1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 /**
20 * Standard SPI NAND flash operations
21 */
22
23 #define SPINAND_RESET_OP \
24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
25 SPI_MEM_OP_NO_ADDR, \
26 SPI_MEM_OP_NO_DUMMY, \
27 SPI_MEM_OP_NO_DATA)
28
29 #define SPINAND_WR_EN_DIS_OP(enable) \
30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
31 SPI_MEM_OP_NO_ADDR, \
32 SPI_MEM_OP_NO_DUMMY, \
33 SPI_MEM_OP_NO_DATA)
34
35 #define SPINAND_READID_OP(ndummy, buf, len) \
36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
37 SPI_MEM_OP_NO_ADDR, \
38 SPI_MEM_OP_DUMMY(ndummy, 1), \
39 SPI_MEM_OP_DATA_IN(len, buf, 1))
40
41 #define SPINAND_SET_FEATURE_OP(reg, valptr) \
42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
43 SPI_MEM_OP_ADDR(1, reg, 1), \
44 SPI_MEM_OP_NO_DUMMY, \
45 SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46
47 #define SPINAND_GET_FEATURE_OP(reg, valptr) \
48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
49 SPI_MEM_OP_ADDR(1, reg, 1), \
50 SPI_MEM_OP_NO_DUMMY, \
51 SPI_MEM_OP_DATA_IN(1, valptr, 1))
52
53 #define SPINAND_BLK_ERASE_OP(addr) \
54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
55 SPI_MEM_OP_ADDR(3, addr, 1), \
56 SPI_MEM_OP_NO_DUMMY, \
57 SPI_MEM_OP_NO_DATA)
58
59 #define SPINAND_PAGE_READ_OP(addr) \
60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
61 SPI_MEM_OP_ADDR(3, addr, 1), \
62 SPI_MEM_OP_NO_DUMMY, \
63 SPI_MEM_OP_NO_DATA)
64
65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
67 SPI_MEM_OP_ADDR(2, addr, 1), \
68 SPI_MEM_OP_DUMMY(ndummy, 1), \
69 SPI_MEM_OP_DATA_IN(len, buf, 1))
70
71 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
72 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
73 SPI_MEM_OP_ADDR(2, addr, 1), \
74 SPI_MEM_OP_DUMMY(ndummy, 1), \
75 SPI_MEM_OP_DATA_IN(len, buf, 2))
76
77 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
79 SPI_MEM_OP_ADDR(2, addr, 1), \
80 SPI_MEM_OP_DUMMY(ndummy, 1), \
81 SPI_MEM_OP_DATA_IN(len, buf, 4))
82
83 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
84 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
85 SPI_MEM_OP_ADDR(2, addr, 2), \
86 SPI_MEM_OP_DUMMY(ndummy, 2), \
87 SPI_MEM_OP_DATA_IN(len, buf, 2))
88
89 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
90 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
91 SPI_MEM_OP_ADDR(2, addr, 4), \
92 SPI_MEM_OP_DUMMY(ndummy, 4), \
93 SPI_MEM_OP_DATA_IN(len, buf, 4))
94
95 #define SPINAND_PROG_EXEC_OP(addr) \
96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
97 SPI_MEM_OP_ADDR(3, addr, 1), \
98 SPI_MEM_OP_NO_DUMMY, \
99 SPI_MEM_OP_NO_DATA)
100
101 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \
102 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
103 SPI_MEM_OP_ADDR(2, addr, 1), \
104 SPI_MEM_OP_NO_DUMMY, \
105 SPI_MEM_OP_DATA_OUT(len, buf, 1))
106
107 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
108 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
109 SPI_MEM_OP_ADDR(2, addr, 1), \
110 SPI_MEM_OP_NO_DUMMY, \
111 SPI_MEM_OP_DATA_OUT(len, buf, 4))
112
113 /**
114 * Standard SPI NAND flash commands
115 */
116 #define SPINAND_CMD_PROG_LOAD_X4 0x32
117 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
118
119 /* feature register */
120 #define REG_BLOCK_LOCK 0xa0
121 #define BL_ALL_UNLOCKED 0x00
122
123 /* configuration register */
124 #define REG_CFG 0xb0
125 #define CFG_OTP_ENABLE BIT(6)
126 #define CFG_ECC_ENABLE BIT(4)
127 #define CFG_QUAD_ENABLE BIT(0)
128
129 /* status register */
130 #define REG_STATUS 0xc0
131 #define STATUS_BUSY BIT(0)
132 #define STATUS_ERASE_FAILED BIT(2)
133 #define STATUS_PROG_FAILED BIT(3)
134 #define STATUS_ECC_MASK GENMASK(5, 4)
135 #define STATUS_ECC_NO_BITFLIPS (0 << 4)
136 #define STATUS_ECC_HAS_BITFLIPS (1 << 4)
137 #define STATUS_ECC_UNCOR_ERROR (2 << 4)
138
139 struct spinand_op;
140 struct spinand_device;
141
142 #define SPINAND_MAX_ID_LEN 4
143
144 /**
145 * struct spinand_id - SPI NAND id structure
146 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
147 * be extended if required
148 * @len: ID length
149 *
150 * struct_spinand_id->data contains all bytes returned after a READ_ID command,
151 * including dummy bytes if the chip does not emit ID bytes right after the
152 * READ_ID command. The responsibility to extract real ID bytes is left to
153 * struct_manufacurer_ops->detect().
154 */
155 struct spinand_id {
156 u8 data[SPINAND_MAX_ID_LEN];
157 int len;
158 };
159
160 /**
161 * struct manufacurer_ops - SPI NAND manufacturer specific operations
162 * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
163 * the core calls the struct_manufacurer_ops->detect() hook of each
164 * registered manufacturer until one of them return 1. Note that
165 * the first thing to check in this hook is that the manufacturer ID
166 * in struct_spinand_device->id matches the manufacturer whose
167 * ->detect() hook has been called. Should return 1 if there's a
168 * match, 0 if the manufacturer ID does not match and a negative
169 * error code otherwise. When true is returned, the core assumes
170 * that properties of the NAND chip (spinand->base.memorg and
171 * spinand->base.eccreq) have been filled
172 * @init: initialize a SPI NAND device
173 * @cleanup: cleanup a SPI NAND device
174 *
175 * Each SPI NAND manufacturer driver should implement this interface so that
176 * NAND chips coming from this vendor can be detected and initialized properly.
177 */
178 struct spinand_manufacturer_ops {
179 int (*detect)(struct spinand_device *spinand);
180 int (*init)(struct spinand_device *spinand);
181 void (*cleanup)(struct spinand_device *spinand);
182 };
183
184 /**
185 * struct spinand_manufacturer - SPI NAND manufacturer instance
186 * @id: manufacturer ID
187 * @name: manufacturer name
188 * @ops: manufacturer operations
189 */
190 struct spinand_manufacturer {
191 u8 id;
192 char *name;
193 const struct spinand_manufacturer_ops *ops;
194 };
195
196 /* SPI NAND manufacturers */
197 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
198 extern const struct spinand_manufacturer micron_spinand_manufacturer;
199 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
200
201 /**
202 * struct spinand_op_variants - SPI NAND operation variants
203 * @ops: the list of variants for a given operation
204 * @nops: the number of variants
205 *
206 * Some operations like read-from-cache/write-to-cache have several variants
207 * depending on the number of IO lines you use to transfer data or address
208 * cycles. This structure is a way to describe the different variants supported
209 * by a chip and let the core pick the best one based on the SPI mem controller
210 * capabilities.
211 */
212 struct spinand_op_variants {
213 const struct spi_mem_op *ops;
214 unsigned int nops;
215 };
216
217 #define SPINAND_OP_VARIANTS(name, ...) \
218 const struct spinand_op_variants name = { \
219 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
220 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
221 sizeof(struct spi_mem_op), \
222 }
223
224 /**
225 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
226 * chip
227 * @get_status: get the ECC status. Should return a positive number encoding
228 * the number of corrected bitflips if correction was possible or
229 * -EBADMSG if there are uncorrectable errors. I can also return
230 * other negative error codes if the error is not caused by
231 * uncorrectable bitflips
232 * @ooblayout: the OOB layout used by the on-die ECC implementation
233 */
234 struct spinand_ecc_info {
235 int (*get_status)(struct spinand_device *spinand, u8 status);
236 const struct mtd_ooblayout_ops *ooblayout;
237 };
238
239 #define SPINAND_HAS_QE_BIT BIT(0)
240
241 /**
242 * struct spinand_info - Structure used to describe SPI NAND chips
243 * @model: model name
244 * @devid: device ID
245 * @flags: OR-ing of the SPINAND_XXX flags
246 * @memorg: memory organization
247 * @eccreq: ECC requirements
248 * @eccinfo: on-die ECC info
249 * @op_variants: operations variants
250 * @op_variants.read_cache: variants of the read-cache operation
251 * @op_variants.write_cache: variants of the write-cache operation
252 * @op_variants.update_cache: variants of the update-cache operation
253 * @select_target: function used to select a target/die. Required only for
254 * multi-die chips
255 *
256 * Each SPI NAND manufacturer driver should have a spinand_info table
257 * describing all the chips supported by the driver.
258 */
259 struct spinand_info {
260 const char *model;
261 u8 devid;
262 u32 flags;
263 struct nand_memory_organization memorg;
264 struct nand_ecc_req eccreq;
265 struct spinand_ecc_info eccinfo;
266 struct {
267 const struct spinand_op_variants *read_cache;
268 const struct spinand_op_variants *write_cache;
269 const struct spinand_op_variants *update_cache;
270 } op_variants;
271 int (*select_target)(struct spinand_device *spinand,
272 unsigned int target);
273 };
274
275 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
276 { \
277 .read_cache = __read, \
278 .write_cache = __write, \
279 .update_cache = __update, \
280 }
281
282 #define SPINAND_ECCINFO(__ooblayout, __get_status) \
283 .eccinfo = { \
284 .ooblayout = __ooblayout, \
285 .get_status = __get_status, \
286 }
287
288 #define SPINAND_SELECT_TARGET(__func) \
289 .select_target = __func,
290
291 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
292 __flags, ...) \
293 { \
294 .model = __model, \
295 .devid = __id, \
296 .memorg = __memorg, \
297 .eccreq = __eccreq, \
298 .op_variants = __op_variants, \
299 .flags = __flags, \
300 __VA_ARGS__ \
301 }
302
303 /**
304 * struct spinand_device - SPI NAND device instance
305 * @base: NAND device instance
306 * @spimem: pointer to the SPI mem object
307 * @lock: lock used to serialize accesses to the NAND
308 * @id: NAND ID as returned by READ_ID
309 * @flags: NAND flags
310 * @op_templates: various SPI mem op templates
311 * @op_templates.read_cache: read cache op template
312 * @op_templates.write_cache: write cache op template
313 * @op_templates.update_cache: update cache op template
314 * @select_target: select a specific target/die. Usually called before sending
315 * a command addressing a page or an eraseblock embedded in
316 * this die. Only required if your chip exposes several dies
317 * @cur_target: currently selected target/die
318 * @eccinfo: on-die ECC information
319 * @cfg_cache: config register cache. One entry per die
320 * @databuf: bounce buffer for data
321 * @oobbuf: bounce buffer for OOB data
322 * @scratchbuf: buffer used for everything but page accesses. This is needed
323 * because the spi-mem interface explicitly requests that buffers
324 * passed in spi_mem_op be DMA-able, so we can't based the bufs on
325 * the stack
326 * @manufacturer: SPI NAND manufacturer information
327 * @priv: manufacturer private data
328 */
329 struct spinand_device {
330 struct nand_device base;
331 struct spi_mem *spimem;
332 struct mutex lock;
333 struct spinand_id id;
334 u32 flags;
335
336 struct {
337 const struct spi_mem_op *read_cache;
338 const struct spi_mem_op *write_cache;
339 const struct spi_mem_op *update_cache;
340 } op_templates;
341
342 int (*select_target)(struct spinand_device *spinand,
343 unsigned int target);
344 unsigned int cur_target;
345
346 struct spinand_ecc_info eccinfo;
347
348 u8 *cfg_cache;
349 u8 *databuf;
350 u8 *oobbuf;
351 u8 *scratchbuf;
352 const struct spinand_manufacturer *manufacturer;
353 void *priv;
354 };
355
356 /**
357 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
358 * @mtd: MTD instance
359 *
360 * Return: the SPI NAND device attached to @mtd.
361 */
mtd_to_spinand(struct mtd_info * mtd)362 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
363 {
364 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
365 }
366
367 /**
368 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
369 * @spinand: SPI NAND device
370 *
371 * Return: the MTD device embedded in @spinand.
372 */
spinand_to_mtd(struct spinand_device * spinand)373 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
374 {
375 return nanddev_to_mtd(&spinand->base);
376 }
377
378 /**
379 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
380 * @nand: NAND object
381 *
382 * Return: the SPI NAND device embedding @nand.
383 */
nand_to_spinand(struct nand_device * nand)384 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
385 {
386 return container_of(nand, struct spinand_device, base);
387 }
388
389 /**
390 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
391 * @spinand: SPI NAND device
392 *
393 * Return: the NAND device embedded in @spinand.
394 */
395 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)396 spinand_to_nand(struct spinand_device *spinand)
397 {
398 return &spinand->base;
399 }
400
401 /**
402 * spinand_set_of_node - Attach a DT node to a SPI NAND device
403 * @spinand: SPI NAND device
404 * @np: DT node
405 *
406 * Attach a DT node to a SPI NAND device.
407 */
spinand_set_of_node(struct spinand_device * spinand,struct device_node * np)408 static inline void spinand_set_of_node(struct spinand_device *spinand,
409 struct device_node *np)
410 {
411 nanddev_set_of_node(&spinand->base, np);
412 }
413
414 int spinand_match_and_init(struct spinand_device *dev,
415 const struct spinand_info *table,
416 unsigned int table_size, u8 devid);
417
418 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
419 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
420
421 #endif /* __LINUX_MTD_SPINAND_H */
422