1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _SMU_H
3 #define _SMU_H
4
5 /*
6 * Definitions for talking to the SMU chip in newer G5 PowerMacs
7 */
8 #ifdef __KERNEL__
9 #include <linux/list.h>
10 #endif
11 #include <linux/types.h>
12
13 /*
14 * Known SMU commands
15 *
16 * Most of what is below comes from looking at the Open Firmware driver,
17 * though this is still incomplete and could use better documentation here
18 * or there...
19 */
20
21
22 /*
23 * Partition info commands
24 *
25 * These commands are used to retrieve the sdb-partition-XX datas from
26 * the SMU. The length is always 2. First byte is the subcommand code
27 * and second byte is the partition ID.
28 *
29 * The reply is 6 bytes:
30 *
31 * - 0..1 : partition address
32 * - 2 : a byte containing the partition ID
33 * - 3 : length (maybe other bits are rest of header ?)
34 *
35 * The data must then be obtained with calls to another command:
36 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below).
37 */
38 #define SMU_CMD_PARTITION_COMMAND 0x3e
39 #define SMU_CMD_PARTITION_LATEST 0x01
40 #define SMU_CMD_PARTITION_BASE 0x02
41 #define SMU_CMD_PARTITION_UPDATE 0x03
42
43
44 /*
45 * Fan control
46 *
47 * This is a "mux" for fan control commands. The command seem to
48 * act differently based on the number of arguments. With 1 byte
49 * of argument, this seem to be queries for fans status, setpoint,
50 * etc..., while with 0xe arguments, we will set the fans speeds.
51 *
52 * Queries (1 byte arg):
53 * ---------------------
54 *
55 * arg=0x01: read RPM fans status
56 * arg=0x02: read RPM fans setpoint
57 * arg=0x11: read PWM fans status
58 * arg=0x12: read PWM fans setpoint
59 *
60 * the "status" queries return the current speed while the "setpoint" ones
61 * return the programmed/target speed. It _seems_ that the result is a bit
62 * mask in the first byte of active/available fans, followed by 6 words (16
63 * bits) containing the requested speed.
64 *
65 * Setpoint (14 bytes arg):
66 * ------------------------
67 *
68 * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the
69 * mask of fans affected by the command. Followed by 6 words containing the
70 * setpoint value for selected fans in the mask (or 0 if mask value is 0)
71 */
72 #define SMU_CMD_FAN_COMMAND 0x4a
73
74
75 /*
76 * Battery access
77 *
78 * Same command number as the PMU, could it be same syntax ?
79 */
80 #define SMU_CMD_BATTERY_COMMAND 0x6f
81 #define SMU_CMD_GET_BATTERY_INFO 0x00
82
83 /*
84 * Real time clock control
85 *
86 * This is a "mux", first data byte contains the "sub" command.
87 * The "RTC" part of the SMU controls the date, time, powerup
88 * timer, but also a PRAM
89 *
90 * Dates are in BCD format on 7 bytes:
91 * [sec] [min] [hour] [weekday] [month day] [month] [year]
92 * with month being 1 based and year minus 100
93 */
94 #define SMU_CMD_RTC_COMMAND 0x8e
95 #define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */
96 #define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */
97 #define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02
98 #define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */
99 #define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */
100 #define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */
101 #define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */
102 #define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */
103 #define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */
104 #define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */
105 #define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */
106 #define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */
107
108 /*
109 * i2c commands
110 *
111 * To issue an i2c command, first is to send a parameter block to the
112 * the SMU. This is a command of type 0x9a with 9 bytes of header
113 * eventually followed by data for a write:
114 *
115 * 0: bus number (from device-tree usually, SMU has lots of busses !)
116 * 1: transfer type/format (see below)
117 * 2: device address. For combined and combined4 type transfers, this
118 * is the "write" version of the address (bit 0x01 cleared)
119 * 3: subaddress length (0..3)
120 * 4: subaddress byte 0 (or only byte for subaddress length 1)
121 * 5: subaddress byte 1
122 * 6: subaddress byte 2
123 * 7: combined address (device address for combined mode data phase)
124 * 8: data length
125 *
126 * The transfer types are the same good old Apple ones it seems,
127 * that is:
128 * - 0x00: Simple transfer
129 * - 0x01: Subaddress transfer (addr write + data tx, no restart)
130 * - 0x02: Combined transfer (addr write + restart + data tx)
131 *
132 * This is then followed by actual data for a write.
133 *
134 * At this point, the OF driver seems to have a limitation on transfer
135 * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
136 * whether this is just an OF limit due to some temporary buffer size
137 * or if this is an SMU imposed limit. This driver has the same limitation
138 * for now as I use a 0x10 bytes temporary buffer as well
139 *
140 * Once that is completed, a response is expected from the SMU. This is
141 * obtained via a command of type 0x9a with a length of 1 byte containing
142 * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
143 * though I can't tell yet if this is actually necessary. Once this command
144 * is complete, at this point, all I can tell is what OF does. OF tests
145 * byte 0 of the reply:
146 * - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
147 * - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
148 * - on write, < 0 -> failure (immediate exit)
149 * - else, OF just exists (without error, weird)
150 *
151 * So on read, there is this wait-for-busy thing when getting a 0xfc or
152 * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
153 * doing the above again until either the retries expire or the result
154 * is no longer 0xfe or 0xfc
155 *
156 * The Darwin I2C driver is less subtle though. On any non-success status
157 * from the response command, it waits 5ms and tries again up to 20 times,
158 * it doesn't differentiate between fatal errors or "busy" status.
159 *
160 * This driver provides an asynchronous paramblock based i2c command
161 * interface to be used either directly by low level code or by a higher
162 * level driver interfacing to the linux i2c layer. The current
163 * implementation of this relies on working timers & timer interrupts
164 * though, so be careful of calling context for now. This may be "fixed"
165 * in the future by adding a polling facility.
166 */
167 #define SMU_CMD_I2C_COMMAND 0x9a
168 /* transfer types */
169 #define SMU_I2C_TRANSFER_SIMPLE 0x00
170 #define SMU_I2C_TRANSFER_STDSUB 0x01
171 #define SMU_I2C_TRANSFER_COMBINED 0x02
172
173 /*
174 * Power supply control
175 *
176 * The "sub" command is an ASCII string in the data, the
177 * data length is that of the string.
178 *
179 * The VSLEW command can be used to get or set the voltage slewing.
180 * - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
181 * reply at data offset 6, 7 and 8.
182 * - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is
183 * used to set the voltage slewing point. The SMU replies with "DONE"
184 * I yet have to figure out their exact meaning of those 3 bytes in
185 * both cases. They seem to be:
186 * x = processor mask
187 * y = op. point index
188 * z = processor freq. step index
189 * I haven't yet deciphered result codes
190 *
191 */
192 #define SMU_CMD_POWER_COMMAND 0xaa
193 #define SMU_CMD_POWER_RESTART "RESTART"
194 #define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN"
195 #define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW"
196
197 /*
198 * Read ADC sensors
199 *
200 * This command takes one byte of parameter: the sensor ID (or "reg"
201 * value in the device-tree) and returns a 16 bits value
202 */
203 #define SMU_CMD_READ_ADC 0xd8
204
205
206 /* Misc commands
207 *
208 * This command seem to be a grab bag of various things
209 *
210 * Parameters:
211 * 1: subcommand
212 */
213 #define SMU_CMD_MISC_df_COMMAND 0xdf
214
215 /*
216 * Sets "system ready" status
217 *
218 * I did not yet understand how it exactly works or what it does.
219 *
220 * Guessing from OF code, 0x02 activates the display backlight. Apple uses/used
221 * the same codebase for all OF versions. On PowerBooks, this command would
222 * enable the backlight. For the G5s, it only activates the front LED. However,
223 * don't take this for granted.
224 *
225 * Parameters:
226 * 2: status [0x00, 0x01 or 0x02]
227 */
228 #define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02
229
230 /*
231 * Sets mode of power switch.
232 *
233 * What this actually does is not yet known. Maybe it enables some interrupt.
234 *
235 * Parameters:
236 * 2: enable power switch? [0x00 or 0x01]
237 * 3 (optional): enable nmi? [0x00 or 0x01]
238 *
239 * Returns:
240 * If parameter 2 is 0x00 and parameter 3 is not specified, returns whether
241 * NMI is enabled. Otherwise unknown.
242 */
243 #define SMU_CMD_MISC_df_NMI_OPTION 0x04
244
245 /* Sets LED dimm offset.
246 *
247 * The front LED dimms itself during sleep. Its brightness (or, well, the PWM
248 * frequency) depends on current time. Therefore, the SMU needs to know the
249 * timezone.
250 *
251 * Parameters:
252 * 2-8: unknown (BCD coding)
253 */
254 #define SMU_CMD_MISC_df_DIMM_OFFSET 0x99
255
256
257 /*
258 * Version info commands
259 *
260 * Parameters:
261 * 1 (optional): Specifies version part to retrieve
262 *
263 * Returns:
264 * Version value
265 */
266 #define SMU_CMD_VERSION_COMMAND 0xea
267 #define SMU_VERSION_RUNNING 0x00
268 #define SMU_VERSION_BASE 0x01
269 #define SMU_VERSION_UPDATE 0x02
270
271
272 /*
273 * Switches
274 *
275 * These are switches whose status seems to be known to the SMU.
276 *
277 * Parameters:
278 * none
279 *
280 * Result:
281 * Switch bits (ORed, see below)
282 */
283 #define SMU_CMD_SWITCHES 0xdc
284
285 /* Switches bits */
286 #define SMU_SWITCH_CASE_CLOSED 0x01
287 #define SMU_SWITCH_AC_POWER 0x04
288 #define SMU_SWITCH_POWER_SWITCH 0x08
289
290
291 /*
292 * Misc commands
293 *
294 * This command seem to be a grab bag of various things
295 *
296 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to
297 * transfer blocks of data from the SMU. So far, I've decrypted it's
298 * usage to retrieve partition data. In order to do that, you have to
299 * break your transfer in "chunks" since that command cannot transfer
300 * more than a chunk at a time. The chunk size used by OF is 0xe bytes,
301 * but it seems that the darwin driver will let you do 0x1e bytes if
302 * your "PMU" version is >= 0x30. You can get the "PMU" version apparently
303 * either in the last 16 bits of property "smu-version-pmu" or as the 16
304 * bytes at offset 1 of "smu-version-info"
305 *
306 * For each chunk, the command takes 7 bytes of arguments:
307 * byte 0: subcommand code (0x02)
308 * byte 1: 0x04 (always, I don't know what it means, maybe the address
309 * space to use or some other nicety. It's hard coded in OF)
310 * byte 2..5: SMU address of the chunk (big endian 32 bits)
311 * byte 6: size to transfer (up to max chunk size)
312 *
313 * The data is returned directly
314 */
315 #define SMU_CMD_MISC_ee_COMMAND 0xee
316 #define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02
317
318 /* Retrieves currently used watts.
319 *
320 * Parameters:
321 * 1: 0x03 (Meaning unknown)
322 */
323 #define SMU_CMD_MISC_ee_GET_WATTS 0x03
324
325 #define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */
326 #define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */
327
328
329 /*
330 * Power related commands
331 *
332 * Parameters:
333 * 1: subcommand
334 */
335 #define SMU_CMD_POWER_EVENTS_COMMAND 0x8f
336
337 /* SMU_POWER_EVENTS subcommands */
338 enum {
339 SMU_PWR_GET_POWERUP_EVENTS = 0x00,
340 SMU_PWR_SET_POWERUP_EVENTS = 0x01,
341 SMU_PWR_CLR_POWERUP_EVENTS = 0x02,
342 SMU_PWR_GET_WAKEUP_EVENTS = 0x03,
343 SMU_PWR_SET_WAKEUP_EVENTS = 0x04,
344 SMU_PWR_CLR_WAKEUP_EVENTS = 0x05,
345
346 /*
347 * Get last shutdown cause
348 *
349 * Returns:
350 * 1 byte (signed char): Last shutdown cause. Exact meaning unknown.
351 */
352 SMU_PWR_LAST_SHUTDOWN_CAUSE = 0x07,
353
354 /*
355 * Sets or gets server ID. Meaning or use is unknown.
356 *
357 * Parameters:
358 * 2 (optional): Set server ID (1 byte)
359 *
360 * Returns:
361 * 1 byte (server ID?)
362 */
363 SMU_PWR_SERVER_ID = 0x08,
364 };
365
366 /* Power events wakeup bits */
367 enum {
368 SMU_PWR_WAKEUP_KEY = 0x01, /* Wake on key press */
369 SMU_PWR_WAKEUP_AC_INSERT = 0x02, /* Wake on AC adapter plug */
370 SMU_PWR_WAKEUP_AC_CHANGE = 0x04,
371 SMU_PWR_WAKEUP_LID_OPEN = 0x08,
372 SMU_PWR_WAKEUP_RING = 0x10,
373 };
374
375
376 /*
377 * - Kernel side interface -
378 */
379
380 #ifdef __KERNEL__
381
382 /*
383 * Asynchronous SMU commands
384 *
385 * Fill up this structure and submit it via smu_queue_command(),
386 * and get notified by the optional done() callback, or because
387 * status becomes != 1
388 */
389
390 struct smu_cmd;
391
392 struct smu_cmd
393 {
394 /* public */
395 u8 cmd; /* command */
396 int data_len; /* data len */
397 int reply_len; /* reply len */
398 void *data_buf; /* data buffer */
399 void *reply_buf; /* reply buffer */
400 int status; /* command status */
401 void (*done)(struct smu_cmd *cmd, void *misc);
402 void *misc;
403
404 /* private */
405 struct list_head link;
406 };
407
408 /*
409 * Queues an SMU command, all fields have to be initialized
410 */
411 extern int smu_queue_cmd(struct smu_cmd *cmd);
412
413 /*
414 * Simple command wrapper. This structure embeds a small buffer
415 * to ease sending simple SMU commands from the stack
416 */
417 struct smu_simple_cmd
418 {
419 struct smu_cmd cmd;
420 u8 buffer[16];
421 };
422
423 /*
424 * Queues a simple command. All fields will be initialized by that
425 * function
426 */
427 extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
428 unsigned int data_len,
429 void (*done)(struct smu_cmd *cmd, void *misc),
430 void *misc,
431 ...);
432
433 /*
434 * Completion helper. Pass it to smu_queue_simple or as 'done'
435 * member to smu_queue_cmd, it will call complete() on the struct
436 * completion passed in the "misc" argument
437 */
438 extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
439
440 /*
441 * Synchronous helpers. Will spin-wait for completion of a command
442 */
443 extern void smu_spinwait_cmd(struct smu_cmd *cmd);
444
smu_spinwait_simple(struct smu_simple_cmd * scmd)445 static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
446 {
447 smu_spinwait_cmd(&scmd->cmd);
448 }
449
450 /*
451 * Poll routine to call if blocked with irqs off
452 */
453 extern void smu_poll(void);
454
455
456 /*
457 * Init routine, presence check....
458 */
459 extern int smu_init(void);
460 extern int smu_present(void);
461 struct platform_device;
462 extern struct platform_device *smu_get_ofdev(void);
463
464
465 /*
466 * Common command wrappers
467 */
468 extern void smu_shutdown(void);
469 extern void smu_restart(void);
470 struct rtc_time;
471 extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
472 extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
473
474 /*
475 * Kernel asynchronous i2c interface
476 */
477
478 #define SMU_I2C_READ_MAX 0x1d
479 #define SMU_I2C_WRITE_MAX 0x15
480
481 /* SMU i2c header, exactly matches i2c header on wire */
482 struct smu_i2c_param
483 {
484 u8 bus; /* SMU bus ID (from device tree) */
485 u8 type; /* i2c transfer type */
486 u8 devaddr; /* device address (includes direction) */
487 u8 sublen; /* subaddress length */
488 u8 subaddr[3]; /* subaddress */
489 u8 caddr; /* combined address, filled by SMU driver */
490 u8 datalen; /* length of transfer */
491 u8 data[SMU_I2C_READ_MAX]; /* data */
492 };
493
494 struct smu_i2c_cmd
495 {
496 /* public */
497 struct smu_i2c_param info;
498 void (*done)(struct smu_i2c_cmd *cmd, void *misc);
499 void *misc;
500 int status; /* 1 = pending, 0 = ok, <0 = fail */
501
502 /* private */
503 struct smu_cmd scmd;
504 int read;
505 int stage;
506 int retries;
507 u8 pdata[32];
508 struct list_head link;
509 };
510
511 /*
512 * Call this to queue an i2c command to the SMU. You must fill info,
513 * including info.data for a write, done and misc.
514 * For now, no polling interface is provided so you have to use completion
515 * callback.
516 */
517 extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
518
519
520 #endif /* __KERNEL__ */
521
522
523 /*
524 * - SMU "sdb" partitions informations -
525 */
526
527
528 /*
529 * Partition header format
530 */
531 struct smu_sdbp_header {
532 __u8 id;
533 __u8 len;
534 __u8 version;
535 __u8 flags;
536 };
537
538
539 /*
540 * demangle 16 and 32 bits integer in some SMU partitions
541 * (currently, afaik, this concerns only the FVT partition
542 * (0x12)
543 */
544 #define SMU_U16_MIX(x) le16_to_cpu(x)
545 #define SMU_U32_MIX(x) ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8))
546
547
548 /* This is the definition of the SMU sdb-partition-0x12 table (called
549 * CPU F/V/T operating points in Darwin). The definition for all those
550 * SMU tables should be moved to some separate file
551 */
552 #define SMU_SDB_FVT_ID 0x12
553
554 struct smu_sdbp_fvt {
555 __u32 sysclk; /* Base SysClk frequency in Hz for
556 * this operating point. Value need to
557 * be unmixed with SMU_U32_MIX()
558 */
559 __u8 pad;
560 __u8 maxtemp; /* Max temp. supported by this
561 * operating point
562 */
563
564 __u16 volts[3]; /* CPU core voltage for the 3
565 * PowerTune modes, a mode with
566 * 0V = not supported. Value need
567 * to be unmixed with SMU_U16_MIX()
568 */
569 };
570
571 /* This partition contains voltage & current sensor calibration
572 * informations
573 */
574 #define SMU_SDB_CPUVCP_ID 0x21
575
576 struct smu_sdbp_cpuvcp {
577 __u16 volt_scale; /* u4.12 fixed point */
578 __s16 volt_offset; /* s4.12 fixed point */
579 __u16 curr_scale; /* u4.12 fixed point */
580 __s16 curr_offset; /* s4.12 fixed point */
581 __s32 power_quads[3]; /* s4.28 fixed point */
582 };
583
584 /* This partition contains CPU thermal diode calibration
585 */
586 #define SMU_SDB_CPUDIODE_ID 0x18
587
588 struct smu_sdbp_cpudiode {
589 __u16 m_value; /* u1.15 fixed point */
590 __s16 b_value; /* s10.6 fixed point */
591
592 };
593
594 /* This partition contains Slots power calibration
595 */
596 #define SMU_SDB_SLOTSPOW_ID 0x78
597
598 struct smu_sdbp_slotspow {
599 __u16 pow_scale; /* u4.12 fixed point */
600 __s16 pow_offset; /* s4.12 fixed point */
601 };
602
603 /* This partition contains machine specific version information about
604 * the sensor/control layout
605 */
606 #define SMU_SDB_SENSORTREE_ID 0x25
607
608 struct smu_sdbp_sensortree {
609 __u8 model_id;
610 __u8 unknown[3];
611 };
612
613 /* This partition contains CPU thermal control PID informations. So far
614 * only single CPU machines have been seen with an SMU, so we assume this
615 * carries only informations for those
616 */
617 #define SMU_SDB_CPUPIDDATA_ID 0x17
618
619 struct smu_sdbp_cpupiddata {
620 __u8 unknown1;
621 __u8 target_temp_delta;
622 __u8 unknown2;
623 __u8 history_len;
624 __s16 power_adj;
625 __u16 max_power;
626 __s32 gp,gr,gd;
627 };
628
629
630 /* Other partitions without known structures */
631 #define SMU_SDB_DEBUG_SWITCHES_ID 0x05
632
633 #ifdef __KERNEL__
634 /*
635 * This returns the pointer to an SMU "sdb" partition data or NULL
636 * if not found. The data format is described below
637 */
638 extern const struct smu_sdbp_header *smu_get_sdb_partition(int id,
639 unsigned int *size);
640
641 /* Get "sdb" partition data from an SMU satellite */
642 extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id,
643 int id, unsigned int *size);
644
645
646 #endif /* __KERNEL__ */
647
648
649 /*
650 * - Userland interface -
651 */
652
653 /*
654 * A given instance of the device can be configured for 2 different
655 * things at the moment:
656 *
657 * - sending SMU commands (default at open() time)
658 * - receiving SMU events (not yet implemented)
659 *
660 * Commands are written with write() of a command block. They can be
661 * "driver" commands (for example to switch to event reception mode)
662 * or real SMU commands. They are made of a header followed by command
663 * data if any.
664 *
665 * For SMU commands (not for driver commands), you can then read() back
666 * a reply. The reader will be blocked or not depending on how the device
667 * file is opened. poll() isn't implemented yet. The reply will consist
668 * of a header as well, followed by the reply data if any. You should
669 * always provide a buffer large enough for the maximum reply data, I
670 * recommand one page.
671 *
672 * It is illegal to send SMU commands through a file descriptor configured
673 * for events reception
674 *
675 */
676 struct smu_user_cmd_hdr
677 {
678 __u32 cmdtype;
679 #define SMU_CMDTYPE_SMU 0 /* SMU command */
680 #define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */
681 #define SMU_CMDTYPE_GET_PARTITION 2 /* retrieve an sdb partition */
682
683 __u8 cmd; /* SMU command byte */
684 __u8 pad[3]; /* padding */
685 __u32 data_len; /* Length of data following */
686 };
687
688 struct smu_user_reply_hdr
689 {
690 __u32 status; /* Command status */
691 __u32 reply_len; /* Length of data follwing */
692 };
693
694 #endif /* _SMU_H */
695