1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/limits.h>
8 #include <linux/linkage.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 #include <linux/compiler.h>
12 #include <linux/bitops.h>
13 #include <linux/log2.h>
14 #include <linux/typecheck.h>
15 #include <linux/printk.h>
16 #include <linux/build_bug.h>
17 #include <asm/byteorder.h>
18 #include <asm/div64.h>
19 #include <uapi/linux/kernel.h>
20 #include <asm/div64.h>
21 
22 #define STACK_MAGIC	0xdeadbeef
23 
24 /**
25  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26  * @x: value to repeat
27  *
28  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29  */
30 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
31 
32 /* @a is a power of 2 value */
33 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
34 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
35 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
36 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
37 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
38 
39 /* generic data direction definitions */
40 #define READ			0
41 #define WRITE			1
42 
43 /**
44  * ARRAY_SIZE - get the number of elements in array @arr
45  * @arr: array to be sized
46  */
47 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
48 
49 #define u64_to_user_ptr(x) (		\
50 {					\
51 	typecheck(u64, (x));		\
52 	(void __user *)(uintptr_t)(x);	\
53 }					\
54 )
55 
56 /*
57  * This looks more complex than it should be. But we need to
58  * get the type for the ~ right in round_down (it needs to be
59  * as wide as the result!), and we want to evaluate the macro
60  * arguments just once each.
61  */
62 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
63 /**
64  * round_up - round up to next specified power of 2
65  * @x: the value to round
66  * @y: multiple to round up to (must be a power of 2)
67  *
68  * Rounds @x up to next multiple of @y (which must be a power of 2).
69  * To perform arbitrary rounding up, use roundup() below.
70  */
71 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
72 /**
73  * round_down - round down to next specified power of 2
74  * @x: the value to round
75  * @y: multiple to round down to (must be a power of 2)
76  *
77  * Rounds @x down to next multiple of @y (which must be a power of 2).
78  * To perform arbitrary rounding down, use rounddown() below.
79  */
80 #define round_down(x, y) ((x) & ~__round_mask(x, y))
81 
82 /**
83  * FIELD_SIZEOF - get the size of a struct's field
84  * @t: the target struct
85  * @f: the target struct's field
86  * Return: the size of @f in the struct definition without having a
87  * declared instance of @t.
88  */
89 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
90 
91 #define typeof_member(T, m)	typeof(((T*)0)->m)
92 
93 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
94 
95 #define DIV_ROUND_DOWN_ULL(ll, d) \
96 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
97 
98 #define DIV_ROUND_UP_ULL(ll, d) \
99 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
100 
101 #if BITS_PER_LONG == 32
102 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
103 #else
104 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
105 #endif
106 
107 /**
108  * roundup - round up to the next specified multiple
109  * @x: the value to up
110  * @y: multiple to round up to
111  *
112  * Rounds @x up to next multiple of @y. If @y will always be a power
113  * of 2, consider using the faster round_up().
114  */
115 #define roundup(x, y) (					\
116 {							\
117 	typeof(y) __y = y;				\
118 	(((x) + (__y - 1)) / __y) * __y;		\
119 }							\
120 )
121 /**
122  * rounddown - round down to next specified multiple
123  * @x: the value to round
124  * @y: multiple to round down to
125  *
126  * Rounds @x down to next multiple of @y. If @y will always be a power
127  * of 2, consider using the faster round_down().
128  */
129 #define rounddown(x, y) (				\
130 {							\
131 	typeof(x) __x = (x);				\
132 	__x - (__x % (y));				\
133 }							\
134 )
135 
136 /*
137  * Divide positive or negative dividend by positive or negative divisor
138  * and round to closest integer. Result is undefined for negative
139  * divisors if the dividend variable type is unsigned and for negative
140  * dividends if the divisor variable type is unsigned.
141  */
142 #define DIV_ROUND_CLOSEST(x, divisor)(			\
143 {							\
144 	typeof(x) __x = x;				\
145 	typeof(divisor) __d = divisor;			\
146 	(((typeof(x))-1) > 0 ||				\
147 	 ((typeof(divisor))-1) > 0 ||			\
148 	 (((__x) > 0) == ((__d) > 0))) ?		\
149 		(((__x) + ((__d) / 2)) / (__d)) :	\
150 		(((__x) - ((__d) / 2)) / (__d));	\
151 }							\
152 )
153 /*
154  * Same as above but for u64 dividends. divisor must be a 32-bit
155  * number.
156  */
157 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
158 {							\
159 	typeof(divisor) __d = divisor;			\
160 	unsigned long long _tmp = (x) + (__d) / 2;	\
161 	do_div(_tmp, __d);				\
162 	_tmp;						\
163 }							\
164 )
165 
166 /*
167  * Multiplies an integer by a fraction, while avoiding unnecessary
168  * overflow or loss of precision.
169  */
170 #define mult_frac(x, numer, denom)(			\
171 {							\
172 	typeof(x) quot = (x) / (denom);			\
173 	typeof(x) rem  = (x) % (denom);			\
174 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
175 }							\
176 )
177 
178 
179 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
180 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
181 
182 #define sector_div(a, b) do_div(a, b)
183 
184 /**
185  * upper_32_bits - return bits 32-63 of a number
186  * @n: the number we're accessing
187  *
188  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
189  * the "right shift count >= width of type" warning when that quantity is
190  * 32-bits.
191  */
192 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
193 
194 /**
195  * lower_32_bits - return bits 0-31 of a number
196  * @n: the number we're accessing
197  */
198 #define lower_32_bits(n) ((u32)(n))
199 
200 struct completion;
201 struct pt_regs;
202 struct user;
203 
204 #ifdef CONFIG_PREEMPT_VOLUNTARY
205 extern int _cond_resched(void);
206 # define might_resched() _cond_resched()
207 #else
208 # define might_resched() do { } while (0)
209 #endif
210 
211 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
212 extern void ___might_sleep(const char *file, int line, int preempt_offset);
213 extern void __might_sleep(const char *file, int line, int preempt_offset);
214 extern void __cant_sleep(const char *file, int line, int preempt_offset);
215 
216 /**
217  * might_sleep - annotation for functions that can sleep
218  *
219  * this macro will print a stack trace if it is executed in an atomic
220  * context (spinlock, irq-handler, ...). Additional sections where blocking is
221  * not allowed can be annotated with non_block_start() and non_block_end()
222  * pairs.
223  *
224  * This is a useful debugging help to be able to catch problems early and not
225  * be bitten later when the calling function happens to sleep when it is not
226  * supposed to.
227  */
228 # define might_sleep() \
229 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
230 /**
231  * cant_sleep - annotation for functions that cannot sleep
232  *
233  * this macro will print a stack trace if it is executed with preemption enabled
234  */
235 # define cant_sleep() \
236 	do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
237 # define sched_annotate_sleep()	(current->task_state_change = 0)
238 /**
239  * non_block_start - annotate the start of section where sleeping is prohibited
240  *
241  * This is on behalf of the oom reaper, specifically when it is calling the mmu
242  * notifiers. The problem is that if the notifier were to block on, for example,
243  * mutex_lock() and if the process which holds that mutex were to perform a
244  * sleeping memory allocation, the oom reaper is now blocked on completion of
245  * that memory allocation. Other blocking calls like wait_event() pose similar
246  * issues.
247  */
248 # define non_block_start() (current->non_block_count++)
249 /**
250  * non_block_end - annotate the end of section where sleeping is prohibited
251  *
252  * Closes a section opened by non_block_start().
253  */
254 # define non_block_end() WARN_ON(current->non_block_count-- == 0)
255 #else
___might_sleep(const char * file,int line,int preempt_offset)256   static inline void ___might_sleep(const char *file, int line,
257 				   int preempt_offset) { }
__might_sleep(const char * file,int line,int preempt_offset)258   static inline void __might_sleep(const char *file, int line,
259 				   int preempt_offset) { }
260 # define might_sleep() do { might_resched(); } while (0)
261 # define cant_sleep() do { } while (0)
262 # define sched_annotate_sleep() do { } while (0)
263 # define non_block_start() do { } while (0)
264 # define non_block_end() do { } while (0)
265 #endif
266 
267 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
268 
269 /**
270  * abs - return absolute value of an argument
271  * @x: the value.  If it is unsigned type, it is converted to signed type first.
272  *     char is treated as if it was signed (regardless of whether it really is)
273  *     but the macro's return type is preserved as char.
274  *
275  * Return: an absolute value of x.
276  */
277 #define abs(x)	__abs_choose_expr(x, long long,				\
278 		__abs_choose_expr(x, long,				\
279 		__abs_choose_expr(x, int,				\
280 		__abs_choose_expr(x, short,				\
281 		__abs_choose_expr(x, char,				\
282 		__builtin_choose_expr(					\
283 			__builtin_types_compatible_p(typeof(x), char),	\
284 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
285 			((void)0)))))))
286 
287 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
288 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
289 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
290 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
291 
292 /**
293  * reciprocal_scale - "scale" a value into range [0, ep_ro)
294  * @val: value
295  * @ep_ro: right open interval endpoint
296  *
297  * Perform a "reciprocal multiplication" in order to "scale" a value into
298  * range [0, @ep_ro), where the upper interval endpoint is right-open.
299  * This is useful, e.g. for accessing a index of an array containing
300  * @ep_ro elements, for example. Think of it as sort of modulus, only that
301  * the result isn't that of modulo. ;) Note that if initial input is a
302  * small value, then result will return 0.
303  *
304  * Return: a result based on @val in interval [0, @ep_ro).
305  */
reciprocal_scale(u32 val,u32 ep_ro)306 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
307 {
308 	return (u32)(((u64) val * ep_ro) >> 32);
309 }
310 
311 #if defined(CONFIG_MMU) && \
312 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
313 #define might_fault() __might_fault(__FILE__, __LINE__)
314 void __might_fault(const char *file, int line);
315 #else
might_fault(void)316 static inline void might_fault(void) { }
317 #endif
318 
319 extern struct atomic_notifier_head panic_notifier_list;
320 extern long (*panic_blink)(int state);
321 __printf(1, 2)
322 void panic(const char *fmt, ...) __noreturn __cold;
323 void nmi_panic(struct pt_regs *regs, const char *msg);
324 extern void oops_enter(void);
325 extern void oops_exit(void);
326 void print_oops_end_marker(void);
327 extern int oops_may_print(void);
328 void do_exit(long error_code) __noreturn;
329 void complete_and_exit(struct completion *, long) __noreturn;
330 
331 #ifdef CONFIG_ARCH_HAS_REFCOUNT
332 void refcount_error_report(struct pt_regs *regs, const char *err);
333 #else
refcount_error_report(struct pt_regs * regs,const char * err)334 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
335 { }
336 #endif
337 
338 /* Internal, do not use. */
339 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
340 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
341 
342 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
343 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
344 
345 /**
346  * kstrtoul - convert a string to an unsigned long
347  * @s: The start of the string. The string must be null-terminated, and may also
348  *  include a single newline before its terminating null. The first character
349  *  may also be a plus sign, but not a minus sign.
350  * @base: The number base to use. The maximum supported base is 16. If base is
351  *  given as 0, then the base of the string is automatically detected with the
352  *  conventional semantics - If it begins with 0x the number will be parsed as a
353  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
354  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
355  * @res: Where to write the result of the conversion on success.
356  *
357  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
358  * Used as a replacement for the obsolete simple_strtoull. Return code must
359  * be checked.
360 */
kstrtoul(const char * s,unsigned int base,unsigned long * res)361 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
362 {
363 	/*
364 	 * We want to shortcut function call, but
365 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
366 	 */
367 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
368 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
369 		return kstrtoull(s, base, (unsigned long long *)res);
370 	else
371 		return _kstrtoul(s, base, res);
372 }
373 
374 /**
375  * kstrtol - convert a string to a long
376  * @s: The start of the string. The string must be null-terminated, and may also
377  *  include a single newline before its terminating null. The first character
378  *  may also be a plus sign or a minus sign.
379  * @base: The number base to use. The maximum supported base is 16. If base is
380  *  given as 0, then the base of the string is automatically detected with the
381  *  conventional semantics - If it begins with 0x the number will be parsed as a
382  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
383  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
384  * @res: Where to write the result of the conversion on success.
385  *
386  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
387  * Used as a replacement for the obsolete simple_strtoull. Return code must
388  * be checked.
389  */
kstrtol(const char * s,unsigned int base,long * res)390 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
391 {
392 	/*
393 	 * We want to shortcut function call, but
394 	 * __builtin_types_compatible_p(long, long long) = 0.
395 	 */
396 	if (sizeof(long) == sizeof(long long) &&
397 	    __alignof__(long) == __alignof__(long long))
398 		return kstrtoll(s, base, (long long *)res);
399 	else
400 		return _kstrtol(s, base, res);
401 }
402 
403 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
404 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
405 
kstrtou64(const char * s,unsigned int base,u64 * res)406 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
407 {
408 	return kstrtoull(s, base, res);
409 }
410 
kstrtos64(const char * s,unsigned int base,s64 * res)411 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
412 {
413 	return kstrtoll(s, base, res);
414 }
415 
kstrtou32(const char * s,unsigned int base,u32 * res)416 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
417 {
418 	return kstrtouint(s, base, res);
419 }
420 
kstrtos32(const char * s,unsigned int base,s32 * res)421 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
422 {
423 	return kstrtoint(s, base, res);
424 }
425 
426 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
427 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
428 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
429 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
430 int __must_check kstrtobool(const char *s, bool *res);
431 
432 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
433 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
434 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
435 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
436 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
437 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
438 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
439 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
440 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
441 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
442 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
443 
kstrtou64_from_user(const char __user * s,size_t count,unsigned int base,u64 * res)444 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
445 {
446 	return kstrtoull_from_user(s, count, base, res);
447 }
448 
kstrtos64_from_user(const char __user * s,size_t count,unsigned int base,s64 * res)449 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
450 {
451 	return kstrtoll_from_user(s, count, base, res);
452 }
453 
kstrtou32_from_user(const char __user * s,size_t count,unsigned int base,u32 * res)454 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
455 {
456 	return kstrtouint_from_user(s, count, base, res);
457 }
458 
kstrtos32_from_user(const char __user * s,size_t count,unsigned int base,s32 * res)459 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
460 {
461 	return kstrtoint_from_user(s, count, base, res);
462 }
463 
464 /* Obsolete, do not use.  Use kstrto<foo> instead */
465 
466 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
467 extern long simple_strtol(const char *,char **,unsigned int);
468 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
469 extern long long simple_strtoll(const char *,char **,unsigned int);
470 
471 extern int num_to_str(char *buf, int size,
472 		      unsigned long long num, unsigned int width);
473 
474 /* lib/printf utilities */
475 
476 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
477 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
478 extern __printf(3, 4)
479 int snprintf(char *buf, size_t size, const char *fmt, ...);
480 extern __printf(3, 0)
481 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
482 extern __printf(3, 4)
483 int scnprintf(char *buf, size_t size, const char *fmt, ...);
484 extern __printf(3, 0)
485 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
486 extern __printf(2, 3) __malloc
487 char *kasprintf(gfp_t gfp, const char *fmt, ...);
488 extern __printf(2, 0) __malloc
489 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
490 extern __printf(2, 0)
491 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
492 
493 extern __scanf(2, 3)
494 int sscanf(const char *, const char *, ...);
495 extern __scanf(2, 0)
496 int vsscanf(const char *, const char *, va_list);
497 
498 extern int get_option(char **str, int *pint);
499 extern char *get_options(const char *str, int nints, int *ints);
500 extern unsigned long long memparse(const char *ptr, char **retptr);
501 extern bool parse_option_str(const char *str, const char *option);
502 extern char *next_arg(char *args, char **param, char **val);
503 
504 extern int core_kernel_text(unsigned long addr);
505 extern int init_kernel_text(unsigned long addr);
506 extern int core_kernel_data(unsigned long addr);
507 extern int __kernel_text_address(unsigned long addr);
508 extern int kernel_text_address(unsigned long addr);
509 extern int func_ptr_is_kernel_text(void *ptr);
510 
511 u64 int_pow(u64 base, unsigned int exp);
512 unsigned long int_sqrt(unsigned long);
513 
514 #if BITS_PER_LONG < 64
515 u32 int_sqrt64(u64 x);
516 #else
int_sqrt64(u64 x)517 static inline u32 int_sqrt64(u64 x)
518 {
519 	return (u32)int_sqrt(x);
520 }
521 #endif
522 
523 extern void bust_spinlocks(int yes);
524 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
525 extern int panic_timeout;
526 extern unsigned long panic_print;
527 extern int panic_on_oops;
528 extern int panic_on_unrecovered_nmi;
529 extern int panic_on_io_nmi;
530 extern int panic_on_warn;
531 extern int sysctl_panic_on_rcu_stall;
532 extern int sysctl_panic_on_stackoverflow;
533 
534 extern bool crash_kexec_post_notifiers;
535 
536 /*
537  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
538  * holds a CPU number which is executing panic() currently. A value of
539  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
540  */
541 extern atomic_t panic_cpu;
542 #define PANIC_CPU_INVALID	-1
543 
544 /*
545  * Only to be used by arch init code. If the user over-wrote the default
546  * CONFIG_PANIC_TIMEOUT, honor it.
547  */
set_arch_panic_timeout(int timeout,int arch_default_timeout)548 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
549 {
550 	if (panic_timeout == arch_default_timeout)
551 		panic_timeout = timeout;
552 }
553 extern const char *print_tainted(void);
554 enum lockdep_ok {
555 	LOCKDEP_STILL_OK,
556 	LOCKDEP_NOW_UNRELIABLE
557 };
558 extern void add_taint(unsigned flag, enum lockdep_ok);
559 extern int test_taint(unsigned flag);
560 extern unsigned long get_taint(void);
561 extern int root_mountflags;
562 
563 extern bool early_boot_irqs_disabled;
564 
565 /*
566  * Values used for system_state. Ordering of the states must not be changed
567  * as code checks for <, <=, >, >= STATE.
568  */
569 extern enum system_states {
570 	SYSTEM_BOOTING,
571 	SYSTEM_SCHEDULING,
572 	SYSTEM_RUNNING,
573 	SYSTEM_HALT,
574 	SYSTEM_POWER_OFF,
575 	SYSTEM_RESTART,
576 	SYSTEM_SUSPEND,
577 } system_state;
578 
579 /* This cannot be an enum because some may be used in assembly source. */
580 #define TAINT_PROPRIETARY_MODULE	0
581 #define TAINT_FORCED_MODULE		1
582 #define TAINT_CPU_OUT_OF_SPEC		2
583 #define TAINT_FORCED_RMMOD		3
584 #define TAINT_MACHINE_CHECK		4
585 #define TAINT_BAD_PAGE			5
586 #define TAINT_USER			6
587 #define TAINT_DIE			7
588 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
589 #define TAINT_WARN			9
590 #define TAINT_CRAP			10
591 #define TAINT_FIRMWARE_WORKAROUND	11
592 #define TAINT_OOT_MODULE		12
593 #define TAINT_UNSIGNED_MODULE		13
594 #define TAINT_SOFTLOCKUP		14
595 #define TAINT_LIVEPATCH			15
596 #define TAINT_AUX			16
597 #define TAINT_RANDSTRUCT		17
598 #define TAINT_FLAGS_COUNT		18
599 
600 struct taint_flag {
601 	char c_true;	/* character printed when tainted */
602 	char c_false;	/* character printed when not tainted */
603 	bool module;	/* also show as a per-module taint flag */
604 };
605 
606 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
607 
608 extern const char hex_asc[];
609 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
610 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
611 
hex_byte_pack(char * buf,u8 byte)612 static inline char *hex_byte_pack(char *buf, u8 byte)
613 {
614 	*buf++ = hex_asc_hi(byte);
615 	*buf++ = hex_asc_lo(byte);
616 	return buf;
617 }
618 
619 extern const char hex_asc_upper[];
620 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
621 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
622 
hex_byte_pack_upper(char * buf,u8 byte)623 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
624 {
625 	*buf++ = hex_asc_upper_hi(byte);
626 	*buf++ = hex_asc_upper_lo(byte);
627 	return buf;
628 }
629 
630 extern int hex_to_bin(char ch);
631 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
632 extern char *bin2hex(char *dst, const void *src, size_t count);
633 
634 bool mac_pton(const char *s, u8 *mac);
635 
636 /*
637  * General tracing related utility functions - trace_printk(),
638  * tracing_on/tracing_off and tracing_start()/tracing_stop
639  *
640  * Use tracing_on/tracing_off when you want to quickly turn on or off
641  * tracing. It simply enables or disables the recording of the trace events.
642  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
643  * file, which gives a means for the kernel and userspace to interact.
644  * Place a tracing_off() in the kernel where you want tracing to end.
645  * From user space, examine the trace, and then echo 1 > tracing_on
646  * to continue tracing.
647  *
648  * tracing_stop/tracing_start has slightly more overhead. It is used
649  * by things like suspend to ram where disabling the recording of the
650  * trace is not enough, but tracing must actually stop because things
651  * like calling smp_processor_id() may crash the system.
652  *
653  * Most likely, you want to use tracing_on/tracing_off.
654  */
655 
656 enum ftrace_dump_mode {
657 	DUMP_NONE,
658 	DUMP_ALL,
659 	DUMP_ORIG,
660 };
661 
662 #ifdef CONFIG_TRACING
663 void tracing_on(void);
664 void tracing_off(void);
665 int tracing_is_on(void);
666 void tracing_snapshot(void);
667 void tracing_snapshot_alloc(void);
668 
669 extern void tracing_start(void);
670 extern void tracing_stop(void);
671 
672 static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)673 void ____trace_printk_check_format(const char *fmt, ...)
674 {
675 }
676 #define __trace_printk_check_format(fmt, args...)			\
677 do {									\
678 	if (0)								\
679 		____trace_printk_check_format(fmt, ##args);		\
680 } while (0)
681 
682 /**
683  * trace_printk - printf formatting in the ftrace buffer
684  * @fmt: the printf format for printing
685  *
686  * Note: __trace_printk is an internal function for trace_printk() and
687  *       the @ip is passed in via the trace_printk() macro.
688  *
689  * This function allows a kernel developer to debug fast path sections
690  * that printk is not appropriate for. By scattering in various
691  * printk like tracing in the code, a developer can quickly see
692  * where problems are occurring.
693  *
694  * This is intended as a debugging tool for the developer only.
695  * Please refrain from leaving trace_printks scattered around in
696  * your code. (Extra memory is used for special buffers that are
697  * allocated when trace_printk() is used.)
698  *
699  * A little optimization trick is done here. If there's only one
700  * argument, there's no need to scan the string for printf formats.
701  * The trace_puts() will suffice. But how can we take advantage of
702  * using trace_puts() when trace_printk() has only one argument?
703  * By stringifying the args and checking the size we can tell
704  * whether or not there are args. __stringify((__VA_ARGS__)) will
705  * turn into "()\0" with a size of 3 when there are no args, anything
706  * else will be bigger. All we need to do is define a string to this,
707  * and then take its size and compare to 3. If it's bigger, use
708  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
709  * let gcc optimize the rest.
710  */
711 
712 #define trace_printk(fmt, ...)				\
713 do {							\
714 	char _______STR[] = __stringify((__VA_ARGS__));	\
715 	if (sizeof(_______STR) > 3)			\
716 		do_trace_printk(fmt, ##__VA_ARGS__);	\
717 	else						\
718 		trace_puts(fmt);			\
719 } while (0)
720 
721 #define do_trace_printk(fmt, args...)					\
722 do {									\
723 	static const char *trace_printk_fmt __used			\
724 		__attribute__((section("__trace_printk_fmt"))) =	\
725 		__builtin_constant_p(fmt) ? fmt : NULL;			\
726 									\
727 	__trace_printk_check_format(fmt, ##args);			\
728 									\
729 	if (__builtin_constant_p(fmt))					\
730 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
731 	else								\
732 		__trace_printk(_THIS_IP_, fmt, ##args);			\
733 } while (0)
734 
735 extern __printf(2, 3)
736 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
737 
738 extern __printf(2, 3)
739 int __trace_printk(unsigned long ip, const char *fmt, ...);
740 
741 /**
742  * trace_puts - write a string into the ftrace buffer
743  * @str: the string to record
744  *
745  * Note: __trace_bputs is an internal function for trace_puts and
746  *       the @ip is passed in via the trace_puts macro.
747  *
748  * This is similar to trace_printk() but is made for those really fast
749  * paths that a developer wants the least amount of "Heisenbug" effects,
750  * where the processing of the print format is still too much.
751  *
752  * This function allows a kernel developer to debug fast path sections
753  * that printk is not appropriate for. By scattering in various
754  * printk like tracing in the code, a developer can quickly see
755  * where problems are occurring.
756  *
757  * This is intended as a debugging tool for the developer only.
758  * Please refrain from leaving trace_puts scattered around in
759  * your code. (Extra memory is used for special buffers that are
760  * allocated when trace_puts() is used.)
761  *
762  * Returns: 0 if nothing was written, positive # if string was.
763  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
764  */
765 
766 #define trace_puts(str) ({						\
767 	static const char *trace_printk_fmt __used			\
768 		__attribute__((section("__trace_printk_fmt"))) =	\
769 		__builtin_constant_p(str) ? str : NULL;			\
770 									\
771 	if (__builtin_constant_p(str))					\
772 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
773 	else								\
774 		__trace_puts(_THIS_IP_, str, strlen(str));		\
775 })
776 extern int __trace_bputs(unsigned long ip, const char *str);
777 extern int __trace_puts(unsigned long ip, const char *str, int size);
778 
779 extern void trace_dump_stack(int skip);
780 
781 /*
782  * The double __builtin_constant_p is because gcc will give us an error
783  * if we try to allocate the static variable to fmt if it is not a
784  * constant. Even with the outer if statement.
785  */
786 #define ftrace_vprintk(fmt, vargs)					\
787 do {									\
788 	if (__builtin_constant_p(fmt)) {				\
789 		static const char *trace_printk_fmt __used		\
790 		  __attribute__((section("__trace_printk_fmt"))) =	\
791 			__builtin_constant_p(fmt) ? fmt : NULL;		\
792 									\
793 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
794 	} else								\
795 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
796 } while (0)
797 
798 extern __printf(2, 0) int
799 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
800 
801 extern __printf(2, 0) int
802 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
803 
804 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
805 #else
tracing_start(void)806 static inline void tracing_start(void) { }
tracing_stop(void)807 static inline void tracing_stop(void) { }
trace_dump_stack(int skip)808 static inline void trace_dump_stack(int skip) { }
809 
tracing_on(void)810 static inline void tracing_on(void) { }
tracing_off(void)811 static inline void tracing_off(void) { }
tracing_is_on(void)812 static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)813 static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)814 static inline void tracing_snapshot_alloc(void) { }
815 
816 static inline __printf(1, 2)
trace_printk(const char * fmt,...)817 int trace_printk(const char *fmt, ...)
818 {
819 	return 0;
820 }
821 static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)822 ftrace_vprintk(const char *fmt, va_list ap)
823 {
824 	return 0;
825 }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)826 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
827 #endif /* CONFIG_TRACING */
828 
829 /*
830  * min()/max()/clamp() macros must accomplish three things:
831  *
832  * - avoid multiple evaluations of the arguments (so side-effects like
833  *   "x++" happen only once) when non-constant.
834  * - perform strict type-checking (to generate warnings instead of
835  *   nasty runtime surprises). See the "unnecessary" pointer comparison
836  *   in __typecheck().
837  * - retain result as a constant expressions when called with only
838  *   constant expressions (to avoid tripping VLA warnings in stack
839  *   allocation usage).
840  */
841 #define __typecheck(x, y) \
842 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
843 
844 /*
845  * This returns a constant expression while determining if an argument is
846  * a constant expression, most importantly without evaluating the argument.
847  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
848  */
849 #define __is_constexpr(x) \
850 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
851 
852 #define __no_side_effects(x, y) \
853 		(__is_constexpr(x) && __is_constexpr(y))
854 
855 #define __safe_cmp(x, y) \
856 		(__typecheck(x, y) && __no_side_effects(x, y))
857 
858 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
859 
860 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
861 		typeof(x) unique_x = (x);		\
862 		typeof(y) unique_y = (y);		\
863 		__cmp(unique_x, unique_y, op); })
864 
865 #define __careful_cmp(x, y, op) \
866 	__builtin_choose_expr(__safe_cmp(x, y), \
867 		__cmp(x, y, op), \
868 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
869 
870 /**
871  * min - return minimum of two values of the same or compatible types
872  * @x: first value
873  * @y: second value
874  */
875 #define min(x, y)	__careful_cmp(x, y, <)
876 
877 /**
878  * max - return maximum of two values of the same or compatible types
879  * @x: first value
880  * @y: second value
881  */
882 #define max(x, y)	__careful_cmp(x, y, >)
883 
884 /**
885  * min3 - return minimum of three values
886  * @x: first value
887  * @y: second value
888  * @z: third value
889  */
890 #define min3(x, y, z) min((typeof(x))min(x, y), z)
891 
892 /**
893  * max3 - return maximum of three values
894  * @x: first value
895  * @y: second value
896  * @z: third value
897  */
898 #define max3(x, y, z) max((typeof(x))max(x, y), z)
899 
900 /**
901  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
902  * @x: value1
903  * @y: value2
904  */
905 #define min_not_zero(x, y) ({			\
906 	typeof(x) __x = (x);			\
907 	typeof(y) __y = (y);			\
908 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
909 
910 /**
911  * clamp - return a value clamped to a given range with strict typechecking
912  * @val: current value
913  * @lo: lowest allowable value
914  * @hi: highest allowable value
915  *
916  * This macro does strict typechecking of @lo/@hi to make sure they are of the
917  * same type as @val.  See the unnecessary pointer comparisons.
918  */
919 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
920 
921 /*
922  * ..and if you can't take the strict
923  * types, you can specify one yourself.
924  *
925  * Or not use min/max/clamp at all, of course.
926  */
927 
928 /**
929  * min_t - return minimum of two values, using the specified type
930  * @type: data type to use
931  * @x: first value
932  * @y: second value
933  */
934 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
935 
936 /**
937  * max_t - return maximum of two values, using the specified type
938  * @type: data type to use
939  * @x: first value
940  * @y: second value
941  */
942 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
943 
944 /**
945  * clamp_t - return a value clamped to a given range using a given type
946  * @type: the type of variable to use
947  * @val: current value
948  * @lo: minimum allowable value
949  * @hi: maximum allowable value
950  *
951  * This macro does no typechecking and uses temporary variables of type
952  * @type to make all the comparisons.
953  */
954 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
955 
956 /**
957  * clamp_val - return a value clamped to a given range using val's type
958  * @val: current value
959  * @lo: minimum allowable value
960  * @hi: maximum allowable value
961  *
962  * This macro does no typechecking and uses temporary variables of whatever
963  * type the input argument @val is.  This is useful when @val is an unsigned
964  * type and @lo and @hi are literals that will otherwise be assigned a signed
965  * integer type.
966  */
967 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
968 
969 
970 /**
971  * swap - swap values of @a and @b
972  * @a: first value
973  * @b: second value
974  */
975 #define swap(a, b) \
976 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
977 
978 /* This counts to 12. Any more, it will return 13th argument. */
979 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
980 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
981 
982 #define __CONCAT(a, b) a ## b
983 #define CONCATENATE(a, b) __CONCAT(a, b)
984 
985 /**
986  * container_of - cast a member of a structure out to the containing structure
987  * @ptr:	the pointer to the member.
988  * @type:	the type of the container struct this is embedded in.
989  * @member:	the name of the member within the struct.
990  *
991  */
992 #define container_of(ptr, type, member) ({				\
993 	void *__mptr = (void *)(ptr);					\
994 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
995 			 !__same_type(*(ptr), void),			\
996 			 "pointer type mismatch in container_of()");	\
997 	((type *)(__mptr - offsetof(type, member))); })
998 
999 /**
1000  * container_of_safe - cast a member of a structure out to the containing structure
1001  * @ptr:	the pointer to the member.
1002  * @type:	the type of the container struct this is embedded in.
1003  * @member:	the name of the member within the struct.
1004  *
1005  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1006  */
1007 #define container_of_safe(ptr, type, member) ({				\
1008 	void *__mptr = (void *)(ptr);					\
1009 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1010 			 !__same_type(*(ptr), void),			\
1011 			 "pointer type mismatch in container_of()");	\
1012 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
1013 		((type *)(__mptr - offsetof(type, member))); })
1014 
1015 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1016 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1017 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1018 #endif
1019 
1020 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1021 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
1022 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
1023 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1024 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1025 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1026 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1027 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1028 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1029 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1030 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1031 	 (perms))
1032 #endif
1033