1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * <linux/usb/gadget.h>
4  *
5  * We call the USB code inside a Linux-based peripheral device a "gadget"
6  * driver, except for the hardware-specific bus glue.  One USB host can
7  * master many USB gadgets, but the gadgets are only slaved to one host.
8  *
9  *
10  * (C) Copyright 2002-2004 by David Brownell
11  * All Rights Reserved.
12  *
13  * This software is licensed under the GNU GPL version 2.
14  */
15 
16 #ifndef __LINUX_USB_GADGET_H
17 #define __LINUX_USB_GADGET_H
18 
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/scatterlist.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 #include <linux/usb/ch9.h>
28 
29 #define UDC_TRACE_STR_MAX	512
30 
31 struct usb_ep;
32 
33 /**
34  * struct usb_request - describes one i/o request
35  * @buf: Buffer used for data.  Always provide this; some controllers
36  *	only use PIO, or don't use DMA for some endpoints.
37  * @dma: DMA address corresponding to 'buf'.  If you don't set this
38  *	field, and the usb controller needs one, it is responsible
39  *	for mapping and unmapping the buffer.
40  * @sg: a scatterlist for SG-capable controllers.
41  * @num_sgs: number of SG entries
42  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
43  * @length: Length of that data
44  * @stream_id: The stream id, when USB3.0 bulk streams are being used
45  * @no_interrupt: If true, hints that no completion irq is needed.
46  *	Helpful sometimes with deep request queues that are handled
47  *	directly by DMA controllers.
48  * @zero: If true, when writing data, makes the last packet be "short"
49  *     by adding a zero length packet as needed;
50  * @short_not_ok: When reading data, makes short packets be
51  *     treated as errors (queue stops advancing till cleanup).
52  * @dma_mapped: Indicates if request has been mapped to DMA (internal)
53  * @complete: Function called when request completes, so this request and
54  *	its buffer may be re-used.  The function will always be called with
55  *	interrupts disabled, and it must not sleep.
56  *	Reads terminate with a short packet, or when the buffer fills,
57  *	whichever comes first.  When writes terminate, some data bytes
58  *	will usually still be in flight (often in a hardware fifo).
59  *	Errors (for reads or writes) stop the queue from advancing
60  *	until the completion function returns, so that any transfers
61  *	invalidated by the error may first be dequeued.
62  * @context: For use by the completion callback
63  * @list: For use by the gadget driver.
64  * @frame_number: Reports the interval number in (micro)frame in which the
65  *	isochronous transfer was transmitted or received.
66  * @status: Reports completion code, zero or a negative errno.
67  *	Normally, faults block the transfer queue from advancing until
68  *	the completion callback returns.
69  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
70  *	or when the driver disabled the endpoint.
71  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
72  *	transfers) this may be less than the requested length.  If the
73  *	short_not_ok flag is set, short reads are treated as errors
74  *	even when status otherwise indicates successful completion.
75  *	Note that for writes (IN transfers) some data bytes may still
76  *	reside in a device-side FIFO when the request is reported as
77  *	complete.
78  *
79  * These are allocated/freed through the endpoint they're used with.  The
80  * hardware's driver can add extra per-request data to the memory it returns,
81  * which often avoids separate memory allocations (potential failures),
82  * later when the request is queued.
83  *
84  * Request flags affect request handling, such as whether a zero length
85  * packet is written (the "zero" flag), whether a short read should be
86  * treated as an error (blocking request queue advance, the "short_not_ok"
87  * flag), or hinting that an interrupt is not required (the "no_interrupt"
88  * flag, for use with deep request queues).
89  *
90  * Bulk endpoints can use any size buffers, and can also be used for interrupt
91  * transfers. interrupt-only endpoints can be much less functional.
92  *
93  * NOTE:  this is analogous to 'struct urb' on the host side, except that
94  * it's thinner and promotes more pre-allocation.
95  */
96 
97 struct usb_request {
98 	void			*buf;
99 	unsigned		length;
100 	dma_addr_t		dma;
101 
102 	struct scatterlist	*sg;
103 	unsigned		num_sgs;
104 	unsigned		num_mapped_sgs;
105 
106 	unsigned		stream_id:16;
107 	unsigned		no_interrupt:1;
108 	unsigned		zero:1;
109 	unsigned		short_not_ok:1;
110 	unsigned		dma_mapped:1;
111 
112 	void			(*complete)(struct usb_ep *ep,
113 					struct usb_request *req);
114 	void			*context;
115 	struct list_head	list;
116 
117 	unsigned		frame_number;		/* ISO ONLY */
118 
119 	int			status;
120 	unsigned		actual;
121 };
122 
123 /*-------------------------------------------------------------------------*/
124 
125 /* endpoint-specific parts of the api to the usb controller hardware.
126  * unlike the urb model, (de)multiplexing layers are not required.
127  * (so this api could slash overhead if used on the host side...)
128  *
129  * note that device side usb controllers commonly differ in how many
130  * endpoints they support, as well as their capabilities.
131  */
132 struct usb_ep_ops {
133 	int (*enable) (struct usb_ep *ep,
134 		const struct usb_endpoint_descriptor *desc);
135 	int (*disable) (struct usb_ep *ep);
136 	void (*dispose) (struct usb_ep *ep);
137 
138 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
139 		gfp_t gfp_flags);
140 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
141 
142 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
143 		gfp_t gfp_flags);
144 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
145 
146 	int (*set_halt) (struct usb_ep *ep, int value);
147 	int (*set_wedge) (struct usb_ep *ep);
148 
149 	int (*fifo_status) (struct usb_ep *ep);
150 	void (*fifo_flush) (struct usb_ep *ep);
151 };
152 
153 /**
154  * struct usb_ep_caps - endpoint capabilities description
155  * @type_control:Endpoint supports control type (reserved for ep0).
156  * @type_iso:Endpoint supports isochronous transfers.
157  * @type_bulk:Endpoint supports bulk transfers.
158  * @type_int:Endpoint supports interrupt transfers.
159  * @dir_in:Endpoint supports IN direction.
160  * @dir_out:Endpoint supports OUT direction.
161  */
162 struct usb_ep_caps {
163 	unsigned type_control:1;
164 	unsigned type_iso:1;
165 	unsigned type_bulk:1;
166 	unsigned type_int:1;
167 	unsigned dir_in:1;
168 	unsigned dir_out:1;
169 };
170 
171 #define USB_EP_CAPS_TYPE_CONTROL     0x01
172 #define USB_EP_CAPS_TYPE_ISO         0x02
173 #define USB_EP_CAPS_TYPE_BULK        0x04
174 #define USB_EP_CAPS_TYPE_INT         0x08
175 #define USB_EP_CAPS_TYPE_ALL \
176 	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
177 #define USB_EP_CAPS_DIR_IN           0x01
178 #define USB_EP_CAPS_DIR_OUT          0x02
179 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
180 
181 #define USB_EP_CAPS(_type, _dir) \
182 	{ \
183 		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
184 		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
185 		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
186 		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
187 		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
188 		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
189 	}
190 
191 /**
192  * struct usb_ep - device side representation of USB endpoint
193  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
194  * @ops: Function pointers used to access hardware-specific operations.
195  * @ep_list:the gadget's ep_list holds all of its endpoints
196  * @caps:The structure describing types and directions supported by endoint.
197  * @enabled: The current endpoint enabled/disabled state.
198  * @claimed: True if this endpoint is claimed by a function.
199  * @maxpacket:The maximum packet size used on this endpoint.  The initial
200  *	value can sometimes be reduced (hardware allowing), according to
201  *	the endpoint descriptor used to configure the endpoint.
202  * @maxpacket_limit:The maximum packet size value which can be handled by this
203  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
204  *	should not be changed. Should not be confused with maxpacket.
205  * @max_streams: The maximum number of streams supported
206  *	by this EP (0 - 16, actual number is 2^n)
207  * @mult: multiplier, 'mult' value for SS Isoc EPs
208  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
209  * @driver_data:for use by the gadget driver.
210  * @address: used to identify the endpoint when finding descriptor that
211  *	matches connection speed
212  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
213  *	enabled and remains valid until the endpoint is disabled.
214  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
215  *	descriptor that is used to configure the endpoint
216  *
217  * the bus controller driver lists all the general purpose endpoints in
218  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
219  * and is accessed only in response to a driver setup() callback.
220  */
221 
222 struct usb_ep {
223 	void			*driver_data;
224 
225 	const char		*name;
226 	const struct usb_ep_ops	*ops;
227 	struct list_head	ep_list;
228 	struct usb_ep_caps	caps;
229 	bool			claimed;
230 	bool			enabled;
231 	unsigned		maxpacket:16;
232 	unsigned		maxpacket_limit:16;
233 	unsigned		max_streams:16;
234 	unsigned		mult:2;
235 	unsigned		maxburst:5;
236 	u8			address;
237 	const struct usb_endpoint_descriptor	*desc;
238 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
239 };
240 
241 /*-------------------------------------------------------------------------*/
242 
243 #if IS_ENABLED(CONFIG_USB_GADGET)
244 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
245 int usb_ep_enable(struct usb_ep *ep);
246 int usb_ep_disable(struct usb_ep *ep);
247 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
248 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
249 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
250 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
251 int usb_ep_set_halt(struct usb_ep *ep);
252 int usb_ep_clear_halt(struct usb_ep *ep);
253 int usb_ep_set_wedge(struct usb_ep *ep);
254 int usb_ep_fifo_status(struct usb_ep *ep);
255 void usb_ep_fifo_flush(struct usb_ep *ep);
256 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)257 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
258 		unsigned maxpacket_limit)
259 { }
usb_ep_enable(struct usb_ep * ep)260 static inline int usb_ep_enable(struct usb_ep *ep)
261 { return 0; }
usb_ep_disable(struct usb_ep * ep)262 static inline int usb_ep_disable(struct usb_ep *ep)
263 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)264 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
265 		gfp_t gfp_flags)
266 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)267 static inline void usb_ep_free_request(struct usb_ep *ep,
268 		struct usb_request *req)
269 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)270 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
271 		gfp_t gfp_flags)
272 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)273 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
274 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)275 static inline int usb_ep_set_halt(struct usb_ep *ep)
276 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)277 static inline int usb_ep_clear_halt(struct usb_ep *ep)
278 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)279 static inline int usb_ep_set_wedge(struct usb_ep *ep)
280 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)281 static inline int usb_ep_fifo_status(struct usb_ep *ep)
282 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)283 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
284 { }
285 #endif /* USB_GADGET */
286 
287 /*-------------------------------------------------------------------------*/
288 
289 struct usb_dcd_config_params {
290 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
291 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
292 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
293 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
294 	__u8 besl_baseline;	/* Recommended baseline BESL (0-15) */
295 	__u8 besl_deep;		/* Recommended deep BESL (0-15) */
296 #define USB_DEFAULT_BESL_UNSPECIFIED	0xFF	/* No recommended value */
297 };
298 
299 
300 struct usb_gadget;
301 struct usb_gadget_driver;
302 struct usb_udc;
303 
304 /* the rest of the api to the controller hardware: device operations,
305  * which don't involve endpoints (or i/o).
306  */
307 struct usb_gadget_ops {
308 	int	(*get_frame)(struct usb_gadget *);
309 	int	(*wakeup)(struct usb_gadget *);
310 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
311 	int	(*vbus_session) (struct usb_gadget *, int is_active);
312 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
313 	int	(*pullup) (struct usb_gadget *, int is_on);
314 	int	(*ioctl)(struct usb_gadget *,
315 				unsigned code, unsigned long param);
316 	void	(*get_config_params)(struct usb_gadget *,
317 				     struct usb_dcd_config_params *);
318 	int	(*udc_start)(struct usb_gadget *,
319 			struct usb_gadget_driver *);
320 	int	(*udc_stop)(struct usb_gadget *);
321 	void	(*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
322 	struct usb_ep *(*match_ep)(struct usb_gadget *,
323 			struct usb_endpoint_descriptor *,
324 			struct usb_ss_ep_comp_descriptor *);
325 };
326 
327 /**
328  * struct usb_gadget - represents a usb slave device
329  * @work: (internal use) Workqueue to be used for sysfs_notify()
330  * @udc: struct usb_udc pointer for this gadget
331  * @ops: Function pointers used to access hardware-specific operations.
332  * @ep0: Endpoint zero, used when reading or writing responses to
333  *	driver setup() requests
334  * @ep_list: List of other endpoints supported by the device.
335  * @speed: Speed of current connection to USB host.
336  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
337  *      and all slower speeds.
338  * @state: the state we are now (attached, suspended, configured, etc)
339  * @name: Identifies the controller hardware type.  Used in diagnostics
340  *	and sometimes configuration.
341  * @dev: Driver model state for this abstract device.
342  * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
343  * @out_epnum: last used out ep number
344  * @in_epnum: last used in ep number
345  * @mA: last set mA value
346  * @otg_caps: OTG capabilities of this gadget.
347  * @sg_supported: true if we can handle scatter-gather
348  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
349  *	gadget driver must provide a USB OTG descriptor.
350  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
351  *	is in the Mini-AB jack, and HNP has been used to switch roles
352  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
353  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
354  *	supports HNP at this port.
355  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
356  *	only supports HNP on a different root port.
357  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
358  *	enabled HNP support.
359  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
360  *	in peripheral mode can support HNP polling.
361  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
362  *	or B-Peripheral wants to take host role.
363  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
364  *	MaxPacketSize.
365  * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
366  * @quirk_stall_not_supp: UDC controller doesn't support stalling.
367  * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
368  * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
369  *	u_ether.c to improve performance.
370  * @is_selfpowered: if the gadget is self-powered.
371  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
372  *	be connected.
373  * @connected: True if gadget is connected.
374  * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
375  *	indicates that it supports LPM as per the LPM ECN & errata.
376  *
377  * Gadgets have a mostly-portable "gadget driver" implementing device
378  * functions, handling all usb configurations and interfaces.  Gadget
379  * drivers talk to hardware-specific code indirectly, through ops vectors.
380  * That insulates the gadget driver from hardware details, and packages
381  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
382  * and "usb_ep" interfaces provide that insulation from the hardware.
383  *
384  * Except for the driver data, all fields in this structure are
385  * read-only to the gadget driver.  That driver data is part of the
386  * "driver model" infrastructure in 2.6 (and later) kernels, and for
387  * earlier systems is grouped in a similar structure that's not known
388  * to the rest of the kernel.
389  *
390  * Values of the three OTG device feature flags are updated before the
391  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
392  * driver suspend() calls.  They are valid only when is_otg, and when the
393  * device is acting as a B-Peripheral (so is_a_peripheral is false).
394  */
395 struct usb_gadget {
396 	struct work_struct		work;
397 	struct usb_udc			*udc;
398 	/* readonly to gadget driver */
399 	const struct usb_gadget_ops	*ops;
400 	struct usb_ep			*ep0;
401 	struct list_head		ep_list;	/* of usb_ep */
402 	enum usb_device_speed		speed;
403 	enum usb_device_speed		max_speed;
404 	enum usb_device_state		state;
405 	const char			*name;
406 	struct device			dev;
407 	unsigned			isoch_delay;
408 	unsigned			out_epnum;
409 	unsigned			in_epnum;
410 	unsigned			mA;
411 	struct usb_otg_caps		*otg_caps;
412 
413 	unsigned			sg_supported:1;
414 	unsigned			is_otg:1;
415 	unsigned			is_a_peripheral:1;
416 	unsigned			b_hnp_enable:1;
417 	unsigned			a_hnp_support:1;
418 	unsigned			a_alt_hnp_support:1;
419 	unsigned			hnp_polling_support:1;
420 	unsigned			host_request_flag:1;
421 	unsigned			quirk_ep_out_aligned_size:1;
422 	unsigned			quirk_altset_not_supp:1;
423 	unsigned			quirk_stall_not_supp:1;
424 	unsigned			quirk_zlp_not_supp:1;
425 	unsigned			quirk_avoids_skb_reserve:1;
426 	unsigned			is_selfpowered:1;
427 	unsigned			deactivated:1;
428 	unsigned			connected:1;
429 	unsigned			lpm_capable:1;
430 };
431 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
432 
set_gadget_data(struct usb_gadget * gadget,void * data)433 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
434 	{ dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)435 static inline void *get_gadget_data(struct usb_gadget *gadget)
436 	{ return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)437 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
438 {
439 	return container_of(dev, struct usb_gadget, dev);
440 }
441 
442 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
443 #define gadget_for_each_ep(tmp, gadget) \
444 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
445 
446 /**
447  * usb_ep_align - returns @len aligned to ep's maxpacketsize.
448  * @ep: the endpoint whose maxpacketsize is used to align @len
449  * @len: buffer size's length to align to @ep's maxpacketsize
450  *
451  * This helper is used to align buffer's size to an ep's maxpacketsize.
452  */
usb_ep_align(struct usb_ep * ep,size_t len)453 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
454 {
455 	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
456 
457 	return round_up(len, max_packet_size);
458 }
459 
460 /**
461  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
462  *	requires quirk_ep_out_aligned_size, otherwise returns len.
463  * @g: controller to check for quirk
464  * @ep: the endpoint whose maxpacketsize is used to align @len
465  * @len: buffer size's length to align to @ep's maxpacketsize
466  *
467  * This helper is used in case it's required for any reason to check and maybe
468  * align buffer's size to an ep's maxpacketsize.
469  */
470 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)471 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
472 {
473 	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
474 }
475 
476 /**
477  * gadget_is_altset_supported - return true iff the hardware supports
478  *	altsettings
479  * @g: controller to check for quirk
480  */
gadget_is_altset_supported(struct usb_gadget * g)481 static inline int gadget_is_altset_supported(struct usb_gadget *g)
482 {
483 	return !g->quirk_altset_not_supp;
484 }
485 
486 /**
487  * gadget_is_stall_supported - return true iff the hardware supports stalling
488  * @g: controller to check for quirk
489  */
gadget_is_stall_supported(struct usb_gadget * g)490 static inline int gadget_is_stall_supported(struct usb_gadget *g)
491 {
492 	return !g->quirk_stall_not_supp;
493 }
494 
495 /**
496  * gadget_is_zlp_supported - return true iff the hardware supports zlp
497  * @g: controller to check for quirk
498  */
gadget_is_zlp_supported(struct usb_gadget * g)499 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
500 {
501 	return !g->quirk_zlp_not_supp;
502 }
503 
504 /**
505  * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
506  *	skb_reserve to improve performance.
507  * @g: controller to check for quirk
508  */
gadget_avoids_skb_reserve(struct usb_gadget * g)509 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
510 {
511 	return g->quirk_avoids_skb_reserve;
512 }
513 
514 /**
515  * gadget_is_dualspeed - return true iff the hardware handles high speed
516  * @g: controller that might support both high and full speeds
517  */
gadget_is_dualspeed(struct usb_gadget * g)518 static inline int gadget_is_dualspeed(struct usb_gadget *g)
519 {
520 	return g->max_speed >= USB_SPEED_HIGH;
521 }
522 
523 /**
524  * gadget_is_superspeed() - return true if the hardware handles superspeed
525  * @g: controller that might support superspeed
526  */
gadget_is_superspeed(struct usb_gadget * g)527 static inline int gadget_is_superspeed(struct usb_gadget *g)
528 {
529 	return g->max_speed >= USB_SPEED_SUPER;
530 }
531 
532 /**
533  * gadget_is_superspeed_plus() - return true if the hardware handles
534  *	superspeed plus
535  * @g: controller that might support superspeed plus
536  */
gadget_is_superspeed_plus(struct usb_gadget * g)537 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
538 {
539 	return g->max_speed >= USB_SPEED_SUPER_PLUS;
540 }
541 
542 /**
543  * gadget_is_otg - return true iff the hardware is OTG-ready
544  * @g: controller that might have a Mini-AB connector
545  *
546  * This is a runtime test, since kernels with a USB-OTG stack sometimes
547  * run on boards which only have a Mini-B (or Mini-A) connector.
548  */
gadget_is_otg(struct usb_gadget * g)549 static inline int gadget_is_otg(struct usb_gadget *g)
550 {
551 #ifdef CONFIG_USB_OTG
552 	return g->is_otg;
553 #else
554 	return 0;
555 #endif
556 }
557 
558 /*-------------------------------------------------------------------------*/
559 
560 #if IS_ENABLED(CONFIG_USB_GADGET)
561 int usb_gadget_frame_number(struct usb_gadget *gadget);
562 int usb_gadget_wakeup(struct usb_gadget *gadget);
563 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
564 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
565 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
566 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
567 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
568 int usb_gadget_connect(struct usb_gadget *gadget);
569 int usb_gadget_disconnect(struct usb_gadget *gadget);
570 int usb_gadget_deactivate(struct usb_gadget *gadget);
571 int usb_gadget_activate(struct usb_gadget *gadget);
572 #else
usb_gadget_frame_number(struct usb_gadget * gadget)573 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
574 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)575 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
576 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)577 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
578 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)579 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
580 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)581 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
582 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)583 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
584 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)585 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
586 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)587 static inline int usb_gadget_connect(struct usb_gadget *gadget)
588 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)589 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
590 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)591 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
592 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)593 static inline int usb_gadget_activate(struct usb_gadget *gadget)
594 { return 0; }
595 #endif /* CONFIG_USB_GADGET */
596 
597 /*-------------------------------------------------------------------------*/
598 
599 /**
600  * struct usb_gadget_driver - driver for usb 'slave' devices
601  * @function: String describing the gadget's function
602  * @max_speed: Highest speed the driver handles.
603  * @setup: Invoked for ep0 control requests that aren't handled by
604  *	the hardware level driver. Most calls must be handled by
605  *	the gadget driver, including descriptor and configuration
606  *	management.  The 16 bit members of the setup data are in
607  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
608  *	queues a response to ep0, or returns negative to stall.
609  * @disconnect: Invoked after all transfers have been stopped,
610  *	when the host is disconnected.  May be called in_interrupt; this
611  *	may not sleep.  Some devices can't detect disconnect, so this might
612  *	not be called except as part of controller shutdown.
613  * @bind: the driver's bind callback
614  * @unbind: Invoked when the driver is unbound from a gadget,
615  *	usually from rmmod (after a disconnect is reported).
616  *	Called in a context that permits sleeping.
617  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
618  * @resume: Invoked on USB resume.  May be called in_interrupt.
619  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
620  *	and should be called in_interrupt.
621  * @driver: Driver model state for this driver.
622  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
623  *	this driver will be bound to any available UDC.
624  * @pending: UDC core private data used for deferred probe of this driver.
625  * @match_existing_only: If udc is not found, return an error and don't add this
626  *      gadget driver to list of pending driver
627  *
628  * Devices are disabled till a gadget driver successfully bind()s, which
629  * means the driver will handle setup() requests needed to enumerate (and
630  * meet "chapter 9" requirements) then do some useful work.
631  *
632  * If gadget->is_otg is true, the gadget driver must provide an OTG
633  * descriptor during enumeration, or else fail the bind() call.  In such
634  * cases, no USB traffic may flow until both bind() returns without
635  * having called usb_gadget_disconnect(), and the USB host stack has
636  * initialized.
637  *
638  * Drivers use hardware-specific knowledge to configure the usb hardware.
639  * endpoint addressing is only one of several hardware characteristics that
640  * are in descriptors the ep0 implementation returns from setup() calls.
641  *
642  * Except for ep0 implementation, most driver code shouldn't need change to
643  * run on top of different usb controllers.  It'll use endpoints set up by
644  * that ep0 implementation.
645  *
646  * The usb controller driver handles a few standard usb requests.  Those
647  * include set_address, and feature flags for devices, interfaces, and
648  * endpoints (the get_status, set_feature, and clear_feature requests).
649  *
650  * Accordingly, the driver's setup() callback must always implement all
651  * get_descriptor requests, returning at least a device descriptor and
652  * a configuration descriptor.  Drivers must make sure the endpoint
653  * descriptors match any hardware constraints. Some hardware also constrains
654  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
655  *
656  * The driver's setup() callback must also implement set_configuration,
657  * and should also implement set_interface, get_configuration, and
658  * get_interface.  Setting a configuration (or interface) is where
659  * endpoints should be activated or (config 0) shut down.
660  *
661  * (Note that only the default control endpoint is supported.  Neither
662  * hosts nor devices generally support control traffic except to ep0.)
663  *
664  * Most devices will ignore USB suspend/resume operations, and so will
665  * not provide those callbacks.  However, some may need to change modes
666  * when the host is not longer directing those activities.  For example,
667  * local controls (buttons, dials, etc) may need to be re-enabled since
668  * the (remote) host can't do that any longer; or an error state might
669  * be cleared, to make the device behave identically whether or not
670  * power is maintained.
671  */
672 struct usb_gadget_driver {
673 	char			*function;
674 	enum usb_device_speed	max_speed;
675 	int			(*bind)(struct usb_gadget *gadget,
676 					struct usb_gadget_driver *driver);
677 	void			(*unbind)(struct usb_gadget *);
678 	int			(*setup)(struct usb_gadget *,
679 					const struct usb_ctrlrequest *);
680 	void			(*disconnect)(struct usb_gadget *);
681 	void			(*suspend)(struct usb_gadget *);
682 	void			(*resume)(struct usb_gadget *);
683 	void			(*reset)(struct usb_gadget *);
684 
685 	/* FIXME support safe rmmod */
686 	struct device_driver	driver;
687 
688 	char			*udc_name;
689 	struct list_head	pending;
690 	unsigned                match_existing_only:1;
691 };
692 
693 
694 
695 /*-------------------------------------------------------------------------*/
696 
697 /* driver modules register and unregister, as usual.
698  * these calls must be made in a context that can sleep.
699  *
700  * these will usually be implemented directly by the hardware-dependent
701  * usb bus interface driver, which will only support a single driver.
702  */
703 
704 /**
705  * usb_gadget_probe_driver - probe a gadget driver
706  * @driver: the driver being registered
707  * Context: can sleep
708  *
709  * Call this in your gadget driver's module initialization function,
710  * to tell the underlying usb controller driver about your driver.
711  * The @bind() function will be called to bind it to a gadget before this
712  * registration call returns.  It's expected that the @bind() function will
713  * be in init sections.
714  */
715 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
716 
717 /**
718  * usb_gadget_unregister_driver - unregister a gadget driver
719  * @driver:the driver being unregistered
720  * Context: can sleep
721  *
722  * Call this in your gadget driver's module cleanup function,
723  * to tell the underlying usb controller that your driver is
724  * going away.  If the controller is connected to a USB host,
725  * it will first disconnect().  The driver is also requested
726  * to unbind() and clean up any device state, before this procedure
727  * finally returns.  It's expected that the unbind() functions
728  * will in in exit sections, so may not be linked in some kernels.
729  */
730 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
731 
732 extern int usb_add_gadget_udc_release(struct device *parent,
733 		struct usb_gadget *gadget, void (*release)(struct device *dev));
734 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
735 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
736 extern char *usb_get_gadget_udc_name(void);
737 
738 /*-------------------------------------------------------------------------*/
739 
740 /* utility to simplify dealing with string descriptors */
741 
742 /**
743  * struct usb_string - wraps a C string and its USB id
744  * @id:the (nonzero) ID for this string
745  * @s:the string, in UTF-8 encoding
746  *
747  * If you're using usb_gadget_get_string(), use this to wrap a string
748  * together with its ID.
749  */
750 struct usb_string {
751 	u8			id;
752 	const char		*s;
753 };
754 
755 /**
756  * struct usb_gadget_strings - a set of USB strings in a given language
757  * @language:identifies the strings' language (0x0409 for en-us)
758  * @strings:array of strings with their ids
759  *
760  * If you're using usb_gadget_get_string(), use this to wrap all the
761  * strings for a given language.
762  */
763 struct usb_gadget_strings {
764 	u16			language;	/* 0x0409 for en-us */
765 	struct usb_string	*strings;
766 };
767 
768 struct usb_gadget_string_container {
769 	struct list_head        list;
770 	u8                      *stash[0];
771 };
772 
773 /* put descriptor for string with that id into buf (buflen >= 256) */
774 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
775 
776 /*-------------------------------------------------------------------------*/
777 
778 /* utility to simplify managing config descriptors */
779 
780 /* write vector of descriptors into buffer */
781 int usb_descriptor_fillbuf(void *, unsigned,
782 		const struct usb_descriptor_header **);
783 
784 /* build config descriptor from single descriptor vector */
785 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
786 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
787 
788 /* copy a NULL-terminated vector of descriptors */
789 struct usb_descriptor_header **usb_copy_descriptors(
790 		struct usb_descriptor_header **);
791 
792 /**
793  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
794  * @v: vector of descriptors
795  */
usb_free_descriptors(struct usb_descriptor_header ** v)796 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
797 {
798 	kfree(v);
799 }
800 
801 struct usb_function;
802 int usb_assign_descriptors(struct usb_function *f,
803 		struct usb_descriptor_header **fs,
804 		struct usb_descriptor_header **hs,
805 		struct usb_descriptor_header **ss,
806 		struct usb_descriptor_header **ssp);
807 void usb_free_all_descriptors(struct usb_function *f);
808 
809 struct usb_descriptor_header *usb_otg_descriptor_alloc(
810 				struct usb_gadget *gadget);
811 int usb_otg_descriptor_init(struct usb_gadget *gadget,
812 		struct usb_descriptor_header *otg_desc);
813 /*-------------------------------------------------------------------------*/
814 
815 /* utility to simplify map/unmap of usb_requests to/from DMA */
816 
817 #ifdef	CONFIG_HAS_DMA
818 extern int usb_gadget_map_request_by_dev(struct device *dev,
819 		struct usb_request *req, int is_in);
820 extern int usb_gadget_map_request(struct usb_gadget *gadget,
821 		struct usb_request *req, int is_in);
822 
823 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
824 		struct usb_request *req, int is_in);
825 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
826 		struct usb_request *req, int is_in);
827 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)828 static inline int usb_gadget_map_request_by_dev(struct device *dev,
829 		struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)830 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
831 		struct usb_request *req, int is_in) { return -ENOSYS; }
832 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)833 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
834 		struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)835 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
836 		struct usb_request *req, int is_in) { }
837 #endif /* !CONFIG_HAS_DMA */
838 
839 /*-------------------------------------------------------------------------*/
840 
841 /* utility to set gadget state properly */
842 
843 extern void usb_gadget_set_state(struct usb_gadget *gadget,
844 		enum usb_device_state state);
845 
846 /*-------------------------------------------------------------------------*/
847 
848 /* utility to tell udc core that the bus reset occurs */
849 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
850 		struct usb_gadget_driver *driver);
851 
852 /*-------------------------------------------------------------------------*/
853 
854 /* utility to give requests back to the gadget layer */
855 
856 extern void usb_gadget_giveback_request(struct usb_ep *ep,
857 		struct usb_request *req);
858 
859 /*-------------------------------------------------------------------------*/
860 
861 /* utility to find endpoint by name */
862 
863 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
864 		const char *name);
865 
866 /*-------------------------------------------------------------------------*/
867 
868 /* utility to check if endpoint caps match descriptor needs */
869 
870 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
871 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
872 		struct usb_ss_ep_comp_descriptor *ep_comp);
873 
874 /*-------------------------------------------------------------------------*/
875 
876 /* utility to update vbus status for udc core, it may be scheduled */
877 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
878 
879 /*-------------------------------------------------------------------------*/
880 
881 /* utility wrapping a simple endpoint selection policy */
882 
883 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
884 			struct usb_endpoint_descriptor *);
885 
886 
887 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
888 			struct usb_endpoint_descriptor *,
889 			struct usb_ss_ep_comp_descriptor *);
890 
891 extern void usb_ep_autoconfig_release(struct usb_ep *);
892 
893 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
894 
895 #endif /* __LINUX_USB_GADGET_H */
896