1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*******************************************************************************
3  *
4  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
5  * Copyright(c) 2013 - 2014 Intel Corporation.
6  *
7  * Contact Information:
8  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
9  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10  *
11  ******************************************************************************/
12 
13 #ifndef _VIRTCHNL_H_
14 #define _VIRTCHNL_H_
15 
16 /* Description:
17  * This header file describes the VF-PF communication protocol used
18  * by the drivers for all devices starting from our 40G product line
19  *
20  * Admin queue buffer usage:
21  * desc->opcode is always aqc_opc_send_msg_to_pf
22  * flags, retval, datalen, and data addr are all used normally.
23  * The Firmware copies the cookie fields when sending messages between the
24  * PF and VF, but uses all other fields internally. Due to this limitation,
25  * we must send all messages as "indirect", i.e. using an external buffer.
26  *
27  * All the VSI indexes are relative to the VF. Each VF can have maximum of
28  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
29  * have a maximum of sixteen queues for all of its VSIs.
30  *
31  * The PF is required to return a status code in v_retval for all messages
32  * except RESET_VF, which does not require any response. The return value
33  * is of status_code type, defined in the shared type.h.
34  *
35  * In general, VF driver initialization should roughly follow the order of
36  * these opcodes. The VF driver must first validate the API version of the
37  * PF driver, then request a reset, then get resources, then configure
38  * queues and interrupts. After these operations are complete, the VF
39  * driver may start its queues, optionally add MAC and VLAN filters, and
40  * process traffic.
41  */
42 
43 /* START GENERIC DEFINES
44  * Need to ensure the following enums and defines hold the same meaning and
45  * value in current and future projects
46  */
47 
48 /* Error Codes */
49 enum virtchnl_status_code {
50 	VIRTCHNL_STATUS_SUCCESS				= 0,
51 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
52 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
53 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
54 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
55 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
56 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
57 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
58 };
59 
60 /* Backward compatibility */
61 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
62 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
63 
64 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
65 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
66 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
67 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
68 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
69 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
70 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
71 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
72 
73 enum virtchnl_link_speed {
74 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
75 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
79 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
80 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
81 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
82 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
83 };
84 
85 /* for hsplit_0 field of Rx HMC context */
86 /* deprecated with AVF 1.0 */
87 enum virtchnl_rx_hsplit {
88 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
89 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
90 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
91 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
92 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
93 };
94 
95 /* END GENERIC DEFINES */
96 
97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
98  * of the virtchnl_msg structure.
99  */
100 enum virtchnl_ops {
101 /* The PF sends status change events to VFs using
102  * the VIRTCHNL_OP_EVENT opcode.
103  * VFs send requests to the PF using the other ops.
104  * Use of "advanced opcode" features must be negotiated as part of capabilities
105  * exchange and are not considered part of base mode feature set.
106  */
107 	VIRTCHNL_OP_UNKNOWN = 0,
108 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
109 	VIRTCHNL_OP_RESET_VF = 2,
110 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
111 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
112 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
113 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
114 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
115 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
116 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
117 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
118 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
119 	VIRTCHNL_OP_ADD_VLAN = 12,
120 	VIRTCHNL_OP_DEL_VLAN = 13,
121 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
122 	VIRTCHNL_OP_GET_STATS = 15,
123 	VIRTCHNL_OP_RSVD = 16,
124 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
125 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
126 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
127 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
128 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
129 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
130 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
131 	VIRTCHNL_OP_SET_RSS_HENA = 26,
132 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
133 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
134 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
135 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
136 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
137 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
138 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
139 	/* opcode 34 - 44 are reserved */
140 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
141 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
142 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
143 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
144 	VIRTCHNL_OP_MAX,
145 };
146 
147 /* These macros are used to generate compilation errors if a structure/union
148  * is not exactly the correct length. It gives a divide by zero error if the
149  * structure/union is not of the correct size, otherwise it creates an enum
150  * that is never used.
151  */
152 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
153 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
154 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
155 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
156 
157 /* Virtual channel message descriptor. This overlays the admin queue
158  * descriptor. All other data is passed in external buffers.
159  */
160 
161 struct virtchnl_msg {
162 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
163 	enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
164 	enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
165 	u32 vfid;			 /* used by PF when sending to VF */
166 };
167 
168 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
169 
170 /* Message descriptions and data structures. */
171 
172 /* VIRTCHNL_OP_VERSION
173  * VF posts its version number to the PF. PF responds with its version number
174  * in the same format, along with a return code.
175  * Reply from PF has its major/minor versions also in param0 and param1.
176  * If there is a major version mismatch, then the VF cannot operate.
177  * If there is a minor version mismatch, then the VF can operate but should
178  * add a warning to the system log.
179  *
180  * This enum element MUST always be specified as == 1, regardless of other
181  * changes in the API. The PF must always respond to this message without
182  * error regardless of version mismatch.
183  */
184 #define VIRTCHNL_VERSION_MAJOR		1
185 #define VIRTCHNL_VERSION_MINOR		1
186 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
187 
188 struct virtchnl_version_info {
189 	u32 major;
190 	u32 minor;
191 };
192 
193 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
194 
195 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
196 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
197 
198 /* VIRTCHNL_OP_RESET_VF
199  * VF sends this request to PF with no parameters
200  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
201  * until reset completion is indicated. The admin queue must be reinitialized
202  * after this operation.
203  *
204  * When reset is complete, PF must ensure that all queues in all VSIs associated
205  * with the VF are stopped, all queue configurations in the HMC are set to 0,
206  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
207  * are cleared.
208  */
209 
210 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
211  * vsi_type should always be 6 for backward compatibility. Add other fields
212  * as needed.
213  */
214 enum virtchnl_vsi_type {
215 	VIRTCHNL_VSI_TYPE_INVALID = 0,
216 	VIRTCHNL_VSI_SRIOV = 6,
217 };
218 
219 /* VIRTCHNL_OP_GET_VF_RESOURCES
220  * Version 1.0 VF sends this request to PF with no parameters
221  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
222  * PF responds with an indirect message containing
223  * virtchnl_vf_resource and one or more
224  * virtchnl_vsi_resource structures.
225  */
226 
227 struct virtchnl_vsi_resource {
228 	u16 vsi_id;
229 	u16 num_queue_pairs;
230 	enum virtchnl_vsi_type vsi_type;
231 	u16 qset_handle;
232 	u8 default_mac_addr[ETH_ALEN];
233 };
234 
235 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
236 
237 /* VF capability flags
238  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
239  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
240  */
241 #define VIRTCHNL_VF_OFFLOAD_L2			0x00000001
242 #define VIRTCHNL_VF_OFFLOAD_IWARP		0x00000002
243 #define VIRTCHNL_VF_OFFLOAD_RSVD		0x00000004
244 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		0x00000008
245 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		0x00000010
246 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		0x00000020
247 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		0x00000040
248 #define VIRTCHNL_VF_OFFLOAD_VLAN		0x00010000
249 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		0x00020000
250 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	0x00040000
251 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		0X00080000
252 #define VIRTCHNL_VF_OFFLOAD_ENCAP		0X00100000
253 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		0X00200000
254 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	0X00400000
255 #define VIRTCHNL_VF_OFFLOAD_ADQ			0X00800000
256 #define VIRTCHNL_VF_OFFLOAD_USO			0X02000000
257 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		0X08000000
258 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		0X10000000
259 
260 /* Define below the capability flags that are not offloads */
261 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		0x00000080
262 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
263 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
264 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
265 
266 struct virtchnl_vf_resource {
267 	u16 num_vsis;
268 	u16 num_queue_pairs;
269 	u16 max_vectors;
270 	u16 max_mtu;
271 
272 	u32 vf_cap_flags;
273 	u32 rss_key_size;
274 	u32 rss_lut_size;
275 
276 	struct virtchnl_vsi_resource vsi_res[1];
277 };
278 
279 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
280 
281 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
282  * VF sends this message to set up parameters for one TX queue.
283  * External data buffer contains one instance of virtchnl_txq_info.
284  * PF configures requested queue and returns a status code.
285  */
286 
287 /* Tx queue config info */
288 struct virtchnl_txq_info {
289 	u16 vsi_id;
290 	u16 queue_id;
291 	u16 ring_len;		/* number of descriptors, multiple of 8 */
292 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
293 	u64 dma_ring_addr;
294 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
295 };
296 
297 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
298 
299 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
300  * VF sends this message to set up parameters for one RX queue.
301  * External data buffer contains one instance of virtchnl_rxq_info.
302  * PF configures requested queue and returns a status code.
303  */
304 
305 /* Rx queue config info */
306 struct virtchnl_rxq_info {
307 	u16 vsi_id;
308 	u16 queue_id;
309 	u32 ring_len;		/* number of descriptors, multiple of 32 */
310 	u16 hdr_size;
311 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
312 	u32 databuffer_size;
313 	u32 max_pkt_size;
314 	u32 pad1;
315 	u64 dma_ring_addr;
316 	enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
317 	u32 pad2;
318 };
319 
320 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
321 
322 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
323  * VF sends this message to set parameters for all active TX and RX queues
324  * associated with the specified VSI.
325  * PF configures queues and returns status.
326  * If the number of queues specified is greater than the number of queues
327  * associated with the VSI, an error is returned and no queues are configured.
328  */
329 struct virtchnl_queue_pair_info {
330 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
331 	struct virtchnl_txq_info txq;
332 	struct virtchnl_rxq_info rxq;
333 };
334 
335 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
336 
337 struct virtchnl_vsi_queue_config_info {
338 	u16 vsi_id;
339 	u16 num_queue_pairs;
340 	u32 pad;
341 	struct virtchnl_queue_pair_info qpair[1];
342 };
343 
344 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
345 
346 /* VIRTCHNL_OP_REQUEST_QUEUES
347  * VF sends this message to request the PF to allocate additional queues to
348  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
349  * additional queues must be negotiated.  This is a best effort request as it
350  * is possible the PF does not have enough queues left to support the request.
351  * If the PF cannot support the number requested it will respond with the
352  * maximum number it is able to support.  If the request is successful, PF will
353  * then reset the VF to institute required changes.
354  */
355 
356 /* VF resource request */
357 struct virtchnl_vf_res_request {
358 	u16 num_queue_pairs;
359 };
360 
361 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
362  * VF uses this message to map vectors to queues.
363  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
364  * are to be associated with the specified vector.
365  * The "other" causes are always mapped to vector 0.
366  * PF configures interrupt mapping and returns status.
367  */
368 struct virtchnl_vector_map {
369 	u16 vsi_id;
370 	u16 vector_id;
371 	u16 rxq_map;
372 	u16 txq_map;
373 	u16 rxitr_idx;
374 	u16 txitr_idx;
375 };
376 
377 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
378 
379 struct virtchnl_irq_map_info {
380 	u16 num_vectors;
381 	struct virtchnl_vector_map vecmap[1];
382 };
383 
384 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
385 
386 /* VIRTCHNL_OP_ENABLE_QUEUES
387  * VIRTCHNL_OP_DISABLE_QUEUES
388  * VF sends these message to enable or disable TX/RX queue pairs.
389  * The queues fields are bitmaps indicating which queues to act upon.
390  * (Currently, we only support 16 queues per VF, but we make the field
391  * u32 to allow for expansion.)
392  * PF performs requested action and returns status.
393  */
394 struct virtchnl_queue_select {
395 	u16 vsi_id;
396 	u16 pad;
397 	u32 rx_queues;
398 	u32 tx_queues;
399 };
400 
401 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
402 
403 /* VIRTCHNL_OP_ADD_ETH_ADDR
404  * VF sends this message in order to add one or more unicast or multicast
405  * address filters for the specified VSI.
406  * PF adds the filters and returns status.
407  */
408 
409 /* VIRTCHNL_OP_DEL_ETH_ADDR
410  * VF sends this message in order to remove one or more unicast or multicast
411  * filters for the specified VSI.
412  * PF removes the filters and returns status.
413  */
414 
415 /* VIRTCHNL_ETHER_ADDR_LEGACY
416  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
417  * bytes. Moving forward all VF drivers should not set type to
418  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
419  * behavior. The control plane function (i.e. PF) can use a best effort method
420  * of tracking the primary/device unicast in this case, but there is no
421  * guarantee and functionality depends on the implementation of the PF.
422  */
423 
424 /* VIRTCHNL_ETHER_ADDR_PRIMARY
425  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
426  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
427  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
428  * function (i.e. PF) to accurately track and use this MAC address for
429  * displaying on the host and for VM/function reset.
430  */
431 
432 /* VIRTCHNL_ETHER_ADDR_EXTRA
433  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
434  * unicast and/or multicast filters that are being added/deleted via
435  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
436  */
437 struct virtchnl_ether_addr {
438 	u8 addr[ETH_ALEN];
439 	u8 type;
440 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
441 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
442 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
443 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
444 	u8 pad;
445 };
446 
447 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
448 
449 struct virtchnl_ether_addr_list {
450 	u16 vsi_id;
451 	u16 num_elements;
452 	struct virtchnl_ether_addr list[1];
453 };
454 
455 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
456 
457 /* VIRTCHNL_OP_ADD_VLAN
458  * VF sends this message to add one or more VLAN tag filters for receives.
459  * PF adds the filters and returns status.
460  * If a port VLAN is configured by the PF, this operation will return an
461  * error to the VF.
462  */
463 
464 /* VIRTCHNL_OP_DEL_VLAN
465  * VF sends this message to remove one or more VLAN tag filters for receives.
466  * PF removes the filters and returns status.
467  * If a port VLAN is configured by the PF, this operation will return an
468  * error to the VF.
469  */
470 
471 struct virtchnl_vlan_filter_list {
472 	u16 vsi_id;
473 	u16 num_elements;
474 	u16 vlan_id[1];
475 };
476 
477 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
478 
479 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
480  * VF sends VSI id and flags.
481  * PF returns status code in retval.
482  * Note: we assume that broadcast accept mode is always enabled.
483  */
484 struct virtchnl_promisc_info {
485 	u16 vsi_id;
486 	u16 flags;
487 };
488 
489 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
490 
491 #define FLAG_VF_UNICAST_PROMISC	0x00000001
492 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
493 
494 /* VIRTCHNL_OP_GET_STATS
495  * VF sends this message to request stats for the selected VSI. VF uses
496  * the virtchnl_queue_select struct to specify the VSI. The queue_id
497  * field is ignored by the PF.
498  *
499  * PF replies with struct eth_stats in an external buffer.
500  */
501 
502 /* VIRTCHNL_OP_CONFIG_RSS_KEY
503  * VIRTCHNL_OP_CONFIG_RSS_LUT
504  * VF sends these messages to configure RSS. Only supported if both PF
505  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
506  * configuration negotiation. If this is the case, then the RSS fields in
507  * the VF resource struct are valid.
508  * Both the key and LUT are initialized to 0 by the PF, meaning that
509  * RSS is effectively disabled until set up by the VF.
510  */
511 struct virtchnl_rss_key {
512 	u16 vsi_id;
513 	u16 key_len;
514 	u8 key[1];         /* RSS hash key, packed bytes */
515 };
516 
517 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
518 
519 struct virtchnl_rss_lut {
520 	u16 vsi_id;
521 	u16 lut_entries;
522 	u8 lut[1];        /* RSS lookup table */
523 };
524 
525 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
526 
527 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
528  * VIRTCHNL_OP_SET_RSS_HENA
529  * VF sends these messages to get and set the hash filter enable bits for RSS.
530  * By default, the PF sets these to all possible traffic types that the
531  * hardware supports. The VF can query this value if it wants to change the
532  * traffic types that are hashed by the hardware.
533  */
534 struct virtchnl_rss_hena {
535 	u64 hena;
536 };
537 
538 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
539 
540 /* VIRTCHNL_OP_ENABLE_CHANNELS
541  * VIRTCHNL_OP_DISABLE_CHANNELS
542  * VF sends these messages to enable or disable channels based on
543  * the user specified queue count and queue offset for each traffic class.
544  * This struct encompasses all the information that the PF needs from
545  * VF to create a channel.
546  */
547 struct virtchnl_channel_info {
548 	u16 count; /* number of queues in a channel */
549 	u16 offset; /* queues in a channel start from 'offset' */
550 	u32 pad;
551 	u64 max_tx_rate;
552 };
553 
554 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
555 
556 struct virtchnl_tc_info {
557 	u32	num_tc;
558 	u32	pad;
559 	struct	virtchnl_channel_info list[1];
560 };
561 
562 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
563 
564 /* VIRTCHNL_ADD_CLOUD_FILTER
565  * VIRTCHNL_DEL_CLOUD_FILTER
566  * VF sends these messages to add or delete a cloud filter based on the
567  * user specified match and action filters. These structures encompass
568  * all the information that the PF needs from the VF to add/delete a
569  * cloud filter.
570  */
571 
572 struct virtchnl_l4_spec {
573 	u8	src_mac[ETH_ALEN];
574 	u8	dst_mac[ETH_ALEN];
575 	__be16	vlan_id;
576 	__be16	pad; /* reserved for future use */
577 	__be32	src_ip[4];
578 	__be32	dst_ip[4];
579 	__be16	src_port;
580 	__be16	dst_port;
581 };
582 
583 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
584 
585 union virtchnl_flow_spec {
586 	struct	virtchnl_l4_spec tcp_spec;
587 	u8	buffer[128]; /* reserved for future use */
588 };
589 
590 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
591 
592 enum virtchnl_action {
593 	/* action types */
594 	VIRTCHNL_ACTION_DROP = 0,
595 	VIRTCHNL_ACTION_TC_REDIRECT,
596 	VIRTCHNL_ACTION_PASSTHRU,
597 	VIRTCHNL_ACTION_QUEUE,
598 	VIRTCHNL_ACTION_Q_REGION,
599 	VIRTCHNL_ACTION_MARK,
600 	VIRTCHNL_ACTION_COUNT,
601 };
602 
603 enum virtchnl_flow_type {
604 	/* flow types */
605 	VIRTCHNL_TCP_V4_FLOW = 0,
606 	VIRTCHNL_TCP_V6_FLOW,
607 };
608 
609 struct virtchnl_filter {
610 	union	virtchnl_flow_spec data;
611 	union	virtchnl_flow_spec mask;
612 	enum	virtchnl_flow_type flow_type;
613 	enum	virtchnl_action action;
614 	u32	action_meta;
615 	u8	field_flags;
616 	u8	pad[3];
617 };
618 
619 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
620 
621 /* VIRTCHNL_OP_EVENT
622  * PF sends this message to inform the VF driver of events that may affect it.
623  * No direct response is expected from the VF, though it may generate other
624  * messages in response to this one.
625  */
626 enum virtchnl_event_codes {
627 	VIRTCHNL_EVENT_UNKNOWN = 0,
628 	VIRTCHNL_EVENT_LINK_CHANGE,
629 	VIRTCHNL_EVENT_RESET_IMPENDING,
630 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
631 };
632 
633 #define PF_EVENT_SEVERITY_INFO		0
634 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
635 
636 struct virtchnl_pf_event {
637 	enum virtchnl_event_codes event;
638 	union {
639 		/* If the PF driver does not support the new speed reporting
640 		 * capabilities then use link_event else use link_event_adv to
641 		 * get the speed and link information. The ability to understand
642 		 * new speeds is indicated by setting the capability flag
643 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
644 		 * in virtchnl_vf_resource struct and can be used to determine
645 		 * which link event struct to use below.
646 		 */
647 		struct {
648 			enum virtchnl_link_speed link_speed;
649 			bool link_status;
650 		} link_event;
651 		struct {
652 			/* link_speed provided in Mbps */
653 			u32 link_speed;
654 			u8 link_status;
655 			u8 pad[3];
656 		} link_event_adv;
657 	} event_data;
658 
659 	int severity;
660 };
661 
662 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
663 
664 /* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP
665  * VF uses this message to request PF to map IWARP vectors to IWARP queues.
666  * The request for this originates from the VF IWARP driver through
667  * a client interface between VF LAN and VF IWARP driver.
668  * A vector could have an AEQ and CEQ attached to it although
669  * there is a single AEQ per VF IWARP instance in which case
670  * most vectors will have an INVALID_IDX for aeq and valid idx for ceq.
671  * There will never be a case where there will be multiple CEQs attached
672  * to a single vector.
673  * PF configures interrupt mapping and returns status.
674  */
675 
676 struct virtchnl_iwarp_qv_info {
677 	u32 v_idx; /* msix_vector */
678 	u16 ceq_idx;
679 	u16 aeq_idx;
680 	u8 itr_idx;
681 	u8 pad[3];
682 };
683 
684 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info);
685 
686 struct virtchnl_iwarp_qvlist_info {
687 	u32 num_vectors;
688 	struct virtchnl_iwarp_qv_info qv_info[1];
689 };
690 
691 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info);
692 
693 /* VF reset states - these are written into the RSTAT register:
694  * VFGEN_RSTAT on the VF
695  * When the PF initiates a reset, it writes 0
696  * When the reset is complete, it writes 1
697  * When the PF detects that the VF has recovered, it writes 2
698  * VF checks this register periodically to determine if a reset has occurred,
699  * then polls it to know when the reset is complete.
700  * If either the PF or VF reads the register while the hardware
701  * is in a reset state, it will return DEADBEEF, which, when masked
702  * will result in 3.
703  */
704 enum virtchnl_vfr_states {
705 	VIRTCHNL_VFR_INPROGRESS = 0,
706 	VIRTCHNL_VFR_COMPLETED,
707 	VIRTCHNL_VFR_VFACTIVE,
708 };
709 
710 /* Type of RSS algorithm */
711 enum virtchnl_rss_algorithm {
712 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
713 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
714 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
715 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
716 };
717 
718 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
719 #define PROTO_HDR_SHIFT			5
720 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
721 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
722 
723 /* VF use these macros to configure each protocol header.
724  * Specify which protocol headers and protocol header fields base on
725  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
726  * @param hdr: a struct of virtchnl_proto_hdr
727  * @param hdr_type: ETH/IPV4/TCP, etc
728  * @param field: SRC/DST/TEID/SPI, etc
729  */
730 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
731 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
732 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
733 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
734 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
735 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
736 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
737 
738 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
739 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
740 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
741 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
742 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
743 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
744 
745 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
746 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
747 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
748 	(((hdr)->type) >> PROTO_HDR_SHIFT)
749 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
750 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
751 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
752 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
753 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
754 
755 /* Protocol header type within a packet segment. A segment consists of one or
756  * more protocol headers that make up a logical group of protocol headers. Each
757  * logical group of protocol headers encapsulates or is encapsulated using/by
758  * tunneling or encapsulation protocols for network virtualization.
759  */
760 enum virtchnl_proto_hdr_type {
761 	VIRTCHNL_PROTO_HDR_NONE,
762 	VIRTCHNL_PROTO_HDR_ETH,
763 	VIRTCHNL_PROTO_HDR_S_VLAN,
764 	VIRTCHNL_PROTO_HDR_C_VLAN,
765 	VIRTCHNL_PROTO_HDR_IPV4,
766 	VIRTCHNL_PROTO_HDR_IPV6,
767 	VIRTCHNL_PROTO_HDR_TCP,
768 	VIRTCHNL_PROTO_HDR_UDP,
769 	VIRTCHNL_PROTO_HDR_SCTP,
770 	VIRTCHNL_PROTO_HDR_GTPU_IP,
771 	VIRTCHNL_PROTO_HDR_GTPU_EH,
772 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
773 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
774 	VIRTCHNL_PROTO_HDR_PPPOE,
775 	VIRTCHNL_PROTO_HDR_L2TPV3,
776 	VIRTCHNL_PROTO_HDR_ESP,
777 	VIRTCHNL_PROTO_HDR_AH,
778 	VIRTCHNL_PROTO_HDR_PFCP,
779 };
780 
781 /* Protocol header field within a protocol header. */
782 enum virtchnl_proto_hdr_field {
783 	/* ETHER */
784 	VIRTCHNL_PROTO_HDR_ETH_SRC =
785 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
786 	VIRTCHNL_PROTO_HDR_ETH_DST,
787 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
788 	/* S-VLAN */
789 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
790 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
791 	/* C-VLAN */
792 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
793 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
794 	/* IPV4 */
795 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
796 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
797 	VIRTCHNL_PROTO_HDR_IPV4_DST,
798 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
799 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
800 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
801 	/* IPV6 */
802 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
803 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
804 	VIRTCHNL_PROTO_HDR_IPV6_DST,
805 	VIRTCHNL_PROTO_HDR_IPV6_TC,
806 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
807 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
808 	/* TCP */
809 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
810 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
811 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
812 	/* UDP */
813 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
814 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
815 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
816 	/* SCTP */
817 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
818 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
819 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
820 	/* GTPU_IP */
821 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
822 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
823 	/* GTPU_EH */
824 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
825 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
826 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
827 	/* PPPOE */
828 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
829 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
830 	/* L2TPV3 */
831 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
832 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
833 	/* ESP */
834 	VIRTCHNL_PROTO_HDR_ESP_SPI =
835 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
836 	/* AH */
837 	VIRTCHNL_PROTO_HDR_AH_SPI =
838 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
839 	/* PFCP */
840 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
841 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
842 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
843 };
844 
845 struct virtchnl_proto_hdr {
846 	enum virtchnl_proto_hdr_type type;
847 	u32 field_selector; /* a bit mask to select field for header type */
848 	u8 buffer[64];
849 	/**
850 	 * binary buffer in network order for specific header type.
851 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
852 	 * header is expected to be copied into the buffer.
853 	 */
854 };
855 
856 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
857 
858 struct virtchnl_proto_hdrs {
859 	u8 tunnel_level;
860 	u8 pad[3];
861 	/**
862 	 * specify where protocol header start from.
863 	 * 0 - from the outer layer
864 	 * 1 - from the first inner layer
865 	 * 2 - from the second inner layer
866 	 * ....
867 	 **/
868 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
869 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
870 };
871 
872 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
873 
874 struct virtchnl_rss_cfg {
875 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
876 	enum virtchnl_rss_algorithm rss_algorithm; /* RSS algorithm type */
877 	u8 reserved[128];			   /* reserve for future */
878 };
879 
880 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
881 
882 /* action configuration for FDIR */
883 struct virtchnl_filter_action {
884 	enum virtchnl_action type;
885 	union {
886 		/* used for queue and qgroup action */
887 		struct {
888 			u16 index;
889 			u8 region;
890 		} queue;
891 		/* used for count action */
892 		struct {
893 			/* share counter ID with other flow rules */
894 			u8 shared;
895 			u32 id; /* counter ID */
896 		} count;
897 		/* used for mark action */
898 		u32 mark_id;
899 		u8 reserve[32];
900 	} act_conf;
901 };
902 
903 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
904 
905 #define VIRTCHNL_MAX_NUM_ACTIONS  8
906 
907 struct virtchnl_filter_action_set {
908 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
909 	int count;
910 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
911 };
912 
913 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
914 
915 /* pattern and action for FDIR rule */
916 struct virtchnl_fdir_rule {
917 	struct virtchnl_proto_hdrs proto_hdrs;
918 	struct virtchnl_filter_action_set action_set;
919 };
920 
921 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
922 
923 /* Status returned to VF after VF requests FDIR commands
924  * VIRTCHNL_FDIR_SUCCESS
925  * VF FDIR related request is successfully done by PF
926  * The request can be OP_ADD/DEL.
927  *
928  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
929  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
930  *
931  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
932  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
933  *
934  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
935  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
936  *
937  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
938  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
939  *
940  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
941  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
942  * or HW doesn't support.
943  *
944  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
945  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
946  * for programming.
947  */
948 enum virtchnl_fdir_prgm_status {
949 	VIRTCHNL_FDIR_SUCCESS = 0,
950 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
951 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
952 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
953 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
954 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
955 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
956 };
957 
958 /* VIRTCHNL_OP_ADD_FDIR_FILTER
959  * VF sends this request to PF by filling out vsi_id,
960  * validate_only and rule_cfg. PF will return flow_id
961  * if the request is successfully done and return add_status to VF.
962  */
963 struct virtchnl_fdir_add {
964 	u16 vsi_id;  /* INPUT */
965 	/*
966 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
967 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
968 	 */
969 	u16 validate_only; /* INPUT */
970 	u32 flow_id;       /* OUTPUT */
971 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
972 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
973 };
974 
975 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
976 
977 /* VIRTCHNL_OP_DEL_FDIR_FILTER
978  * VF sends this request to PF by filling out vsi_id
979  * and flow_id. PF will return del_status to VF.
980  */
981 struct virtchnl_fdir_del {
982 	u16 vsi_id;  /* INPUT */
983 	u16 pad;
984 	u32 flow_id; /* INPUT */
985 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
986 };
987 
988 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
989 
990 /**
991  * virtchnl_vc_validate_vf_msg
992  * @ver: Virtchnl version info
993  * @v_opcode: Opcode for the message
994  * @msg: pointer to the msg buffer
995  * @msglen: msg length
996  *
997  * validate msg format against struct for each opcode
998  */
999 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1000 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1001 			    u8 *msg, u16 msglen)
1002 {
1003 	bool err_msg_format = false;
1004 	int valid_len = 0;
1005 
1006 	/* Validate message length. */
1007 	switch (v_opcode) {
1008 	case VIRTCHNL_OP_VERSION:
1009 		valid_len = sizeof(struct virtchnl_version_info);
1010 		break;
1011 	case VIRTCHNL_OP_RESET_VF:
1012 		break;
1013 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1014 		if (VF_IS_V11(ver))
1015 			valid_len = sizeof(u32);
1016 		break;
1017 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1018 		valid_len = sizeof(struct virtchnl_txq_info);
1019 		break;
1020 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1021 		valid_len = sizeof(struct virtchnl_rxq_info);
1022 		break;
1023 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1024 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
1025 		if (msglen >= valid_len) {
1026 			struct virtchnl_vsi_queue_config_info *vqc =
1027 			    (struct virtchnl_vsi_queue_config_info *)msg;
1028 			valid_len += (vqc->num_queue_pairs *
1029 				      sizeof(struct
1030 					     virtchnl_queue_pair_info));
1031 			if (vqc->num_queue_pairs == 0)
1032 				err_msg_format = true;
1033 		}
1034 		break;
1035 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1036 		valid_len = sizeof(struct virtchnl_irq_map_info);
1037 		if (msglen >= valid_len) {
1038 			struct virtchnl_irq_map_info *vimi =
1039 			    (struct virtchnl_irq_map_info *)msg;
1040 			valid_len += (vimi->num_vectors *
1041 				      sizeof(struct virtchnl_vector_map));
1042 			if (vimi->num_vectors == 0)
1043 				err_msg_format = true;
1044 		}
1045 		break;
1046 	case VIRTCHNL_OP_ENABLE_QUEUES:
1047 	case VIRTCHNL_OP_DISABLE_QUEUES:
1048 		valid_len = sizeof(struct virtchnl_queue_select);
1049 		break;
1050 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1051 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1052 		valid_len = sizeof(struct virtchnl_ether_addr_list);
1053 		if (msglen >= valid_len) {
1054 			struct virtchnl_ether_addr_list *veal =
1055 			    (struct virtchnl_ether_addr_list *)msg;
1056 			valid_len += veal->num_elements *
1057 			    sizeof(struct virtchnl_ether_addr);
1058 			if (veal->num_elements == 0)
1059 				err_msg_format = true;
1060 		}
1061 		break;
1062 	case VIRTCHNL_OP_ADD_VLAN:
1063 	case VIRTCHNL_OP_DEL_VLAN:
1064 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
1065 		if (msglen >= valid_len) {
1066 			struct virtchnl_vlan_filter_list *vfl =
1067 			    (struct virtchnl_vlan_filter_list *)msg;
1068 			valid_len += vfl->num_elements * sizeof(u16);
1069 			if (vfl->num_elements == 0)
1070 				err_msg_format = true;
1071 		}
1072 		break;
1073 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1074 		valid_len = sizeof(struct virtchnl_promisc_info);
1075 		break;
1076 	case VIRTCHNL_OP_GET_STATS:
1077 		valid_len = sizeof(struct virtchnl_queue_select);
1078 		break;
1079 	case VIRTCHNL_OP_IWARP:
1080 		/* These messages are opaque to us and will be validated in
1081 		 * the RDMA client code. We just need to check for nonzero
1082 		 * length. The firmware will enforce max length restrictions.
1083 		 */
1084 		if (msglen)
1085 			valid_len = msglen;
1086 		else
1087 			err_msg_format = true;
1088 		break;
1089 	case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP:
1090 		break;
1091 	case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP:
1092 		valid_len = sizeof(struct virtchnl_iwarp_qvlist_info);
1093 		if (msglen >= valid_len) {
1094 			struct virtchnl_iwarp_qvlist_info *qv =
1095 				(struct virtchnl_iwarp_qvlist_info *)msg;
1096 			if (qv->num_vectors == 0) {
1097 				err_msg_format = true;
1098 				break;
1099 			}
1100 			valid_len += ((qv->num_vectors - 1) *
1101 				sizeof(struct virtchnl_iwarp_qv_info));
1102 		}
1103 		break;
1104 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1105 		valid_len = sizeof(struct virtchnl_rss_key);
1106 		if (msglen >= valid_len) {
1107 			struct virtchnl_rss_key *vrk =
1108 				(struct virtchnl_rss_key *)msg;
1109 			valid_len += vrk->key_len - 1;
1110 		}
1111 		break;
1112 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1113 		valid_len = sizeof(struct virtchnl_rss_lut);
1114 		if (msglen >= valid_len) {
1115 			struct virtchnl_rss_lut *vrl =
1116 				(struct virtchnl_rss_lut *)msg;
1117 			valid_len += vrl->lut_entries - 1;
1118 		}
1119 		break;
1120 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1121 		break;
1122 	case VIRTCHNL_OP_SET_RSS_HENA:
1123 		valid_len = sizeof(struct virtchnl_rss_hena);
1124 		break;
1125 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1126 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1127 		break;
1128 	case VIRTCHNL_OP_REQUEST_QUEUES:
1129 		valid_len = sizeof(struct virtchnl_vf_res_request);
1130 		break;
1131 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1132 		valid_len = sizeof(struct virtchnl_tc_info);
1133 		if (msglen >= valid_len) {
1134 			struct virtchnl_tc_info *vti =
1135 				(struct virtchnl_tc_info *)msg;
1136 			valid_len += (vti->num_tc - 1) *
1137 				     sizeof(struct virtchnl_channel_info);
1138 			if (vti->num_tc == 0)
1139 				err_msg_format = true;
1140 		}
1141 		break;
1142 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1143 		break;
1144 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1145 		valid_len = sizeof(struct virtchnl_filter);
1146 		break;
1147 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1148 		valid_len = sizeof(struct virtchnl_filter);
1149 		break;
1150 	case VIRTCHNL_OP_ADD_RSS_CFG:
1151 	case VIRTCHNL_OP_DEL_RSS_CFG:
1152 		valid_len = sizeof(struct virtchnl_rss_cfg);
1153 		break;
1154 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1155 		valid_len = sizeof(struct virtchnl_fdir_add);
1156 		break;
1157 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1158 		valid_len = sizeof(struct virtchnl_fdir_del);
1159 		break;
1160 	/* These are always errors coming from the VF. */
1161 	case VIRTCHNL_OP_EVENT:
1162 	case VIRTCHNL_OP_UNKNOWN:
1163 	default:
1164 		return VIRTCHNL_STATUS_ERR_PARAM;
1165 	}
1166 	/* few more checks */
1167 	if (err_msg_format || valid_len != msglen)
1168 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1169 
1170 	return 0;
1171 }
1172 #endif /* _VIRTCHNL_H_ */
1173