt_runtime;
237 struct hrtimer rt_period_timer;
238 unsigned int rt_period_active;
239 };
240
241 void __dl_clear_params(struct task_struct *p);
242
243 /*
244 * To keep the bandwidth of -deadline tasks and groups under control
245 * we need some place where:
246 * - store the maximum -deadline bandwidth of the system (the group);
247 * - cache the fraction of that bandwidth that is currently allocated.
248 *
249 * This is all done in the data structure below. It is similar to the
250 * one used for RT-throttling (rt_bandwidth), with the main difference
251 * that, since here we are only interested in admission control, we
252 * do not decrease any runtime while the group "executes", neither we
253 * need a timer to replenish it.
254 *
255 * With respect to SMP, the bandwidth is given on a per-CPU basis,
256 * meaning that:
257 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258 * - dl_total_bw array contains, in the i-eth element, the currently
259 * allocated bandwidth on the i-eth CPU.
260 * Moreover, groups consume bandwidth on each CPU, while tasks only
261 * consume bandwidth on the CPU they're running on.
262 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263 * that will be shown the next time the proc or cgroup controls will
264 * be red. It on its turn can be changed by writing on its own
265 * control.
266 */
267 struct dl_bandwidth {
268 raw_spinlock_t dl_runtime_lock;
269 u64 dl_runtime;
270 u64 dl_period;
271 };
272
dl_bandwidth_enabled(void)273 static inline int dl_bandwidth_enabled(void)
274 {
275 return sysctl_sched_rt_runtime >= 0;
276 }
277
278 struct dl_bw {
279 raw_spinlock_t lock;
280 u64 bw;
281 u64 total_bw;
282 };
283
284 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285
286 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)287 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 {
289 dl_b->total_bw -= tsk_bw;
290 __dl_update(dl_b, (s32)tsk_bw / cpus);
291 }
292
293 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)294 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 dl_b->total_bw += tsk_bw;
297 __dl_update(dl_b, -((s32)tsk_bw / cpus));
298 }
299
300 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)301 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302 {
303 return dl_b->bw != -1 &&
304 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305 }
306
307 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308 extern void init_dl_bw(struct dl_bw *dl_b);
309 extern int sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314 extern bool __checkparam_dl(const struct sched_attr *attr);
315 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318 extern bool dl_cpu_busy(unsigned int cpu);
319
320 #ifdef CONFIG_CGROUP_SCHED
321
322 #include <linux/cgroup.h>
323
324 struct cfs_rq;
325 struct rt_rq;
326
327 extern struct list_head task_groups;
328
329 struct cfs_bandwidth {
330 #ifdef CONFIG_CFS_BANDWIDTH
331 raw_spinlock_t lock;
332 ktime_t period;
333 u64 quota;
334 u64 runtime;
335 s64 hierarchical_quota;
336 u64 runtime_expires;
337 int expires_seq;
338
339 short idle;
340 short period_active;
341 struct hrtimer period_timer;
342 struct hrtimer slack_timer;
343 struct list_head throttled_cfs_rq;
344
345 /* Statistics: */
346 int nr_periods;
347 int nr_throttled;
348 u64 throttled_time;
349
350 bool distribute_running;
351 #endif
352 };
353
354 /* Task group related information */
355 struct task_group {
356 struct cgroup_subsys_state css;
357
358 #ifdef CONFIG_FAIR_GROUP_SCHED
359 /* schedulable entities of this group on each CPU */
360 struct sched_entity **se;
361 /* runqueue "owned" by this group on each CPU */
362 struct cfs_rq **cfs_rq;
363 unsigned long shares;
364
365 #ifdef CONFIG_SMP
366 /*
367 * load_avg can be heavily contended at clock tick time, so put
368 * it in its own cacheline separated from the fields above which
369 * will also be accessed at each tick.
370 */
371 atomic_long_t load_avg ____cacheline_aligned;
372 #endif
373 #endif
374
375 #ifdef CONFIG_RT_GROUP_SCHED
376 struct sched_rt_entity **rt_se;
377 struct rt_rq **rt_rq;
378
379 struct rt_bandwidth rt_bandwidth;
380 #endif
381
382 struct rcu_head rcu;
383 struct list_head list;
384
385 struct task_group *parent;
386 struct list_head siblings;
387 struct list_head children;
388
389 #ifdef CONFIG_SCHED_AUTOGROUP
390 struct autogroup *autogroup;
391 #endif
392
393 struct cfs_bandwidth cfs_bandwidth;
394 };
395
396 #ifdef CONFIG_FAIR_GROUP_SCHED
397 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
398
399 /*
400 * A weight of 0 or 1 can cause arithmetics problems.
401 * A weight of a cfs_rq is the sum of weights of which entities
402 * are queued on this cfs_rq, so a weight of a entity should not be
403 * too large, so as the shares value of a task group.
404 * (The default weight is 1024 - so there's no practical
405 * limitation from this.)
406 */
407 #define MIN_SHARES (1UL << 1)
408 #define MAX_SHARES (1UL << 18)
409 #endif
410
411 typedef int (*tg_visitor)(struct task_group *, void *);
412
413 extern int walk_tg_tree_from(struct task_group *from,
414 tg_visitor down, tg_visitor up, void *data);
415
416 /*
417 * Iterate the full tree, calling @down when first entering a node and @up when
418 * leaving it for the final time.
419 *
420 * Caller must hold rcu_lock or sufficient equivalent.
421 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)422 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
423 {
424 return walk_tg_tree_from(&root_task_group, down, up, data);
425 }
426
427 extern int tg_nop(struct task_group *tg, void *data);
428
429 extern void free_fair_sched_group(struct task_group *tg);
430 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
431 extern void online_fair_sched_group(struct task_group *tg);
432 extern void unregister_fair_sched_group(struct task_group *tg);
433 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
434 struct sched_entity *se, int cpu,
435 struct sched_entity *parent);
436 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
437
438 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
439 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
440 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
441
442 extern void free_rt_sched_group(struct task_group *tg);
443 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
444 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
445 struct sched_rt_entity *rt_se, int cpu,
446 struct sched_rt_entity *parent);
447 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
448 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
449 extern long sched_group_rt_runtime(struct task_group *tg);
450 extern long sched_group_rt_period(struct task_group *tg);
451 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
452
453 extern struct task_group *sched_create_group(struct task_group *parent);
454 extern void sched_online_group(struct task_group *tg,
455 struct task_group *parent);
456 extern void sched_destroy_group(struct task_group *tg);
457 extern void sched_offline_group(struct task_group *tg);
458
459 extern void sched_move_task(struct task_struct *tsk);
460
461 #ifdef CONFIG_FAIR_GROUP_SCHED
462 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
463
464 #ifdef CONFIG_SMP
465 extern void set_task_rq_fair(struct sched_entity *se,
466 struct cfs_rq *prev, struct cfs_rq *next);
467 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)468 static inline void set_task_rq_fair(struct sched_entity *se,
469 struct cfs_rq *prev, struct cfs_rq *next) { }
470 #endif /* CONFIG_SMP */
471 #endif /* CONFIG_FAIR_GROUP_SCHED */
472
473 #else /* CONFIG_CGROUP_SCHED */
474
475 struct cfs_bandwidth { };
476
477 #endif /* CONFIG_CGROUP_SCHED */
478
479 /* CFS-related fields in a runqueue */
480 struct cfs_rq {
481 struct load_weight load;
482 unsigned long runnable_weight;
483 unsigned int nr_running;
484 unsigned int h_nr_running;
485
486 u64 exec_clock;
487 u64 min_vruntime;
488 #ifndef CONFIG_64BIT
489 u64 min_vruntime_copy;
490 #endif
491
492 struct rb_root_cached tasks_timeline;
493
494 /*
495 * 'curr' points to currently running entity on this cfs_rq.
496 * It is set to NULL otherwise (i.e when none are currently running).
497 */
498 struct sched_entity *curr;
499 struct sched_entity *next;
500 struct sched_entity *last;
501 struct sched_entity *skip;
502
503 #ifdef CONFIG_SCHED_DEBUG
504 unsigned int nr_spread_over;
505 #endif
506
507 #ifdef CONFIG_SMP
508 /*
509 * CFS load tracking
510 */
511 struct sched_avg avg;
512 #ifndef CONFIG_64BIT
513 u64 load_last_update_time_copy;
514 #endif
515 struct {
516 raw_spinlock_t lock ____cacheline_aligned;
517 int nr;
518 unsigned long load_avg;
519 unsigned long util_avg;
520 unsigned long runnable_sum;
521 } removed;
522
523 #ifdef CONFIG_FAIR_GROUP_SCHED
524 unsigned long tg_load_avg_contrib;
525 long propagate;
526 long prop_runnable_sum;
527
528 /*
529 * h_load = weight * f(tg)
530 *
531 * Where f(tg) is the recursive weight fraction assigned to
532 * this group.
533 */
534 unsigned long h_load;
535 u64 last_h_load_update;
536 struct sched_entity *h_load_next;
537 #endif /* CONFIG_FAIR_GROUP_SCHED */
538 #endif /* CONFIG_SMP */
539
540 #ifdef CONFIG_FAIR_GROUP_SCHED
541 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
542
543 /*
544 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
545 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
546 * (like users, containers etc.)
547 *
548 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
549 * This list is used during load balance.
550 */
551 int on_list;
552 struct list_head leaf_cfs_rq_list;
553 struct task_group *tg; /* group that "owns" this runqueue */
554
555 #ifdef CONFIG_CFS_BANDWIDTH
556 int runtime_enabled;
557 int expires_seq;
558 u64 runtime_expires;
559 s64 runtime_remaining;
560
561 u64 throttled_clock;
562 u64 throttled_clock_task;
563 u64 throttled_clock_task_time;
564 int throttled;
565 int throttle_count;
566 struct list_head throttled_list;
567 #endif /* CONFIG_CFS_BANDWIDTH */
568 #endif /* CONFIG_FAIR_GROUP_SCHED */
569 };
570
rt_bandwidth_enabled(void)571 static inline int rt_bandwidth_enabled(void)
572 {
573 return sysctl_sched_rt_runtime >= 0;
574 }
575
576 /* RT IPI pull logic requires IRQ_WORK */
577 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
578 # define HAVE_RT_PUSH_IPI
579 #endif
580
581 /* Real-Time classes' related field in a runqueue: */
582 struct rt_rq {
583 struct rt_prio_array active;
584 unsigned int rt_nr_running;
585 unsigned int rr_nr_running;
586 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
587 struct {
588 int curr; /* highest queued rt task prio */
589 #ifdef CONFIG_SMP
590 int next; /* next highest */
591 #endif
592 } highest_prio;
593 #endif
594 #ifdef CONFIG_SMP
595 unsigned long rt_nr_migratory;
596 unsigned long rt_nr_total;
597 int overloaded;
598 struct plist_head pushable_tasks;
599
600 #endif /* CONFIG_SMP */
601 int rt_queued;
602
603 int rt_throttled;
604 u64 rt_time;
605 u64 rt_runtime;
606 /* Nests inside the rq lock: */
607 raw_spinlock_t rt_runtime_lock;
608
609 #ifdef CONFIG_RT_GROUP_SCHED
610 unsigned long rt_nr_boosted;
611
612 struct rq *rq;
613 struct task_group *tg;
614 #endif
615 };
616
rt_rq_is_runnable(struct rt_rq * rt_rq)617 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
618 {
619 return rt_rq->rt_queued && rt_rq->rt_nr_running;
620 }
621
622 /* Deadline class' related fields in a runqueue */
623 struct dl_rq {
624 /* runqueue is an rbtree, ordered by deadline */
625 struct rb_root_cached root;
626
627 unsigned long dl_nr_running;
628
629 #ifdef CONFIG_SMP
630 /*
631 * Deadline values of the currently executing and the
632 * earliest ready task on this rq. Caching these facilitates
633 * the decision wether or not a ready but not running task
634 * should migrate somewhere else.
635 */
636 struct {
637 u64 curr;
638 u64 next;
639 } earliest_dl;
640
641 unsigned long dl_nr_migratory;
642 int overloaded;
643
644 /*
645 * Tasks on this rq that can be pushed away. They are kept in
646 * an rb-tree, ordered by tasks' deadlines, with caching
647 * of the leftmost (earliest deadline) element.
648 */
649 struct rb_root_cached pushable_dl_tasks_root;
650 #else
651 struct dl_bw dl_bw;
652 #endif
653 /*
654 * "Active utilization" for this runqueue: increased when a
655 * task wakes up (becomes TASK_RUNNING) and decreased when a
656 * task blocks
657 */
658 u64 running_bw;
659
660 /*
661 * Utilization of the tasks "assigned" to this runqueue (including
662 * the tasks that are in runqueue and the tasks that executed on this
663 * CPU and blocked). Increased when a task moves to this runqueue, and
664 * decreased when the task moves away (migrates, changes scheduling
665 * policy, or terminates).
666 * This is needed to compute the "inactive utilization" for the
667 * runqueue (inactive utilization = this_bw - running_bw).
668 */
669 u64 this_bw;
670 u64 extra_bw;
671
672 /*
673 * Inverse of the fraction of CPU utilization that can be reclaimed
674 * by the GRUB algorithm.
675 */
676 u64 bw_ratio;
677 };
678
679 #ifdef CONFIG_FAIR_GROUP_SCHED
680 /* An entity is a task if it doesn't "own" a runqueue */
681 #define entity_is_task(se) (!se->my_q)
682 #else
683 #define entity_is_task(se) 1
684 #endif
685
686 #ifdef CONFIG_SMP
687 /*
688 * XXX we want to get rid of these helpers and use the full load resolution.
689 */
se_weight(struct sched_entity * se)690 static inline long se_weight(struct sched_entity *se)
691 {
692 return scale_load_down(se->load.weight);
693 }
694
se_runnable(struct sched_entity * se)695 static inline long se_runnable(struct sched_entity *se)
696 {
697 return scale_load_down(se->runnable_weight);
698 }
699
sched_asym_prefer(int a,int b)700 static inline bool sched_asym_prefer(int a, int b)
701 {
702 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
703 }
704
705 /*
706 * We add the notion of a root-domain which will be used to define per-domain
707 * variables. Each exclusive cpuset essentially defines an island domain by
708 * fully partitioning the member CPUs from any other cpuset. Whenever a new
709 * exclusive cpuset is created, we also create and attach a new root-domain
710 * object.
711 *
712 */
713 struct root_domain {
714 atomic_t refcount;
715 atomic_t rto_count;
716 struct rcu_head rcu;
717 cpumask_var_t span;
718 cpumask_var_t online;
719
720 /* Indicate more than one runnable task for any CPU */
721 bool overload;
722
723 /*
724 * The bit corresponding to a CPU gets set here if such CPU has more
725 * than one runnable -deadline task (as it is below for RT tasks).
726 */
727 cpumask_var_t dlo_mask;
728 atomic_t dlo_count;
729 struct dl_bw dl_bw;
730 struct cpudl cpudl;
731
732 #ifdef HAVE_RT_PUSH_IPI
733 /*
734 * For IPI pull requests, loop across the rto_mask.
735 */
736 struct irq_work rto_push_work;
737 raw_spinlock_t rto_lock;
738 /* These are only updated and read within rto_lock */
739 int rto_loop;
740 int rto_cpu;
741 /* These atomics are updated outside of a lock */
742 atomic_t rto_loop_next;
743 atomic_t rto_loop_start;
744 #endif
745 /*
746 * The "RT overload" flag: it gets set if a CPU has more than
747 * one runnable RT task.
748 */
749 cpumask_var_t rto_mask;
750 struct cpupri cpupri;
751
752 unsigned long max_cpu_capacity;
753 };
754
755 extern struct root_domain def_root_domain;
756 extern struct mutex sched_domains_mutex;
757
758 extern void init_defrootdomain(void);
759 extern int sched_init_domains(const struct cpumask *cpu_map);
760 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
761 extern void sched_get_rd(struct root_domain *rd);
762 extern void sched_put_rd(struct root_domain *rd);
763
764 #ifdef HAVE_RT_PUSH_IPI
765 extern void rto_push_irq_work_func(struct irq_work *work);
766 #endif
767 #endif /* CONFIG_SMP */
768
769 /*
770 * This is the main, per-CPU runqueue data structure.
771 *
772 * Locking rule: those places that want to lock multiple runqueues
773 * (such as the load balancing or the thread migration code), lock
774 * acquire operations must be ordered by ascending &runqueue.
775 */
776 struct rq {
777 /* runqueue lock: */
778 raw_spinlock_t lock;
779
780 /*
781 * nr_running and cpu_load should be in the same cacheline because
782 * remote CPUs use both these fields when doing load calculation.
783 */
784 unsigned int nr_running;
785 #ifdef CONFIG_NUMA_BALANCING
786 unsigned int nr_numa_running;
787 unsigned int nr_preferred_running;
788 unsigned int numa_migrate_on;
789 #endif
790 #define CPU_LOAD_IDX_MAX 5
791 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
792 #ifdef CONFIG_NO_HZ_COMMON
793 #ifdef CONFIG_SMP
794 unsigned long last_load_update_tick;
795 unsigned long last_blocked_load_update_tick;
796 unsigned int has_blocked_load;
797 #endif /* CONFIG_SMP */
798 unsigned int nohz_tick_stopped;
799 atomic_t nohz_flags;
800 #endif /* CONFIG_NO_HZ_COMMON */
801
802 /* capture load from *all* tasks on this CPU: */
803 struct load_weight load;
804 unsigned long nr_load_updates;
805 u64 nr_switches;
806
807 struct cfs_rq cfs;
808 struct rt_rq rt;
809 struct dl_rq dl;
810
811 #ifdef CONFIG_FAIR_GROUP_SCHED
812 /* list of leaf cfs_rq on this CPU: */
813 struct list_head leaf_cfs_rq_list;
814 struct list_head *tmp_alone_branch;
815 #endif /* CONFIG_FAIR_GROUP_SCHED */
816
817 /*
818 * This is part of a global counter where only the total sum
819 * over all CPUs matters. A task can increase this counter on
820 * one CPU and if it got migrated afterwards it may decrease
821 * it on another CPU. Always updated under the runqueue lock:
822 */
823 unsigned long nr_uninterruptible;
824
825 struct task_struct *curr;
826 struct task_struct *idle;
827 struct task_struct *stop;
828 unsigned long next_balance;
829 struct mm_struct *prev_mm;
830
831 unsigned int clock_update_flags;
832 u64 clock;
833 u64 clock_task;
834
835 atomic_t nr_iowait;
836
837 #ifdef CONFIG_SMP
838 struct root_domain *rd;
839 struct sched_domain *sd;
840
841 unsigned long cpu_capacity;
842 unsigned long cpu_capacity_orig;
843
844 struct callback_head *balance_callback;
845
846 unsigned char idle_balance;
847
848 /* For active balancing */
849 int active_balance;
850 int push_cpu;
851 struct cpu_stop_work active_balance_work;
852
853 /* CPU of this runqueue: */
854 int cpu;
855 int online;
856
857 struct list_head cfs_tasks;
858
859 struct sched_avg avg_rt;
860 struct sched_avg avg_dl;
861 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
862 #define HAVE_SCHED_AVG_IRQ
863 struct sched_avg avg_irq;
864 #endif
865 u64 idle_stamp;
866 u64 avg_idle;
867
868 /* This is used to determine avg_idle's max value */
869 u64 max_idle_balance_cost;
870 #endif
871
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 u64 prev_irq_time;
874 #endif
875 #ifdef CONFIG_PARAVIRT
876 u64 prev_steal_time;
877 #endif
878 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
879 u64 prev_steal_time_rq;
880 #endif
881
882 /* calc_load related fields */
883 unsigned long calc_load_update;
884 long calc_load_active;
885
886 #ifdef CONFIG_SCHED_HRTICK
887 #ifdef CONFIG_SMP
888 int hrtick_csd_pending;
889 call_single_data_t hrtick_csd;
890 #endif
891 struct hrtimer hrtick_timer;
892 #endif
893
894 #ifdef CONFIG_SCHEDSTATS
895 /* latency stats */
896 struct sched_info rq_sched_info;
897 unsigned long long rq_cpu_time;
898 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
899
900 /* sys_sched_yield() stats */
901 unsigned int yld_count;
902
903 /* schedule() stats */
904 unsigned int sched_count;
905 unsigned int sched_goidle;
906
907 /* try_to_wake_up() stats */
908 unsigned int ttwu_count;
909 unsigned int ttwu_local;
910 #endif
911
912 #ifdef CONFIG_SMP
913 struct llist_head wake_list;
914 #endif
915
916 #ifdef CONFIG_CPU_IDLE
917 /* Must be inspected within a rcu lock section */
918 struct cpuidle_state *idle_state;
919 #endif
920 };
921
cpu_of(struct rq * rq)922 static inline int cpu_of(struct rq *rq)
923 {
924 #ifdef CONFIG_SMP
925 return rq->cpu;
926 #else
927 return 0;
928 #endif
929 }
930
931
932 #ifdef CONFIG_SCHED_SMT
933
934 extern struct static_key_false sched_smt_present;
935
936 extern void __update_idle_core(struct rq *rq);
937
update_idle_core(struct rq * rq)938 static inline void update_idle_core(struct rq *rq)
939 {
940 if (static_branch_unlikely(&sched_smt_present))
941 __update_idle_core(rq);
942 }
943
944 #else
update_idle_core(struct rq * rq)945 static inline void update_idle_core(struct rq *rq) { }
946 #endif
947
948 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
949
950 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
951 #define this_rq() this_cpu_ptr(&runqueues)
952 #define task_rq(p) cpu_rq(task_cpu(p))
953 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
954 #define raw_rq() raw_cpu_ptr(&runqueues)
955
__rq_clock_broken(struct rq * rq)956 static inline u64 __rq_clock_broken(struct rq *rq)
957 {
958 return READ_ONCE(rq->clock);
959 }
960
961 /*
962 * rq::clock_update_flags bits
963 *
964 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
965 * call to __schedule(). This is an optimisation to avoid
966 * neighbouring rq clock updates.
967 *
968 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
969 * in effect and calls to update_rq_clock() are being ignored.
970 *
971 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
972 * made to update_rq_clock() since the last time rq::lock was pinned.
973 *
974 * If inside of __schedule(), clock_update_flags will have been
975 * shifted left (a left shift is a cheap operation for the fast path
976 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
977 *
978 * if (rq-clock_update_flags >= RQCF_UPDATED)
979 *
980 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
981 * one position though, because the next rq_unpin_lock() will shift it
982 * back.
983 */
984 #define RQCF_REQ_SKIP 0x01
985 #define RQCF_ACT_SKIP 0x02
986 #define RQCF_UPDATED 0x04
987
assert_clock_updated(struct rq * rq)988 static inline void assert_clock_updated(struct rq *rq)
989 {
990 /*
991 * The only reason for not seeing a clock update since the
992 * last rq_pin_lock() is if we're currently skipping updates.
993 */
994 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
995 }
996
rq_clock(struct rq * rq)997 static inline u64 rq_clock(struct rq *rq)
998 {
999 lockdep_assert_held(&rq->lock);
1000 assert_clock_updated(rq);
1001
1002 return rq->clock;
1003 }
1004
rq_clock_task(struct rq * rq)1005 static inline u64 rq_clock_task(struct rq *rq)
1006 {
1007 lockdep_assert_held(&rq->lock);
1008 assert_clock_updated(rq);
1009
1010 return rq->clock_task;
1011 }
1012
rq_clock_skip_update(struct rq * rq)1013 static inline void rq_clock_skip_update(struct rq *rq)
1014 {
1015 lockdep_assert_held(&rq->lock);
1016 rq->clock_update_flags |= RQCF_REQ_SKIP;
1017 }
1018
1019 /*
1020 * See rt task throttling, which is the only time a skip
1021 * request is cancelled.
1022 */
rq_clock_cancel_skipupdate(struct rq * rq)1023 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1024 {
1025 lockdep_assert_held(&rq->lock);
1026 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1027 }
1028
1029 struct rq_flags {
1030 unsigned long flags;
1031 struct pin_cookie cookie;
1032 #ifdef CONFIG_SCHED_DEBUG
1033 /*
1034 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1035 * current pin context is stashed here in case it needs to be
1036 * restored in rq_repin_lock().
1037 */
1038 unsigned int clock_update_flags;
1039 #endif
1040 };
1041
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1042 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1043 {
1044 rf->cookie = lockdep_pin_lock(&rq->lock);
1045
1046 #ifdef CONFIG_SCHED_DEBUG
1047 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1048 rf->clock_update_flags = 0;
1049 #endif
1050 }
1051
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1052 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1053 {
1054 #ifdef CONFIG_SCHED_DEBUG
1055 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1056 rf->clock_update_flags = RQCF_UPDATED;
1057 #endif
1058
1059 lockdep_unpin_lock(&rq->lock, rf->cookie);
1060 }
1061
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1062 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1063 {
1064 lockdep_repin_lock(&rq->lock, rf->cookie);
1065
1066 #ifdef CONFIG_SCHED_DEBUG
1067 /*
1068 * Restore the value we stashed in @rf for this pin context.
1069 */
1070 rq->clock_update_flags |= rf->clock_update_flags;
1071 #endif
1072 }
1073
1074 #ifdef CONFIG_NUMA
1075 enum numa_topology_type {
1076 NUMA_DIRECT,
1077 NUMA_GLUELESS_MESH,
1078 NUMA_BACKPLANE,
1079 };
1080 extern enum numa_topology_type sched_numa_topology_type;
1081 extern int sched_max_numa_distance;
1082 extern bool find_numa_distance(int distance);
1083 #endif
1084
1085 #ifdef CONFIG_NUMA
1086 extern void sched_init_numa(void);
1087 extern void sched_domains_numa_masks_set(unsigned int cpu);
1088 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1089 #else
sched_init_numa(void)1090 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1091 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1092 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1093 #endif
1094
1095 #ifdef CONFIG_NUMA_BALANCING
1096 /* The regions in numa_faults array from task_struct */
1097 enum numa_faults_stats {
1098 NUMA_MEM = 0,
1099 NUMA_CPU,
1100 NUMA_MEMBUF,
1101 NUMA_CPUBUF
1102 };
1103 extern void sched_setnuma(struct task_struct *p, int node);
1104 extern int migrate_task_to(struct task_struct *p, int cpu);
1105 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1106 int cpu, int scpu);
1107 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1108 #else
1109 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1110 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1111 {
1112 }
1113 #endif /* CONFIG_NUMA_BALANCING */
1114
1115 #ifdef CONFIG_SMP
1116
1117 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1118 queue_balance_callback(struct rq *rq,
1119 struct callback_head *head,
1120 void (*func)(struct rq *rq))
1121 {
1122 lockdep_assert_held(&rq->lock);
1123
1124 if (unlikely(head->next))
1125 return;
1126
1127 head->func = (void (*)(struct callback_head *))func;
1128 head->next = rq->balance_callback;
1129 rq->balance_callback = head;
1130 }
1131
1132 extern void sched_ttwu_pending(void);
1133
1134 #define rcu_dereference_check_sched_domain(p) \
1135 rcu_dereference_check((p), \
1136 lockdep_is_held(&sched_domains_mutex))
1137
1138 /*
1139 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1140 * See detach_destroy_domains: synchronize_sched for details.
1141 *
1142 * The domain tree of any CPU may only be accessed from within
1143 * preempt-disabled sections.
1144 */
1145 #define for_each_domain(cpu, __sd) \
1146 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1147 __sd; __sd = __sd->parent)
1148
1149 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1150
1151 /**
1152 * highest_flag_domain - Return highest sched_domain containing flag.
1153 * @cpu: The CPU whose highest level of sched domain is to
1154 * be returned.
1155 * @flag: The flag to check for the highest sched_domain
1156 * for the given CPU.
1157 *
1158 * Returns the highest sched_domain of a CPU which contains the given flag.
1159 */
highest_flag_domain(int cpu,int flag)1160 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1161 {
1162 struct sched_domain *sd, *hsd = NULL;
1163
1164 for_each_domain(cpu, sd) {
1165 if (!(sd->flags & flag))
1166 break;
1167 hsd = sd;
1168 }
1169
1170 return hsd;
1171 }
1172
lowest_flag_domain(int cpu,int flag)1173 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1174 {
1175 struct sched_domain *sd;
1176
1177 for_each_domain(cpu, sd) {
1178 if (sd->flags & flag)
1179 break;
1180 }
1181
1182 return sd;
1183 }
1184
1185 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1186 DECLARE_PER_CPU(int, sd_llc_size);
1187 DECLARE_PER_CPU(int, sd_llc_id);
1188 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1189 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1190 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1191
1192 struct sched_group_capacity {
1193 atomic_t ref;
1194 /*
1195 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1196 * for a single CPU.
1197 */
1198 unsigned long capacity;
1199 unsigned long min_capacity; /* Min per-CPU capacity in group */
1200 unsigned long next_update;
1201 int imbalance; /* XXX unrelated to capacity but shared group state */
1202
1203 #ifdef CONFIG_SCHED_DEBUG
1204 int id;
1205 #endif
1206
1207 unsigned long cpumask[0]; /* Balance mask */
1208 };
1209
1210 struct sched_group {
1211 struct sched_group *next; /* Must be a circular list */
1212 atomic_t ref;
1213
1214 unsigned int group_weight;
1215 struct sched_group_capacity *sgc;
1216 int asym_prefer_cpu; /* CPU of highest priority in group */
1217
1218 /*
1219 * The CPUs this group covers.
1220 *
1221 * NOTE: this field is variable length. (Allocated dynamically
1222 * by attaching extra space to the end of the structure,
1223 * depending on how many CPUs the kernel has booted up with)
1224 */
1225 unsigned long cpumask[0];
1226 };
1227
sched_group_span(struct sched_group * sg)1228 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1229 {
1230 return to_cpumask(sg->cpumask);
1231 }
1232
1233 /*
1234 * See build_balance_mask().
1235 */
group_balance_mask(struct sched_group * sg)1236 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1237 {
1238 return to_cpumask(sg->sgc->cpumask);
1239 }
1240
1241 /**
1242 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1243 * @group: The group whose first CPU is to be returned.
1244 */
group_first_cpu(struct sched_group * group)1245 static inline unsigned int group_first_cpu(struct sched_group *group)
1246 {
1247 return cpumask_first(sched_group_span(group));
1248 }
1249
1250 extern int group_balance_cpu(struct sched_group *sg);
1251
1252 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1253 void register_sched_domain_sysctl(void);
1254 void dirty_sched_domain_sysctl(int cpu);
1255 void unregister_sched_domain_sysctl(void);
1256 #else
register_sched_domain_sysctl(void)1257 static inline void register_sched_domain_sysctl(void)
1258 {
1259 }
dirty_sched_domain_sysctl(int cpu)1260 static inline void dirty_sched_domain_sysctl(int cpu)
1261 {
1262 }
unregister_sched_domain_sysctl(void)1263 static inline void unregister_sched_domain_sysctl(void)
1264 {
1265 }
1266 #endif
1267
1268 #else
1269
sched_ttwu_pending(void)1270 static inline void sched_ttwu_pending(void) { }
1271
1272 #endif /* CONFIG_SMP */
1273
1274 #include "stats.h"
1275 #include "autogroup.h"
1276
1277 #ifdef CONFIG_CGROUP_SCHED
1278
1279 /*
1280 * Return the group to which this tasks belongs.
1281 *
1282 * We cannot use task_css() and friends because the cgroup subsystem
1283 * changes that value before the cgroup_subsys::attach() method is called,
1284 * therefore we cannot pin it and might observe the wrong value.
1285 *
1286 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1287 * core changes this before calling sched_move_task().
1288 *
1289 * Instead we use a 'copy' which is updated from sched_move_task() while
1290 * holding both task_struct::pi_lock and rq::lock.
1291 */
task_group(struct task_struct * p)1292 static inline struct task_group *task_group(struct task_struct *p)
1293 {
1294 return p->sched_task_group;
1295 }
1296
1297 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1298 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1299 {
1300 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1301 struct task_group *tg = task_group(p);
1302 #endif
1303
1304 #ifdef CONFIG_FAIR_GROUP_SCHED
1305 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1306 p->se.cfs_rq = tg->cfs_rq[cpu];
1307 p->se.parent = tg->se[cpu];
1308 #endif
1309
1310 #ifdef CONFIG_RT_GROUP_SCHED
1311 p->rt.rt_rq = tg->rt_rq[cpu];
1312 p->rt.parent = tg->rt_se[cpu];
1313 #endif
1314 }
1315
1316 #else /* CONFIG_CGROUP_SCHED */
1317
set_task_rq(struct task_struct * p,unsigned int cpu)1318 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1319 static inline struct task_group *task_group(struct task_struct *p)
1320 {
1321 return NULL;
1322 }
1323
1324 #endif /* CONFIG_CGROUP_SCHED */
1325
__set_task_cpu(struct task_struct * p,unsigned int cpu)1326 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1327 {
1328 set_task_rq(p, cpu);
1329 #ifdef CONFIG_SMP
1330 /*
1331 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1332 * successfuly executed on another CPU. We must ensure that updates of
1333 * per-task data have been completed by this moment.
1334 */
1335 smp_wmb();
1336 #ifdef CONFIG_THREAD_INFO_IN_TASK
1337 p->cpu = cpu;
1338 #else
1339 task_thread_info(p)->cpu = cpu;
1340 #endif
1341 p->wake_cpu = cpu;
1342 #endif
1343 }
1344
1345 /*
1346 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1347 */
1348 #ifdef CONFIG_SCHED_DEBUG
1349 # include <linux/static_key.h>
1350 # define const_debug __read_mostly
1351 #else
1352 # define const_debug const
1353 #endif
1354
1355 #define SCHED_FEAT(name, enabled) \
1356 __SCHED_FEAT_##name ,
1357
1358 enum {
1359 #include "features.h"
1360 __SCHED_FEAT_NR,
1361 };
1362
1363 #undef SCHED_FEAT
1364
1365 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1366
1367 /*
1368 * To support run-time toggling of sched features, all the translation units
1369 * (but core.c) reference the sysctl_sched_features defined in core.c.
1370 */
1371 extern const_debug unsigned int sysctl_sched_features;
1372
1373 #define SCHED_FEAT(name, enabled) \
1374 static __always_inline bool static_branch_##name(struct static_key *key) \
1375 { \
1376 return static_key_##enabled(key); \
1377 }
1378
1379 #include "features.h"
1380 #undef SCHED_FEAT
1381
1382 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1383 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1384
1385 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1386
1387 /*
1388 * Each translation unit has its own copy of sysctl_sched_features to allow
1389 * constants propagation at compile time and compiler optimization based on
1390 * features default.
1391 */
1392 #define SCHED_FEAT(name, enabled) \
1393 (1UL << __SCHED_FEAT_##name) * enabled |
1394 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1395 #include "features.h"
1396 0;
1397 #undef SCHED_FEAT
1398
1399 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1400
1401 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1402
1403 extern struct static_key_false sched_numa_balancing;
1404 extern struct static_key_false sched_schedstats;
1405
global_rt_period(void)1406 static inline u64 global_rt_period(void)
1407 {
1408 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1409 }
1410
global_rt_runtime(void)1411 static inline u64 global_rt_runtime(void)
1412 {
1413 if (sysctl_sched_rt_runtime < 0)
1414 return RUNTIME_INF;
1415
1416 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1417 }
1418
task_current(struct rq * rq,struct task_struct * p)1419 static inline int task_current(struct rq *rq, struct task_struct *p)
1420 {
1421 return rq->curr == p;
1422 }
1423
task_running(struct rq * rq,struct task_struct * p)1424 static inline int task_running(struct rq *rq, struct task_struct *p)
1425 {
1426 #ifdef CONFIG_SMP
1427 return p->on_cpu;
1428 #else
1429 return task_current(rq, p);
1430 #endif
1431 }
1432
task_on_rq_queued(struct task_struct * p)1433 static inline int task_on_rq_queued(struct task_struct *p)
1434 {
1435 return p->on_rq == TASK_ON_RQ_QUEUED;
1436 }
1437
task_on_rq_migrating(struct task_struct * p)1438 static inline int task_on_rq_migrating(struct task_struct *p)
1439 {
1440 return p->on_rq == TASK_ON_RQ_MIGRATING;
1441 }
1442
1443 /*
1444 * wake flags
1445 */
1446 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1447 #define WF_FORK 0x02 /* Child wakeup after fork */
1448 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1449
1450 /*
1451 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1452 * of tasks with abnormal "nice" values across CPUs the contribution that
1453 * each task makes to its run queue's load is weighted according to its
1454 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1455 * scaled version of the new time slice allocation that they receive on time
1456 * slice expiry etc.
1457 */
1458
1459 #define WEIGHT_IDLEPRIO 3
1460 #define WMULT_IDLEPRIO 1431655765
1461
1462 extern const int sched_prio_to_weight[40];
1463 extern const u32 sched_prio_to_wmult[40];
1464
1465 /*
1466 * {de,en}queue flags:
1467 *
1468 * DEQUEUE_SLEEP - task is no longer runnable
1469 * ENQUEUE_WAKEUP - task just became runnable
1470 *
1471 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1472 * are in a known state which allows modification. Such pairs
1473 * should preserve as much state as possible.
1474 *
1475 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1476 * in the runqueue.
1477 *
1478 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1479 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1480 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1481 *
1482 */
1483
1484 #define DEQUEUE_SLEEP 0x01
1485 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1486 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1487 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1488
1489 #define ENQUEUE_WAKEUP 0x01
1490 #define ENQUEUE_RESTORE 0x02
1491 #define ENQUEUE_MOVE 0x04
1492 #define ENQUEUE_NOCLOCK 0x08
1493
1494 #define ENQUEUE_HEAD 0x10
1495 #define ENQUEUE_REPLENISH 0x20
1496 #ifdef CONFIG_SMP
1497 #define ENQUEUE_MIGRATED 0x40
1498 #else
1499 #define ENQUEUE_MIGRATED 0x00
1500 #endif
1501
1502 #define RETRY_TASK ((void *)-1UL)
1503
1504 struct sched_class {
1505 const struct sched_class *next;
1506
1507 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1508 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1509 void (*yield_task) (struct rq *rq);
1510 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1511
1512 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1513
1514 /*
1515 * It is the responsibility of the pick_next_task() method that will
1516 * return the next task to call put_prev_task() on the @prev task or
1517 * something equivalent.
1518 *
1519 * May return RETRY_TASK when it finds a higher prio class has runnable
1520 * tasks.
1521 */
1522 struct task_struct * (*pick_next_task)(struct rq *rq,
1523 struct task_struct *prev,
1524 struct rq_flags *rf);
1525 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1526
1527 #ifdef CONFIG_SMP
1528 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1529 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1530
1531 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1532
1533 void (*set_cpus_allowed)(struct task_struct *p,
1534 const struct cpumask *newmask);
1535
1536 void (*rq_online)(struct rq *rq);
1537 void (*rq_offline)(struct rq *rq);
1538 #endif
1539
1540 void (*set_curr_task)(struct rq *rq);
1541 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1542 void (*task_fork)(struct task_struct *p);
1543 void (*task_dead)(struct task_struct *p);
1544
1545 /*
1546 * The switched_from() call is allowed to drop rq->lock, therefore we
1547 * cannot assume the switched_from/switched_to pair is serliazed by
1548 * rq->lock. They are however serialized by p->pi_lock.
1549 */
1550 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1551 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1552 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1553 int oldprio);
1554
1555 unsigned int (*get_rr_interval)(struct rq *rq,
1556 struct task_struct *task);
1557
1558 void (*update_curr)(struct rq *rq);
1559
1560 #define TASK_SET_GROUP 0
1561 #define TASK_MOVE_GROUP 1
1562
1563 #ifdef CONFIG_FAIR_GROUP_SCHED
1564 void (*task_change_group)(struct task_struct *p, int type);
1565 #endif
1566 };
1567
put_prev_task(struct rq * rq,struct task_struct * prev)1568 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1569 {
1570 prev->sched_class->put_prev_task(rq, prev);
1571 }
1572
set_curr_task(struct rq * rq,struct task_struct * curr)1573 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1574 {
1575 curr->sched_class->set_curr_task(rq);
1576 }
1577
1578 #ifdef CONFIG_SMP
1579 #define sched_class_highest (&stop_sched_class)
1580 #else
1581 #define sched_class_highest (&dl_sched_class)
1582 #endif
1583 #define for_each_class(class) \
1584 for (class = sched_class_highest; class; class = class->next)
1585
1586 extern const struct sched_class stop_sched_class;
1587 extern const struct sched_class dl_sched_class;
1588 extern const struct sched_class rt_sched_class;
1589 extern const struct sched_class fair_sched_class;
1590 extern const struct sched_class idle_sched_class;
1591
1592
1593 #ifdef CONFIG_SMP
1594
1595 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1596
1597 extern void trigger_load_balance(struct rq *rq);
1598
1599 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1600
1601 #endif
1602
1603 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1604 static inline void idle_set_state(struct rq *rq,
1605 struct cpuidle_state *idle_state)
1606 {
1607 rq->idle_state = idle_state;
1608 }
1609
idle_get_state(struct rq * rq)1610 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1611 {
1612 SCHED_WARN_ON(!rcu_read_lock_held());
1613
1614 return rq->idle_state;
1615 }
1616 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1617 static inline void idle_set_state(struct rq *rq,
1618 struct cpuidle_state *idle_state)
1619 {
1620 }
1621
idle_get_state(struct rq * rq)1622 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1623 {
1624 return NULL;
1625 }
1626 #endif
1627
1628 extern void schedule_idle(void);
1629
1630 extern void sysrq_sched_debug_show(void);
1631 extern void sched_init_granularity(void);
1632 extern void update_max_interval(void);
1633
1634 extern void init_sched_dl_class(void);
1635 extern void init_sched_rt_class(void);
1636 extern void init_sched_fair_class(void);
1637
1638 extern void reweight_task(struct task_struct *p, int prio);
1639
1640 extern void resched_curr(struct rq *rq);
1641 extern void resched_cpu(int cpu);
1642
1643 extern struct rt_bandwidth def_rt_bandwidth;
1644 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1645
1646 extern struct dl_bandwidth def_dl_bandwidth;
1647 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1648 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1649 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1650 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1651
1652 #define BW_SHIFT 20
1653 #define BW_UNIT (1 << BW_SHIFT)
1654 #define RATIO_SHIFT 8
1655 unsigned long to_ratio(u64 period, u64 runtime);
1656
1657 extern void init_entity_runnable_average(struct sched_entity *se);
1658 extern void post_init_entity_util_avg(struct sched_entity *se);
1659
1660 #ifdef CONFIG_NO_HZ_FULL
1661 extern bool sched_can_stop_tick(struct rq *rq);
1662 extern int __init sched_tick_offload_init(void);
1663
1664 /*
1665 * Tick may be needed by tasks in the runqueue depending on their policy and
1666 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1667 * nohz mode if necessary.
1668 */
sched_update_tick_dependency(struct rq * rq)1669 static inline void sched_update_tick_dependency(struct rq *rq)
1670 {
1671 int cpu;
1672
1673 if (!tick_nohz_full_enabled())
1674 return;
1675
1676 cpu = cpu_of(rq);
1677
1678 if (!tick_nohz_full_cpu(cpu))
1679 return;
1680
1681 if (sched_can_stop_tick(rq))
1682 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1683 else
1684 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1685 }
1686 #else
sched_tick_offload_init(void)1687 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1688 static inline void sched_update_tick_dependency(struct rq *rq) { }
1689 #endif
1690
add_nr_running(struct rq * rq,unsigned count)1691 static inline void add_nr_running(struct rq *rq, unsigned count)
1692 {
1693 unsigned prev_nr = rq->nr_running;
1694
1695 rq->nr_running = prev_nr + count;
1696
1697 if (prev_nr < 2 && rq->nr_running >= 2) {
1698 #ifdef CONFIG_SMP
1699 if (!rq->rd->overload)
1700 rq->rd->overload = true;
1701 #endif
1702 }
1703
1704 sched_update_tick_dependency(rq);
1705 }
1706
sub_nr_running(struct rq * rq,unsigned count)1707 static inline void sub_nr_running(struct rq *rq, unsigned count)
1708 {
1709 rq->nr_running -= count;
1710 /* Check if we still need preemption */
1711 sched_update_tick_dependency(rq);
1712 }
1713
1714 extern void update_rq_clock(struct rq *rq);
1715
1716 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1717 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1718
1719 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1720
1721 extern const_debug unsigned int sysctl_sched_nr_migrate;
1722 extern const_debug unsigned int sysctl_sched_migration_cost;
1723
1724 #ifdef CONFIG_SCHED_HRTICK
1725
1726 /*
1727 * Use hrtick when:
1728 * - enabled by features
1729 * - hrtimer is actually high res
1730 */
hrtick_enabled(struct rq * rq)1731 static inline int hrtick_enabled(struct rq *rq)
1732 {
1733 if (!sched_feat(HRTICK))
1734 return 0;
1735 if (!cpu_active(cpu_of(rq)))
1736 return 0;
1737 return hrtimer_is_hres_active(&rq->hrtick_timer);
1738 }
1739
1740 void hrtick_start(struct rq *rq, u64 delay);
1741
1742 #else
1743
hrtick_enabled(struct rq * rq)1744 static inline int hrtick_enabled(struct rq *rq)
1745 {
1746 return 0;
1747 }
1748
1749 #endif /* CONFIG_SCHED_HRTICK */
1750
1751 #ifndef arch_scale_freq_capacity
1752 static __always_inline
arch_scale_freq_capacity(int cpu)1753 unsigned long arch_scale_freq_capacity(int cpu)
1754 {
1755 return SCHED_CAPACITY_SCALE;
1756 }
1757 #endif
1758
1759 #ifdef CONFIG_SMP
1760 #ifndef arch_scale_cpu_capacity
1761 static __always_inline
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)1762 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1763 {
1764 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1765 return sd->smt_gain / sd->span_weight;
1766
1767 return SCHED_CAPACITY_SCALE;
1768 }
1769 #endif
1770 #else
1771 #ifndef arch_scale_cpu_capacity
1772 static __always_inline
arch_scale_cpu_capacity(void __always_unused * sd,int cpu)1773 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1774 {
1775 return SCHED_CAPACITY_SCALE;
1776 }
1777 #endif
1778 #endif
1779
1780 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1781 __acquires(rq->lock);
1782
1783 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1784 __acquires(p->pi_lock)
1785 __acquires(rq->lock);
1786
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1787 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1788 __releases(rq->lock)
1789 {
1790 rq_unpin_lock(rq, rf);
1791 raw_spin_unlock(&rq->lock);
1792 }
1793
1794 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1795 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1796 __releases(rq->lock)
1797 __releases(p->pi_lock)
1798 {
1799 rq_unpin_lock(rq, rf);
1800 raw_spin_unlock(&rq->lock);
1801 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1802 }
1803
1804 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1805 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1806 __acquires(rq->lock)
1807 {
1808 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1809 rq_pin_lock(rq, rf);
1810 }
1811
1812 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1813 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1814 __acquires(rq->lock)
1815 {
1816 raw_spin_lock_irq(&rq->lock);
1817 rq_pin_lock(rq, rf);
1818 }
1819
1820 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1821 rq_lock(struct rq *rq, struct rq_flags *rf)
1822 __acquires(rq->lock)
1823 {
1824 raw_spin_lock(&rq->lock);
1825 rq_pin_lock(rq, rf);
1826 }
1827
1828 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1829 rq_relock(struct rq *rq, struct rq_flags *rf)
1830 __acquires(rq->lock)
1831 {
1832 raw_spin_lock(&rq->lock);
1833 rq_repin_lock(rq, rf);
1834 }
1835
1836 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1837 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1838 __releases(rq->lock)
1839 {
1840 rq_unpin_lock(rq, rf);
1841 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1842 }
1843
1844 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1845 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1846 __releases(rq->lock)
1847 {
1848 rq_unpin_lock(rq, rf);
1849 raw_spin_unlock_irq(&rq->lock);
1850 }
1851
1852 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1853 rq_unlock(struct rq *rq, struct rq_flags *rf)
1854 __releases(rq->lock)
1855 {
1856 rq_unpin_lock(rq, rf);
1857 raw_spin_unlock(&rq->lock);
1858 }
1859
1860 #ifdef CONFIG_SMP
1861 #ifdef CONFIG_PREEMPT
1862
1863 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1864
1865 /*
1866 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1867 * way at the expense of forcing extra atomic operations in all
1868 * invocations. This assures that the double_lock is acquired using the
1869 * same underlying policy as the spinlock_t on this architecture, which
1870 * reduces latency compared to the unfair variant below. However, it
1871 * also adds more overhead and therefore may reduce throughput.
1872 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1873 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1874 __releases(this_rq->lock)
1875 __acquires(busiest->lock)
1876 __acquires(this_rq->lock)
1877 {
1878 raw_spin_unlock(&this_rq->lock);
1879 double_rq_lock(this_rq, busiest);
1880
1881 return 1;
1882 }
1883
1884 #else
1885 /*
1886 * Unfair double_lock_balance: Optimizes throughput at the expense of
1887 * latency by eliminating extra atomic operations when the locks are
1888 * already in proper order on entry. This favors lower CPU-ids and will
1889 * grant the double lock to lower CPUs over higher ids under contention,
1890 * regardless of entry order into the function.
1891 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1892 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1893 __releases(this_rq->lock)
1894 __acquires(busiest->lock)
1895 __acquires(this_rq->lock)
1896 {
1897 int ret = 0;
1898
1899 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1900 if (busiest < this_rq) {
1901 raw_spin_unlock(&this_rq->lock);
1902 raw_spin_lock(&busiest->lock);
1903 raw_spin_lock_nested(&this_rq->lock,
1904 SINGLE_DEPTH_NESTING);
1905 ret = 1;
1906 } else
1907 raw_spin_lock_nested(&busiest->lock,
1908 SINGLE_DEPTH_NESTING);
1909 }
1910 return ret;
1911 }
1912
1913 #endif /* CONFIG_PREEMPT */
1914
1915 /*
1916 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1917 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1918 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1919 {
1920 if (unlikely(!irqs_disabled())) {
1921 /* printk() doesn't work well under rq->lock */
1922 raw_spin_unlock(&this_rq->lock);
1923 BUG_ON(1);
1924 }
1925
1926 return _double_lock_balance(this_rq, busiest);
1927 }
1928
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1929 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1930 __releases(busiest->lock)
1931 {
1932 raw_spin_unlock(&busiest->lock);
1933 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1934 }
1935
double_lock(spinlock_t * l1,spinlock_t * l2)1936 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1937 {
1938 if (l1 > l2)
1939 swap(l1, l2);
1940
1941 spin_lock(l1);
1942 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1943 }
1944
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1945 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1946 {
1947 if (l1 > l2)
1948 swap(l1, l2);
1949
1950 spin_lock_irq(l1);
1951 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1952 }
1953
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1954 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1955 {
1956 if (l1 > l2)
1957 swap(l1, l2);
1958
1959 raw_spin_lock(l1);
1960 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1961 }
1962
1963 /*
1964 * double_rq_lock - safely lock two runqueues
1965 *
1966 * Note this does not disable interrupts like task_rq_lock,
1967 * you need to do so manually before calling.
1968 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1969 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1970 __acquires(rq1->lock)
1971 __acquires(rq2->lock)
1972 {
1973 BUG_ON(!irqs_disabled());
1974 if (rq1 == rq2) {
1975 raw_spin_lock(&rq1->lock);
1976 __acquire(rq2->lock); /* Fake it out ;) */
1977 } else {
1978 if (rq1 < rq2) {
1979 raw_spin_lock(&rq1->lock);
1980 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1981 } else {
1982 raw_spin_lock(&rq2->lock);
1983 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1984 }
1985 }
1986 }
1987
1988 /*
1989 * double_rq_unlock - safely unlock two runqueues
1990 *
1991 * Note this does not restore interrupts like task_rq_unlock,
1992 * you need to do so manually after calling.
1993 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1994 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1995 __releases(rq1->lock)
1996 __releases(rq2->lock)
1997 {
1998 raw_spin_unlock(&rq1->lock);
1999 if (rq1 != rq2)
2000 raw_spin_unlock(&rq2->lock);
2001 else
2002 __release(rq2->lock);
2003 }
2004
2005 extern void set_rq_online (struct rq *rq);
2006 extern void set_rq_offline(struct rq *rq);
2007 extern bool sched_smp_initialized;
2008
2009 #else /* CONFIG_SMP */
2010
2011 /*
2012 * double_rq_lock - safely lock two runqueues
2013 *
2014 * Note this does not disable interrupts like task_rq_lock,
2015 * you need to do so manually before calling.
2016 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2017 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2018 __acquires(rq1->lock)
2019 __acquires(rq2->lock)
2020 {
2021 BUG_ON(!irqs_disabled());
2022 BUG_ON(rq1 != rq2);
2023 raw_spin_lock(&rq1->lock);
2024 __acquire(rq2->lock); /* Fake it out ;) */
2025 }
2026
2027 /*
2028 * double_rq_unlock - safely unlock two runqueues
2029 *
2030 * Note this does not restore interrupts like task_rq_unlock,
2031 * you need to do so manually after calling.
2032 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2033 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2034 __releases(rq1->lock)
2035 __releases(rq2->lock)
2036 {
2037 BUG_ON(rq1 != rq2);
2038 raw_spin_unlock(&rq1->lock);
2039 __release(rq2->lock);
2040 }
2041
2042 #endif
2043
2044 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2045 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2046
2047 #ifdef CONFIG_SCHED_DEBUG
2048 extern bool sched_debug_enabled;
2049
2050 extern void print_cfs_stats(struct seq_file *m, int cpu);
2051 extern void print_rt_stats(struct seq_file *m, int cpu);
2052 extern void print_dl_stats(struct seq_file *m, int cpu);
2053 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2054 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2055 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2056 #ifdef CONFIG_NUMA_BALANCING
2057 extern void
2058 show_numa_stats(struct task_struct *p, struct seq_file *m);
2059 extern void
2060 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2061 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2062 #endif /* CONFIG_NUMA_BALANCING */
2063 #endif /* CONFIG_SCHED_DEBUG */
2064
2065 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2066 extern void init_rt_rq(struct rt_rq *rt_rq);
2067 extern void init_dl_rq(struct dl_rq *dl_rq);
2068
2069 extern void cfs_bandwidth_usage_inc(void);
2070 extern void cfs_bandwidth_usage_dec(void);
2071
2072 #ifdef CONFIG_NO_HZ_COMMON
2073 #define NOHZ_BALANCE_KICK_BIT 0
2074 #define NOHZ_STATS_KICK_BIT 1
2075
2076 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2077 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2078
2079 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2080
2081 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2082
2083 extern void nohz_balance_exit_idle(struct rq *rq);
2084 #else
nohz_balance_exit_idle(struct rq * rq)2085 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2086 #endif
2087
2088
2089 #ifdef CONFIG_SMP
2090 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2091 void __dl_update(struct dl_bw *dl_b, s64 bw)
2092 {
2093 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2094 int i;
2095
2096 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2097 "sched RCU must be held");
2098 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2099 struct rq *rq = cpu_rq(i);
2100
2101 rq->dl.extra_bw += bw;
2102 }
2103 }
2104 #else
2105 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2106 void __dl_update(struct dl_bw *dl_b, s64 bw)
2107 {
2108 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2109
2110 dl->extra_bw += bw;
2111 }
2112 #endif
2113
2114
2115 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2116 struct irqtime {
2117 u64 total;
2118 u64 tick_delta;
2119 u64 irq_start_time;
2120 struct u64_stats_sync sync;
2121 };
2122
2123 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2124
2125 /*
2126 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2127 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2128 * and never move forward.
2129 */
irq_time_read(int cpu)2130 static inline u64 irq_time_read(int cpu)
2131 {
2132 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2133 unsigned int seq;
2134 u64 total;
2135
2136 do {
2137 seq = __u64_stats_fetch_begin(&irqtime->sync);
2138 total = irqtime->total;
2139 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2140
2141 return total;
2142 }
2143 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2144
2145 #ifdef CONFIG_CPU_FREQ
2146 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2147
2148 /**
2149 * cpufreq_update_util - Take a note about CPU utilization changes.
2150 * @rq: Runqueue to carry out the update for.
2151 * @flags: Update reason flags.
2152 *
2153 * This function is called by the scheduler on the CPU whose utilization is
2154 * being updated.
2155 *
2156 * It can only be called from RCU-sched read-side critical sections.
2157 *
2158 * The way cpufreq is currently arranged requires it to evaluate the CPU
2159 * performance state (frequency/voltage) on a regular basis to prevent it from
2160 * being stuck in a completely inadequate performance level for too long.
2161 * That is not guaranteed to happen if the updates are only triggered from CFS
2162 * and DL, though, because they may not be coming in if only RT tasks are
2163 * active all the time (or there are RT tasks only).
2164 *
2165 * As a workaround for that issue, this function is called periodically by the
2166 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2167 * but that really is a band-aid. Going forward it should be replaced with
2168 * solutions targeted more specifically at RT tasks.
2169 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2170 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2171 {
2172 struct update_util_data *data;
2173
2174 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2175 cpu_of(rq)));
2176 if (data)
2177 data->func(data, rq_clock(rq), flags);
2178 }
2179 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2180 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2181 #endif /* CONFIG_CPU_FREQ */
2182
2183 #ifdef arch_scale_freq_capacity
2184 # ifndef arch_scale_freq_invariant
2185 # define arch_scale_freq_invariant() true
2186 # endif
2187 #else
2188 # define arch_scale_freq_invariant() false
2189 #endif
2190
2191 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
cpu_bw_dl(struct rq * rq)2192 static inline unsigned long cpu_bw_dl(struct rq *rq)
2193 {
2194 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2195 }
2196
cpu_util_dl(struct rq * rq)2197 static inline unsigned long cpu_util_dl(struct rq *rq)
2198 {
2199 return READ_ONCE(rq->avg_dl.util_avg);
2200 }
2201
cpu_util_cfs(struct rq * rq)2202 static inline unsigned long cpu_util_cfs(struct rq *rq)
2203 {
2204 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2205
2206 if (sched_feat(UTIL_EST)) {
2207 util = max_t(unsigned long, util,
2208 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2209 }
2210
2211 return util;
2212 }
2213
cpu_util_rt(struct rq * rq)2214 static inline unsigned long cpu_util_rt(struct rq *rq)
2215 {
2216 return READ_ONCE(rq->avg_rt.util_avg);
2217 }
2218 #endif
2219
2220 #ifdef HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2221 static inline unsigned long cpu_util_irq(struct rq *rq)
2222 {
2223 return rq->avg_irq.util_avg;
2224 }
2225
2226 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2227 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2228 {
2229 util *= (max - irq);
2230 util /= max;
2231
2232 return util;
2233
2234 }
2235 #else
cpu_util_irq(struct rq * rq)2236 static inline unsigned long cpu_util_irq(struct rq *rq)
2237 {
2238 return 0;
2239 }
2240
2241 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2242 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2243 {
2244 return util;
2245 }
2246 #endif
2247