1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10 
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 /**
20  * Standard SPI NAND flash operations
21  */
22 
23 #define SPINAND_RESET_OP						\
24 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
25 		   SPI_MEM_OP_NO_ADDR,					\
26 		   SPI_MEM_OP_NO_DUMMY,					\
27 		   SPI_MEM_OP_NO_DATA)
28 
29 #define SPINAND_WR_EN_DIS_OP(enable)					\
30 	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
31 		   SPI_MEM_OP_NO_ADDR,					\
32 		   SPI_MEM_OP_NO_DUMMY,					\
33 		   SPI_MEM_OP_NO_DATA)
34 
35 #define SPINAND_READID_OP(ndummy, buf, len)				\
36 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
37 		   SPI_MEM_OP_NO_ADDR,					\
38 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
39 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
40 
41 #define SPINAND_SET_FEATURE_OP(reg, valptr)				\
42 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
43 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
44 		   SPI_MEM_OP_NO_DUMMY,					\
45 		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46 
47 #define SPINAND_GET_FEATURE_OP(reg, valptr)				\
48 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
49 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
50 		   SPI_MEM_OP_NO_DUMMY,					\
51 		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
52 
53 #define SPINAND_BLK_ERASE_OP(addr)					\
54 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
55 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
56 		   SPI_MEM_OP_NO_DUMMY,					\
57 		   SPI_MEM_OP_NO_DATA)
58 
59 #define SPINAND_PAGE_READ_OP(addr)					\
60 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
61 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
62 		   SPI_MEM_OP_NO_DUMMY,					\
63 		   SPI_MEM_OP_NO_DATA)
64 
65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)	\
66 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
67 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
68 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
69 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
70 
71 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
72 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
73 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
74 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
75 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
76 
77 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)	\
78 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
79 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
80 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
81 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
82 
83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len)	\
84 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
85 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
86 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
87 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
88 
89 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)	\
90 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
91 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
92 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
93 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
94 
95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len)	\
96 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
97 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
98 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
99 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
100 
101 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)	\
102 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
103 		   SPI_MEM_OP_ADDR(2, addr, 2),				\
104 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
105 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
106 
107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
108 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
109 		   SPI_MEM_OP_ADDR(3, addr, 2),				\
110 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
111 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
112 
113 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)	\
114 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
115 		   SPI_MEM_OP_ADDR(2, addr, 4),				\
116 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
117 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
118 
119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
120 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
121 		   SPI_MEM_OP_ADDR(3, addr, 4),				\
122 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
123 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
124 
125 #define SPINAND_PROG_EXEC_OP(addr)					\
126 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
127 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
128 		   SPI_MEM_OP_NO_DUMMY,					\
129 		   SPI_MEM_OP_NO_DATA)
130 
131 #define SPINAND_PROG_LOAD(reset, addr, buf, len)			\
132 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
133 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
134 		   SPI_MEM_OP_NO_DUMMY,					\
135 		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
136 
137 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)			\
138 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
139 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
140 		   SPI_MEM_OP_NO_DUMMY,					\
141 		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
142 
143 /**
144  * Standard SPI NAND flash commands
145  */
146 #define SPINAND_CMD_PROG_LOAD_X4		0x32
147 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
148 
149 /* feature register */
150 #define REG_BLOCK_LOCK		0xa0
151 #define BL_ALL_UNLOCKED		0x00
152 
153 /* configuration register */
154 #define REG_CFG			0xb0
155 #define CFG_OTP_ENABLE		BIT(6)
156 #define CFG_ECC_ENABLE		BIT(4)
157 #define CFG_QUAD_ENABLE		BIT(0)
158 
159 /* status register */
160 #define REG_STATUS		0xc0
161 #define STATUS_BUSY		BIT(0)
162 #define STATUS_ERASE_FAILED	BIT(2)
163 #define STATUS_PROG_FAILED	BIT(3)
164 #define STATUS_ECC_MASK		GENMASK(5, 4)
165 #define STATUS_ECC_NO_BITFLIPS	(0 << 4)
166 #define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
167 #define STATUS_ECC_UNCOR_ERROR	(2 << 4)
168 
169 struct spinand_op;
170 struct spinand_device;
171 
172 #define SPINAND_MAX_ID_LEN	4
173 
174 /**
175  * struct spinand_id - SPI NAND id structure
176  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
177  *	  be extended if required
178  * @len: ID length
179  *
180  * struct_spinand_id->data contains all bytes returned after a READ_ID command,
181  * including dummy bytes if the chip does not emit ID bytes right after the
182  * READ_ID command. The responsibility to extract real ID bytes is left to
183  * struct_manufacurer_ops->detect().
184  */
185 struct spinand_id {
186 	u8 data[SPINAND_MAX_ID_LEN];
187 	int len;
188 };
189 
190 /**
191  * struct manufacurer_ops - SPI NAND manufacturer specific operations
192  * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
193  *	    the core calls the struct_manufacurer_ops->detect() hook of each
194  *	    registered manufacturer until one of them return 1. Note that
195  *	    the first thing to check in this hook is that the manufacturer ID
196  *	    in struct_spinand_device->id matches the manufacturer whose
197  *	    ->detect() hook has been called. Should return 1 if there's a
198  *	    match, 0 if the manufacturer ID does not match and a negative
199  *	    error code otherwise. When true is returned, the core assumes
200  *	    that properties of the NAND chip (spinand->base.memorg and
201  *	    spinand->base.eccreq) have been filled
202  * @init: initialize a SPI NAND device
203  * @cleanup: cleanup a SPI NAND device
204  *
205  * Each SPI NAND manufacturer driver should implement this interface so that
206  * NAND chips coming from this vendor can be detected and initialized properly.
207  */
208 struct spinand_manufacturer_ops {
209 	int (*detect)(struct spinand_device *spinand);
210 	int (*init)(struct spinand_device *spinand);
211 	void (*cleanup)(struct spinand_device *spinand);
212 };
213 
214 /**
215  * struct spinand_manufacturer - SPI NAND manufacturer instance
216  * @id: manufacturer ID
217  * @name: manufacturer name
218  * @ops: manufacturer operations
219  */
220 struct spinand_manufacturer {
221 	u8 id;
222 	char *name;
223 	const struct spinand_manufacturer_ops *ops;
224 };
225 
226 /* SPI NAND manufacturers */
227 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
228 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
229 extern const struct spinand_manufacturer micron_spinand_manufacturer;
230 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
231 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
232 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
233 
234 /**
235  * struct spinand_op_variants - SPI NAND operation variants
236  * @ops: the list of variants for a given operation
237  * @nops: the number of variants
238  *
239  * Some operations like read-from-cache/write-to-cache have several variants
240  * depending on the number of IO lines you use to transfer data or address
241  * cycles. This structure is a way to describe the different variants supported
242  * by a chip and let the core pick the best one based on the SPI mem controller
243  * capabilities.
244  */
245 struct spinand_op_variants {
246 	const struct spi_mem_op *ops;
247 	unsigned int nops;
248 };
249 
250 #define SPINAND_OP_VARIANTS(name, ...)					\
251 	const struct spinand_op_variants name = {			\
252 		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
253 		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
254 			sizeof(struct spi_mem_op),			\
255 	}
256 
257 /**
258  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
259  *		      chip
260  * @get_status: get the ECC status. Should return a positive number encoding
261  *		the number of corrected bitflips if correction was possible or
262  *		-EBADMSG if there are uncorrectable errors. I can also return
263  *		other negative error codes if the error is not caused by
264  *		uncorrectable bitflips
265  * @ooblayout: the OOB layout used by the on-die ECC implementation
266  */
267 struct spinand_ecc_info {
268 	int (*get_status)(struct spinand_device *spinand, u8 status);
269 	const struct mtd_ooblayout_ops *ooblayout;
270 };
271 
272 #define SPINAND_HAS_QE_BIT		BIT(0)
273 
274 /**
275  * struct spinand_info - Structure used to describe SPI NAND chips
276  * @model: model name
277  * @devid: device ID
278  * @flags: OR-ing of the SPINAND_XXX flags
279  * @memorg: memory organization
280  * @eccreq: ECC requirements
281  * @eccinfo: on-die ECC info
282  * @op_variants: operations variants
283  * @op_variants.read_cache: variants of the read-cache operation
284  * @op_variants.write_cache: variants of the write-cache operation
285  * @op_variants.update_cache: variants of the update-cache operation
286  * @select_target: function used to select a target/die. Required only for
287  *		   multi-die chips
288  *
289  * Each SPI NAND manufacturer driver should have a spinand_info table
290  * describing all the chips supported by the driver.
291  */
292 struct spinand_info {
293 	const char *model;
294 	u16 devid;
295 	u32 flags;
296 	struct nand_memory_organization memorg;
297 	struct nand_ecc_req eccreq;
298 	struct spinand_ecc_info eccinfo;
299 	struct {
300 		const struct spinand_op_variants *read_cache;
301 		const struct spinand_op_variants *write_cache;
302 		const struct spinand_op_variants *update_cache;
303 	} op_variants;
304 	int (*select_target)(struct spinand_device *spinand,
305 			     unsigned int target);
306 };
307 
308 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
309 	{								\
310 		.read_cache = __read,					\
311 		.write_cache = __write,					\
312 		.update_cache = __update,				\
313 	}
314 
315 #define SPINAND_ECCINFO(__ooblayout, __get_status)			\
316 	.eccinfo = {							\
317 		.ooblayout = __ooblayout,				\
318 		.get_status = __get_status,				\
319 	}
320 
321 #define SPINAND_SELECT_TARGET(__func)					\
322 	.select_target = __func,
323 
324 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
325 		     __flags, ...)					\
326 	{								\
327 		.model = __model,					\
328 		.devid = __id,						\
329 		.memorg = __memorg,					\
330 		.eccreq = __eccreq,					\
331 		.op_variants = __op_variants,				\
332 		.flags = __flags,					\
333 		__VA_ARGS__						\
334 	}
335 
336 struct spinand_dirmap {
337 	struct spi_mem_dirmap_desc *wdesc;
338 	struct spi_mem_dirmap_desc *rdesc;
339 };
340 
341 /**
342  * struct spinand_device - SPI NAND device instance
343  * @base: NAND device instance
344  * @spimem: pointer to the SPI mem object
345  * @lock: lock used to serialize accesses to the NAND
346  * @id: NAND ID as returned by READ_ID
347  * @flags: NAND flags
348  * @op_templates: various SPI mem op templates
349  * @op_templates.read_cache: read cache op template
350  * @op_templates.write_cache: write cache op template
351  * @op_templates.update_cache: update cache op template
352  * @select_target: select a specific target/die. Usually called before sending
353  *		   a command addressing a page or an eraseblock embedded in
354  *		   this die. Only required if your chip exposes several dies
355  * @cur_target: currently selected target/die
356  * @eccinfo: on-die ECC information
357  * @cfg_cache: config register cache. One entry per die
358  * @databuf: bounce buffer for data
359  * @oobbuf: bounce buffer for OOB data
360  * @scratchbuf: buffer used for everything but page accesses. This is needed
361  *		because the spi-mem interface explicitly requests that buffers
362  *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
363  *		the stack
364  * @manufacturer: SPI NAND manufacturer information
365  * @priv: manufacturer private data
366  */
367 struct spinand_device {
368 	struct nand_device base;
369 	struct spi_mem *spimem;
370 	struct mutex lock;
371 	struct spinand_id id;
372 	u32 flags;
373 
374 	struct {
375 		const struct spi_mem_op *read_cache;
376 		const struct spi_mem_op *write_cache;
377 		const struct spi_mem_op *update_cache;
378 	} op_templates;
379 
380 	struct spinand_dirmap *dirmaps;
381 
382 	int (*select_target)(struct spinand_device *spinand,
383 			     unsigned int target);
384 	unsigned int cur_target;
385 
386 	struct spinand_ecc_info eccinfo;
387 
388 	u8 *cfg_cache;
389 	u8 *databuf;
390 	u8 *oobbuf;
391 	u8 *scratchbuf;
392 	const struct spinand_manufacturer *manufacturer;
393 	void *priv;
394 };
395 
396 /**
397  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
398  * @mtd: MTD instance
399  *
400  * Return: the SPI NAND device attached to @mtd.
401  */
mtd_to_spinand(struct mtd_info * mtd)402 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
403 {
404 	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
405 }
406 
407 /**
408  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
409  * @spinand: SPI NAND device
410  *
411  * Return: the MTD device embedded in @spinand.
412  */
spinand_to_mtd(struct spinand_device * spinand)413 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
414 {
415 	return nanddev_to_mtd(&spinand->base);
416 }
417 
418 /**
419  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
420  * @nand: NAND object
421  *
422  * Return: the SPI NAND device embedding @nand.
423  */
nand_to_spinand(struct nand_device * nand)424 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
425 {
426 	return container_of(nand, struct spinand_device, base);
427 }
428 
429 /**
430  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
431  * @spinand: SPI NAND device
432  *
433  * Return: the NAND device embedded in @spinand.
434  */
435 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)436 spinand_to_nand(struct spinand_device *spinand)
437 {
438 	return &spinand->base;
439 }
440 
441 /**
442  * spinand_set_of_node - Attach a DT node to a SPI NAND device
443  * @spinand: SPI NAND device
444  * @np: DT node
445  *
446  * Attach a DT node to a SPI NAND device.
447  */
spinand_set_of_node(struct spinand_device * spinand,struct device_node * np)448 static inline void spinand_set_of_node(struct spinand_device *spinand,
449 				       struct device_node *np)
450 {
451 	nanddev_set_of_node(&spinand->base, np);
452 }
453 
454 int spinand_match_and_init(struct spinand_device *dev,
455 			   const struct spinand_info *table,
456 			   unsigned int table_size, u16 devid);
457 
458 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
459 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
460 
461 #endif /* __LINUX_MTD_SPINAND_H */
462