1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright 2016-17 IBM Corp.
4 */
5
6 #ifndef _VAS_H
7 #define _VAS_H
8 #include <linux/atomic.h>
9 #include <linux/idr.h>
10 #include <asm/vas.h>
11 #include <linux/io.h>
12 #include <linux/dcache.h>
13 #include <linux/mutex.h>
14 #include <linux/stringify.h>
15
16 /*
17 * Overview of Virtual Accelerator Switchboard (VAS).
18 *
19 * VAS is a hardware "switchboard" that allows senders and receivers to
20 * exchange messages with _minimal_ kernel involvment. The receivers are
21 * typically NX coprocessor engines that perform compression or encryption
22 * in hardware, but receivers can also be other software threads.
23 *
24 * Senders are user/kernel threads that submit compression/encryption or
25 * other requests to the receivers. Senders must format their messages as
26 * Coprocessor Request Blocks (CRB)s and submit them using the "copy" and
27 * "paste" instructions which were introduced in Power9.
28 *
29 * A Power node can have (upto?) 8 Power chips. There is one instance of
30 * VAS in each Power9 chip. Each instance of VAS has 64K windows or ports,
31 * Senders and receivers must each connect to a separate window before they
32 * can exchange messages through the switchboard.
33 *
34 * Each window is described by two types of window contexts:
35 *
36 * Hypervisor Window Context (HVWC) of size VAS_HVWC_SIZE bytes
37 *
38 * OS/User Window Context (UWC) of size VAS_UWC_SIZE bytes.
39 *
40 * A window context can be viewed as a set of 64-bit registers. The settings
41 * in these registers configure/control/determine the behavior of the VAS
42 * hardware when messages are sent/received through the window. The registers
43 * in the HVWC are configured by the kernel while the registers in the UWC can
44 * be configured by the kernel or by the user space application that is using
45 * the window.
46 *
47 * The HVWCs for all windows on a specific instance of VAS are in a contiguous
48 * range of hardware addresses or Base address region (BAR) referred to as the
49 * HVWC BAR for the instance. Similarly the UWCs for all windows on an instance
50 * are referred to as the UWC BAR for the instance.
51 *
52 * The two BARs for each instance are defined Power9 MMIO Ranges spreadsheet
53 * and available to the kernel in the VAS node's "reg" property in the device
54 * tree:
55 *
56 * /proc/device-tree/vasm@.../reg
57 *
58 * (see vas_probe() for details on the reg property).
59 *
60 * The kernel maps the HVWC and UWC BAR regions into the kernel address
61 * space (hvwc_map and uwc_map). The kernel can then access the window
62 * contexts of a specific window using:
63 *
64 * hvwc = hvwc_map + winid * VAS_HVWC_SIZE.
65 * uwc = uwc_map + winid * VAS_UWC_SIZE.
66 *
67 * where winid is the window index (0..64K).
68 *
69 * As mentioned, a window context is used to "configure" a window. Besides
70 * this configuration address, each _send_ window also has a unique hardware
71 * "paste" address that is used to submit requests/CRBs (see vas_paste_crb()).
72 *
73 * The hardware paste address for a window is computed using the "paste
74 * base address" and "paste win id shift" reg properties in the VAS device
75 * tree node using:
76 *
77 * paste_addr = paste_base + ((winid << paste_win_id_shift))
78 *
79 * (again, see vas_probe() for ->paste_base_addr and ->paste_win_id_shift).
80 *
81 * The kernel maps this hardware address into the sender's address space
82 * after which they can use the 'paste' instruction (new in Power9) to
83 * send a message (submit a request aka CRB) to the coprocessor.
84 *
85 * NOTE: In the initial version, senders can only in-kernel drivers/threads.
86 * Support for user space threads will be added in follow-on patches.
87 *
88 * TODO: Do we need to map the UWC into user address space so they can return
89 * credits? Its NA for NX but may be needed for other receive windows.
90 *
91 */
92
93 #define VAS_WINDOWS_PER_CHIP (64 << 10)
94
95 /*
96 * Hypervisor and OS/USer Window Context sizes
97 */
98 #define VAS_HVWC_SIZE 512
99 #define VAS_UWC_SIZE PAGE_SIZE
100
101 /*
102 * Initial per-process credits.
103 * Max send window credits: 4K-1 (12-bits in VAS_TX_WCRED)
104 *
105 * TODO: Needs tuning for per-process credits
106 */
107 #define VAS_TX_WCREDS_MAX ((4 << 10) - 1)
108 #define VAS_WCREDS_DEFAULT (1 << 10)
109
110 /*
111 * VAS Window Context Register Offsets and bitmasks.
112 * See Section 3.1.4 of VAS Work book
113 */
114 #define VAS_LPID_OFFSET 0x010
115 #define VAS_LPID PPC_BITMASK(0, 11)
116
117 #define VAS_PID_OFFSET 0x018
118 #define VAS_PID_ID PPC_BITMASK(0, 19)
119
120 #define VAS_XLATE_MSR_OFFSET 0x020
121 #define VAS_XLATE_MSR_DR PPC_BIT(0)
122 #define VAS_XLATE_MSR_TA PPC_BIT(1)
123 #define VAS_XLATE_MSR_PR PPC_BIT(2)
124 #define VAS_XLATE_MSR_US PPC_BIT(3)
125 #define VAS_XLATE_MSR_HV PPC_BIT(4)
126 #define VAS_XLATE_MSR_SF PPC_BIT(5)
127
128 #define VAS_XLATE_LPCR_OFFSET 0x028
129 #define VAS_XLATE_LPCR_PAGE_SIZE PPC_BITMASK(0, 2)
130 #define VAS_XLATE_LPCR_ISL PPC_BIT(3)
131 #define VAS_XLATE_LPCR_TC PPC_BIT(4)
132 #define VAS_XLATE_LPCR_SC PPC_BIT(5)
133
134 #define VAS_XLATE_CTL_OFFSET 0x030
135 #define VAS_XLATE_MODE PPC_BITMASK(0, 1)
136
137 #define VAS_AMR_OFFSET 0x040
138 #define VAS_AMR PPC_BITMASK(0, 63)
139
140 #define VAS_SEIDR_OFFSET 0x048
141 #define VAS_SEIDR PPC_BITMASK(0, 63)
142
143 #define VAS_FAULT_TX_WIN_OFFSET 0x050
144 #define VAS_FAULT_TX_WIN PPC_BITMASK(48, 63)
145
146 #define VAS_OSU_INTR_SRC_RA_OFFSET 0x060
147 #define VAS_OSU_INTR_SRC_RA PPC_BITMASK(8, 63)
148
149 #define VAS_HV_INTR_SRC_RA_OFFSET 0x070
150 #define VAS_HV_INTR_SRC_RA PPC_BITMASK(8, 63)
151
152 #define VAS_PSWID_OFFSET 0x078
153 #define VAS_PSWID_EA_HANDLE PPC_BITMASK(0, 31)
154
155 #define VAS_SPARE1_OFFSET 0x080
156 #define VAS_SPARE2_OFFSET 0x088
157 #define VAS_SPARE3_OFFSET 0x090
158 #define VAS_SPARE4_OFFSET 0x130
159 #define VAS_SPARE5_OFFSET 0x160
160 #define VAS_SPARE6_OFFSET 0x188
161
162 #define VAS_LFIFO_BAR_OFFSET 0x0A0
163 #define VAS_LFIFO_BAR PPC_BITMASK(8, 53)
164 #define VAS_PAGE_MIGRATION_SELECT PPC_BITMASK(54, 56)
165
166 #define VAS_LDATA_STAMP_CTL_OFFSET 0x0A8
167 #define VAS_LDATA_STAMP PPC_BITMASK(0, 1)
168 #define VAS_XTRA_WRITE PPC_BIT(2)
169
170 #define VAS_LDMA_CACHE_CTL_OFFSET 0x0B0
171 #define VAS_LDMA_TYPE PPC_BITMASK(0, 1)
172 #define VAS_LDMA_FIFO_DISABLE PPC_BIT(2)
173
174 #define VAS_LRFIFO_PUSH_OFFSET 0x0B8
175 #define VAS_LRFIFO_PUSH PPC_BITMASK(0, 15)
176
177 #define VAS_CURR_MSG_COUNT_OFFSET 0x0C0
178 #define VAS_CURR_MSG_COUNT PPC_BITMASK(0, 7)
179
180 #define VAS_LNOTIFY_AFTER_COUNT_OFFSET 0x0C8
181 #define VAS_LNOTIFY_AFTER_COUNT PPC_BITMASK(0, 7)
182
183 #define VAS_LRX_WCRED_OFFSET 0x0E0
184 #define VAS_LRX_WCRED PPC_BITMASK(0, 15)
185
186 #define VAS_LRX_WCRED_ADDER_OFFSET 0x190
187 #define VAS_LRX_WCRED_ADDER PPC_BITMASK(0, 15)
188
189 #define VAS_TX_WCRED_OFFSET 0x0F0
190 #define VAS_TX_WCRED PPC_BITMASK(4, 15)
191
192 #define VAS_TX_WCRED_ADDER_OFFSET 0x1A0
193 #define VAS_TX_WCRED_ADDER PPC_BITMASK(4, 15)
194
195 #define VAS_LFIFO_SIZE_OFFSET 0x100
196 #define VAS_LFIFO_SIZE PPC_BITMASK(0, 3)
197
198 #define VAS_WINCTL_OFFSET 0x108
199 #define VAS_WINCTL_OPEN PPC_BIT(0)
200 #define VAS_WINCTL_REJ_NO_CREDIT PPC_BIT(1)
201 #define VAS_WINCTL_PIN PPC_BIT(2)
202 #define VAS_WINCTL_TX_WCRED_MODE PPC_BIT(3)
203 #define VAS_WINCTL_RX_WCRED_MODE PPC_BIT(4)
204 #define VAS_WINCTL_TX_WORD_MODE PPC_BIT(5)
205 #define VAS_WINCTL_RX_WORD_MODE PPC_BIT(6)
206 #define VAS_WINCTL_RSVD_TXBUF PPC_BIT(7)
207 #define VAS_WINCTL_THRESH_CTL PPC_BITMASK(8, 9)
208 #define VAS_WINCTL_FAULT_WIN PPC_BIT(10)
209 #define VAS_WINCTL_NX_WIN PPC_BIT(11)
210
211 #define VAS_WIN_STATUS_OFFSET 0x110
212 #define VAS_WIN_BUSY PPC_BIT(1)
213
214 #define VAS_WIN_CTX_CACHING_CTL_OFFSET 0x118
215 #define VAS_CASTOUT_REQ PPC_BIT(0)
216 #define VAS_PUSH_TO_MEM PPC_BIT(1)
217 #define VAS_WIN_CACHE_STATUS PPC_BIT(4)
218
219 #define VAS_TX_RSVD_BUF_COUNT_OFFSET 0x120
220 #define VAS_RXVD_BUF_COUNT PPC_BITMASK(58, 63)
221
222 #define VAS_LRFIFO_WIN_PTR_OFFSET 0x128
223 #define VAS_LRX_WIN_ID PPC_BITMASK(0, 15)
224
225 /*
226 * Local Notification Control Register controls what happens in _response_
227 * to a paste command and hence applies only to receive windows.
228 */
229 #define VAS_LNOTIFY_CTL_OFFSET 0x138
230 #define VAS_NOTIFY_DISABLE PPC_BIT(0)
231 #define VAS_INTR_DISABLE PPC_BIT(1)
232 #define VAS_NOTIFY_EARLY PPC_BIT(2)
233 #define VAS_NOTIFY_OSU_INTR PPC_BIT(3)
234
235 #define VAS_LNOTIFY_PID_OFFSET 0x140
236 #define VAS_LNOTIFY_PID PPC_BITMASK(0, 19)
237
238 #define VAS_LNOTIFY_LPID_OFFSET 0x148
239 #define VAS_LNOTIFY_LPID PPC_BITMASK(0, 11)
240
241 #define VAS_LNOTIFY_TID_OFFSET 0x150
242 #define VAS_LNOTIFY_TID PPC_BITMASK(0, 15)
243
244 #define VAS_LNOTIFY_SCOPE_OFFSET 0x158
245 #define VAS_LNOTIFY_MIN_SCOPE PPC_BITMASK(0, 1)
246 #define VAS_LNOTIFY_MAX_SCOPE PPC_BITMASK(2, 3)
247
248 #define VAS_NX_UTIL_OFFSET 0x1B0
249 #define VAS_NX_UTIL PPC_BITMASK(0, 63)
250
251 /* SE: Side effects */
252 #define VAS_NX_UTIL_SE_OFFSET 0x1B8
253 #define VAS_NX_UTIL_SE PPC_BITMASK(0, 63)
254
255 #define VAS_NX_UTIL_ADDER_OFFSET 0x180
256 #define VAS_NX_UTIL_ADDER PPC_BITMASK(32, 63)
257
258 /*
259 * VREG(x):
260 * Expand a register's short name (eg: LPID) into two parameters:
261 * - the register's short name in string form ("LPID"), and
262 * - the name of the macro (eg: VAS_LPID_OFFSET), defining the
263 * register's offset in the window context
264 */
265 #define VREG_SFX(n, s) __stringify(n), VAS_##n##s
266 #define VREG(r) VREG_SFX(r, _OFFSET)
267
268 /*
269 * Local Notify Scope Control Register. (Receive windows only).
270 */
271 enum vas_notify_scope {
272 VAS_SCOPE_LOCAL,
273 VAS_SCOPE_GROUP,
274 VAS_SCOPE_VECTORED_GROUP,
275 VAS_SCOPE_UNUSED,
276 };
277
278 /*
279 * Local DMA Cache Control Register (Receive windows only).
280 */
281 enum vas_dma_type {
282 VAS_DMA_TYPE_INJECT,
283 VAS_DMA_TYPE_WRITE,
284 };
285
286 /*
287 * Local Notify Scope Control Register. (Receive windows only).
288 * Not applicable to NX receive windows.
289 */
290 enum vas_notify_after_count {
291 VAS_NOTIFY_AFTER_256 = 0,
292 VAS_NOTIFY_NONE,
293 VAS_NOTIFY_AFTER_2
294 };
295
296 /*
297 * NX can generate an interrupt for multiple faults and expects kernel
298 * to process all of them. So read all valid CRB entries until find the
299 * invalid one. So use pswid which is pasted by NX and ccw[0] (reserved
300 * bit in BE) to check valid CRB. CCW[0] will not be touched by user
301 * space. Application gets CRB formt error if it updates this bit.
302 *
303 * Invalidate FIFO during allocation and process all entries from last
304 * successful read until finds invalid pswid and ccw[0] values.
305 * After reading each CRB entry from fault FIFO, the kernel invalidate
306 * it by updating pswid with FIFO_INVALID_ENTRY and CCW[0] with
307 * CCW0_INVALID.
308 */
309 #define FIFO_INVALID_ENTRY 0xffffffff
310 #define CCW0_INVALID 1
311
312 /*
313 * One per instance of VAS. Each instance will have a separate set of
314 * receive windows, one per coprocessor type.
315 *
316 * See also function header of set_vinst_win() for details on ->windows[]
317 * and ->rxwin[] tables.
318 */
319 struct vas_instance {
320 int vas_id;
321 struct ida ida;
322 struct list_head node;
323 struct platform_device *pdev;
324
325 u64 hvwc_bar_start;
326 u64 uwc_bar_start;
327 u64 paste_base_addr;
328 u64 paste_win_id_shift;
329
330 u64 irq_port;
331 int virq;
332 int fault_crbs;
333 int fault_fifo_size;
334 int fifo_in_progress; /* To wake up thread or return IRQ_HANDLED */
335 spinlock_t fault_lock; /* Protects fifo_in_progress update */
336 void *fault_fifo;
337 struct vas_window *fault_win; /* Fault window */
338
339 struct mutex mutex;
340 struct vas_window *rxwin[VAS_COP_TYPE_MAX];
341 struct vas_window *windows[VAS_WINDOWS_PER_CHIP];
342
343 char *dbgname;
344 struct dentry *dbgdir;
345 };
346
347 /*
348 * In-kernel state a VAS window. One per window.
349 */
350 struct vas_window {
351 /* Fields common to send and receive windows */
352 struct vas_instance *vinst;
353 int winid;
354 bool tx_win; /* True if send window */
355 bool nx_win; /* True if NX window */
356 bool user_win; /* True if user space window */
357 void *hvwc_map; /* HV window context */
358 void *uwc_map; /* OS/User window context */
359 struct pid *pid; /* Linux process id of owner */
360 struct pid *tgid; /* Thread group ID of owner */
361 struct mm_struct *mm; /* Linux process mm_struct */
362 int wcreds_max; /* Window credits */
363
364 char *dbgname;
365 struct dentry *dbgdir;
366
367 /* Fields applicable only to send windows */
368 void *paste_kaddr;
369 char *paste_addr_name;
370 struct vas_window *rxwin;
371
372 /* Feilds applicable only to receive windows */
373 enum vas_cop_type cop;
374 atomic_t num_txwins;
375 };
376
377 /*
378 * Container for the hardware state of a window. One per-window.
379 *
380 * A VAS Window context is a 512-byte area in the hardware that contains
381 * a set of 64-bit registers. Individual bit-fields in these registers
382 * determine the configuration/operation of the hardware. struct vas_winctx
383 * is a container for the register fields in the window context.
384 */
385 struct vas_winctx {
386 void *rx_fifo;
387 int rx_fifo_size;
388 int wcreds_max;
389 int rsvd_txbuf_count;
390
391 bool user_win;
392 bool nx_win;
393 bool fault_win;
394 bool rsvd_txbuf_enable;
395 bool pin_win;
396 bool rej_no_credit;
397 bool tx_wcred_mode;
398 bool rx_wcred_mode;
399 bool tx_word_mode;
400 bool rx_word_mode;
401 bool data_stamp;
402 bool xtra_write;
403 bool notify_disable;
404 bool intr_disable;
405 bool fifo_disable;
406 bool notify_early;
407 bool notify_os_intr_reg;
408
409 int lpid;
410 int pidr; /* value from SPRN_PID, not linux pid */
411 int lnotify_lpid;
412 int lnotify_pid;
413 int lnotify_tid;
414 u32 pswid;
415 int rx_win_id;
416 int fault_win_id;
417 int tc_mode;
418
419 u64 irq_port;
420
421 enum vas_dma_type dma_type;
422 enum vas_notify_scope min_scope;
423 enum vas_notify_scope max_scope;
424 enum vas_notify_after_count notify_after_count;
425 };
426
427 extern struct mutex vas_mutex;
428
429 extern struct vas_instance *find_vas_instance(int vasid);
430 extern void vas_init_dbgdir(void);
431 extern void vas_instance_init_dbgdir(struct vas_instance *vinst);
432 extern void vas_window_init_dbgdir(struct vas_window *win);
433 extern void vas_window_free_dbgdir(struct vas_window *win);
434 extern int vas_setup_fault_window(struct vas_instance *vinst);
435 extern irqreturn_t vas_fault_thread_fn(int irq, void *data);
436 extern irqreturn_t vas_fault_handler(int irq, void *dev_id);
437 extern void vas_return_credit(struct vas_window *window, bool tx);
438 extern struct vas_window *vas_pswid_to_window(struct vas_instance *vinst,
439 uint32_t pswid);
440 extern void vas_win_paste_addr(struct vas_window *window, u64 *addr,
441 int *len);
442
vas_window_pid(struct vas_window * window)443 static inline int vas_window_pid(struct vas_window *window)
444 {
445 return pid_vnr(window->pid);
446 }
447
vas_log_write(struct vas_window * win,char * name,void * regptr,u64 val)448 static inline void vas_log_write(struct vas_window *win, char *name,
449 void *regptr, u64 val)
450 {
451 if (val)
452 pr_debug("%swin #%d: %s reg %p, val 0x%016llx\n",
453 win->tx_win ? "Tx" : "Rx", win->winid, name,
454 regptr, val);
455 }
456
write_uwc_reg(struct vas_window * win,char * name,s32 reg,u64 val)457 static inline void write_uwc_reg(struct vas_window *win, char *name,
458 s32 reg, u64 val)
459 {
460 void *regptr;
461
462 regptr = win->uwc_map + reg;
463 vas_log_write(win, name, regptr, val);
464
465 out_be64(regptr, val);
466 }
467
write_hvwc_reg(struct vas_window * win,char * name,s32 reg,u64 val)468 static inline void write_hvwc_reg(struct vas_window *win, char *name,
469 s32 reg, u64 val)
470 {
471 void *regptr;
472
473 regptr = win->hvwc_map + reg;
474 vas_log_write(win, name, regptr, val);
475
476 out_be64(regptr, val);
477 }
478
read_hvwc_reg(struct vas_window * win,char * name __maybe_unused,s32 reg)479 static inline u64 read_hvwc_reg(struct vas_window *win,
480 char *name __maybe_unused, s32 reg)
481 {
482 return in_be64(win->hvwc_map+reg);
483 }
484
485 /*
486 * Encode/decode the Partition Send Window ID (PSWID) for a window in
487 * a way that we can uniquely identify any window in the system. i.e.
488 * we should be able to locate the 'struct vas_window' given the PSWID.
489 *
490 * Bits Usage
491 * 0:7 VAS id (8 bits)
492 * 8:15 Unused, 0 (3 bits)
493 * 16:31 Window id (16 bits)
494 */
encode_pswid(int vasid,int winid)495 static inline u32 encode_pswid(int vasid, int winid)
496 {
497 return ((u32)winid | (vasid << (31 - 7)));
498 }
499
decode_pswid(u32 pswid,int * vasid,int * winid)500 static inline void decode_pswid(u32 pswid, int *vasid, int *winid)
501 {
502 if (vasid)
503 *vasid = pswid >> (31 - 7) & 0xFF;
504
505 if (winid)
506 *winid = pswid & 0xFFFF;
507 }
508 #endif /* _VAS_H */
509