1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 
26 struct address_space;
27 struct mem_cgroup;
28 
29 /*
30  * Each physical page in the system has a struct page associated with
31  * it to keep track of whatever it is we are using the page for at the
32  * moment. Note that we have no way to track which tasks are using
33  * a page, though if it is a pagecache page, rmap structures can tell us
34  * who is mapping it.
35  *
36  * If you allocate the page using alloc_pages(), you can use some of the
37  * space in struct page for your own purposes.  The five words in the main
38  * union are available, except for bit 0 of the first word which must be
39  * kept clear.  Many users use this word to store a pointer to an object
40  * which is guaranteed to be aligned.  If you use the same storage as
41  * page->mapping, you must restore it to NULL before freeing the page.
42  *
43  * If your page will not be mapped to userspace, you can also use the four
44  * bytes in the mapcount union, but you must call page_mapcount_reset()
45  * before freeing it.
46  *
47  * If you want to use the refcount field, it must be used in such a way
48  * that other CPUs temporarily incrementing and then decrementing the
49  * refcount does not cause problems.  On receiving the page from
50  * alloc_pages(), the refcount will be positive.
51  *
52  * If you allocate pages of order > 0, you can use some of the fields
53  * in each subpage, but you may need to restore some of their values
54  * afterwards.
55  *
56  * SLUB uses cmpxchg_double() to atomically update its freelist and
57  * counters.  That requires that freelist & counters be adjacent and
58  * double-word aligned.  We align all struct pages to double-word
59  * boundaries, and ensure that 'freelist' is aligned within the
60  * struct.
61  */
62 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
63 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
64 #else
65 #define _struct_page_alignment
66 #endif
67 
68 struct page {
69 	unsigned long flags;		/* Atomic flags, some possibly
70 					 * updated asynchronously */
71 	/*
72 	 * Five words (20/40 bytes) are available in this union.
73 	 * WARNING: bit 0 of the first word is used for PageTail(). That
74 	 * means the other users of this union MUST NOT use the bit to
75 	 * avoid collision and false-positive PageTail().
76 	 */
77 	union {
78 		struct {	/* Page cache and anonymous pages */
79 			/**
80 			 * @lru: Pageout list, eg. active_list protected by
81 			 * pgdat->lru_lock.  Sometimes used as a generic list
82 			 * by the page owner.
83 			 */
84 			struct list_head lru;
85 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
86 			struct address_space *mapping;
87 			pgoff_t index;		/* Our offset within mapping. */
88 			/**
89 			 * @private: Mapping-private opaque data.
90 			 * Usually used for buffer_heads if PagePrivate.
91 			 * Used for swp_entry_t if PageSwapCache.
92 			 * Indicates order in the buddy system if PageBuddy.
93 			 */
94 			unsigned long private;
95 		};
96 		struct {	/* page_pool used by netstack */
97 			/**
98 			 * @dma_addr: might require a 64-bit value even on
99 			 * 32-bit architectures.
100 			 */
101 			dma_addr_t dma_addr;
102 		};
103 		struct {	/* slab, slob and slub */
104 			union {
105 				struct list_head slab_list;
106 				struct {	/* Partial pages */
107 					struct page *next;
108 #ifdef CONFIG_64BIT
109 					int pages;	/* Nr of pages left */
110 					int pobjects;	/* Approximate count */
111 #else
112 					short int pages;
113 					short int pobjects;
114 #endif
115 				};
116 			};
117 			struct kmem_cache *slab_cache; /* not slob */
118 			/* Double-word boundary */
119 			void *freelist;		/* first free object */
120 			union {
121 				void *s_mem;	/* slab: first object */
122 				unsigned long counters;		/* SLUB */
123 				struct {			/* SLUB */
124 					unsigned inuse:16;
125 					unsigned objects:15;
126 					unsigned frozen:1;
127 				};
128 			};
129 		};
130 		struct {	/* Tail pages of compound page */
131 			unsigned long compound_head;	/* Bit zero is set */
132 
133 			/* First tail page only */
134 			unsigned char compound_dtor;
135 			unsigned char compound_order;
136 			atomic_t compound_mapcount;
137 			unsigned int compound_nr; /* 1 << compound_order */
138 		};
139 		struct {	/* Second tail page of compound page */
140 			unsigned long _compound_pad_1;	/* compound_head */
141 			atomic_t hpage_pinned_refcount;
142 			/* For both global and memcg */
143 			struct list_head deferred_list;
144 		};
145 		struct {	/* Page table pages */
146 			unsigned long _pt_pad_1;	/* compound_head */
147 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
148 			unsigned long _pt_pad_2;	/* mapping */
149 			union {
150 				struct mm_struct *pt_mm; /* x86 pgds only */
151 				atomic_t pt_frag_refcount; /* powerpc */
152 			};
153 #if ALLOC_SPLIT_PTLOCKS
154 			spinlock_t *ptl;
155 #else
156 			spinlock_t ptl;
157 #endif
158 		};
159 		struct {	/* ZONE_DEVICE pages */
160 			/** @pgmap: Points to the hosting device page map. */
161 			struct dev_pagemap *pgmap;
162 			void *zone_device_data;
163 			/*
164 			 * ZONE_DEVICE private pages are counted as being
165 			 * mapped so the next 3 words hold the mapping, index,
166 			 * and private fields from the source anonymous or
167 			 * page cache page while the page is migrated to device
168 			 * private memory.
169 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
170 			 * use the mapping, index, and private fields when
171 			 * pmem backed DAX files are mapped.
172 			 */
173 		};
174 
175 		/** @rcu_head: You can use this to free a page by RCU. */
176 		struct rcu_head rcu_head;
177 	};
178 
179 	union {		/* This union is 4 bytes in size. */
180 		/*
181 		 * If the page can be mapped to userspace, encodes the number
182 		 * of times this page is referenced by a page table.
183 		 */
184 		atomic_t _mapcount;
185 
186 		/*
187 		 * If the page is neither PageSlab nor mappable to userspace,
188 		 * the value stored here may help determine what this page
189 		 * is used for.  See page-flags.h for a list of page types
190 		 * which are currently stored here.
191 		 */
192 		unsigned int page_type;
193 
194 		unsigned int active;		/* SLAB */
195 		int units;			/* SLOB */
196 	};
197 
198 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
199 	atomic_t _refcount;
200 
201 #ifdef CONFIG_MEMCG
202 	union {
203 		struct mem_cgroup *mem_cgroup;
204 		struct obj_cgroup **obj_cgroups;
205 	};
206 #endif
207 
208 	/*
209 	 * On machines where all RAM is mapped into kernel address space,
210 	 * we can simply calculate the virtual address. On machines with
211 	 * highmem some memory is mapped into kernel virtual memory
212 	 * dynamically, so we need a place to store that address.
213 	 * Note that this field could be 16 bits on x86 ... ;)
214 	 *
215 	 * Architectures with slow multiplication can define
216 	 * WANT_PAGE_VIRTUAL in asm/page.h
217 	 */
218 #if defined(WANT_PAGE_VIRTUAL)
219 	void *virtual;			/* Kernel virtual address (NULL if
220 					   not kmapped, ie. highmem) */
221 #endif /* WANT_PAGE_VIRTUAL */
222 
223 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
224 	int _last_cpupid;
225 #endif
226 } _struct_page_alignment;
227 
compound_mapcount_ptr(struct page * page)228 static inline atomic_t *compound_mapcount_ptr(struct page *page)
229 {
230 	return &page[1].compound_mapcount;
231 }
232 
compound_pincount_ptr(struct page * page)233 static inline atomic_t *compound_pincount_ptr(struct page *page)
234 {
235 	return &page[2].hpage_pinned_refcount;
236 }
237 
238 /*
239  * Used for sizing the vmemmap region on some architectures
240  */
241 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
242 
243 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
244 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
245 
246 #define page_private(page)		((page)->private)
247 
set_page_private(struct page * page,unsigned long private)248 static inline void set_page_private(struct page *page, unsigned long private)
249 {
250 	page->private = private;
251 }
252 
253 struct page_frag_cache {
254 	void * va;
255 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
256 	__u16 offset;
257 	__u16 size;
258 #else
259 	__u32 offset;
260 #endif
261 	/* we maintain a pagecount bias, so that we dont dirty cache line
262 	 * containing page->_refcount every time we allocate a fragment.
263 	 */
264 	unsigned int		pagecnt_bias;
265 	bool pfmemalloc;
266 };
267 
268 typedef unsigned long vm_flags_t;
269 
270 /*
271  * A region containing a mapping of a non-memory backed file under NOMMU
272  * conditions.  These are held in a global tree and are pinned by the VMAs that
273  * map parts of them.
274  */
275 struct vm_region {
276 	struct rb_node	vm_rb;		/* link in global region tree */
277 	vm_flags_t	vm_flags;	/* VMA vm_flags */
278 	unsigned long	vm_start;	/* start address of region */
279 	unsigned long	vm_end;		/* region initialised to here */
280 	unsigned long	vm_top;		/* region allocated to here */
281 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
282 	struct file	*vm_file;	/* the backing file or NULL */
283 
284 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
285 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
286 						* this region */
287 };
288 
289 #ifdef CONFIG_USERFAULTFD
290 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
291 struct vm_userfaultfd_ctx {
292 	struct userfaultfd_ctx *ctx;
293 };
294 #else /* CONFIG_USERFAULTFD */
295 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
296 struct vm_userfaultfd_ctx {};
297 #endif /* CONFIG_USERFAULTFD */
298 
299 /*
300  * This struct describes a virtual memory area. There is one of these
301  * per VM-area/task. A VM area is any part of the process virtual memory
302  * space that has a special rule for the page-fault handlers (ie a shared
303  * library, the executable area etc).
304  */
305 struct vm_area_struct {
306 	/* The first cache line has the info for VMA tree walking. */
307 
308 	unsigned long vm_start;		/* Our start address within vm_mm. */
309 	unsigned long vm_end;		/* The first byte after our end address
310 					   within vm_mm. */
311 
312 	/* linked list of VM areas per task, sorted by address */
313 	struct vm_area_struct *vm_next, *vm_prev;
314 
315 	struct rb_node vm_rb;
316 
317 	/*
318 	 * Largest free memory gap in bytes to the left of this VMA.
319 	 * Either between this VMA and vma->vm_prev, or between one of the
320 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
321 	 * get_unmapped_area find a free area of the right size.
322 	 */
323 	unsigned long rb_subtree_gap;
324 
325 	/* Second cache line starts here. */
326 
327 	struct mm_struct *vm_mm;	/* The address space we belong to. */
328 
329 	/*
330 	 * Access permissions of this VMA.
331 	 * See vmf_insert_mixed_prot() for discussion.
332 	 */
333 	pgprot_t vm_page_prot;
334 	unsigned long vm_flags;		/* Flags, see mm.h. */
335 
336 	/*
337 	 * For areas with an address space and backing store,
338 	 * linkage into the address_space->i_mmap interval tree.
339 	 */
340 	struct {
341 		struct rb_node rb;
342 		unsigned long rb_subtree_last;
343 	} shared;
344 
345 	/*
346 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
347 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
348 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
349 	 * or brk vma (with NULL file) can only be in an anon_vma list.
350 	 */
351 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
352 					  * page_table_lock */
353 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
354 
355 	/* Function pointers to deal with this struct. */
356 	const struct vm_operations_struct *vm_ops;
357 
358 	/* Information about our backing store: */
359 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
360 					   units */
361 	struct file * vm_file;		/* File we map to (can be NULL). */
362 	void * vm_private_data;		/* was vm_pte (shared mem) */
363 
364 #ifdef CONFIG_SWAP
365 	atomic_long_t swap_readahead_info;
366 #endif
367 #ifndef CONFIG_MMU
368 	struct vm_region *vm_region;	/* NOMMU mapping region */
369 #endif
370 #ifdef CONFIG_NUMA
371 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
372 #endif
373 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
374 } __randomize_layout;
375 
376 struct core_thread {
377 	struct task_struct *task;
378 	struct core_thread *next;
379 };
380 
381 struct core_state {
382 	atomic_t nr_threads;
383 	struct core_thread dumper;
384 	struct completion startup;
385 };
386 
387 struct kioctx_table;
388 struct mm_struct {
389 	struct {
390 		struct vm_area_struct *mmap;		/* list of VMAs */
391 		struct rb_root mm_rb;
392 		u64 vmacache_seqnum;                   /* per-thread vmacache */
393 #ifdef CONFIG_MMU
394 		unsigned long (*get_unmapped_area) (struct file *filp,
395 				unsigned long addr, unsigned long len,
396 				unsigned long pgoff, unsigned long flags);
397 #endif
398 		unsigned long mmap_base;	/* base of mmap area */
399 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
400 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
401 		/* Base adresses for compatible mmap() */
402 		unsigned long mmap_compat_base;
403 		unsigned long mmap_compat_legacy_base;
404 #endif
405 		unsigned long task_size;	/* size of task vm space */
406 		unsigned long highest_vm_end;	/* highest vma end address */
407 		pgd_t * pgd;
408 
409 #ifdef CONFIG_MEMBARRIER
410 		/**
411 		 * @membarrier_state: Flags controlling membarrier behavior.
412 		 *
413 		 * This field is close to @pgd to hopefully fit in the same
414 		 * cache-line, which needs to be touched by switch_mm().
415 		 */
416 		atomic_t membarrier_state;
417 #endif
418 
419 		/**
420 		 * @mm_users: The number of users including userspace.
421 		 *
422 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
423 		 * drops to 0 (i.e. when the task exits and there are no other
424 		 * temporary reference holders), we also release a reference on
425 		 * @mm_count (which may then free the &struct mm_struct if
426 		 * @mm_count also drops to 0).
427 		 */
428 		atomic_t mm_users;
429 
430 		/**
431 		 * @mm_count: The number of references to &struct mm_struct
432 		 * (@mm_users count as 1).
433 		 *
434 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
435 		 * &struct mm_struct is freed.
436 		 */
437 		atomic_t mm_count;
438 
439 		/**
440 		 * @has_pinned: Whether this mm has pinned any pages.  This can
441 		 * be either replaced in the future by @pinned_vm when it
442 		 * becomes stable, or grow into a counter on its own. We're
443 		 * aggresive on this bit now - even if the pinned pages were
444 		 * unpinned later on, we'll still keep this bit set for the
445 		 * lifecycle of this mm just for simplicity.
446 		 */
447 		atomic_t has_pinned;
448 
449 #ifdef CONFIG_MMU
450 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
451 #endif
452 		int map_count;			/* number of VMAs */
453 
454 		spinlock_t page_table_lock; /* Protects page tables and some
455 					     * counters
456 					     */
457 		struct rw_semaphore mmap_lock;
458 
459 		struct list_head mmlist; /* List of maybe swapped mm's.	These
460 					  * are globally strung together off
461 					  * init_mm.mmlist, and are protected
462 					  * by mmlist_lock
463 					  */
464 
465 
466 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
467 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
468 
469 		unsigned long total_vm;	   /* Total pages mapped */
470 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
471 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
472 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
473 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
474 		unsigned long stack_vm;	   /* VM_STACK */
475 		unsigned long def_flags;
476 
477 		spinlock_t arg_lock; /* protect the below fields */
478 		unsigned long start_code, end_code, start_data, end_data;
479 		unsigned long start_brk, brk, start_stack;
480 		unsigned long arg_start, arg_end, env_start, env_end;
481 
482 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
483 
484 		/*
485 		 * Special counters, in some configurations protected by the
486 		 * page_table_lock, in other configurations by being atomic.
487 		 */
488 		struct mm_rss_stat rss_stat;
489 
490 		struct linux_binfmt *binfmt;
491 
492 		/* Architecture-specific MM context */
493 		mm_context_t context;
494 
495 		unsigned long flags; /* Must use atomic bitops to access */
496 
497 		struct core_state *core_state; /* coredumping support */
498 
499 #ifdef CONFIG_AIO
500 		spinlock_t			ioctx_lock;
501 		struct kioctx_table __rcu	*ioctx_table;
502 #endif
503 #ifdef CONFIG_MEMCG
504 		/*
505 		 * "owner" points to a task that is regarded as the canonical
506 		 * user/owner of this mm. All of the following must be true in
507 		 * order for it to be changed:
508 		 *
509 		 * current == mm->owner
510 		 * current->mm != mm
511 		 * new_owner->mm == mm
512 		 * new_owner->alloc_lock is held
513 		 */
514 		struct task_struct __rcu *owner;
515 #endif
516 		struct user_namespace *user_ns;
517 
518 		/* store ref to file /proc/<pid>/exe symlink points to */
519 		struct file __rcu *exe_file;
520 #ifdef CONFIG_MMU_NOTIFIER
521 		struct mmu_notifier_subscriptions *notifier_subscriptions;
522 #endif
523 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
524 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
525 #endif
526 #ifdef CONFIG_NUMA_BALANCING
527 		/*
528 		 * numa_next_scan is the next time that the PTEs will be marked
529 		 * pte_numa. NUMA hinting faults will gather statistics and
530 		 * migrate pages to new nodes if necessary.
531 		 */
532 		unsigned long numa_next_scan;
533 
534 		/* Restart point for scanning and setting pte_numa */
535 		unsigned long numa_scan_offset;
536 
537 		/* numa_scan_seq prevents two threads setting pte_numa */
538 		int numa_scan_seq;
539 #endif
540 		/*
541 		 * An operation with batched TLB flushing is going on. Anything
542 		 * that can move process memory needs to flush the TLB when
543 		 * moving a PROT_NONE or PROT_NUMA mapped page.
544 		 */
545 		atomic_t tlb_flush_pending;
546 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
547 		/* See flush_tlb_batched_pending() */
548 		bool tlb_flush_batched;
549 #endif
550 		struct uprobes_state uprobes_state;
551 #ifdef CONFIG_HUGETLB_PAGE
552 		atomic_long_t hugetlb_usage;
553 #endif
554 		struct work_struct async_put_work;
555 
556 #ifdef CONFIG_IOMMU_SUPPORT
557 		u32 pasid;
558 #endif
559 	} __randomize_layout;
560 
561 	/*
562 	 * The mm_cpumask needs to be at the end of mm_struct, because it
563 	 * is dynamically sized based on nr_cpu_ids.
564 	 */
565 	unsigned long cpu_bitmap[];
566 };
567 
568 extern struct mm_struct init_mm;
569 
570 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)571 static inline void mm_init_cpumask(struct mm_struct *mm)
572 {
573 	unsigned long cpu_bitmap = (unsigned long)mm;
574 
575 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
576 	cpumask_clear((struct cpumask *)cpu_bitmap);
577 }
578 
579 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)580 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
581 {
582 	return (struct cpumask *)&mm->cpu_bitmap;
583 }
584 
585 struct mmu_gather;
586 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
587 				unsigned long start, unsigned long end);
588 extern void tlb_finish_mmu(struct mmu_gather *tlb,
589 				unsigned long start, unsigned long end);
590 
init_tlb_flush_pending(struct mm_struct * mm)591 static inline void init_tlb_flush_pending(struct mm_struct *mm)
592 {
593 	atomic_set(&mm->tlb_flush_pending, 0);
594 }
595 
inc_tlb_flush_pending(struct mm_struct * mm)596 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
597 {
598 	atomic_inc(&mm->tlb_flush_pending);
599 	/*
600 	 * The only time this value is relevant is when there are indeed pages
601 	 * to flush. And we'll only flush pages after changing them, which
602 	 * requires the PTL.
603 	 *
604 	 * So the ordering here is:
605 	 *
606 	 *	atomic_inc(&mm->tlb_flush_pending);
607 	 *	spin_lock(&ptl);
608 	 *	...
609 	 *	set_pte_at();
610 	 *	spin_unlock(&ptl);
611 	 *
612 	 *				spin_lock(&ptl)
613 	 *				mm_tlb_flush_pending();
614 	 *				....
615 	 *				spin_unlock(&ptl);
616 	 *
617 	 *	flush_tlb_range();
618 	 *	atomic_dec(&mm->tlb_flush_pending);
619 	 *
620 	 * Where the increment if constrained by the PTL unlock, it thus
621 	 * ensures that the increment is visible if the PTE modification is
622 	 * visible. After all, if there is no PTE modification, nobody cares
623 	 * about TLB flushes either.
624 	 *
625 	 * This very much relies on users (mm_tlb_flush_pending() and
626 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
627 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
628 	 * locks (PPC) the unlock of one doesn't order against the lock of
629 	 * another PTL.
630 	 *
631 	 * The decrement is ordered by the flush_tlb_range(), such that
632 	 * mm_tlb_flush_pending() will not return false unless all flushes have
633 	 * completed.
634 	 */
635 }
636 
dec_tlb_flush_pending(struct mm_struct * mm)637 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
638 {
639 	/*
640 	 * See inc_tlb_flush_pending().
641 	 *
642 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
643 	 * not order against TLB invalidate completion, which is what we need.
644 	 *
645 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
646 	 */
647 	atomic_dec(&mm->tlb_flush_pending);
648 }
649 
mm_tlb_flush_pending(struct mm_struct * mm)650 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
651 {
652 	/*
653 	 * Must be called after having acquired the PTL; orders against that
654 	 * PTLs release and therefore ensures that if we observe the modified
655 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
656 	 *
657 	 * That is, it only guarantees to return true if there is a flush
658 	 * pending for _this_ PTL.
659 	 */
660 	return atomic_read(&mm->tlb_flush_pending);
661 }
662 
mm_tlb_flush_nested(struct mm_struct * mm)663 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
664 {
665 	/*
666 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
667 	 * for which there is a TLB flush pending in order to guarantee
668 	 * we've seen both that PTE modification and the increment.
669 	 *
670 	 * (no requirement on actually still holding the PTL, that is irrelevant)
671 	 */
672 	return atomic_read(&mm->tlb_flush_pending) > 1;
673 }
674 
675 struct vm_fault;
676 
677 /**
678  * typedef vm_fault_t - Return type for page fault handlers.
679  *
680  * Page fault handlers return a bitmask of %VM_FAULT values.
681  */
682 typedef __bitwise unsigned int vm_fault_t;
683 
684 /**
685  * enum vm_fault_reason - Page fault handlers return a bitmask of
686  * these values to tell the core VM what happened when handling the
687  * fault. Used to decide whether a process gets delivered SIGBUS or
688  * just gets major/minor fault counters bumped up.
689  *
690  * @VM_FAULT_OOM:		Out Of Memory
691  * @VM_FAULT_SIGBUS:		Bad access
692  * @VM_FAULT_MAJOR:		Page read from storage
693  * @VM_FAULT_WRITE:		Special case for get_user_pages
694  * @VM_FAULT_HWPOISON:		Hit poisoned small page
695  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
696  *				in upper bits
697  * @VM_FAULT_SIGSEGV:		segmentation fault
698  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
699  * @VM_FAULT_LOCKED:		->fault locked the returned page
700  * @VM_FAULT_RETRY:		->fault blocked, must retry
701  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
702  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
703  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
704  *				fsync() to complete (for synchronous page faults
705  *				in DAX)
706  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
707  *
708  */
709 enum vm_fault_reason {
710 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
711 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
712 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
713 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
714 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
715 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
716 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
717 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
718 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
719 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
720 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
721 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
722 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
723 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
724 };
725 
726 /* Encode hstate index for a hwpoisoned large page */
727 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
728 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
729 
730 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
731 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
732 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
733 
734 #define VM_FAULT_RESULT_TRACE \
735 	{ VM_FAULT_OOM,                 "OOM" },	\
736 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
737 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
738 	{ VM_FAULT_WRITE,               "WRITE" },	\
739 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
740 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
741 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
742 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
743 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
744 	{ VM_FAULT_RETRY,               "RETRY" },	\
745 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
746 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
747 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
748 
749 struct vm_special_mapping {
750 	const char *name;	/* The name, e.g. "[vdso]". */
751 
752 	/*
753 	 * If .fault is not provided, this points to a
754 	 * NULL-terminated array of pages that back the special mapping.
755 	 *
756 	 * This must not be NULL unless .fault is provided.
757 	 */
758 	struct page **pages;
759 
760 	/*
761 	 * If non-NULL, then this is called to resolve page faults
762 	 * on the special mapping.  If used, .pages is not checked.
763 	 */
764 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
765 				struct vm_area_struct *vma,
766 				struct vm_fault *vmf);
767 
768 	int (*mremap)(const struct vm_special_mapping *sm,
769 		     struct vm_area_struct *new_vma);
770 };
771 
772 enum tlb_flush_reason {
773 	TLB_FLUSH_ON_TASK_SWITCH,
774 	TLB_REMOTE_SHOOTDOWN,
775 	TLB_LOCAL_SHOOTDOWN,
776 	TLB_LOCAL_MM_SHOOTDOWN,
777 	TLB_REMOTE_SEND_IPI,
778 	NR_TLB_FLUSH_REASONS,
779 };
780 
781  /*
782   * A swap entry has to fit into a "unsigned long", as the entry is hidden
783   * in the "index" field of the swapper address space.
784   */
785 typedef struct {
786 	unsigned long val;
787 } swp_entry_t;
788 
789 #endif /* _LINUX_MM_TYPES_H */
790