1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * VMware VMCI Driver
4 *
5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 */
7
8 #ifndef _VMW_VMCI_DEF_H_
9 #define _VMW_VMCI_DEF_H_
10
11 #include <linux/atomic.h>
12 #include <linux/bits.h>
13
14 /* Register offsets. */
15 #define VMCI_STATUS_ADDR 0x00
16 #define VMCI_CONTROL_ADDR 0x04
17 #define VMCI_ICR_ADDR 0x08
18 #define VMCI_IMR_ADDR 0x0c
19 #define VMCI_DATA_OUT_ADDR 0x10
20 #define VMCI_DATA_IN_ADDR 0x14
21 #define VMCI_CAPS_ADDR 0x18
22 #define VMCI_RESULT_LOW_ADDR 0x1c
23 #define VMCI_RESULT_HIGH_ADDR 0x20
24
25 /* Max number of devices. */
26 #define VMCI_MAX_DEVICES 1
27
28 /* Status register bits. */
29 #define VMCI_STATUS_INT_ON BIT(0)
30
31 /* Control register bits. */
32 #define VMCI_CONTROL_RESET BIT(0)
33 #define VMCI_CONTROL_INT_ENABLE BIT(1)
34 #define VMCI_CONTROL_INT_DISABLE BIT(2)
35
36 /* Capabilities register bits. */
37 #define VMCI_CAPS_HYPERCALL BIT(0)
38 #define VMCI_CAPS_GUESTCALL BIT(1)
39 #define VMCI_CAPS_DATAGRAM BIT(2)
40 #define VMCI_CAPS_NOTIFICATIONS BIT(3)
41 #define VMCI_CAPS_PPN64 BIT(4)
42
43 /* Interrupt Cause register bits. */
44 #define VMCI_ICR_DATAGRAM BIT(0)
45 #define VMCI_ICR_NOTIFICATION BIT(1)
46
47 /* Interrupt Mask register bits. */
48 #define VMCI_IMR_DATAGRAM BIT(0)
49 #define VMCI_IMR_NOTIFICATION BIT(1)
50
51 /* Maximum MSI/MSI-X interrupt vectors in the device. */
52 #define VMCI_MAX_INTRS 2
53
54 /*
55 * Supported interrupt vectors. There is one for each ICR value above,
56 * but here they indicate the position in the vector array/message ID.
57 */
58 enum {
59 VMCI_INTR_DATAGRAM = 0,
60 VMCI_INTR_NOTIFICATION = 1,
61 };
62
63 /*
64 * A single VMCI device has an upper limit of 128MB on the amount of
65 * memory that can be used for queue pairs. Since each queue pair
66 * consists of at least two pages, the memory limit also dictates the
67 * number of queue pairs a guest can create.
68 */
69 #define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
70 #define VMCI_MAX_GUEST_QP_COUNT (VMCI_MAX_GUEST_QP_MEMORY / PAGE_SIZE / 2)
71
72 /*
73 * There can be at most PAGE_SIZE doorbells since there is one doorbell
74 * per byte in the doorbell bitmap page.
75 */
76 #define VMCI_MAX_GUEST_DOORBELL_COUNT PAGE_SIZE
77
78 /*
79 * Queues with pre-mapped data pages must be small, so that we don't pin
80 * too much kernel memory (especially on vmkernel). We limit a queuepair to
81 * 32 KB, or 16 KB per queue for symmetrical pairs.
82 */
83 #define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
84
85 /*
86 * We have a fixed set of resource IDs available in the VMX.
87 * This allows us to have a very simple implementation since we statically
88 * know how many will create datagram handles. If a new caller arrives and
89 * we have run out of slots we can manually increment the maximum size of
90 * available resource IDs.
91 *
92 * VMCI reserved hypervisor datagram resource IDs.
93 */
94 enum {
95 VMCI_RESOURCES_QUERY = 0,
96 VMCI_GET_CONTEXT_ID = 1,
97 VMCI_SET_NOTIFY_BITMAP = 2,
98 VMCI_DOORBELL_LINK = 3,
99 VMCI_DOORBELL_UNLINK = 4,
100 VMCI_DOORBELL_NOTIFY = 5,
101 /*
102 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
103 * obsoleted by the removal of VM to VM communication.
104 */
105 VMCI_DATAGRAM_REQUEST_MAP = 6,
106 VMCI_DATAGRAM_REMOVE_MAP = 7,
107 VMCI_EVENT_SUBSCRIBE = 8,
108 VMCI_EVENT_UNSUBSCRIBE = 9,
109 VMCI_QUEUEPAIR_ALLOC = 10,
110 VMCI_QUEUEPAIR_DETACH = 11,
111
112 /*
113 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
114 * WS 7.0/7.1 and ESX 4.1
115 */
116 VMCI_HGFS_TRANSPORT = 13,
117 VMCI_UNITY_PBRPC_REGISTER = 14,
118 VMCI_RPC_PRIVILEGED = 15,
119 VMCI_RPC_UNPRIVILEGED = 16,
120 VMCI_RESOURCE_MAX = 17,
121 };
122
123 /*
124 * struct vmci_handle - Ownership information structure
125 * @context: The VMX context ID.
126 * @resource: The resource ID (used for locating in resource hash).
127 *
128 * The vmci_handle structure is used to track resources used within
129 * vmw_vmci.
130 */
131 struct vmci_handle {
132 u32 context;
133 u32 resource;
134 };
135
136 #define vmci_make_handle(_cid, _rid) \
137 (struct vmci_handle){ .context = _cid, .resource = _rid }
138
vmci_handle_is_equal(struct vmci_handle h1,struct vmci_handle h2)139 static inline bool vmci_handle_is_equal(struct vmci_handle h1,
140 struct vmci_handle h2)
141 {
142 return h1.context == h2.context && h1.resource == h2.resource;
143 }
144
145 #define VMCI_INVALID_ID ~0
146 static const struct vmci_handle VMCI_INVALID_HANDLE = {
147 .context = VMCI_INVALID_ID,
148 .resource = VMCI_INVALID_ID
149 };
150
vmci_handle_is_invalid(struct vmci_handle h)151 static inline bool vmci_handle_is_invalid(struct vmci_handle h)
152 {
153 return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
154 }
155
156 /*
157 * The below defines can be used to send anonymous requests.
158 * This also indicates that no response is expected.
159 */
160 #define VMCI_ANON_SRC_CONTEXT_ID VMCI_INVALID_ID
161 #define VMCI_ANON_SRC_RESOURCE_ID VMCI_INVALID_ID
162 static const struct vmci_handle __maybe_unused VMCI_ANON_SRC_HANDLE = {
163 .context = VMCI_ANON_SRC_CONTEXT_ID,
164 .resource = VMCI_ANON_SRC_RESOURCE_ID
165 };
166
167 /* The lowest 16 context ids are reserved for internal use. */
168 #define VMCI_RESERVED_CID_LIMIT ((u32) 16)
169
170 /*
171 * Hypervisor context id, used for calling into hypervisor
172 * supplied services from the VM.
173 */
174 #define VMCI_HYPERVISOR_CONTEXT_ID 0
175
176 /*
177 * Well-known context id, a logical context that contains a set of
178 * well-known services. This context ID is now obsolete.
179 */
180 #define VMCI_WELL_KNOWN_CONTEXT_ID 1
181
182 /*
183 * Context ID used by host endpoints.
184 */
185 #define VMCI_HOST_CONTEXT_ID 2
186
187 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) && \
188 (_cid) > VMCI_HOST_CONTEXT_ID)
189
190 /*
191 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
192 * handles that refer to a specific context.
193 */
194 #define VMCI_CONTEXT_RESOURCE_ID 0
195
196 /*
197 * VMCI error codes.
198 */
199 enum {
200 VMCI_SUCCESS_QUEUEPAIR_ATTACH = 5,
201 VMCI_SUCCESS_QUEUEPAIR_CREATE = 4,
202 VMCI_SUCCESS_LAST_DETACH = 3,
203 VMCI_SUCCESS_ACCESS_GRANTED = 2,
204 VMCI_SUCCESS_ENTRY_DEAD = 1,
205 VMCI_SUCCESS = 0,
206 VMCI_ERROR_INVALID_RESOURCE = (-1),
207 VMCI_ERROR_INVALID_ARGS = (-2),
208 VMCI_ERROR_NO_MEM = (-3),
209 VMCI_ERROR_DATAGRAM_FAILED = (-4),
210 VMCI_ERROR_MORE_DATA = (-5),
211 VMCI_ERROR_NO_MORE_DATAGRAMS = (-6),
212 VMCI_ERROR_NO_ACCESS = (-7),
213 VMCI_ERROR_NO_HANDLE = (-8),
214 VMCI_ERROR_DUPLICATE_ENTRY = (-9),
215 VMCI_ERROR_DST_UNREACHABLE = (-10),
216 VMCI_ERROR_PAYLOAD_TOO_LARGE = (-11),
217 VMCI_ERROR_INVALID_PRIV = (-12),
218 VMCI_ERROR_GENERIC = (-13),
219 VMCI_ERROR_PAGE_ALREADY_SHARED = (-14),
220 VMCI_ERROR_CANNOT_SHARE_PAGE = (-15),
221 VMCI_ERROR_CANNOT_UNSHARE_PAGE = (-16),
222 VMCI_ERROR_NO_PROCESS = (-17),
223 VMCI_ERROR_NO_DATAGRAM = (-18),
224 VMCI_ERROR_NO_RESOURCES = (-19),
225 VMCI_ERROR_UNAVAILABLE = (-20),
226 VMCI_ERROR_NOT_FOUND = (-21),
227 VMCI_ERROR_ALREADY_EXISTS = (-22),
228 VMCI_ERROR_NOT_PAGE_ALIGNED = (-23),
229 VMCI_ERROR_INVALID_SIZE = (-24),
230 VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
231 VMCI_ERROR_TIMEOUT = (-26),
232 VMCI_ERROR_DATAGRAM_INCOMPLETE = (-27),
233 VMCI_ERROR_INCORRECT_IRQL = (-28),
234 VMCI_ERROR_EVENT_UNKNOWN = (-29),
235 VMCI_ERROR_OBSOLETE = (-30),
236 VMCI_ERROR_QUEUEPAIR_MISMATCH = (-31),
237 VMCI_ERROR_QUEUEPAIR_NOTSET = (-32),
238 VMCI_ERROR_QUEUEPAIR_NOTOWNER = (-33),
239 VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
240 VMCI_ERROR_QUEUEPAIR_NOSPACE = (-35),
241 VMCI_ERROR_QUEUEPAIR_NODATA = (-36),
242 VMCI_ERROR_BUSMEM_INVALIDATION = (-37),
243 VMCI_ERROR_MODULE_NOT_LOADED = (-38),
244 VMCI_ERROR_DEVICE_NOT_FOUND = (-39),
245 VMCI_ERROR_QUEUEPAIR_NOT_READY = (-40),
246 VMCI_ERROR_WOULD_BLOCK = (-41),
247
248 /* VMCI clients should return error code within this range */
249 VMCI_ERROR_CLIENT_MIN = (-500),
250 VMCI_ERROR_CLIENT_MAX = (-550),
251
252 /* Internal error codes. */
253 VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
254 };
255
256 /* VMCI reserved events. */
257 enum {
258 /* Only applicable to guest endpoints */
259 VMCI_EVENT_CTX_ID_UPDATE = 0,
260
261 /* Applicable to guest and host */
262 VMCI_EVENT_CTX_REMOVED = 1,
263
264 /* Only applicable to guest endpoints */
265 VMCI_EVENT_QP_RESUMED = 2,
266
267 /* Applicable to guest and host */
268 VMCI_EVENT_QP_PEER_ATTACH = 3,
269
270 /* Applicable to guest and host */
271 VMCI_EVENT_QP_PEER_DETACH = 4,
272
273 /*
274 * Applicable to VMX and vmk. On vmk,
275 * this event has the Context payload type.
276 */
277 VMCI_EVENT_MEM_ACCESS_ON = 5,
278
279 /*
280 * Applicable to VMX and vmk. Same as
281 * above for the payload type.
282 */
283 VMCI_EVENT_MEM_ACCESS_OFF = 6,
284 VMCI_EVENT_MAX = 7,
285 };
286
287 /*
288 * Of the above events, a few are reserved for use in the VMX, and
289 * other endpoints (guest and host kernel) should not use them. For
290 * the rest of the events, we allow both host and guest endpoints to
291 * subscribe to them, to maintain the same API for host and guest
292 * endpoints.
293 */
294 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
295 (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
296
297 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX && \
298 !VMCI_EVENT_VALID_VMX(_event))
299
300 /* Reserved guest datagram resource ids. */
301 #define VMCI_EVENT_HANDLER 0
302
303 /*
304 * VMCI coarse-grained privileges (per context or host
305 * process/endpoint. An entity with the restricted flag is only
306 * allowed to interact with the hypervisor and trusted entities.
307 */
308 enum {
309 VMCI_NO_PRIVILEGE_FLAGS = 0,
310 VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
311 VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
312 VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
313 VMCI_PRIVILEGE_FLAG_TRUSTED),
314 VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
315 VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
316 VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
317 };
318
319 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
320 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023
321
322 /*
323 * Driver version.
324 *
325 * Increment major version when you make an incompatible change.
326 * Compatibility goes both ways (old driver with new executable
327 * as well as new driver with old executable).
328 */
329
330 /* Never change VMCI_VERSION_SHIFT_WIDTH */
331 #define VMCI_VERSION_SHIFT_WIDTH 16
332 #define VMCI_MAKE_VERSION(_major, _minor) \
333 ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
334
335 #define VMCI_VERSION_MAJOR(v) ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
336 #define VMCI_VERSION_MINOR(v) ((u16) (v))
337
338 /*
339 * VMCI_VERSION is always the current version. Subsequently listed
340 * versions are ways of detecting previous versions of the connecting
341 * application (i.e., VMX).
342 *
343 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
344 * communication.
345 *
346 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
347 * support.
348 *
349 * VMCI_VERSION_HOSTQP: This version introduced host end point support
350 * for hosted products.
351 *
352 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
353 * support for host end-points.
354 *
355 * VMCI_VERSION_PREVERS2: This fictional version number is intended to
356 * represent the version of a VMX which doesn't call into the driver
357 * with ioctl VERSION2 and thus doesn't establish its version with the
358 * driver.
359 */
360
361 #define VMCI_VERSION VMCI_VERSION_NOVMVM
362 #define VMCI_VERSION_NOVMVM VMCI_MAKE_VERSION(11, 0)
363 #define VMCI_VERSION_NOTIFY VMCI_MAKE_VERSION(10, 0)
364 #define VMCI_VERSION_HOSTQP VMCI_MAKE_VERSION(9, 0)
365 #define VMCI_VERSION_PREHOSTQP VMCI_MAKE_VERSION(8, 0)
366 #define VMCI_VERSION_PREVERS2 VMCI_MAKE_VERSION(1, 0)
367
368 #define VMCI_SOCKETS_MAKE_VERSION(_p) \
369 ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
370
371 /*
372 * The VMCI IOCTLs. We use identity code 7, as noted in ioctl-number.h, and
373 * we start at sequence 9f. This gives us the same values that our shipping
374 * products use, starting at 1951, provided we leave out the direction and
375 * structure size. Note that VMMon occupies the block following us, starting
376 * at 2001.
377 */
378 #define IOCTL_VMCI_VERSION _IO(7, 0x9f) /* 1951 */
379 #define IOCTL_VMCI_INIT_CONTEXT _IO(7, 0xa0)
380 #define IOCTL_VMCI_QUEUEPAIR_SETVA _IO(7, 0xa4)
381 #define IOCTL_VMCI_NOTIFY_RESOURCE _IO(7, 0xa5)
382 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE _IO(7, 0xa6)
383 #define IOCTL_VMCI_VERSION2 _IO(7, 0xa7)
384 #define IOCTL_VMCI_QUEUEPAIR_ALLOC _IO(7, 0xa8)
385 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE _IO(7, 0xa9)
386 #define IOCTL_VMCI_QUEUEPAIR_DETACH _IO(7, 0xaa)
387 #define IOCTL_VMCI_DATAGRAM_SEND _IO(7, 0xab)
388 #define IOCTL_VMCI_DATAGRAM_RECEIVE _IO(7, 0xac)
389 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION _IO(7, 0xaf)
390 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION _IO(7, 0xb0)
391 #define IOCTL_VMCI_CTX_GET_CPT_STATE _IO(7, 0xb1)
392 #define IOCTL_VMCI_CTX_SET_CPT_STATE _IO(7, 0xb2)
393 #define IOCTL_VMCI_GET_CONTEXT_ID _IO(7, 0xb3)
394 #define IOCTL_VMCI_SOCKETS_VERSION _IO(7, 0xb4)
395 #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE _IO(7, 0xb8)
396 #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID _IO(7, 0xb9)
397 #define IOCTL_VMCI_SET_NOTIFY _IO(7, 0xcb) /* 1995 */
398 /*IOCTL_VMMON_START _IO(7, 0xd1)*/ /* 2001 */
399
400 /*
401 * struct vmci_queue_header - VMCI Queue Header information.
402 *
403 * A Queue cannot stand by itself as designed. Each Queue's header
404 * contains a pointer into itself (the producer_tail) and into its peer
405 * (consumer_head). The reason for the separation is one of
406 * accessibility: Each end-point can modify two things: where the next
407 * location to enqueue is within its produce_q (producer_tail); and
408 * where the next dequeue location is in its consume_q (consumer_head).
409 *
410 * An end-point cannot modify the pointers of its peer (guest to
411 * guest; NOTE that in the host both queue headers are mapped r/w).
412 * But, each end-point needs read access to both Queue header
413 * structures in order to determine how much space is used (or left)
414 * in the Queue. This is because for an end-point to know how full
415 * its produce_q is, it needs to use the consumer_head that points into
416 * the produce_q but -that- consumer_head is in the Queue header for
417 * that end-points consume_q.
418 *
419 * Thoroughly confused? Sorry.
420 *
421 * producer_tail: the point to enqueue new entrants. When you approach
422 * a line in a store, for example, you walk up to the tail.
423 *
424 * consumer_head: the point in the queue from which the next element is
425 * dequeued. In other words, who is next in line is he who is at the
426 * head of the line.
427 *
428 * Also, producer_tail points to an empty byte in the Queue, whereas
429 * consumer_head points to a valid byte of data (unless producer_tail ==
430 * consumer_head in which case consumer_head does not point to a valid
431 * byte of data).
432 *
433 * For a queue of buffer 'size' bytes, the tail and head pointers will be in
434 * the range [0, size-1].
435 *
436 * If produce_q_header->producer_tail == consume_q_header->consumer_head
437 * then the produce_q is empty.
438 */
439 struct vmci_queue_header {
440 /* All fields are 64bit and aligned. */
441 struct vmci_handle handle; /* Identifier. */
442 u64 producer_tail; /* Offset in this queue. */
443 u64 consumer_head; /* Offset in peer queue. */
444 };
445
446 /*
447 * struct vmci_datagram - Base struct for vmci datagrams.
448 * @dst: A vmci_handle that tracks the destination of the datagram.
449 * @src: A vmci_handle that tracks the source of the datagram.
450 * @payload_size: The size of the payload.
451 *
452 * vmci_datagram structs are used when sending vmci datagrams. They include
453 * the necessary source and destination information to properly route
454 * the information along with the size of the package.
455 */
456 struct vmci_datagram {
457 struct vmci_handle dst;
458 struct vmci_handle src;
459 u64 payload_size;
460 };
461
462 /*
463 * Second flag is for creating a well-known handle instead of a per context
464 * handle. Next flag is for deferring datagram delivery, so that the
465 * datagram callback is invoked in a delayed context (not interrupt context).
466 */
467 #define VMCI_FLAG_DG_NONE 0
468 #define VMCI_FLAG_WELLKNOWN_DG_HND BIT(0)
469 #define VMCI_FLAG_ANYCID_DG_HND BIT(1)
470 #define VMCI_FLAG_DG_DELAYED_CB BIT(2)
471
472 /*
473 * Maximum supported size of a VMCI datagram for routable datagrams.
474 * Datagrams going to the hypervisor are allowed to be larger.
475 */
476 #define VMCI_MAX_DG_SIZE (17 * 4096)
477 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
478 sizeof(struct vmci_datagram))
479 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) + \
480 sizeof(struct vmci_datagram))
481 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
482 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
483 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
484 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
485
486 struct vmci_event_payload_qp {
487 struct vmci_handle handle; /* queue_pair handle. */
488 u32 peer_id; /* Context id of attaching/detaching VM. */
489 u32 _pad;
490 };
491
492 /* Flags for VMCI queue_pair API. */
493 enum {
494 /* Fail alloc if QP not created by peer. */
495 VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
496
497 /* Only allow attaches from local context. */
498 VMCI_QPFLAG_LOCAL = 1 << 1,
499
500 /* Host won't block when guest is quiesced. */
501 VMCI_QPFLAG_NONBLOCK = 1 << 2,
502
503 /* Pin data pages in ESX. Used with NONBLOCK */
504 VMCI_QPFLAG_PINNED = 1 << 3,
505
506 /* Update the following flag when adding new flags. */
507 VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
508 VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
509
510 /* Convenience flags */
511 VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
512 VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
513 };
514
515 /*
516 * We allow at least 1024 more event datagrams from the hypervisor past the
517 * normally allowed datagrams pending for a given context. We define this
518 * limit on event datagrams from the hypervisor to guard against DoS attack
519 * from a malicious VM which could repeatedly attach to and detach from a queue
520 * pair, causing events to be queued at the destination VM. However, the rate
521 * at which such events can be generated is small since it requires a VM exit
522 * and handling of queue pair attach/detach call at the hypervisor. Event
523 * datagrams may be queued up at the destination VM if it has interrupts
524 * disabled or if it is not draining events for some other reason. 1024
525 * datagrams is a grossly conservative estimate of the time for which
526 * interrupts may be disabled in the destination VM, but at the same time does
527 * not exacerbate the memory pressure problem on the host by much (size of each
528 * event datagram is small).
529 */
530 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE \
531 (VMCI_MAX_DATAGRAM_QUEUE_SIZE + \
532 1024 * (sizeof(struct vmci_datagram) + \
533 sizeof(struct vmci_event_data_max)))
534
535 /*
536 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
537 * hypervisor resources. Struct size is 16 bytes. All fields in struct are
538 * aligned to their natural alignment.
539 */
540 struct vmci_resource_query_hdr {
541 struct vmci_datagram hdr;
542 u32 num_resources;
543 u32 _padding;
544 };
545
546 /*
547 * Convenience struct for negotiating vectors. Must match layout of
548 * VMCIResourceQueryHdr minus the struct vmci_datagram header.
549 */
550 struct vmci_resource_query_msg {
551 u32 num_resources;
552 u32 _padding;
553 u32 resources[1];
554 };
555
556 /*
557 * The maximum number of resources that can be queried using
558 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
559 * bits of a positive return value. Negative values are reserved for
560 * errors.
561 */
562 #define VMCI_RESOURCE_QUERY_MAX_NUM 31
563
564 /* Maximum size for the VMCI_RESOURCE_QUERY request. */
565 #define VMCI_RESOURCE_QUERY_MAX_SIZE \
566 (sizeof(struct vmci_resource_query_hdr) + \
567 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
568
569 /*
570 * Struct used for setting the notification bitmap. All fields in
571 * struct are aligned to their natural alignment.
572 */
573 struct vmci_notify_bm_set_msg {
574 struct vmci_datagram hdr;
575 union {
576 u32 bitmap_ppn32;
577 u64 bitmap_ppn64;
578 };
579 };
580
581 /*
582 * Struct used for linking a doorbell handle with an index in the
583 * notify bitmap. All fields in struct are aligned to their natural
584 * alignment.
585 */
586 struct vmci_doorbell_link_msg {
587 struct vmci_datagram hdr;
588 struct vmci_handle handle;
589 u64 notify_idx;
590 };
591
592 /*
593 * Struct used for unlinking a doorbell handle from an index in the
594 * notify bitmap. All fields in struct are aligned to their natural
595 * alignment.
596 */
597 struct vmci_doorbell_unlink_msg {
598 struct vmci_datagram hdr;
599 struct vmci_handle handle;
600 };
601
602 /*
603 * Struct used for generating a notification on a doorbell handle. All
604 * fields in struct are aligned to their natural alignment.
605 */
606 struct vmci_doorbell_notify_msg {
607 struct vmci_datagram hdr;
608 struct vmci_handle handle;
609 };
610
611 /*
612 * This struct is used to contain data for events. Size of this struct is a
613 * multiple of 8 bytes, and all fields are aligned to their natural alignment.
614 */
615 struct vmci_event_data {
616 u32 event; /* 4 bytes. */
617 u32 _pad;
618 /* Event payload is put here. */
619 };
620
621 /*
622 * Define the different VMCI_EVENT payload data types here. All structs must
623 * be a multiple of 8 bytes, and fields must be aligned to their natural
624 * alignment.
625 */
626 struct vmci_event_payld_ctx {
627 u32 context_id; /* 4 bytes. */
628 u32 _pad;
629 };
630
631 struct vmci_event_payld_qp {
632 struct vmci_handle handle; /* queue_pair handle. */
633 u32 peer_id; /* Context id of attaching/detaching VM. */
634 u32 _pad;
635 };
636
637 /*
638 * We define the following struct to get the size of the maximum event
639 * data the hypervisor may send to the guest. If adding a new event
640 * payload type above, add it to the following struct too (inside the
641 * union).
642 */
643 struct vmci_event_data_max {
644 struct vmci_event_data event_data;
645 union {
646 struct vmci_event_payld_ctx context_payload;
647 struct vmci_event_payld_qp qp_payload;
648 } ev_data_payload;
649 };
650
651 /*
652 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
653 * VMCI_EVENT_HANDLER messages. Struct size is 32 bytes. All fields
654 * in struct are aligned to their natural alignment.
655 */
656 struct vmci_event_msg {
657 struct vmci_datagram hdr;
658
659 /* Has event type and payload. */
660 struct vmci_event_data event_data;
661
662 /* Payload gets put here. */
663 };
664
665 /* Event with context payload. */
666 struct vmci_event_ctx {
667 struct vmci_event_msg msg;
668 struct vmci_event_payld_ctx payload;
669 };
670
671 /* Event with QP payload. */
672 struct vmci_event_qp {
673 struct vmci_event_msg msg;
674 struct vmci_event_payld_qp payload;
675 };
676
677 /*
678 * Structs used for queue_pair alloc and detach messages. We align fields of
679 * these structs to 64bit boundaries.
680 */
681 struct vmci_qp_alloc_msg {
682 struct vmci_datagram hdr;
683 struct vmci_handle handle;
684 u32 peer;
685 u32 flags;
686 u64 produce_size;
687 u64 consume_size;
688 u64 num_ppns;
689
690 /* List of PPNs placed here. */
691 };
692
693 struct vmci_qp_detach_msg {
694 struct vmci_datagram hdr;
695 struct vmci_handle handle;
696 };
697
698 /* VMCI Doorbell API. */
699 #define VMCI_FLAG_DELAYED_CB BIT(0)
700
701 typedef void (*vmci_callback) (void *client_data);
702
703 /*
704 * struct vmci_qp - A vmw_vmci queue pair handle.
705 *
706 * This structure is used as a handle to a queue pair created by
707 * VMCI. It is intentionally left opaque to clients.
708 */
709 struct vmci_qp;
710
711 /* Callback needed for correctly waiting on events. */
712 typedef int (*vmci_datagram_recv_cb) (void *client_data,
713 struct vmci_datagram *msg);
714
715 /* VMCI Event API. */
716 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
717 void *client_data);
718
719 /*
720 * We use the following inline function to access the payload data
721 * associated with an event data.
722 */
723 static inline const void *
vmci_event_data_const_payload(const struct vmci_event_data * ev_data)724 vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
725 {
726 return (const char *)ev_data + sizeof(*ev_data);
727 }
728
vmci_event_data_payload(struct vmci_event_data * ev_data)729 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
730 {
731 return (void *)vmci_event_data_const_payload(ev_data);
732 }
733
734 /*
735 * Helper to read a value from a head or tail pointer. For X86_32, the
736 * pointer is treated as a 32bit value, since the pointer value
737 * never exceeds a 32bit value in this case. Also, doing an
738 * atomic64_read on X86_32 uniprocessor systems may be implemented
739 * as a non locked cmpxchg8b, that may end up overwriting updates done
740 * by the VMCI device to the memory location. On 32bit SMP, the lock
741 * prefix will be used, so correctness isn't an issue, but using a
742 * 64bit operation still adds unnecessary overhead.
743 */
vmci_q_read_pointer(u64 * var)744 static inline u64 vmci_q_read_pointer(u64 *var)
745 {
746 return READ_ONCE(*(unsigned long *)var);
747 }
748
749 /*
750 * Helper to set the value of a head or tail pointer. For X86_32, the
751 * pointer is treated as a 32bit value, since the pointer value
752 * never exceeds a 32bit value in this case. On 32bit SMP, using a
753 * locked cmpxchg8b adds unnecessary overhead.
754 */
vmci_q_set_pointer(u64 * var,u64 new_val)755 static inline void vmci_q_set_pointer(u64 *var, u64 new_val)
756 {
757 /* XXX buggered on big-endian */
758 WRITE_ONCE(*(unsigned long *)var, (unsigned long)new_val);
759 }
760
761 /*
762 * Helper to add a given offset to a head or tail pointer. Wraps the
763 * value of the pointer around the max size of the queue.
764 */
vmci_qp_add_pointer(u64 * var,size_t add,u64 size)765 static inline void vmci_qp_add_pointer(u64 *var, size_t add, u64 size)
766 {
767 u64 new_val = vmci_q_read_pointer(var);
768
769 if (new_val >= size - add)
770 new_val -= size;
771
772 new_val += add;
773
774 vmci_q_set_pointer(var, new_val);
775 }
776
777 /*
778 * Helper routine to get the Producer Tail from the supplied queue.
779 */
780 static inline u64
vmci_q_header_producer_tail(const struct vmci_queue_header * q_header)781 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
782 {
783 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
784 return vmci_q_read_pointer(&qh->producer_tail);
785 }
786
787 /*
788 * Helper routine to get the Consumer Head from the supplied queue.
789 */
790 static inline u64
vmci_q_header_consumer_head(const struct vmci_queue_header * q_header)791 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
792 {
793 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
794 return vmci_q_read_pointer(&qh->consumer_head);
795 }
796
797 /*
798 * Helper routine to increment the Producer Tail. Fundamentally,
799 * vmci_qp_add_pointer() is used to manipulate the tail itself.
800 */
801 static inline void
vmci_q_header_add_producer_tail(struct vmci_queue_header * q_header,size_t add,u64 queue_size)802 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
803 size_t add,
804 u64 queue_size)
805 {
806 vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
807 }
808
809 /*
810 * Helper routine to increment the Consumer Head. Fundamentally,
811 * vmci_qp_add_pointer() is used to manipulate the head itself.
812 */
813 static inline void
vmci_q_header_add_consumer_head(struct vmci_queue_header * q_header,size_t add,u64 queue_size)814 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
815 size_t add,
816 u64 queue_size)
817 {
818 vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
819 }
820
821 /*
822 * Helper routine for getting the head and the tail pointer for a queue.
823 * Both the VMCIQueues are needed to get both the pointers for one queue.
824 */
825 static inline void
vmci_q_header_get_pointers(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,u64 * producer_tail,u64 * consumer_head)826 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
827 const struct vmci_queue_header *consume_q_header,
828 u64 *producer_tail,
829 u64 *consumer_head)
830 {
831 if (producer_tail)
832 *producer_tail = vmci_q_header_producer_tail(produce_q_header);
833
834 if (consumer_head)
835 *consumer_head = vmci_q_header_consumer_head(consume_q_header);
836 }
837
vmci_q_header_init(struct vmci_queue_header * q_header,const struct vmci_handle handle)838 static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
839 const struct vmci_handle handle)
840 {
841 q_header->handle = handle;
842 q_header->producer_tail = 0;
843 q_header->consumer_head = 0;
844 }
845
846 /*
847 * Finds available free space in a produce queue to enqueue more
848 * data or reports an error if queue pair corruption is detected.
849 */
850 static s64
vmci_q_header_free_space(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,const u64 produce_q_size)851 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
852 const struct vmci_queue_header *consume_q_header,
853 const u64 produce_q_size)
854 {
855 u64 tail;
856 u64 head;
857 u64 free_space;
858
859 tail = vmci_q_header_producer_tail(produce_q_header);
860 head = vmci_q_header_consumer_head(consume_q_header);
861
862 if (tail >= produce_q_size || head >= produce_q_size)
863 return VMCI_ERROR_INVALID_SIZE;
864
865 /*
866 * Deduct 1 to avoid tail becoming equal to head which causes
867 * ambiguity. If head and tail are equal it means that the
868 * queue is empty.
869 */
870 if (tail >= head)
871 free_space = produce_q_size - (tail - head) - 1;
872 else
873 free_space = head - tail - 1;
874
875 return free_space;
876 }
877
878 /*
879 * vmci_q_header_free_space() does all the heavy lifting of
880 * determing the number of free bytes in a Queue. This routine,
881 * then subtracts that size from the full size of the Queue so
882 * the caller knows how many bytes are ready to be dequeued.
883 * Results:
884 * On success, available data size in bytes (up to MAX_INT64).
885 * On failure, appropriate error code.
886 */
887 static inline s64
vmci_q_header_buf_ready(const struct vmci_queue_header * consume_q_header,const struct vmci_queue_header * produce_q_header,const u64 consume_q_size)888 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
889 const struct vmci_queue_header *produce_q_header,
890 const u64 consume_q_size)
891 {
892 s64 free_space;
893
894 free_space = vmci_q_header_free_space(consume_q_header,
895 produce_q_header, consume_q_size);
896 if (free_space < VMCI_SUCCESS)
897 return free_space;
898
899 return consume_q_size - free_space - 1;
900 }
901
902
903 #endif /* _VMW_VMCI_DEF_H_ */
904