1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @reset_ws: Used for scheduling resets from atomic context.
204  * @resetting_device: USB core reset the device, so use alt setting 0 as
205  *	current; needs bandwidth alloc after reset.
206  *
207  * USB device drivers attach to interfaces on a physical device.  Each
208  * interface encapsulates a single high level function, such as feeding
209  * an audio stream to a speaker or reporting a change in a volume control.
210  * Many USB devices only have one interface.  The protocol used to talk to
211  * an interface's endpoints can be defined in a usb "class" specification,
212  * or by a product's vendor.  The (default) control endpoint is part of
213  * every interface, but is never listed among the interface's descriptors.
214  *
215  * The driver that is bound to the interface can use standard driver model
216  * calls such as dev_get_drvdata() on the dev member of this structure.
217  *
218  * Each interface may have alternate settings.  The initial configuration
219  * of a device sets altsetting 0, but the device driver can change
220  * that setting using usb_set_interface().  Alternate settings are often
221  * used to control the use of periodic endpoints, such as by having
222  * different endpoints use different amounts of reserved USB bandwidth.
223  * All standards-conformant USB devices that use isochronous endpoints
224  * will use them in non-default settings.
225  *
226  * The USB specification says that alternate setting numbers must run from
227  * 0 to one less than the total number of alternate settings.  But some
228  * devices manage to mess this up, and the structures aren't necessarily
229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
230  * look up an alternate setting in the altsetting array based on its number.
231  */
232 struct usb_interface {
233 	/* array of alternate settings for this interface,
234 	 * stored in no particular order */
235 	struct usb_host_interface *altsetting;
236 
237 	struct usb_host_interface *cur_altsetting;	/* the currently
238 					 * active alternate setting */
239 	unsigned num_altsetting;	/* number of alternate settings */
240 
241 	/* If there is an interface association descriptor then it will list
242 	 * the associated interfaces */
243 	struct usb_interface_assoc_descriptor *intf_assoc;
244 
245 	int minor;			/* minor number this interface is
246 					 * bound to */
247 	enum usb_interface_condition condition;		/* state of binding */
248 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
249 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
250 	unsigned unregistering:1;	/* unregistration is in progress */
251 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
252 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
253 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
254 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
255 	unsigned authorized:1;		/* used for interface authorization */
256 
257 	struct device dev;		/* interface specific device info */
258 	struct device *usb_dev;
259 	struct work_struct reset_ws;	/* for resets in atomic context */
260 };
261 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
262 
usb_get_intfdata(struct usb_interface * intf)263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 	return dev_get_drvdata(&intf->dev);
266 }
267 
usb_set_intfdata(struct usb_interface * intf,void * data)268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 	dev_set_drvdata(&intf->dev, data);
271 }
272 
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275 
276 /* Hard limit */
277 #define USB_MAXENDPOINTS	30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES	32
280 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
281 
282 /*
283  * USB Resume Timer: Every Host controller driver should drive the resume
284  * signalling on the bus for the amount of time defined by this macro.
285  *
286  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287  *
288  * Note that the USB Specification states we should drive resume for *at least*
289  * 20 ms, but it doesn't give an upper bound. This creates two possible
290  * situations which we want to avoid:
291  *
292  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293  * us to fail USB Electrical Tests, thus failing Certification
294  *
295  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296  * and while we can argue that's against the USB Specification, we don't have
297  * control over which devices a certification laboratory will be using for
298  * certification. If CertLab uses a device which was tested against Windows and
299  * that happens to have relaxed resume signalling rules, we might fall into
300  * situations where we fail interoperability and electrical tests.
301  *
302  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303  * should cope with both LPJ calibration errors and devices not following every
304  * detail of the USB Specification.
305  */
306 #define USB_RESUME_TIMEOUT	40 /* ms */
307 
308 /**
309  * struct usb_interface_cache - long-term representation of a device interface
310  * @num_altsetting: number of altsettings defined.
311  * @ref: reference counter.
312  * @altsetting: variable-length array of interface structures, one for
313  *	each alternate setting that may be selected.  Each one includes a
314  *	set of endpoint configurations.  They will be in no particular order.
315  *
316  * These structures persist for the lifetime of a usb_device, unlike
317  * struct usb_interface (which persists only as long as its configuration
318  * is installed).  The altsetting arrays can be accessed through these
319  * structures at any time, permitting comparison of configurations and
320  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321  */
322 struct usb_interface_cache {
323 	unsigned num_altsetting;	/* number of alternate settings */
324 	struct kref ref;		/* reference counter */
325 
326 	/* variable-length array of alternate settings for this interface,
327 	 * stored in no particular order */
328 	struct usb_host_interface altsetting[0];
329 };
330 #define	ref_to_usb_interface_cache(r) \
331 		container_of(r, struct usb_interface_cache, ref)
332 #define	altsetting_to_usb_interface_cache(a) \
333 		container_of(a, struct usb_interface_cache, altsetting[0])
334 
335 /**
336  * struct usb_host_config - representation of a device's configuration
337  * @desc: the device's configuration descriptor.
338  * @string: pointer to the cached version of the iConfiguration string, if
339  *	present for this configuration.
340  * @intf_assoc: list of any interface association descriptors in this config
341  * @interface: array of pointers to usb_interface structures, one for each
342  *	interface in the configuration.  The number of interfaces is stored
343  *	in desc.bNumInterfaces.  These pointers are valid only while the
344  *	the configuration is active.
345  * @intf_cache: array of pointers to usb_interface_cache structures, one
346  *	for each interface in the configuration.  These structures exist
347  *	for the entire life of the device.
348  * @extra: pointer to buffer containing all extra descriptors associated
349  *	with this configuration (those preceding the first interface
350  *	descriptor).
351  * @extralen: length of the extra descriptors buffer.
352  *
353  * USB devices may have multiple configurations, but only one can be active
354  * at any time.  Each encapsulates a different operational environment;
355  * for example, a dual-speed device would have separate configurations for
356  * full-speed and high-speed operation.  The number of configurations
357  * available is stored in the device descriptor as bNumConfigurations.
358  *
359  * A configuration can contain multiple interfaces.  Each corresponds to
360  * a different function of the USB device, and all are available whenever
361  * the configuration is active.  The USB standard says that interfaces
362  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363  * of devices get this wrong.  In addition, the interface array is not
364  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
365  * look up an interface entry based on its number.
366  *
367  * Device drivers should not attempt to activate configurations.  The choice
368  * of which configuration to install is a policy decision based on such
369  * considerations as available power, functionality provided, and the user's
370  * desires (expressed through userspace tools).  However, drivers can call
371  * usb_reset_configuration() to reinitialize the current configuration and
372  * all its interfaces.
373  */
374 struct usb_host_config {
375 	struct usb_config_descriptor	desc;
376 
377 	char *string;		/* iConfiguration string, if present */
378 
379 	/* List of any Interface Association Descriptors in this
380 	 * configuration. */
381 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382 
383 	/* the interfaces associated with this configuration,
384 	 * stored in no particular order */
385 	struct usb_interface *interface[USB_MAXINTERFACES];
386 
387 	/* Interface information available even when this is not the
388 	 * active configuration */
389 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390 
391 	unsigned char *extra;   /* Extra descriptors */
392 	int extralen;
393 };
394 
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397 	struct usb_bos_descriptor	*desc;
398 
399 	/* wireless cap descriptor is handled by wusb */
400 	struct usb_ext_cap_descriptor	*ext_cap;
401 	struct usb_ss_cap_descriptor	*ss_cap;
402 	struct usb_ssp_cap_descriptor	*ssp_cap;
403 	struct usb_ss_container_id_descriptor	*ss_id;
404 	struct usb_ptm_cap_descriptor	*ptm_cap;
405 };
406 
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408 	unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410 				__usb_get_extra_descriptor((ifpoint)->extra, \
411 				(ifpoint)->extralen, \
412 				type, (void **)ptr, sizeof(**(ptr)))
413 
414 /* ----------------------------------------------------------------------- */
415 
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420 
421 /*
422  * Allocated per bus (tree of devices) we have:
423  */
424 struct usb_bus {
425 	struct device *controller;	/* host/master side hardware */
426 	struct device *sysdev;		/* as seen from firmware or bus */
427 	int busnum;			/* Bus number (in order of reg) */
428 	const char *bus_name;		/* stable id (PCI slot_name etc) */
429 	u8 uses_pio_for_control;	/*
430 					 * Does the host controller use PIO
431 					 * for control transfers?
432 					 */
433 	u8 otg_port;			/* 0, or number of OTG/HNP port */
434 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
435 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
436 	unsigned no_stop_on_short:1;    /*
437 					 * Quirk: some controllers don't stop
438 					 * the ep queue on a short transfer
439 					 * with the URB_SHORT_NOT_OK flag set.
440 					 */
441 	unsigned no_sg_constraint:1;	/* no sg constraint */
442 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
443 
444 	int devnum_next;		/* Next open device number in
445 					 * round-robin allocation */
446 	struct mutex devnum_next_mutex; /* devnum_next mutex */
447 
448 	struct usb_devmap devmap;	/* device address allocation map */
449 	struct usb_device *root_hub;	/* Root hub */
450 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
451 
452 	int bandwidth_allocated;	/* on this bus: how much of the time
453 					 * reserved for periodic (intr/iso)
454 					 * requests is used, on average?
455 					 * Units: microseconds/frame.
456 					 * Limits: Full/low speed reserve 90%,
457 					 * while high speed reserves 80%.
458 					 */
459 	int bandwidth_int_reqs;		/* number of Interrupt requests */
460 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
461 
462 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
463 
464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
465 	struct mon_bus *mon_bus;	/* non-null when associated */
466 	int monitored;			/* non-zero when monitored */
467 #endif
468 };
469 
470 struct usb_dev_state;
471 
472 /* ----------------------------------------------------------------------- */
473 
474 struct usb_tt;
475 
476 enum usb_device_removable {
477 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
478 	USB_DEVICE_REMOVABLE,
479 	USB_DEVICE_FIXED,
480 };
481 
482 enum usb_port_connect_type {
483 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
484 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
485 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
486 	USB_PORT_NOT_USED,
487 };
488 
489 /*
490  * USB port quirks.
491  */
492 
493 /* For the given port, prefer the old (faster) enumeration scheme. */
494 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
495 
496 /* Decrease TRSTRCY to 10ms during device enumeration. */
497 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
498 
499 /*
500  * USB 2.0 Link Power Management (LPM) parameters.
501  */
502 struct usb2_lpm_parameters {
503 	/* Best effort service latency indicate how long the host will drive
504 	 * resume on an exit from L1.
505 	 */
506 	unsigned int besl;
507 
508 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
509 	 * When the timer counts to zero, the parent hub will initiate a LPM
510 	 * transition to L1.
511 	 */
512 	int timeout;
513 };
514 
515 /*
516  * USB 3.0 Link Power Management (LPM) parameters.
517  *
518  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
519  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
520  * All three are stored in nanoseconds.
521  */
522 struct usb3_lpm_parameters {
523 	/*
524 	 * Maximum exit latency (MEL) for the host to send a packet to the
525 	 * device (either a Ping for isoc endpoints, or a data packet for
526 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
527 	 * in the path to transition the links to U0.
528 	 */
529 	unsigned int mel;
530 	/*
531 	 * Maximum exit latency for a device-initiated LPM transition to bring
532 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
533 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
534 	 */
535 	unsigned int pel;
536 
537 	/*
538 	 * The System Exit Latency (SEL) includes PEL, and three other
539 	 * latencies.  After a device initiates a U0 transition, it will take
540 	 * some time from when the device sends the ERDY to when it will finally
541 	 * receive the data packet.  Basically, SEL should be the worse-case
542 	 * latency from when a device starts initiating a U0 transition to when
543 	 * it will get data.
544 	 */
545 	unsigned int sel;
546 	/*
547 	 * The idle timeout value that is currently programmed into the parent
548 	 * hub for this device.  When the timer counts to zero, the parent hub
549 	 * will initiate an LPM transition to either U1 or U2.
550 	 */
551 	int timeout;
552 };
553 
554 /**
555  * struct usb_device - kernel's representation of a USB device
556  * @devnum: device number; address on a USB bus
557  * @devpath: device ID string for use in messages (e.g., /port/...)
558  * @route: tree topology hex string for use with xHCI
559  * @state: device state: configured, not attached, etc.
560  * @speed: device speed: high/full/low (or error)
561  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
562  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
563  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
564  * @ttport: device port on that tt hub
565  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
566  * @parent: our hub, unless we're the root
567  * @bus: bus we're part of
568  * @ep0: endpoint 0 data (default control pipe)
569  * @dev: generic device interface
570  * @descriptor: USB device descriptor
571  * @bos: USB device BOS descriptor set
572  * @config: all of the device's configs
573  * @actconfig: the active configuration
574  * @ep_in: array of IN endpoints
575  * @ep_out: array of OUT endpoints
576  * @rawdescriptors: raw descriptors for each config
577  * @bus_mA: Current available from the bus
578  * @portnum: parent port number (origin 1)
579  * @level: number of USB hub ancestors
580  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
581  * @can_submit: URBs may be submitted
582  * @persist_enabled:  USB_PERSIST enabled for this device
583  * @have_langid: whether string_langid is valid
584  * @authorized: policy has said we can use it;
585  *	(user space) policy determines if we authorize this device to be
586  *	used or not. By default, wired USB devices are authorized.
587  *	WUSB devices are not, until we authorize them from user space.
588  *	FIXME -- complete doc
589  * @authenticated: Crypto authentication passed
590  * @wusb: device is Wireless USB
591  * @lpm_capable: device supports LPM
592  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
593  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
594  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
595  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
596  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
597  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
598  * @string_langid: language ID for strings
599  * @product: iProduct string, if present (static)
600  * @manufacturer: iManufacturer string, if present (static)
601  * @serial: iSerialNumber string, if present (static)
602  * @filelist: usbfs files that are open to this device
603  * @maxchild: number of ports if hub
604  * @quirks: quirks of the whole device
605  * @urbnum: number of URBs submitted for the whole device
606  * @active_duration: total time device is not suspended
607  * @connect_time: time device was first connected
608  * @do_remote_wakeup:  remote wakeup should be enabled
609  * @reset_resume: needs reset instead of resume
610  * @port_is_suspended: the upstream port is suspended (L2 or U3)
611  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
612  *	specific data for the device.
613  * @slot_id: Slot ID assigned by xHCI
614  * @removable: Device can be physically removed from this port
615  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
616  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
617  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
618  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
619  *	to keep track of the number of functions that require USB 3.0 Link Power
620  *	Management to be disabled for this usb_device.  This count should only
621  *	be manipulated by those functions, with the bandwidth_mutex is held.
622  * @hub_delay: cached value consisting of:
623  *		parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
624  *
625  *	Will be used as wValue for SetIsochDelay requests.
626  *
627  * Notes:
628  * Usbcore drivers should not set usbdev->state directly.  Instead use
629  * usb_set_device_state().
630  */
631 struct usb_device {
632 	int		devnum;
633 	char		devpath[16];
634 	u32		route;
635 	enum usb_device_state	state;
636 	enum usb_device_speed	speed;
637 	unsigned int		rx_lanes;
638 	unsigned int		tx_lanes;
639 
640 	struct usb_tt	*tt;
641 	int		ttport;
642 
643 	unsigned int toggle[2];
644 
645 	struct usb_device *parent;
646 	struct usb_bus *bus;
647 	struct usb_host_endpoint ep0;
648 
649 	struct device dev;
650 
651 	struct usb_device_descriptor descriptor;
652 	struct usb_host_bos *bos;
653 	struct usb_host_config *config;
654 
655 	struct usb_host_config *actconfig;
656 	struct usb_host_endpoint *ep_in[16];
657 	struct usb_host_endpoint *ep_out[16];
658 
659 	char **rawdescriptors;
660 
661 	unsigned short bus_mA;
662 	u8 portnum;
663 	u8 level;
664 	u8 devaddr;
665 
666 	unsigned can_submit:1;
667 	unsigned persist_enabled:1;
668 	unsigned have_langid:1;
669 	unsigned authorized:1;
670 	unsigned authenticated:1;
671 	unsigned wusb:1;
672 	unsigned lpm_capable:1;
673 	unsigned usb2_hw_lpm_capable:1;
674 	unsigned usb2_hw_lpm_besl_capable:1;
675 	unsigned usb2_hw_lpm_enabled:1;
676 	unsigned usb2_hw_lpm_allowed:1;
677 	unsigned usb3_lpm_u1_enabled:1;
678 	unsigned usb3_lpm_u2_enabled:1;
679 	int string_langid;
680 
681 	/* static strings from the device */
682 	char *product;
683 	char *manufacturer;
684 	char *serial;
685 
686 	struct list_head filelist;
687 
688 	int maxchild;
689 
690 	u32 quirks;
691 	atomic_t urbnum;
692 
693 	unsigned long active_duration;
694 
695 #ifdef CONFIG_PM
696 	unsigned long connect_time;
697 
698 	unsigned do_remote_wakeup:1;
699 	unsigned reset_resume:1;
700 	unsigned port_is_suspended:1;
701 #endif
702 	struct wusb_dev *wusb_dev;
703 	int slot_id;
704 	enum usb_device_removable removable;
705 	struct usb2_lpm_parameters l1_params;
706 	struct usb3_lpm_parameters u1_params;
707 	struct usb3_lpm_parameters u2_params;
708 	unsigned lpm_disable_count;
709 
710 	u16 hub_delay;
711 };
712 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
713 
interface_to_usbdev(struct usb_interface * intf)714 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
715 {
716 	return to_usb_device(intf->dev.parent);
717 }
718 
719 extern struct usb_device *usb_get_dev(struct usb_device *dev);
720 extern void usb_put_dev(struct usb_device *dev);
721 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
722 	int port1);
723 
724 /**
725  * usb_hub_for_each_child - iterate over all child devices on the hub
726  * @hdev:  USB device belonging to the usb hub
727  * @port1: portnum associated with child device
728  * @child: child device pointer
729  */
730 #define usb_hub_for_each_child(hdev, port1, child) \
731 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
732 			port1 <= hdev->maxchild; \
733 			child = usb_hub_find_child(hdev, ++port1)) \
734 		if (!child) continue; else
735 
736 /* USB device locking */
737 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
738 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
739 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
740 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
741 extern int usb_lock_device_for_reset(struct usb_device *udev,
742 				     const struct usb_interface *iface);
743 
744 /* USB port reset for device reinitialization */
745 extern int usb_reset_device(struct usb_device *dev);
746 extern void usb_queue_reset_device(struct usb_interface *dev);
747 
748 #ifdef CONFIG_ACPI
749 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
750 	bool enable);
751 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
752 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)753 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
754 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)755 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
756 	{ return true; }
757 #endif
758 
759 /* USB autosuspend and autoresume */
760 #ifdef CONFIG_PM
761 extern void usb_enable_autosuspend(struct usb_device *udev);
762 extern void usb_disable_autosuspend(struct usb_device *udev);
763 
764 extern int usb_autopm_get_interface(struct usb_interface *intf);
765 extern void usb_autopm_put_interface(struct usb_interface *intf);
766 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
767 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
768 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
769 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
770 
usb_mark_last_busy(struct usb_device * udev)771 static inline void usb_mark_last_busy(struct usb_device *udev)
772 {
773 	pm_runtime_mark_last_busy(&udev->dev);
774 }
775 
776 #else
777 
usb_enable_autosuspend(struct usb_device * udev)778 static inline int usb_enable_autosuspend(struct usb_device *udev)
779 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)780 static inline int usb_disable_autosuspend(struct usb_device *udev)
781 { return 0; }
782 
usb_autopm_get_interface(struct usb_interface * intf)783 static inline int usb_autopm_get_interface(struct usb_interface *intf)
784 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)785 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
786 { return 0; }
787 
usb_autopm_put_interface(struct usb_interface * intf)788 static inline void usb_autopm_put_interface(struct usb_interface *intf)
789 { }
usb_autopm_put_interface_async(struct usb_interface * intf)790 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
791 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)792 static inline void usb_autopm_get_interface_no_resume(
793 		struct usb_interface *intf)
794 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)795 static inline void usb_autopm_put_interface_no_suspend(
796 		struct usb_interface *intf)
797 { }
usb_mark_last_busy(struct usb_device * udev)798 static inline void usb_mark_last_busy(struct usb_device *udev)
799 { }
800 #endif
801 
802 extern int usb_disable_lpm(struct usb_device *udev);
803 extern void usb_enable_lpm(struct usb_device *udev);
804 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
805 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
806 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
807 
808 extern int usb_disable_ltm(struct usb_device *udev);
809 extern void usb_enable_ltm(struct usb_device *udev);
810 
usb_device_supports_ltm(struct usb_device * udev)811 static inline bool usb_device_supports_ltm(struct usb_device *udev)
812 {
813 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
814 		return false;
815 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
816 }
817 
usb_device_no_sg_constraint(struct usb_device * udev)818 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
819 {
820 	return udev && udev->bus && udev->bus->no_sg_constraint;
821 }
822 
823 
824 /*-------------------------------------------------------------------------*/
825 
826 /* for drivers using iso endpoints */
827 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
828 
829 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
830 extern int usb_alloc_streams(struct usb_interface *interface,
831 		struct usb_host_endpoint **eps, unsigned int num_eps,
832 		unsigned int num_streams, gfp_t mem_flags);
833 
834 /* Reverts a group of bulk endpoints back to not using stream IDs. */
835 extern int usb_free_streams(struct usb_interface *interface,
836 		struct usb_host_endpoint **eps, unsigned int num_eps,
837 		gfp_t mem_flags);
838 
839 /* used these for multi-interface device registration */
840 extern int usb_driver_claim_interface(struct usb_driver *driver,
841 			struct usb_interface *iface, void *priv);
842 
843 /**
844  * usb_interface_claimed - returns true iff an interface is claimed
845  * @iface: the interface being checked
846  *
847  * Return: %true (nonzero) iff the interface is claimed, else %false
848  * (zero).
849  *
850  * Note:
851  * Callers must own the driver model's usb bus readlock.  So driver
852  * probe() entries don't need extra locking, but other call contexts
853  * may need to explicitly claim that lock.
854  *
855  */
usb_interface_claimed(struct usb_interface * iface)856 static inline int usb_interface_claimed(struct usb_interface *iface)
857 {
858 	return (iface->dev.driver != NULL);
859 }
860 
861 extern void usb_driver_release_interface(struct usb_driver *driver,
862 			struct usb_interface *iface);
863 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
864 					 const struct usb_device_id *id);
865 extern int usb_match_one_id(struct usb_interface *interface,
866 			    const struct usb_device_id *id);
867 
868 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
869 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
870 		int minor);
871 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
872 		unsigned ifnum);
873 extern struct usb_host_interface *usb_altnum_to_altsetting(
874 		const struct usb_interface *intf, unsigned int altnum);
875 extern struct usb_host_interface *usb_find_alt_setting(
876 		struct usb_host_config *config,
877 		unsigned int iface_num,
878 		unsigned int alt_num);
879 
880 /* port claiming functions */
881 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
882 		struct usb_dev_state *owner);
883 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
884 		struct usb_dev_state *owner);
885 
886 /**
887  * usb_make_path - returns stable device path in the usb tree
888  * @dev: the device whose path is being constructed
889  * @buf: where to put the string
890  * @size: how big is "buf"?
891  *
892  * Return: Length of the string (> 0) or negative if size was too small.
893  *
894  * Note:
895  * This identifier is intended to be "stable", reflecting physical paths in
896  * hardware such as physical bus addresses for host controllers or ports on
897  * USB hubs.  That makes it stay the same until systems are physically
898  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
899  * controllers.  Adding and removing devices, including virtual root hubs
900  * in host controller driver modules, does not change these path identifiers;
901  * neither does rebooting or re-enumerating.  These are more useful identifiers
902  * than changeable ("unstable") ones like bus numbers or device addresses.
903  *
904  * With a partial exception for devices connected to USB 2.0 root hubs, these
905  * identifiers are also predictable.  So long as the device tree isn't changed,
906  * plugging any USB device into a given hub port always gives it the same path.
907  * Because of the use of "companion" controllers, devices connected to ports on
908  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
909  * high speed, and a different one if they are full or low speed.
910  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)911 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
912 {
913 	int actual;
914 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
915 			  dev->devpath);
916 	return (actual >= (int)size) ? -1 : actual;
917 }
918 
919 /*-------------------------------------------------------------------------*/
920 
921 #define USB_DEVICE_ID_MATCH_DEVICE \
922 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
923 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
924 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
925 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
926 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
927 #define USB_DEVICE_ID_MATCH_DEV_INFO \
928 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
929 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
930 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
931 #define USB_DEVICE_ID_MATCH_INT_INFO \
932 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
933 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
934 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
935 
936 /**
937  * USB_DEVICE - macro used to describe a specific usb device
938  * @vend: the 16 bit USB Vendor ID
939  * @prod: the 16 bit USB Product ID
940  *
941  * This macro is used to create a struct usb_device_id that matches a
942  * specific device.
943  */
944 #define USB_DEVICE(vend, prod) \
945 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
946 	.idVendor = (vend), \
947 	.idProduct = (prod)
948 /**
949  * USB_DEVICE_VER - describe a specific usb device with a version range
950  * @vend: the 16 bit USB Vendor ID
951  * @prod: the 16 bit USB Product ID
952  * @lo: the bcdDevice_lo value
953  * @hi: the bcdDevice_hi value
954  *
955  * This macro is used to create a struct usb_device_id that matches a
956  * specific device, with a version range.
957  */
958 #define USB_DEVICE_VER(vend, prod, lo, hi) \
959 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
960 	.idVendor = (vend), \
961 	.idProduct = (prod), \
962 	.bcdDevice_lo = (lo), \
963 	.bcdDevice_hi = (hi)
964 
965 /**
966  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
967  * @vend: the 16 bit USB Vendor ID
968  * @prod: the 16 bit USB Product ID
969  * @cl: bInterfaceClass value
970  *
971  * This macro is used to create a struct usb_device_id that matches a
972  * specific interface class of devices.
973  */
974 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
975 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
976 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
977 	.idVendor = (vend), \
978 	.idProduct = (prod), \
979 	.bInterfaceClass = (cl)
980 
981 /**
982  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
983  * @vend: the 16 bit USB Vendor ID
984  * @prod: the 16 bit USB Product ID
985  * @pr: bInterfaceProtocol value
986  *
987  * This macro is used to create a struct usb_device_id that matches a
988  * specific interface protocol of devices.
989  */
990 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
991 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
992 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
993 	.idVendor = (vend), \
994 	.idProduct = (prod), \
995 	.bInterfaceProtocol = (pr)
996 
997 /**
998  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
999  * @vend: the 16 bit USB Vendor ID
1000  * @prod: the 16 bit USB Product ID
1001  * @num: bInterfaceNumber value
1002  *
1003  * This macro is used to create a struct usb_device_id that matches a
1004  * specific interface number of devices.
1005  */
1006 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1007 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1008 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1009 	.idVendor = (vend), \
1010 	.idProduct = (prod), \
1011 	.bInterfaceNumber = (num)
1012 
1013 /**
1014  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1015  * @cl: bDeviceClass value
1016  * @sc: bDeviceSubClass value
1017  * @pr: bDeviceProtocol value
1018  *
1019  * This macro is used to create a struct usb_device_id that matches a
1020  * specific class of devices.
1021  */
1022 #define USB_DEVICE_INFO(cl, sc, pr) \
1023 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1024 	.bDeviceClass = (cl), \
1025 	.bDeviceSubClass = (sc), \
1026 	.bDeviceProtocol = (pr)
1027 
1028 /**
1029  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1030  * @cl: bInterfaceClass value
1031  * @sc: bInterfaceSubClass value
1032  * @pr: bInterfaceProtocol value
1033  *
1034  * This macro is used to create a struct usb_device_id that matches a
1035  * specific class of interfaces.
1036  */
1037 #define USB_INTERFACE_INFO(cl, sc, pr) \
1038 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1039 	.bInterfaceClass = (cl), \
1040 	.bInterfaceSubClass = (sc), \
1041 	.bInterfaceProtocol = (pr)
1042 
1043 /**
1044  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1045  * @vend: the 16 bit USB Vendor ID
1046  * @prod: the 16 bit USB Product ID
1047  * @cl: bInterfaceClass value
1048  * @sc: bInterfaceSubClass value
1049  * @pr: bInterfaceProtocol value
1050  *
1051  * This macro is used to create a struct usb_device_id that matches a
1052  * specific device with a specific class of interfaces.
1053  *
1054  * This is especially useful when explicitly matching devices that have
1055  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1056  */
1057 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1058 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1059 		| USB_DEVICE_ID_MATCH_DEVICE, \
1060 	.idVendor = (vend), \
1061 	.idProduct = (prod), \
1062 	.bInterfaceClass = (cl), \
1063 	.bInterfaceSubClass = (sc), \
1064 	.bInterfaceProtocol = (pr)
1065 
1066 /**
1067  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1068  * @vend: the 16 bit USB Vendor ID
1069  * @cl: bInterfaceClass value
1070  * @sc: bInterfaceSubClass value
1071  * @pr: bInterfaceProtocol value
1072  *
1073  * This macro is used to create a struct usb_device_id that matches a
1074  * specific vendor with a specific class of interfaces.
1075  *
1076  * This is especially useful when explicitly matching devices that have
1077  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1078  */
1079 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1080 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1081 		| USB_DEVICE_ID_MATCH_VENDOR, \
1082 	.idVendor = (vend), \
1083 	.bInterfaceClass = (cl), \
1084 	.bInterfaceSubClass = (sc), \
1085 	.bInterfaceProtocol = (pr)
1086 
1087 /* ----------------------------------------------------------------------- */
1088 
1089 /* Stuff for dynamic usb ids */
1090 struct usb_dynids {
1091 	spinlock_t lock;
1092 	struct list_head list;
1093 };
1094 
1095 struct usb_dynid {
1096 	struct list_head node;
1097 	struct usb_device_id id;
1098 };
1099 
1100 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1101 				const struct usb_device_id *id_table,
1102 				struct device_driver *driver,
1103 				const char *buf, size_t count);
1104 
1105 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1106 
1107 /**
1108  * struct usbdrv_wrap - wrapper for driver-model structure
1109  * @driver: The driver-model core driver structure.
1110  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1111  */
1112 struct usbdrv_wrap {
1113 	struct device_driver driver;
1114 	int for_devices;
1115 };
1116 
1117 /**
1118  * struct usb_driver - identifies USB interface driver to usbcore
1119  * @name: The driver name should be unique among USB drivers,
1120  *	and should normally be the same as the module name.
1121  * @probe: Called to see if the driver is willing to manage a particular
1122  *	interface on a device.  If it is, probe returns zero and uses
1123  *	usb_set_intfdata() to associate driver-specific data with the
1124  *	interface.  It may also use usb_set_interface() to specify the
1125  *	appropriate altsetting.  If unwilling to manage the interface,
1126  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1127  *	negative errno value.
1128  * @disconnect: Called when the interface is no longer accessible, usually
1129  *	because its device has been (or is being) disconnected or the
1130  *	driver module is being unloaded.
1131  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1132  *	the "usbfs" filesystem.  This lets devices provide ways to
1133  *	expose information to user space regardless of where they
1134  *	do (or don't) show up otherwise in the filesystem.
1135  * @suspend: Called when the device is going to be suspended by the
1136  *	system either from system sleep or runtime suspend context. The
1137  *	return value will be ignored in system sleep context, so do NOT
1138  *	try to continue using the device if suspend fails in this case.
1139  *	Instead, let the resume or reset-resume routine recover from
1140  *	the failure.
1141  * @resume: Called when the device is being resumed by the system.
1142  * @reset_resume: Called when the suspended device has been reset instead
1143  *	of being resumed.
1144  * @pre_reset: Called by usb_reset_device() when the device is about to be
1145  *	reset.  This routine must not return until the driver has no active
1146  *	URBs for the device, and no more URBs may be submitted until the
1147  *	post_reset method is called.
1148  * @post_reset: Called by usb_reset_device() after the device
1149  *	has been reset
1150  * @id_table: USB drivers use ID table to support hotplugging.
1151  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1152  *	or your driver's probe function will never get called.
1153  * @dev_groups: Attributes attached to the device that will be created once it
1154  *	is bound to the driver.
1155  * @dynids: used internally to hold the list of dynamically added device
1156  *	ids for this driver.
1157  * @drvwrap: Driver-model core structure wrapper.
1158  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1159  *	added to this driver by preventing the sysfs file from being created.
1160  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1161  *	for interfaces bound to this driver.
1162  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1163  *	endpoints before calling the driver's disconnect method.
1164  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1165  *	to initiate lower power link state transitions when an idle timeout
1166  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1167  *
1168  * USB interface drivers must provide a name, probe() and disconnect()
1169  * methods, and an id_table.  Other driver fields are optional.
1170  *
1171  * The id_table is used in hotplugging.  It holds a set of descriptors,
1172  * and specialized data may be associated with each entry.  That table
1173  * is used by both user and kernel mode hotplugging support.
1174  *
1175  * The probe() and disconnect() methods are called in a context where
1176  * they can sleep, but they should avoid abusing the privilege.  Most
1177  * work to connect to a device should be done when the device is opened,
1178  * and undone at the last close.  The disconnect code needs to address
1179  * concurrency issues with respect to open() and close() methods, as
1180  * well as forcing all pending I/O requests to complete (by unlinking
1181  * them as necessary, and blocking until the unlinks complete).
1182  */
1183 struct usb_driver {
1184 	const char *name;
1185 
1186 	int (*probe) (struct usb_interface *intf,
1187 		      const struct usb_device_id *id);
1188 
1189 	void (*disconnect) (struct usb_interface *intf);
1190 
1191 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1192 			void *buf);
1193 
1194 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1195 	int (*resume) (struct usb_interface *intf);
1196 	int (*reset_resume)(struct usb_interface *intf);
1197 
1198 	int (*pre_reset)(struct usb_interface *intf);
1199 	int (*post_reset)(struct usb_interface *intf);
1200 
1201 	const struct usb_device_id *id_table;
1202 	const struct attribute_group **dev_groups;
1203 
1204 	struct usb_dynids dynids;
1205 	struct usbdrv_wrap drvwrap;
1206 	unsigned int no_dynamic_id:1;
1207 	unsigned int supports_autosuspend:1;
1208 	unsigned int disable_hub_initiated_lpm:1;
1209 	unsigned int soft_unbind:1;
1210 };
1211 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1212 
1213 /**
1214  * struct usb_device_driver - identifies USB device driver to usbcore
1215  * @name: The driver name should be unique among USB drivers,
1216  *	and should normally be the same as the module name.
1217  * @probe: Called to see if the driver is willing to manage a particular
1218  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1219  *	to associate driver-specific data with the device.  If unwilling
1220  *	to manage the device, return a negative errno value.
1221  * @disconnect: Called when the device is no longer accessible, usually
1222  *	because it has been (or is being) disconnected or the driver's
1223  *	module is being unloaded.
1224  * @suspend: Called when the device is going to be suspended by the system.
1225  * @resume: Called when the device is being resumed by the system.
1226  * @dev_groups: Attributes attached to the device that will be created once it
1227  *	is bound to the driver.
1228  * @drvwrap: Driver-model core structure wrapper.
1229  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1230  *	for devices bound to this driver.
1231  *
1232  * USB drivers must provide all the fields listed above except drvwrap.
1233  */
1234 struct usb_device_driver {
1235 	const char *name;
1236 
1237 	int (*probe) (struct usb_device *udev);
1238 	void (*disconnect) (struct usb_device *udev);
1239 
1240 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1241 	int (*resume) (struct usb_device *udev, pm_message_t message);
1242 	const struct attribute_group **dev_groups;
1243 	struct usbdrv_wrap drvwrap;
1244 	unsigned int supports_autosuspend:1;
1245 };
1246 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1247 		drvwrap.driver)
1248 
1249 extern struct bus_type usb_bus_type;
1250 
1251 /**
1252  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1253  * @name: the usb class device name for this driver.  Will show up in sysfs.
1254  * @devnode: Callback to provide a naming hint for a possible
1255  *	device node to create.
1256  * @fops: pointer to the struct file_operations of this driver.
1257  * @minor_base: the start of the minor range for this driver.
1258  *
1259  * This structure is used for the usb_register_dev() and
1260  * usb_deregister_dev() functions, to consolidate a number of the
1261  * parameters used for them.
1262  */
1263 struct usb_class_driver {
1264 	char *name;
1265 	char *(*devnode)(struct device *dev, umode_t *mode);
1266 	const struct file_operations *fops;
1267 	int minor_base;
1268 };
1269 
1270 /*
1271  * use these in module_init()/module_exit()
1272  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1273  */
1274 extern int usb_register_driver(struct usb_driver *, struct module *,
1275 			       const char *);
1276 
1277 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1278 #define usb_register(driver) \
1279 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1280 
1281 extern void usb_deregister(struct usb_driver *);
1282 
1283 /**
1284  * module_usb_driver() - Helper macro for registering a USB driver
1285  * @__usb_driver: usb_driver struct
1286  *
1287  * Helper macro for USB drivers which do not do anything special in module
1288  * init/exit. This eliminates a lot of boilerplate. Each module may only
1289  * use this macro once, and calling it replaces module_init() and module_exit()
1290  */
1291 #define module_usb_driver(__usb_driver) \
1292 	module_driver(__usb_driver, usb_register, \
1293 		       usb_deregister)
1294 
1295 extern int usb_register_device_driver(struct usb_device_driver *,
1296 			struct module *);
1297 extern void usb_deregister_device_driver(struct usb_device_driver *);
1298 
1299 extern int usb_register_dev(struct usb_interface *intf,
1300 			    struct usb_class_driver *class_driver);
1301 extern void usb_deregister_dev(struct usb_interface *intf,
1302 			       struct usb_class_driver *class_driver);
1303 
1304 extern int usb_disabled(void);
1305 
1306 /* ----------------------------------------------------------------------- */
1307 
1308 /*
1309  * URB support, for asynchronous request completions
1310  */
1311 
1312 /*
1313  * urb->transfer_flags:
1314  *
1315  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1316  */
1317 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1318 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1319 					 * slot in the schedule */
1320 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1321 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1322 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1323 					 * needed */
1324 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1325 
1326 /* The following flags are used internally by usbcore and HCDs */
1327 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1328 #define URB_DIR_OUT		0
1329 #define URB_DIR_MASK		URB_DIR_IN
1330 
1331 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1332 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1333 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1334 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1335 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1336 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1337 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1338 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1339 
1340 struct usb_iso_packet_descriptor {
1341 	unsigned int offset;
1342 	unsigned int length;		/* expected length */
1343 	unsigned int actual_length;
1344 	int status;
1345 };
1346 
1347 struct urb;
1348 
1349 struct usb_anchor {
1350 	struct list_head urb_list;
1351 	wait_queue_head_t wait;
1352 	spinlock_t lock;
1353 	atomic_t suspend_wakeups;
1354 	unsigned int poisoned:1;
1355 };
1356 
init_usb_anchor(struct usb_anchor * anchor)1357 static inline void init_usb_anchor(struct usb_anchor *anchor)
1358 {
1359 	memset(anchor, 0, sizeof(*anchor));
1360 	INIT_LIST_HEAD(&anchor->urb_list);
1361 	init_waitqueue_head(&anchor->wait);
1362 	spin_lock_init(&anchor->lock);
1363 }
1364 
1365 typedef void (*usb_complete_t)(struct urb *);
1366 
1367 /**
1368  * struct urb - USB Request Block
1369  * @urb_list: For use by current owner of the URB.
1370  * @anchor_list: membership in the list of an anchor
1371  * @anchor: to anchor URBs to a common mooring
1372  * @ep: Points to the endpoint's data structure.  Will eventually
1373  *	replace @pipe.
1374  * @pipe: Holds endpoint number, direction, type, and more.
1375  *	Create these values with the eight macros available;
1376  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1377  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1378  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1379  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1380  *	is a different endpoint (and pipe) from "out" endpoint two.
1381  *	The current configuration controls the existence, type, and
1382  *	maximum packet size of any given endpoint.
1383  * @stream_id: the endpoint's stream ID for bulk streams
1384  * @dev: Identifies the USB device to perform the request.
1385  * @status: This is read in non-iso completion functions to get the
1386  *	status of the particular request.  ISO requests only use it
1387  *	to tell whether the URB was unlinked; detailed status for
1388  *	each frame is in the fields of the iso_frame-desc.
1389  * @transfer_flags: A variety of flags may be used to affect how URB
1390  *	submission, unlinking, or operation are handled.  Different
1391  *	kinds of URB can use different flags.
1392  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1393  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1394  *	(however, do not leave garbage in transfer_buffer even then).
1395  *	This buffer must be suitable for DMA; allocate it with
1396  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1397  *	of this buffer will be modified.  This buffer is used for the data
1398  *	stage of control transfers.
1399  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1400  *	the device driver is saying that it provided this DMA address,
1401  *	which the host controller driver should use in preference to the
1402  *	transfer_buffer.
1403  * @sg: scatter gather buffer list, the buffer size of each element in
1404  * 	the list (except the last) must be divisible by the endpoint's
1405  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1406  * @num_mapped_sgs: (internal) number of mapped sg entries
1407  * @num_sgs: number of entries in the sg list
1408  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1409  *	be broken up into chunks according to the current maximum packet
1410  *	size for the endpoint, which is a function of the configuration
1411  *	and is encoded in the pipe.  When the length is zero, neither
1412  *	transfer_buffer nor transfer_dma is used.
1413  * @actual_length: This is read in non-iso completion functions, and
1414  *	it tells how many bytes (out of transfer_buffer_length) were
1415  *	transferred.  It will normally be the same as requested, unless
1416  *	either an error was reported or a short read was performed.
1417  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1418  *	short reads be reported as errors.
1419  * @setup_packet: Only used for control transfers, this points to eight bytes
1420  *	of setup data.  Control transfers always start by sending this data
1421  *	to the device.  Then transfer_buffer is read or written, if needed.
1422  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1423  *	this field; setup_packet must point to a valid buffer.
1424  * @start_frame: Returns the initial frame for isochronous transfers.
1425  * @number_of_packets: Lists the number of ISO transfer buffers.
1426  * @interval: Specifies the polling interval for interrupt or isochronous
1427  *	transfers.  The units are frames (milliseconds) for full and low
1428  *	speed devices, and microframes (1/8 millisecond) for highspeed
1429  *	and SuperSpeed devices.
1430  * @error_count: Returns the number of ISO transfers that reported errors.
1431  * @context: For use in completion functions.  This normally points to
1432  *	request-specific driver context.
1433  * @complete: Completion handler. This URB is passed as the parameter to the
1434  *	completion function.  The completion function may then do what
1435  *	it likes with the URB, including resubmitting or freeing it.
1436  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1437  *	collect the transfer status for each buffer.
1438  *
1439  * This structure identifies USB transfer requests.  URBs must be allocated by
1440  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1441  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1442  * are submitted using usb_submit_urb(), and pending requests may be canceled
1443  * using usb_unlink_urb() or usb_kill_urb().
1444  *
1445  * Data Transfer Buffers:
1446  *
1447  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1448  * taken from the general page pool.  That is provided by transfer_buffer
1449  * (control requests also use setup_packet), and host controller drivers
1450  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1451  * mapping operations can be expensive on some platforms (perhaps using a dma
1452  * bounce buffer or talking to an IOMMU),
1453  * although they're cheap on commodity x86 and ppc hardware.
1454  *
1455  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1456  * which tells the host controller driver that no such mapping is needed for
1457  * the transfer_buffer since
1458  * the device driver is DMA-aware.  For example, a device driver might
1459  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1460  * When this transfer flag is provided, host controller drivers will
1461  * attempt to use the dma address found in the transfer_dma
1462  * field rather than determining a dma address themselves.
1463  *
1464  * Note that transfer_buffer must still be set if the controller
1465  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1466  * to root hub. If you have to trasfer between highmem zone and the device
1467  * on such controller, create a bounce buffer or bail out with an error.
1468  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1469  * capable, assign NULL to it, so that usbmon knows not to use the value.
1470  * The setup_packet must always be set, so it cannot be located in highmem.
1471  *
1472  * Initialization:
1473  *
1474  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1475  * zero), and complete fields.  All URBs must also initialize
1476  * transfer_buffer and transfer_buffer_length.  They may provide the
1477  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1478  * to be treated as errors; that flag is invalid for write requests.
1479  *
1480  * Bulk URBs may
1481  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1482  * should always terminate with a short packet, even if it means adding an
1483  * extra zero length packet.
1484  *
1485  * Control URBs must provide a valid pointer in the setup_packet field.
1486  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1487  * beforehand.
1488  *
1489  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1490  * or, for highspeed devices, 125 microsecond units)
1491  * to poll for transfers.  After the URB has been submitted, the interval
1492  * field reflects how the transfer was actually scheduled.
1493  * The polling interval may be more frequent than requested.
1494  * For example, some controllers have a maximum interval of 32 milliseconds,
1495  * while others support intervals of up to 1024 milliseconds.
1496  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1497  * endpoints, as well as high speed interrupt endpoints, the encoding of
1498  * the transfer interval in the endpoint descriptor is logarithmic.
1499  * Device drivers must convert that value to linear units themselves.)
1500  *
1501  * If an isochronous endpoint queue isn't already running, the host
1502  * controller will schedule a new URB to start as soon as bandwidth
1503  * utilization allows.  If the queue is running then a new URB will be
1504  * scheduled to start in the first transfer slot following the end of the
1505  * preceding URB, if that slot has not already expired.  If the slot has
1506  * expired (which can happen when IRQ delivery is delayed for a long time),
1507  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1508  * is clear then the URB will be scheduled to start in the expired slot,
1509  * implying that some of its packets will not be transferred; if the flag
1510  * is set then the URB will be scheduled in the first unexpired slot,
1511  * breaking the queue's synchronization.  Upon URB completion, the
1512  * start_frame field will be set to the (micro)frame number in which the
1513  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1514  * and can go from as low as 256 to as high as 65536 frames.
1515  *
1516  * Isochronous URBs have a different data transfer model, in part because
1517  * the quality of service is only "best effort".  Callers provide specially
1518  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1519  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1520  * URBs are normally queued, submitted by drivers to arrange that
1521  * transfers are at least double buffered, and then explicitly resubmitted
1522  * in completion handlers, so
1523  * that data (such as audio or video) streams at as constant a rate as the
1524  * host controller scheduler can support.
1525  *
1526  * Completion Callbacks:
1527  *
1528  * The completion callback is made in_interrupt(), and one of the first
1529  * things that a completion handler should do is check the status field.
1530  * The status field is provided for all URBs.  It is used to report
1531  * unlinked URBs, and status for all non-ISO transfers.  It should not
1532  * be examined before the URB is returned to the completion handler.
1533  *
1534  * The context field is normally used to link URBs back to the relevant
1535  * driver or request state.
1536  *
1537  * When the completion callback is invoked for non-isochronous URBs, the
1538  * actual_length field tells how many bytes were transferred.  This field
1539  * is updated even when the URB terminated with an error or was unlinked.
1540  *
1541  * ISO transfer status is reported in the status and actual_length fields
1542  * of the iso_frame_desc array, and the number of errors is reported in
1543  * error_count.  Completion callbacks for ISO transfers will normally
1544  * (re)submit URBs to ensure a constant transfer rate.
1545  *
1546  * Note that even fields marked "public" should not be touched by the driver
1547  * when the urb is owned by the hcd, that is, since the call to
1548  * usb_submit_urb() till the entry into the completion routine.
1549  */
1550 struct urb {
1551 	/* private: usb core and host controller only fields in the urb */
1552 	struct kref kref;		/* reference count of the URB */
1553 	int unlinked;			/* unlink error code */
1554 	void *hcpriv;			/* private data for host controller */
1555 	atomic_t use_count;		/* concurrent submissions counter */
1556 	atomic_t reject;		/* submissions will fail */
1557 
1558 	/* public: documented fields in the urb that can be used by drivers */
1559 	struct list_head urb_list;	/* list head for use by the urb's
1560 					 * current owner */
1561 	struct list_head anchor_list;	/* the URB may be anchored */
1562 	struct usb_anchor *anchor;
1563 	struct usb_device *dev;		/* (in) pointer to associated device */
1564 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1565 	unsigned int pipe;		/* (in) pipe information */
1566 	unsigned int stream_id;		/* (in) stream ID */
1567 	int status;			/* (return) non-ISO status */
1568 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1569 	void *transfer_buffer;		/* (in) associated data buffer */
1570 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1571 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1572 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1573 	int num_sgs;			/* (in) number of entries in the sg list */
1574 	u32 transfer_buffer_length;	/* (in) data buffer length */
1575 	u32 actual_length;		/* (return) actual transfer length */
1576 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1577 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1578 	int start_frame;		/* (modify) start frame (ISO) */
1579 	int number_of_packets;		/* (in) number of ISO packets */
1580 	int interval;			/* (modify) transfer interval
1581 					 * (INT/ISO) */
1582 	int error_count;		/* (return) number of ISO errors */
1583 	void *context;			/* (in) context for completion */
1584 	usb_complete_t complete;	/* (in) completion routine */
1585 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1586 					/* (in) ISO ONLY */
1587 };
1588 
1589 /* ----------------------------------------------------------------------- */
1590 
1591 /**
1592  * usb_fill_control_urb - initializes a control urb
1593  * @urb: pointer to the urb to initialize.
1594  * @dev: pointer to the struct usb_device for this urb.
1595  * @pipe: the endpoint pipe
1596  * @setup_packet: pointer to the setup_packet buffer
1597  * @transfer_buffer: pointer to the transfer buffer
1598  * @buffer_length: length of the transfer buffer
1599  * @complete_fn: pointer to the usb_complete_t function
1600  * @context: what to set the urb context to.
1601  *
1602  * Initializes a control urb with the proper information needed to submit
1603  * it to a device.
1604  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1605 static inline void usb_fill_control_urb(struct urb *urb,
1606 					struct usb_device *dev,
1607 					unsigned int pipe,
1608 					unsigned char *setup_packet,
1609 					void *transfer_buffer,
1610 					int buffer_length,
1611 					usb_complete_t complete_fn,
1612 					void *context)
1613 {
1614 	urb->dev = dev;
1615 	urb->pipe = pipe;
1616 	urb->setup_packet = setup_packet;
1617 	urb->transfer_buffer = transfer_buffer;
1618 	urb->transfer_buffer_length = buffer_length;
1619 	urb->complete = complete_fn;
1620 	urb->context = context;
1621 }
1622 
1623 /**
1624  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1625  * @urb: pointer to the urb to initialize.
1626  * @dev: pointer to the struct usb_device for this urb.
1627  * @pipe: the endpoint pipe
1628  * @transfer_buffer: pointer to the transfer buffer
1629  * @buffer_length: length of the transfer buffer
1630  * @complete_fn: pointer to the usb_complete_t function
1631  * @context: what to set the urb context to.
1632  *
1633  * Initializes a bulk urb with the proper information needed to submit it
1634  * to a device.
1635  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1636 static inline void usb_fill_bulk_urb(struct urb *urb,
1637 				     struct usb_device *dev,
1638 				     unsigned int pipe,
1639 				     void *transfer_buffer,
1640 				     int buffer_length,
1641 				     usb_complete_t complete_fn,
1642 				     void *context)
1643 {
1644 	urb->dev = dev;
1645 	urb->pipe = pipe;
1646 	urb->transfer_buffer = transfer_buffer;
1647 	urb->transfer_buffer_length = buffer_length;
1648 	urb->complete = complete_fn;
1649 	urb->context = context;
1650 }
1651 
1652 /**
1653  * usb_fill_int_urb - macro to help initialize a interrupt urb
1654  * @urb: pointer to the urb to initialize.
1655  * @dev: pointer to the struct usb_device for this urb.
1656  * @pipe: the endpoint pipe
1657  * @transfer_buffer: pointer to the transfer buffer
1658  * @buffer_length: length of the transfer buffer
1659  * @complete_fn: pointer to the usb_complete_t function
1660  * @context: what to set the urb context to.
1661  * @interval: what to set the urb interval to, encoded like
1662  *	the endpoint descriptor's bInterval value.
1663  *
1664  * Initializes a interrupt urb with the proper information needed to submit
1665  * it to a device.
1666  *
1667  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1668  * encoding of the endpoint interval, and express polling intervals in
1669  * microframes (eight per millisecond) rather than in frames (one per
1670  * millisecond).
1671  *
1672  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1673  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1674  * through to the host controller, rather than being translated into microframe
1675  * units.
1676  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1677 static inline void usb_fill_int_urb(struct urb *urb,
1678 				    struct usb_device *dev,
1679 				    unsigned int pipe,
1680 				    void *transfer_buffer,
1681 				    int buffer_length,
1682 				    usb_complete_t complete_fn,
1683 				    void *context,
1684 				    int interval)
1685 {
1686 	urb->dev = dev;
1687 	urb->pipe = pipe;
1688 	urb->transfer_buffer = transfer_buffer;
1689 	urb->transfer_buffer_length = buffer_length;
1690 	urb->complete = complete_fn;
1691 	urb->context = context;
1692 
1693 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1694 		/* make sure interval is within allowed range */
1695 		interval = clamp(interval, 1, 16);
1696 
1697 		urb->interval = 1 << (interval - 1);
1698 	} else {
1699 		urb->interval = interval;
1700 	}
1701 
1702 	urb->start_frame = -1;
1703 }
1704 
1705 extern void usb_init_urb(struct urb *urb);
1706 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1707 extern void usb_free_urb(struct urb *urb);
1708 #define usb_put_urb usb_free_urb
1709 extern struct urb *usb_get_urb(struct urb *urb);
1710 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1711 extern int usb_unlink_urb(struct urb *urb);
1712 extern void usb_kill_urb(struct urb *urb);
1713 extern void usb_poison_urb(struct urb *urb);
1714 extern void usb_unpoison_urb(struct urb *urb);
1715 extern void usb_block_urb(struct urb *urb);
1716 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1717 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1718 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1719 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1720 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1721 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1722 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1723 extern void usb_unanchor_urb(struct urb *urb);
1724 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1725 					 unsigned int timeout);
1726 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1727 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1728 extern int usb_anchor_empty(struct usb_anchor *anchor);
1729 
1730 #define usb_unblock_urb	usb_unpoison_urb
1731 
1732 /**
1733  * usb_urb_dir_in - check if an URB describes an IN transfer
1734  * @urb: URB to be checked
1735  *
1736  * Return: 1 if @urb describes an IN transfer (device-to-host),
1737  * otherwise 0.
1738  */
usb_urb_dir_in(struct urb * urb)1739 static inline int usb_urb_dir_in(struct urb *urb)
1740 {
1741 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1742 }
1743 
1744 /**
1745  * usb_urb_dir_out - check if an URB describes an OUT transfer
1746  * @urb: URB to be checked
1747  *
1748  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1749  * otherwise 0.
1750  */
usb_urb_dir_out(struct urb * urb)1751 static inline int usb_urb_dir_out(struct urb *urb)
1752 {
1753 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1754 }
1755 
1756 int usb_urb_ep_type_check(const struct urb *urb);
1757 
1758 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1759 	gfp_t mem_flags, dma_addr_t *dma);
1760 void usb_free_coherent(struct usb_device *dev, size_t size,
1761 	void *addr, dma_addr_t dma);
1762 
1763 #if 0
1764 struct urb *usb_buffer_map(struct urb *urb);
1765 void usb_buffer_dmasync(struct urb *urb);
1766 void usb_buffer_unmap(struct urb *urb);
1767 #endif
1768 
1769 struct scatterlist;
1770 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1771 		      struct scatterlist *sg, int nents);
1772 #if 0
1773 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1774 			   struct scatterlist *sg, int n_hw_ents);
1775 #endif
1776 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1777 			 struct scatterlist *sg, int n_hw_ents);
1778 
1779 /*-------------------------------------------------------------------*
1780  *                         SYNCHRONOUS CALL SUPPORT                  *
1781  *-------------------------------------------------------------------*/
1782 
1783 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1784 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1785 	void *data, __u16 size, int timeout);
1786 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1787 	void *data, int len, int *actual_length, int timeout);
1788 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1789 	void *data, int len, int *actual_length,
1790 	int timeout);
1791 
1792 /* wrappers around usb_control_msg() for the most common standard requests */
1793 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1794 	unsigned char descindex, void *buf, int size);
1795 extern int usb_get_status(struct usb_device *dev,
1796 	int recip, int type, int target, void *data);
1797 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1798 static inline int usb_get_std_status(struct usb_device *dev,
1799 	int recip, int target, void *data)
1800 {
1801 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1802 		data);
1803 }
1804 
usb_get_ptm_status(struct usb_device * dev,void * data)1805 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1806 {
1807 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1808 		0, data);
1809 }
1810 
1811 extern int usb_string(struct usb_device *dev, int index,
1812 	char *buf, size_t size);
1813 
1814 /* wrappers that also update important state inside usbcore */
1815 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1816 extern int usb_reset_configuration(struct usb_device *dev);
1817 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1818 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1819 
1820 /* this request isn't really synchronous, but it belongs with the others */
1821 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1822 
1823 /* choose and set configuration for device */
1824 extern int usb_choose_configuration(struct usb_device *udev);
1825 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1826 
1827 /*
1828  * timeouts, in milliseconds, used for sending/receiving control messages
1829  * they typically complete within a few frames (msec) after they're issued
1830  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1831  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1832  */
1833 #define USB_CTRL_GET_TIMEOUT	5000
1834 #define USB_CTRL_SET_TIMEOUT	5000
1835 
1836 
1837 /**
1838  * struct usb_sg_request - support for scatter/gather I/O
1839  * @status: zero indicates success, else negative errno
1840  * @bytes: counts bytes transferred.
1841  *
1842  * These requests are initialized using usb_sg_init(), and then are used
1843  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1844  * members of the request object aren't for driver access.
1845  *
1846  * The status and bytecount values are valid only after usb_sg_wait()
1847  * returns.  If the status is zero, then the bytecount matches the total
1848  * from the request.
1849  *
1850  * After an error completion, drivers may need to clear a halt condition
1851  * on the endpoint.
1852  */
1853 struct usb_sg_request {
1854 	int			status;
1855 	size_t			bytes;
1856 
1857 	/* private:
1858 	 * members below are private to usbcore,
1859 	 * and are not provided for driver access!
1860 	 */
1861 	spinlock_t		lock;
1862 
1863 	struct usb_device	*dev;
1864 	int			pipe;
1865 
1866 	int			entries;
1867 	struct urb		**urbs;
1868 
1869 	int			count;
1870 	struct completion	complete;
1871 };
1872 
1873 int usb_sg_init(
1874 	struct usb_sg_request	*io,
1875 	struct usb_device	*dev,
1876 	unsigned		pipe,
1877 	unsigned		period,
1878 	struct scatterlist	*sg,
1879 	int			nents,
1880 	size_t			length,
1881 	gfp_t			mem_flags
1882 );
1883 void usb_sg_cancel(struct usb_sg_request *io);
1884 void usb_sg_wait(struct usb_sg_request *io);
1885 
1886 
1887 /* ----------------------------------------------------------------------- */
1888 
1889 /*
1890  * For various legacy reasons, Linux has a small cookie that's paired with
1891  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1892  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1893  * an unsigned int encoded as:
1894  *
1895  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1896  *					 1 = Device-to-Host [In] ...
1897  *					like endpoint bEndpointAddress)
1898  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1899  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1900  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1901  *					 10 = control, 11 = bulk)
1902  *
1903  * Given the device address and endpoint descriptor, pipes are redundant.
1904  */
1905 
1906 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1907 /* (yet ... they're the values used by usbfs) */
1908 #define PIPE_ISOCHRONOUS		0
1909 #define PIPE_INTERRUPT			1
1910 #define PIPE_CONTROL			2
1911 #define PIPE_BULK			3
1912 
1913 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1914 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1915 
1916 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1917 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1918 
1919 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1920 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1921 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1922 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1923 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1924 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1925 static inline unsigned int __create_pipe(struct usb_device *dev,
1926 		unsigned int endpoint)
1927 {
1928 	return (dev->devnum << 8) | (endpoint << 15);
1929 }
1930 
1931 /* Create various pipes... */
1932 #define usb_sndctrlpipe(dev, endpoint)	\
1933 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1934 #define usb_rcvctrlpipe(dev, endpoint)	\
1935 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1936 #define usb_sndisocpipe(dev, endpoint)	\
1937 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1938 #define usb_rcvisocpipe(dev, endpoint)	\
1939 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1940 #define usb_sndbulkpipe(dev, endpoint)	\
1941 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1942 #define usb_rcvbulkpipe(dev, endpoint)	\
1943 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1944 #define usb_sndintpipe(dev, endpoint)	\
1945 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1946 #define usb_rcvintpipe(dev, endpoint)	\
1947 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1948 
1949 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1950 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1951 {
1952 	struct usb_host_endpoint **eps;
1953 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1954 	return eps[usb_pipeendpoint(pipe)];
1955 }
1956 
1957 /*-------------------------------------------------------------------------*/
1958 
1959 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1960 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1961 {
1962 	struct usb_host_endpoint	*ep;
1963 	unsigned			epnum = usb_pipeendpoint(pipe);
1964 
1965 	if (is_out) {
1966 		WARN_ON(usb_pipein(pipe));
1967 		ep = udev->ep_out[epnum];
1968 	} else {
1969 		WARN_ON(usb_pipeout(pipe));
1970 		ep = udev->ep_in[epnum];
1971 	}
1972 	if (!ep)
1973 		return 0;
1974 
1975 	/* NOTE:  only 0x07ff bits are for packet size... */
1976 	return usb_endpoint_maxp(&ep->desc);
1977 }
1978 
1979 /* ----------------------------------------------------------------------- */
1980 
1981 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1982 static inline int usb_translate_errors(int error_code)
1983 {
1984 	switch (error_code) {
1985 	case 0:
1986 	case -ENOMEM:
1987 	case -ENODEV:
1988 	case -EOPNOTSUPP:
1989 		return error_code;
1990 	default:
1991 		return -EIO;
1992 	}
1993 }
1994 
1995 /* Events from the usb core */
1996 #define USB_DEVICE_ADD		0x0001
1997 #define USB_DEVICE_REMOVE	0x0002
1998 #define USB_BUS_ADD		0x0003
1999 #define USB_BUS_REMOVE		0x0004
2000 extern void usb_register_notify(struct notifier_block *nb);
2001 extern void usb_unregister_notify(struct notifier_block *nb);
2002 
2003 /* debugfs stuff */
2004 extern struct dentry *usb_debug_root;
2005 
2006 /* LED triggers */
2007 enum usb_led_event {
2008 	USB_LED_EVENT_HOST = 0,
2009 	USB_LED_EVENT_GADGET = 1,
2010 };
2011 
2012 #ifdef CONFIG_USB_LED_TRIG
2013 extern void usb_led_activity(enum usb_led_event ev);
2014 #else
usb_led_activity(enum usb_led_event ev)2015 static inline void usb_led_activity(enum usb_led_event ev) {}
2016 #endif
2017 
2018 #endif  /* __KERNEL__ */
2019 
2020 #endif
2021