1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
skb_frag_size(const skb_frag_t * frag)327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
skb_frag_size_add(skb_frag_t * frag,int delta)347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
skb_frag_size_sub(skb_frag_t * frag,int delta)357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
skb_frag_must_loop(struct page * p)366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* device driver supports TX zero-copy buffers */
434 	SKBTX_DEV_ZEROCOPY = 1 << 3,
435 
436 	/* generate wifi status information (where possible) */
437 	SKBTX_WIFI_STATUS = 1 << 4,
438 
439 	/* This indicates at least one fragment might be overwritten
440 	 * (as in vmsplice(), sendfile() ...)
441 	 * If we need to compute a TX checksum, we'll need to copy
442 	 * all frags to avoid possible bad checksum
443 	 */
444 	SKBTX_SHARED_FRAG = 1 << 5,
445 
446 	/* generate software time stamp when entering packet scheduling */
447 	SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449 
450 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
452 				 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454 
455 /*
456  * The callback notifies userspace to release buffers when skb DMA is done in
457  * lower device, the skb last reference should be 0 when calling this.
458  * The zerocopy_success argument is true if zero copy transmit occurred,
459  * false on data copy or out of memory error caused by data copy attempt.
460  * The ctx field is used to track device context.
461  * The desc field is used to track userspace buffer index.
462  */
463 struct ubuf_info {
464 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 	union {
466 		struct {
467 			unsigned long desc;
468 			void *ctx;
469 		};
470 		struct {
471 			u32 id;
472 			u16 len;
473 			u16 zerocopy:1;
474 			u32 bytelen;
475 		};
476 	};
477 	refcount_t refcnt;
478 
479 	struct mmpin {
480 		struct user_struct *user;
481 		unsigned int num_pg;
482 	} mmp;
483 };
484 
485 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486 
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489 
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 					struct ubuf_info *uarg);
493 
sock_zerocopy_get(struct ubuf_info * uarg)494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 	refcount_inc(&uarg->refcnt);
497 }
498 
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503 
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 			     struct msghdr *msg, int len,
507 			     struct ubuf_info *uarg);
508 
509 /* This data is invariant across clones and lives at
510  * the end of the header data, ie. at skb->end.
511  */
512 struct skb_shared_info {
513 	__u8		__unused;
514 	__u8		meta_len;
515 	__u8		nr_frags;
516 	__u8		tx_flags;
517 	unsigned short	gso_size;
518 	/* Warning: this field is not always filled in (UFO)! */
519 	unsigned short	gso_segs;
520 	struct sk_buff	*frag_list;
521 	struct skb_shared_hwtstamps hwtstamps;
522 	unsigned int	gso_type;
523 	u32		tskey;
524 
525 	/*
526 	 * Warning : all fields before dataref are cleared in __alloc_skb()
527 	 */
528 	atomic_t	dataref;
529 
530 	/* Intermediate layers must ensure that destructor_arg
531 	 * remains valid until skb destructor */
532 	void *		destructor_arg;
533 
534 	/* must be last field, see pskb_expand_head() */
535 	skb_frag_t	frags[MAX_SKB_FRAGS];
536 };
537 
538 /* We divide dataref into two halves.  The higher 16 bits hold references
539  * to the payload part of skb->data.  The lower 16 bits hold references to
540  * the entire skb->data.  A clone of a headerless skb holds the length of
541  * the header in skb->hdr_len.
542  *
543  * All users must obey the rule that the skb->data reference count must be
544  * greater than or equal to the payload reference count.
545  *
546  * Holding a reference to the payload part means that the user does not
547  * care about modifications to the header part of skb->data.
548  */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551 
552 
553 enum {
554 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
555 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
556 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
557 };
558 
559 enum {
560 	SKB_GSO_TCPV4 = 1 << 0,
561 
562 	/* This indicates the skb is from an untrusted source. */
563 	SKB_GSO_DODGY = 1 << 1,
564 
565 	/* This indicates the tcp segment has CWR set. */
566 	SKB_GSO_TCP_ECN = 1 << 2,
567 
568 	SKB_GSO_TCP_FIXEDID = 1 << 3,
569 
570 	SKB_GSO_TCPV6 = 1 << 4,
571 
572 	SKB_GSO_FCOE = 1 << 5,
573 
574 	SKB_GSO_GRE = 1 << 6,
575 
576 	SKB_GSO_GRE_CSUM = 1 << 7,
577 
578 	SKB_GSO_IPXIP4 = 1 << 8,
579 
580 	SKB_GSO_IPXIP6 = 1 << 9,
581 
582 	SKB_GSO_UDP_TUNNEL = 1 << 10,
583 
584 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585 
586 	SKB_GSO_PARTIAL = 1 << 12,
587 
588 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589 
590 	SKB_GSO_SCTP = 1 << 14,
591 
592 	SKB_GSO_ESP = 1 << 15,
593 
594 	SKB_GSO_UDP = 1 << 16,
595 
596 	SKB_GSO_UDP_L4 = 1 << 17,
597 
598 	SKB_GSO_FRAGLIST = 1 << 18,
599 };
600 
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604 
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610 
611 /**
612  *	struct sk_buff - socket buffer
613  *	@next: Next buffer in list
614  *	@prev: Previous buffer in list
615  *	@tstamp: Time we arrived/left
616  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617  *		for retransmit timer
618  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
619  *	@list: queue head
620  *	@sk: Socket we are owned by
621  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622  *		fragmentation management
623  *	@dev: Device we arrived on/are leaving by
624  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625  *	@cb: Control buffer. Free for use by every layer. Put private vars here
626  *	@_skb_refdst: destination entry (with norefcount bit)
627  *	@sp: the security path, used for xfrm
628  *	@len: Length of actual data
629  *	@data_len: Data length
630  *	@mac_len: Length of link layer header
631  *	@hdr_len: writable header length of cloned skb
632  *	@csum: Checksum (must include start/offset pair)
633  *	@csum_start: Offset from skb->head where checksumming should start
634  *	@csum_offset: Offset from csum_start where checksum should be stored
635  *	@priority: Packet queueing priority
636  *	@ignore_df: allow local fragmentation
637  *	@cloned: Head may be cloned (check refcnt to be sure)
638  *	@ip_summed: Driver fed us an IP checksum
639  *	@nohdr: Payload reference only, must not modify header
640  *	@pkt_type: Packet class
641  *	@fclone: skbuff clone status
642  *	@ipvs_property: skbuff is owned by ipvs
643  *	@inner_protocol_type: whether the inner protocol is
644  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645  *	@remcsum_offload: remote checksum offload is enabled
646  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
647  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648  *	@tc_skip_classify: do not classify packet. set by IFB device
649  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
650  *	@redirected: packet was redirected by packet classifier
651  *	@from_ingress: packet was redirected from the ingress path
652  *	@peeked: this packet has been seen already, so stats have been
653  *		done for it, don't do them again
654  *	@nf_trace: netfilter packet trace flag
655  *	@protocol: Packet protocol from driver
656  *	@destructor: Destruct function
657  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658  *	@_nfct: Associated connection, if any (with nfctinfo bits)
659  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660  *	@skb_iif: ifindex of device we arrived on
661  *	@tc_index: Traffic control index
662  *	@hash: the packet hash
663  *	@queue_mapping: Queue mapping for multiqueue devices
664  *	@head_frag: skb was allocated from page fragments,
665  *		not allocated by kmalloc() or vmalloc().
666  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667  *	@active_extensions: active extensions (skb_ext_id types)
668  *	@ndisc_nodetype: router type (from link layer)
669  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
670  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
671  *		ports.
672  *	@sw_hash: indicates hash was computed in software stack
673  *	@wifi_acked_valid: wifi_acked was set
674  *	@wifi_acked: whether frame was acked on wifi or not
675  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
676  *	@encapsulation: indicates the inner headers in the skbuff are valid
677  *	@encap_hdr_csum: software checksum is needed
678  *	@csum_valid: checksum is already valid
679  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680  *	@csum_complete_sw: checksum was completed by software
681  *	@csum_level: indicates the number of consecutive checksums found in
682  *		the packet minus one that have been verified as
683  *		CHECKSUM_UNNECESSARY (max 3)
684  *	@dst_pending_confirm: need to confirm neighbour
685  *	@decrypted: Decrypted SKB
686  *	@napi_id: id of the NAPI struct this skb came from
687  *	@sender_cpu: (aka @napi_id) source CPU in XPS
688  *	@secmark: security marking
689  *	@mark: Generic packet mark
690  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
691  *		at the tail of an sk_buff
692  *	@vlan_present: VLAN tag is present
693  *	@vlan_proto: vlan encapsulation protocol
694  *	@vlan_tci: vlan tag control information
695  *	@inner_protocol: Protocol (encapsulation)
696  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
697  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
698  *	@inner_transport_header: Inner transport layer header (encapsulation)
699  *	@inner_network_header: Network layer header (encapsulation)
700  *	@inner_mac_header: Link layer header (encapsulation)
701  *	@transport_header: Transport layer header
702  *	@network_header: Network layer header
703  *	@mac_header: Link layer header
704  *	@tail: Tail pointer
705  *	@end: End pointer
706  *	@head: Head of buffer
707  *	@data: Data head pointer
708  *	@truesize: Buffer size
709  *	@users: User count - see {datagram,tcp}.c
710  *	@extensions: allocated extensions, valid if active_extensions is nonzero
711  */
712 
713 struct sk_buff {
714 	union {
715 		struct {
716 			/* These two members must be first. */
717 			struct sk_buff		*next;
718 			struct sk_buff		*prev;
719 
720 			union {
721 				struct net_device	*dev;
722 				/* Some protocols might use this space to store information,
723 				 * while device pointer would be NULL.
724 				 * UDP receive path is one user.
725 				 */
726 				unsigned long		dev_scratch;
727 			};
728 		};
729 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
730 		struct list_head	list;
731 	};
732 
733 	union {
734 		struct sock		*sk;
735 		int			ip_defrag_offset;
736 	};
737 
738 	union {
739 		ktime_t		tstamp;
740 		u64		skb_mstamp_ns; /* earliest departure time */
741 	};
742 	/*
743 	 * This is the control buffer. It is free to use for every
744 	 * layer. Please put your private variables there. If you
745 	 * want to keep them across layers you have to do a skb_clone()
746 	 * first. This is owned by whoever has the skb queued ATM.
747 	 */
748 	char			cb[48] __aligned(8);
749 
750 	union {
751 		struct {
752 			unsigned long	_skb_refdst;
753 			void		(*destructor)(struct sk_buff *skb);
754 		};
755 		struct list_head	tcp_tsorted_anchor;
756 	};
757 
758 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
759 	unsigned long		 _nfct;
760 #endif
761 	unsigned int		len,
762 				data_len;
763 	__u16			mac_len,
764 				hdr_len;
765 
766 	/* Following fields are _not_ copied in __copy_skb_header()
767 	 * Note that queue_mapping is here mostly to fill a hole.
768 	 */
769 	__u16			queue_mapping;
770 
771 /* if you move cloned around you also must adapt those constants */
772 #ifdef __BIG_ENDIAN_BITFIELD
773 #define CLONED_MASK	(1 << 7)
774 #else
775 #define CLONED_MASK	1
776 #endif
777 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
778 
779 	/* private: */
780 	__u8			__cloned_offset[0];
781 	/* public: */
782 	__u8			cloned:1,
783 				nohdr:1,
784 				fclone:2,
785 				peeked:1,
786 				head_frag:1,
787 				pfmemalloc:1;
788 #ifdef CONFIG_SKB_EXTENSIONS
789 	__u8			active_extensions;
790 #endif
791 	/* fields enclosed in headers_start/headers_end are copied
792 	 * using a single memcpy() in __copy_skb_header()
793 	 */
794 	/* private: */
795 	__u32			headers_start[0];
796 	/* public: */
797 
798 /* if you move pkt_type around you also must adapt those constants */
799 #ifdef __BIG_ENDIAN_BITFIELD
800 #define PKT_TYPE_MAX	(7 << 5)
801 #else
802 #define PKT_TYPE_MAX	7
803 #endif
804 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
805 
806 	/* private: */
807 	__u8			__pkt_type_offset[0];
808 	/* public: */
809 	__u8			pkt_type:3;
810 	__u8			ignore_df:1;
811 	__u8			nf_trace:1;
812 	__u8			ip_summed:2;
813 	__u8			ooo_okay:1;
814 
815 	__u8			l4_hash:1;
816 	__u8			sw_hash:1;
817 	__u8			wifi_acked_valid:1;
818 	__u8			wifi_acked:1;
819 	__u8			no_fcs:1;
820 	/* Indicates the inner headers are valid in the skbuff. */
821 	__u8			encapsulation:1;
822 	__u8			encap_hdr_csum:1;
823 	__u8			csum_valid:1;
824 
825 #ifdef __BIG_ENDIAN_BITFIELD
826 #define PKT_VLAN_PRESENT_BIT	7
827 #else
828 #define PKT_VLAN_PRESENT_BIT	0
829 #endif
830 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
831 	/* private: */
832 	__u8			__pkt_vlan_present_offset[0];
833 	/* public: */
834 	__u8			vlan_present:1;
835 	__u8			csum_complete_sw:1;
836 	__u8			csum_level:2;
837 	__u8			csum_not_inet:1;
838 	__u8			dst_pending_confirm:1;
839 #ifdef CONFIG_IPV6_NDISC_NODETYPE
840 	__u8			ndisc_nodetype:2;
841 #endif
842 
843 	__u8			ipvs_property:1;
844 	__u8			inner_protocol_type:1;
845 	__u8			remcsum_offload:1;
846 #ifdef CONFIG_NET_SWITCHDEV
847 	__u8			offload_fwd_mark:1;
848 	__u8			offload_l3_fwd_mark:1;
849 #endif
850 #ifdef CONFIG_NET_CLS_ACT
851 	__u8			tc_skip_classify:1;
852 	__u8			tc_at_ingress:1;
853 #endif
854 #ifdef CONFIG_NET_REDIRECT
855 	__u8			redirected:1;
856 	__u8			from_ingress:1;
857 #endif
858 #ifdef CONFIG_TLS_DEVICE
859 	__u8			decrypted:1;
860 #endif
861 
862 #ifdef CONFIG_NET_SCHED
863 	__u16			tc_index;	/* traffic control index */
864 #endif
865 
866 	union {
867 		__wsum		csum;
868 		struct {
869 			__u16	csum_start;
870 			__u16	csum_offset;
871 		};
872 	};
873 	__u32			priority;
874 	int			skb_iif;
875 	__u32			hash;
876 	__be16			vlan_proto;
877 	__u16			vlan_tci;
878 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
879 	union {
880 		unsigned int	napi_id;
881 		unsigned int	sender_cpu;
882 	};
883 #endif
884 #ifdef CONFIG_NETWORK_SECMARK
885 	__u32		secmark;
886 #endif
887 
888 	union {
889 		__u32		mark;
890 		__u32		reserved_tailroom;
891 	};
892 
893 	union {
894 		__be16		inner_protocol;
895 		__u8		inner_ipproto;
896 	};
897 
898 	__u16			inner_transport_header;
899 	__u16			inner_network_header;
900 	__u16			inner_mac_header;
901 
902 	__be16			protocol;
903 	__u16			transport_header;
904 	__u16			network_header;
905 	__u16			mac_header;
906 
907 	/* private: */
908 	__u32			headers_end[0];
909 	/* public: */
910 
911 	/* These elements must be at the end, see alloc_skb() for details.  */
912 	sk_buff_data_t		tail;
913 	sk_buff_data_t		end;
914 	unsigned char		*head,
915 				*data;
916 	unsigned int		truesize;
917 	refcount_t		users;
918 
919 #ifdef CONFIG_SKB_EXTENSIONS
920 	/* only useable after checking ->active_extensions != 0 */
921 	struct skb_ext		*extensions;
922 #endif
923 };
924 
925 #ifdef __KERNEL__
926 /*
927  *	Handling routines are only of interest to the kernel
928  */
929 
930 #define SKB_ALLOC_FCLONE	0x01
931 #define SKB_ALLOC_RX		0x02
932 #define SKB_ALLOC_NAPI		0x04
933 
934 /**
935  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
936  * @skb: buffer
937  */
skb_pfmemalloc(const struct sk_buff * skb)938 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
939 {
940 	return unlikely(skb->pfmemalloc);
941 }
942 
943 /*
944  * skb might have a dst pointer attached, refcounted or not.
945  * _skb_refdst low order bit is set if refcount was _not_ taken
946  */
947 #define SKB_DST_NOREF	1UL
948 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
949 
950 /**
951  * skb_dst - returns skb dst_entry
952  * @skb: buffer
953  *
954  * Returns skb dst_entry, regardless of reference taken or not.
955  */
skb_dst(const struct sk_buff * skb)956 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
957 {
958 	/* If refdst was not refcounted, check we still are in a
959 	 * rcu_read_lock section
960 	 */
961 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
962 		!rcu_read_lock_held() &&
963 		!rcu_read_lock_bh_held());
964 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
965 }
966 
967 /**
968  * skb_dst_set - sets skb dst
969  * @skb: buffer
970  * @dst: dst entry
971  *
972  * Sets skb dst, assuming a reference was taken on dst and should
973  * be released by skb_dst_drop()
974  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)975 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
976 {
977 	skb->_skb_refdst = (unsigned long)dst;
978 }
979 
980 /**
981  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
982  * @skb: buffer
983  * @dst: dst entry
984  *
985  * Sets skb dst, assuming a reference was not taken on dst.
986  * If dst entry is cached, we do not take reference and dst_release
987  * will be avoided by refdst_drop. If dst entry is not cached, we take
988  * reference, so that last dst_release can destroy the dst immediately.
989  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)990 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
991 {
992 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
993 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
994 }
995 
996 /**
997  * skb_dst_is_noref - Test if skb dst isn't refcounted
998  * @skb: buffer
999  */
skb_dst_is_noref(const struct sk_buff * skb)1000 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1001 {
1002 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1003 }
1004 
1005 /**
1006  * skb_rtable - Returns the skb &rtable
1007  * @skb: buffer
1008  */
skb_rtable(const struct sk_buff * skb)1009 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1010 {
1011 	return (struct rtable *)skb_dst(skb);
1012 }
1013 
1014 /* For mangling skb->pkt_type from user space side from applications
1015  * such as nft, tc, etc, we only allow a conservative subset of
1016  * possible pkt_types to be set.
1017 */
skb_pkt_type_ok(u32 ptype)1018 static inline bool skb_pkt_type_ok(u32 ptype)
1019 {
1020 	return ptype <= PACKET_OTHERHOST;
1021 }
1022 
1023 /**
1024  * skb_napi_id - Returns the skb's NAPI id
1025  * @skb: buffer
1026  */
skb_napi_id(const struct sk_buff * skb)1027 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1028 {
1029 #ifdef CONFIG_NET_RX_BUSY_POLL
1030 	return skb->napi_id;
1031 #else
1032 	return 0;
1033 #endif
1034 }
1035 
1036 /**
1037  * skb_unref - decrement the skb's reference count
1038  * @skb: buffer
1039  *
1040  * Returns true if we can free the skb.
1041  */
skb_unref(struct sk_buff * skb)1042 static inline bool skb_unref(struct sk_buff *skb)
1043 {
1044 	if (unlikely(!skb))
1045 		return false;
1046 	if (likely(refcount_read(&skb->users) == 1))
1047 		smp_rmb();
1048 	else if (likely(!refcount_dec_and_test(&skb->users)))
1049 		return false;
1050 
1051 	return true;
1052 }
1053 
1054 void skb_release_head_state(struct sk_buff *skb);
1055 void kfree_skb(struct sk_buff *skb);
1056 void kfree_skb_list(struct sk_buff *segs);
1057 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1058 void skb_tx_error(struct sk_buff *skb);
1059 
1060 #ifdef CONFIG_TRACEPOINTS
1061 void consume_skb(struct sk_buff *skb);
1062 #else
consume_skb(struct sk_buff * skb)1063 static inline void consume_skb(struct sk_buff *skb)
1064 {
1065 	return kfree_skb(skb);
1066 }
1067 #endif
1068 
1069 void __consume_stateless_skb(struct sk_buff *skb);
1070 void  __kfree_skb(struct sk_buff *skb);
1071 extern struct kmem_cache *skbuff_head_cache;
1072 
1073 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1074 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1075 		      bool *fragstolen, int *delta_truesize);
1076 
1077 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1078 			    int node);
1079 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1080 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1081 struct sk_buff *build_skb_around(struct sk_buff *skb,
1082 				 void *data, unsigned int frag_size);
1083 
1084 /**
1085  * alloc_skb - allocate a network buffer
1086  * @size: size to allocate
1087  * @priority: allocation mask
1088  *
1089  * This function is a convenient wrapper around __alloc_skb().
1090  */
alloc_skb(unsigned int size,gfp_t priority)1091 static inline struct sk_buff *alloc_skb(unsigned int size,
1092 					gfp_t priority)
1093 {
1094 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1095 }
1096 
1097 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1098 				     unsigned long data_len,
1099 				     int max_page_order,
1100 				     int *errcode,
1101 				     gfp_t gfp_mask);
1102 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1103 
1104 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1105 struct sk_buff_fclones {
1106 	struct sk_buff	skb1;
1107 
1108 	struct sk_buff	skb2;
1109 
1110 	refcount_t	fclone_ref;
1111 };
1112 
1113 /**
1114  *	skb_fclone_busy - check if fclone is busy
1115  *	@sk: socket
1116  *	@skb: buffer
1117  *
1118  * Returns true if skb is a fast clone, and its clone is not freed.
1119  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1120  * so we also check that this didnt happen.
1121  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1122 static inline bool skb_fclone_busy(const struct sock *sk,
1123 				   const struct sk_buff *skb)
1124 {
1125 	const struct sk_buff_fclones *fclones;
1126 
1127 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1128 
1129 	return skb->fclone == SKB_FCLONE_ORIG &&
1130 	       refcount_read(&fclones->fclone_ref) > 1 &&
1131 	       fclones->skb2.sk == sk;
1132 }
1133 
1134 /**
1135  * alloc_skb_fclone - allocate a network buffer from fclone cache
1136  * @size: size to allocate
1137  * @priority: allocation mask
1138  *
1139  * This function is a convenient wrapper around __alloc_skb().
1140  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1141 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1142 					       gfp_t priority)
1143 {
1144 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1145 }
1146 
1147 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1148 void skb_headers_offset_update(struct sk_buff *skb, int off);
1149 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1150 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1151 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1152 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1153 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1154 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1155 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1156 					  gfp_t gfp_mask)
1157 {
1158 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1159 }
1160 
1161 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1162 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1163 				     unsigned int headroom);
1164 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1165 				int newtailroom, gfp_t priority);
1166 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1167 				     int offset, int len);
1168 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1169 			      int offset, int len);
1170 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1171 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1172 
1173 /**
1174  *	skb_pad			-	zero pad the tail of an skb
1175  *	@skb: buffer to pad
1176  *	@pad: space to pad
1177  *
1178  *	Ensure that a buffer is followed by a padding area that is zero
1179  *	filled. Used by network drivers which may DMA or transfer data
1180  *	beyond the buffer end onto the wire.
1181  *
1182  *	May return error in out of memory cases. The skb is freed on error.
1183  */
skb_pad(struct sk_buff * skb,int pad)1184 static inline int skb_pad(struct sk_buff *skb, int pad)
1185 {
1186 	return __skb_pad(skb, pad, true);
1187 }
1188 #define dev_kfree_skb(a)	consume_skb(a)
1189 
1190 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1191 			 int offset, size_t size);
1192 
1193 struct skb_seq_state {
1194 	__u32		lower_offset;
1195 	__u32		upper_offset;
1196 	__u32		frag_idx;
1197 	__u32		stepped_offset;
1198 	struct sk_buff	*root_skb;
1199 	struct sk_buff	*cur_skb;
1200 	__u8		*frag_data;
1201 };
1202 
1203 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1204 			  unsigned int to, struct skb_seq_state *st);
1205 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1206 			  struct skb_seq_state *st);
1207 void skb_abort_seq_read(struct skb_seq_state *st);
1208 
1209 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1210 			   unsigned int to, struct ts_config *config);
1211 
1212 /*
1213  * Packet hash types specify the type of hash in skb_set_hash.
1214  *
1215  * Hash types refer to the protocol layer addresses which are used to
1216  * construct a packet's hash. The hashes are used to differentiate or identify
1217  * flows of the protocol layer for the hash type. Hash types are either
1218  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1219  *
1220  * Properties of hashes:
1221  *
1222  * 1) Two packets in different flows have different hash values
1223  * 2) Two packets in the same flow should have the same hash value
1224  *
1225  * A hash at a higher layer is considered to be more specific. A driver should
1226  * set the most specific hash possible.
1227  *
1228  * A driver cannot indicate a more specific hash than the layer at which a hash
1229  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1230  *
1231  * A driver may indicate a hash level which is less specific than the
1232  * actual layer the hash was computed on. For instance, a hash computed
1233  * at L4 may be considered an L3 hash. This should only be done if the
1234  * driver can't unambiguously determine that the HW computed the hash at
1235  * the higher layer. Note that the "should" in the second property above
1236  * permits this.
1237  */
1238 enum pkt_hash_types {
1239 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1240 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1241 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1242 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1243 };
1244 
skb_clear_hash(struct sk_buff * skb)1245 static inline void skb_clear_hash(struct sk_buff *skb)
1246 {
1247 	skb->hash = 0;
1248 	skb->sw_hash = 0;
1249 	skb->l4_hash = 0;
1250 }
1251 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1252 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1253 {
1254 	if (!skb->l4_hash)
1255 		skb_clear_hash(skb);
1256 }
1257 
1258 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1259 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1260 {
1261 	skb->l4_hash = is_l4;
1262 	skb->sw_hash = is_sw;
1263 	skb->hash = hash;
1264 }
1265 
1266 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1267 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1268 {
1269 	/* Used by drivers to set hash from HW */
1270 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1271 }
1272 
1273 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1274 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1275 {
1276 	__skb_set_hash(skb, hash, true, is_l4);
1277 }
1278 
1279 void __skb_get_hash(struct sk_buff *skb);
1280 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1281 u32 skb_get_poff(const struct sk_buff *skb);
1282 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1283 		   const struct flow_keys_basic *keys, int hlen);
1284 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1285 			    void *data, int hlen_proto);
1286 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1287 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1288 					int thoff, u8 ip_proto)
1289 {
1290 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1291 }
1292 
1293 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1294 			     const struct flow_dissector_key *key,
1295 			     unsigned int key_count);
1296 
1297 struct bpf_flow_dissector;
1298 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1299 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1300 
1301 bool __skb_flow_dissect(const struct net *net,
1302 			const struct sk_buff *skb,
1303 			struct flow_dissector *flow_dissector,
1304 			void *target_container,
1305 			void *data, __be16 proto, int nhoff, int hlen,
1306 			unsigned int flags);
1307 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1308 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1309 				    struct flow_dissector *flow_dissector,
1310 				    void *target_container, unsigned int flags)
1311 {
1312 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1313 				  target_container, NULL, 0, 0, 0, flags);
1314 }
1315 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1316 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1317 					      struct flow_keys *flow,
1318 					      unsigned int flags)
1319 {
1320 	memset(flow, 0, sizeof(*flow));
1321 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1322 				  flow, NULL, 0, 0, 0, flags);
1323 }
1324 
1325 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1326 skb_flow_dissect_flow_keys_basic(const struct net *net,
1327 				 const struct sk_buff *skb,
1328 				 struct flow_keys_basic *flow, void *data,
1329 				 __be16 proto, int nhoff, int hlen,
1330 				 unsigned int flags)
1331 {
1332 	memset(flow, 0, sizeof(*flow));
1333 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1334 				  data, proto, nhoff, hlen, flags);
1335 }
1336 
1337 void skb_flow_dissect_meta(const struct sk_buff *skb,
1338 			   struct flow_dissector *flow_dissector,
1339 			   void *target_container);
1340 
1341 /* Gets a skb connection tracking info, ctinfo map should be a
1342  * map of mapsize to translate enum ip_conntrack_info states
1343  * to user states.
1344  */
1345 void
1346 skb_flow_dissect_ct(const struct sk_buff *skb,
1347 		    struct flow_dissector *flow_dissector,
1348 		    void *target_container,
1349 		    u16 *ctinfo_map,
1350 		    size_t mapsize);
1351 void
1352 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1353 			     struct flow_dissector *flow_dissector,
1354 			     void *target_container);
1355 
1356 void skb_flow_dissect_hash(const struct sk_buff *skb,
1357 			   struct flow_dissector *flow_dissector,
1358 			   void *target_container);
1359 
skb_get_hash(struct sk_buff * skb)1360 static inline __u32 skb_get_hash(struct sk_buff *skb)
1361 {
1362 	if (!skb->l4_hash && !skb->sw_hash)
1363 		__skb_get_hash(skb);
1364 
1365 	return skb->hash;
1366 }
1367 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1368 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1369 {
1370 	if (!skb->l4_hash && !skb->sw_hash) {
1371 		struct flow_keys keys;
1372 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1373 
1374 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1375 	}
1376 
1377 	return skb->hash;
1378 }
1379 
1380 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1381 			   const siphash_key_t *perturb);
1382 
skb_get_hash_raw(const struct sk_buff * skb)1383 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1384 {
1385 	return skb->hash;
1386 }
1387 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1388 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1389 {
1390 	to->hash = from->hash;
1391 	to->sw_hash = from->sw_hash;
1392 	to->l4_hash = from->l4_hash;
1393 };
1394 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1395 static inline void skb_copy_decrypted(struct sk_buff *to,
1396 				      const struct sk_buff *from)
1397 {
1398 #ifdef CONFIG_TLS_DEVICE
1399 	to->decrypted = from->decrypted;
1400 #endif
1401 }
1402 
1403 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1404 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1405 {
1406 	return skb->head + skb->end;
1407 }
1408 
skb_end_offset(const struct sk_buff * skb)1409 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1410 {
1411 	return skb->end;
1412 }
1413 #else
skb_end_pointer(const struct sk_buff * skb)1414 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1415 {
1416 	return skb->end;
1417 }
1418 
skb_end_offset(const struct sk_buff * skb)1419 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1420 {
1421 	return skb->end - skb->head;
1422 }
1423 #endif
1424 
1425 /* Internal */
1426 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1427 
skb_hwtstamps(struct sk_buff * skb)1428 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1429 {
1430 	return &skb_shinfo(skb)->hwtstamps;
1431 }
1432 
skb_zcopy(struct sk_buff * skb)1433 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1434 {
1435 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1436 
1437 	return is_zcopy ? skb_uarg(skb) : NULL;
1438 }
1439 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1440 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1441 				 bool *have_ref)
1442 {
1443 	if (skb && uarg && !skb_zcopy(skb)) {
1444 		if (unlikely(have_ref && *have_ref))
1445 			*have_ref = false;
1446 		else
1447 			sock_zerocopy_get(uarg);
1448 		skb_shinfo(skb)->destructor_arg = uarg;
1449 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1450 	}
1451 }
1452 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1453 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1454 {
1455 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1456 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1457 }
1458 
skb_zcopy_is_nouarg(struct sk_buff * skb)1459 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1460 {
1461 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1462 }
1463 
skb_zcopy_get_nouarg(struct sk_buff * skb)1464 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1465 {
1466 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1467 }
1468 
1469 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1470 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1471 {
1472 	struct ubuf_info *uarg = skb_zcopy(skb);
1473 
1474 	if (uarg) {
1475 		if (skb_zcopy_is_nouarg(skb)) {
1476 			/* no notification callback */
1477 		} else if (uarg->callback == sock_zerocopy_callback) {
1478 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1479 			sock_zerocopy_put(uarg);
1480 		} else {
1481 			uarg->callback(uarg, zerocopy);
1482 		}
1483 
1484 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1485 	}
1486 }
1487 
1488 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1489 static inline void skb_zcopy_abort(struct sk_buff *skb)
1490 {
1491 	struct ubuf_info *uarg = skb_zcopy(skb);
1492 
1493 	if (uarg) {
1494 		sock_zerocopy_put_abort(uarg, false);
1495 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1496 	}
1497 }
1498 
skb_mark_not_on_list(struct sk_buff * skb)1499 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1500 {
1501 	skb->next = NULL;
1502 }
1503 
1504 /* Iterate through singly-linked GSO fragments of an skb. */
1505 #define skb_list_walk_safe(first, skb, next_skb)                               \
1506 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1507 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1508 
skb_list_del_init(struct sk_buff * skb)1509 static inline void skb_list_del_init(struct sk_buff *skb)
1510 {
1511 	__list_del_entry(&skb->list);
1512 	skb_mark_not_on_list(skb);
1513 }
1514 
1515 /**
1516  *	skb_queue_empty - check if a queue is empty
1517  *	@list: queue head
1518  *
1519  *	Returns true if the queue is empty, false otherwise.
1520  */
skb_queue_empty(const struct sk_buff_head * list)1521 static inline int skb_queue_empty(const struct sk_buff_head *list)
1522 {
1523 	return list->next == (const struct sk_buff *) list;
1524 }
1525 
1526 /**
1527  *	skb_queue_empty_lockless - check if a queue is empty
1528  *	@list: queue head
1529  *
1530  *	Returns true if the queue is empty, false otherwise.
1531  *	This variant can be used in lockless contexts.
1532  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1533 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1534 {
1535 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1536 }
1537 
1538 
1539 /**
1540  *	skb_queue_is_last - check if skb is the last entry in the queue
1541  *	@list: queue head
1542  *	@skb: buffer
1543  *
1544  *	Returns true if @skb is the last buffer on the list.
1545  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1546 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1547 				     const struct sk_buff *skb)
1548 {
1549 	return skb->next == (const struct sk_buff *) list;
1550 }
1551 
1552 /**
1553  *	skb_queue_is_first - check if skb is the first entry in the queue
1554  *	@list: queue head
1555  *	@skb: buffer
1556  *
1557  *	Returns true if @skb is the first buffer on the list.
1558  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1559 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1560 				      const struct sk_buff *skb)
1561 {
1562 	return skb->prev == (const struct sk_buff *) list;
1563 }
1564 
1565 /**
1566  *	skb_queue_next - return the next packet in the queue
1567  *	@list: queue head
1568  *	@skb: current buffer
1569  *
1570  *	Return the next packet in @list after @skb.  It is only valid to
1571  *	call this if skb_queue_is_last() evaluates to false.
1572  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1573 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1574 					     const struct sk_buff *skb)
1575 {
1576 	/* This BUG_ON may seem severe, but if we just return then we
1577 	 * are going to dereference garbage.
1578 	 */
1579 	BUG_ON(skb_queue_is_last(list, skb));
1580 	return skb->next;
1581 }
1582 
1583 /**
1584  *	skb_queue_prev - return the prev packet in the queue
1585  *	@list: queue head
1586  *	@skb: current buffer
1587  *
1588  *	Return the prev packet in @list before @skb.  It is only valid to
1589  *	call this if skb_queue_is_first() evaluates to false.
1590  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1591 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1592 					     const struct sk_buff *skb)
1593 {
1594 	/* This BUG_ON may seem severe, but if we just return then we
1595 	 * are going to dereference garbage.
1596 	 */
1597 	BUG_ON(skb_queue_is_first(list, skb));
1598 	return skb->prev;
1599 }
1600 
1601 /**
1602  *	skb_get - reference buffer
1603  *	@skb: buffer to reference
1604  *
1605  *	Makes another reference to a socket buffer and returns a pointer
1606  *	to the buffer.
1607  */
skb_get(struct sk_buff * skb)1608 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1609 {
1610 	refcount_inc(&skb->users);
1611 	return skb;
1612 }
1613 
1614 /*
1615  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1616  */
1617 
1618 /**
1619  *	skb_cloned - is the buffer a clone
1620  *	@skb: buffer to check
1621  *
1622  *	Returns true if the buffer was generated with skb_clone() and is
1623  *	one of multiple shared copies of the buffer. Cloned buffers are
1624  *	shared data so must not be written to under normal circumstances.
1625  */
skb_cloned(const struct sk_buff * skb)1626 static inline int skb_cloned(const struct sk_buff *skb)
1627 {
1628 	return skb->cloned &&
1629 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1630 }
1631 
skb_unclone(struct sk_buff * skb,gfp_t pri)1632 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1633 {
1634 	might_sleep_if(gfpflags_allow_blocking(pri));
1635 
1636 	if (skb_cloned(skb))
1637 		return pskb_expand_head(skb, 0, 0, pri);
1638 
1639 	return 0;
1640 }
1641 
1642 /**
1643  *	skb_header_cloned - is the header a clone
1644  *	@skb: buffer to check
1645  *
1646  *	Returns true if modifying the header part of the buffer requires
1647  *	the data to be copied.
1648  */
skb_header_cloned(const struct sk_buff * skb)1649 static inline int skb_header_cloned(const struct sk_buff *skb)
1650 {
1651 	int dataref;
1652 
1653 	if (!skb->cloned)
1654 		return 0;
1655 
1656 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1657 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1658 	return dataref != 1;
1659 }
1660 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1661 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1662 {
1663 	might_sleep_if(gfpflags_allow_blocking(pri));
1664 
1665 	if (skb_header_cloned(skb))
1666 		return pskb_expand_head(skb, 0, 0, pri);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  *	__skb_header_release - release reference to header
1673  *	@skb: buffer to operate on
1674  */
__skb_header_release(struct sk_buff * skb)1675 static inline void __skb_header_release(struct sk_buff *skb)
1676 {
1677 	skb->nohdr = 1;
1678 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1679 }
1680 
1681 
1682 /**
1683  *	skb_shared - is the buffer shared
1684  *	@skb: buffer to check
1685  *
1686  *	Returns true if more than one person has a reference to this
1687  *	buffer.
1688  */
skb_shared(const struct sk_buff * skb)1689 static inline int skb_shared(const struct sk_buff *skb)
1690 {
1691 	return refcount_read(&skb->users) != 1;
1692 }
1693 
1694 /**
1695  *	skb_share_check - check if buffer is shared and if so clone it
1696  *	@skb: buffer to check
1697  *	@pri: priority for memory allocation
1698  *
1699  *	If the buffer is shared the buffer is cloned and the old copy
1700  *	drops a reference. A new clone with a single reference is returned.
1701  *	If the buffer is not shared the original buffer is returned. When
1702  *	being called from interrupt status or with spinlocks held pri must
1703  *	be GFP_ATOMIC.
1704  *
1705  *	NULL is returned on a memory allocation failure.
1706  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1707 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1708 {
1709 	might_sleep_if(gfpflags_allow_blocking(pri));
1710 	if (skb_shared(skb)) {
1711 		struct sk_buff *nskb = skb_clone(skb, pri);
1712 
1713 		if (likely(nskb))
1714 			consume_skb(skb);
1715 		else
1716 			kfree_skb(skb);
1717 		skb = nskb;
1718 	}
1719 	return skb;
1720 }
1721 
1722 /*
1723  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1724  *	packets to handle cases where we have a local reader and forward
1725  *	and a couple of other messy ones. The normal one is tcpdumping
1726  *	a packet thats being forwarded.
1727  */
1728 
1729 /**
1730  *	skb_unshare - make a copy of a shared buffer
1731  *	@skb: buffer to check
1732  *	@pri: priority for memory allocation
1733  *
1734  *	If the socket buffer is a clone then this function creates a new
1735  *	copy of the data, drops a reference count on the old copy and returns
1736  *	the new copy with the reference count at 1. If the buffer is not a clone
1737  *	the original buffer is returned. When called with a spinlock held or
1738  *	from interrupt state @pri must be %GFP_ATOMIC
1739  *
1740  *	%NULL is returned on a memory allocation failure.
1741  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1742 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1743 					  gfp_t pri)
1744 {
1745 	might_sleep_if(gfpflags_allow_blocking(pri));
1746 	if (skb_cloned(skb)) {
1747 		struct sk_buff *nskb = skb_copy(skb, pri);
1748 
1749 		/* Free our shared copy */
1750 		if (likely(nskb))
1751 			consume_skb(skb);
1752 		else
1753 			kfree_skb(skb);
1754 		skb = nskb;
1755 	}
1756 	return skb;
1757 }
1758 
1759 /**
1760  *	skb_peek - peek at the head of an &sk_buff_head
1761  *	@list_: list to peek at
1762  *
1763  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1764  *	be careful with this one. A peek leaves the buffer on the
1765  *	list and someone else may run off with it. You must hold
1766  *	the appropriate locks or have a private queue to do this.
1767  *
1768  *	Returns %NULL for an empty list or a pointer to the head element.
1769  *	The reference count is not incremented and the reference is therefore
1770  *	volatile. Use with caution.
1771  */
skb_peek(const struct sk_buff_head * list_)1772 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1773 {
1774 	struct sk_buff *skb = list_->next;
1775 
1776 	if (skb == (struct sk_buff *)list_)
1777 		skb = NULL;
1778 	return skb;
1779 }
1780 
1781 /**
1782  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1783  *	@list_: list to peek at
1784  *
1785  *	Like skb_peek(), but the caller knows that the list is not empty.
1786  */
__skb_peek(const struct sk_buff_head * list_)1787 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1788 {
1789 	return list_->next;
1790 }
1791 
1792 /**
1793  *	skb_peek_next - peek skb following the given one from a queue
1794  *	@skb: skb to start from
1795  *	@list_: list to peek at
1796  *
1797  *	Returns %NULL when the end of the list is met or a pointer to the
1798  *	next element. The reference count is not incremented and the
1799  *	reference is therefore volatile. Use with caution.
1800  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1801 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1802 		const struct sk_buff_head *list_)
1803 {
1804 	struct sk_buff *next = skb->next;
1805 
1806 	if (next == (struct sk_buff *)list_)
1807 		next = NULL;
1808 	return next;
1809 }
1810 
1811 /**
1812  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1813  *	@list_: list to peek at
1814  *
1815  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1816  *	be careful with this one. A peek leaves the buffer on the
1817  *	list and someone else may run off with it. You must hold
1818  *	the appropriate locks or have a private queue to do this.
1819  *
1820  *	Returns %NULL for an empty list or a pointer to the tail element.
1821  *	The reference count is not incremented and the reference is therefore
1822  *	volatile. Use with caution.
1823  */
skb_peek_tail(const struct sk_buff_head * list_)1824 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1825 {
1826 	struct sk_buff *skb = READ_ONCE(list_->prev);
1827 
1828 	if (skb == (struct sk_buff *)list_)
1829 		skb = NULL;
1830 	return skb;
1831 
1832 }
1833 
1834 /**
1835  *	skb_queue_len	- get queue length
1836  *	@list_: list to measure
1837  *
1838  *	Return the length of an &sk_buff queue.
1839  */
skb_queue_len(const struct sk_buff_head * list_)1840 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1841 {
1842 	return list_->qlen;
1843 }
1844 
1845 /**
1846  *	skb_queue_len_lockless	- get queue length
1847  *	@list_: list to measure
1848  *
1849  *	Return the length of an &sk_buff queue.
1850  *	This variant can be used in lockless contexts.
1851  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1852 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1853 {
1854 	return READ_ONCE(list_->qlen);
1855 }
1856 
1857 /**
1858  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1859  *	@list: queue to initialize
1860  *
1861  *	This initializes only the list and queue length aspects of
1862  *	an sk_buff_head object.  This allows to initialize the list
1863  *	aspects of an sk_buff_head without reinitializing things like
1864  *	the spinlock.  It can also be used for on-stack sk_buff_head
1865  *	objects where the spinlock is known to not be used.
1866  */
__skb_queue_head_init(struct sk_buff_head * list)1867 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1868 {
1869 	list->prev = list->next = (struct sk_buff *)list;
1870 	list->qlen = 0;
1871 }
1872 
1873 /*
1874  * This function creates a split out lock class for each invocation;
1875  * this is needed for now since a whole lot of users of the skb-queue
1876  * infrastructure in drivers have different locking usage (in hardirq)
1877  * than the networking core (in softirq only). In the long run either the
1878  * network layer or drivers should need annotation to consolidate the
1879  * main types of usage into 3 classes.
1880  */
skb_queue_head_init(struct sk_buff_head * list)1881 static inline void skb_queue_head_init(struct sk_buff_head *list)
1882 {
1883 	spin_lock_init(&list->lock);
1884 	__skb_queue_head_init(list);
1885 }
1886 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1887 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1888 		struct lock_class_key *class)
1889 {
1890 	skb_queue_head_init(list);
1891 	lockdep_set_class(&list->lock, class);
1892 }
1893 
1894 /*
1895  *	Insert an sk_buff on a list.
1896  *
1897  *	The "__skb_xxxx()" functions are the non-atomic ones that
1898  *	can only be called with interrupts disabled.
1899  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1900 static inline void __skb_insert(struct sk_buff *newsk,
1901 				struct sk_buff *prev, struct sk_buff *next,
1902 				struct sk_buff_head *list)
1903 {
1904 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1905 	 * for the opposite READ_ONCE()
1906 	 */
1907 	WRITE_ONCE(newsk->next, next);
1908 	WRITE_ONCE(newsk->prev, prev);
1909 	WRITE_ONCE(next->prev, newsk);
1910 	WRITE_ONCE(prev->next, newsk);
1911 	list->qlen++;
1912 }
1913 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1914 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1915 				      struct sk_buff *prev,
1916 				      struct sk_buff *next)
1917 {
1918 	struct sk_buff *first = list->next;
1919 	struct sk_buff *last = list->prev;
1920 
1921 	WRITE_ONCE(first->prev, prev);
1922 	WRITE_ONCE(prev->next, first);
1923 
1924 	WRITE_ONCE(last->next, next);
1925 	WRITE_ONCE(next->prev, last);
1926 }
1927 
1928 /**
1929  *	skb_queue_splice - join two skb lists, this is designed for stacks
1930  *	@list: the new list to add
1931  *	@head: the place to add it in the first list
1932  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1933 static inline void skb_queue_splice(const struct sk_buff_head *list,
1934 				    struct sk_buff_head *head)
1935 {
1936 	if (!skb_queue_empty(list)) {
1937 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1938 		head->qlen += list->qlen;
1939 	}
1940 }
1941 
1942 /**
1943  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1944  *	@list: the new list to add
1945  *	@head: the place to add it in the first list
1946  *
1947  *	The list at @list is reinitialised
1948  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1949 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1950 					 struct sk_buff_head *head)
1951 {
1952 	if (!skb_queue_empty(list)) {
1953 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1954 		head->qlen += list->qlen;
1955 		__skb_queue_head_init(list);
1956 	}
1957 }
1958 
1959 /**
1960  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1961  *	@list: the new list to add
1962  *	@head: the place to add it in the first list
1963  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1964 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1965 					 struct sk_buff_head *head)
1966 {
1967 	if (!skb_queue_empty(list)) {
1968 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1969 		head->qlen += list->qlen;
1970 	}
1971 }
1972 
1973 /**
1974  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1975  *	@list: the new list to add
1976  *	@head: the place to add it in the first list
1977  *
1978  *	Each of the lists is a queue.
1979  *	The list at @list is reinitialised
1980  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1981 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1982 					      struct sk_buff_head *head)
1983 {
1984 	if (!skb_queue_empty(list)) {
1985 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1986 		head->qlen += list->qlen;
1987 		__skb_queue_head_init(list);
1988 	}
1989 }
1990 
1991 /**
1992  *	__skb_queue_after - queue a buffer at the list head
1993  *	@list: list to use
1994  *	@prev: place after this buffer
1995  *	@newsk: buffer to queue
1996  *
1997  *	Queue a buffer int the middle of a list. This function takes no locks
1998  *	and you must therefore hold required locks before calling it.
1999  *
2000  *	A buffer cannot be placed on two lists at the same time.
2001  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2002 static inline void __skb_queue_after(struct sk_buff_head *list,
2003 				     struct sk_buff *prev,
2004 				     struct sk_buff *newsk)
2005 {
2006 	__skb_insert(newsk, prev, prev->next, list);
2007 }
2008 
2009 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2010 		struct sk_buff_head *list);
2011 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2012 static inline void __skb_queue_before(struct sk_buff_head *list,
2013 				      struct sk_buff *next,
2014 				      struct sk_buff *newsk)
2015 {
2016 	__skb_insert(newsk, next->prev, next, list);
2017 }
2018 
2019 /**
2020  *	__skb_queue_head - queue a buffer at the list head
2021  *	@list: list to use
2022  *	@newsk: buffer to queue
2023  *
2024  *	Queue a buffer at the start of a list. This function takes no locks
2025  *	and you must therefore hold required locks before calling it.
2026  *
2027  *	A buffer cannot be placed on two lists at the same time.
2028  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2029 static inline void __skb_queue_head(struct sk_buff_head *list,
2030 				    struct sk_buff *newsk)
2031 {
2032 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2033 }
2034 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2035 
2036 /**
2037  *	__skb_queue_tail - queue a buffer at the list tail
2038  *	@list: list to use
2039  *	@newsk: buffer to queue
2040  *
2041  *	Queue a buffer at the end of a list. This function takes no locks
2042  *	and you must therefore hold required locks before calling it.
2043  *
2044  *	A buffer cannot be placed on two lists at the same time.
2045  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2046 static inline void __skb_queue_tail(struct sk_buff_head *list,
2047 				   struct sk_buff *newsk)
2048 {
2049 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2050 }
2051 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2052 
2053 /*
2054  * remove sk_buff from list. _Must_ be called atomically, and with
2055  * the list known..
2056  */
2057 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2058 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2059 {
2060 	struct sk_buff *next, *prev;
2061 
2062 	WRITE_ONCE(list->qlen, list->qlen - 1);
2063 	next	   = skb->next;
2064 	prev	   = skb->prev;
2065 	skb->next  = skb->prev = NULL;
2066 	WRITE_ONCE(next->prev, prev);
2067 	WRITE_ONCE(prev->next, next);
2068 }
2069 
2070 /**
2071  *	__skb_dequeue - remove from the head of the queue
2072  *	@list: list to dequeue from
2073  *
2074  *	Remove the head of the list. This function does not take any locks
2075  *	so must be used with appropriate locks held only. The head item is
2076  *	returned or %NULL if the list is empty.
2077  */
__skb_dequeue(struct sk_buff_head * list)2078 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2079 {
2080 	struct sk_buff *skb = skb_peek(list);
2081 	if (skb)
2082 		__skb_unlink(skb, list);
2083 	return skb;
2084 }
2085 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2086 
2087 /**
2088  *	__skb_dequeue_tail - remove from the tail of the queue
2089  *	@list: list to dequeue from
2090  *
2091  *	Remove the tail of the list. This function does not take any locks
2092  *	so must be used with appropriate locks held only. The tail item is
2093  *	returned or %NULL if the list is empty.
2094  */
__skb_dequeue_tail(struct sk_buff_head * list)2095 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2096 {
2097 	struct sk_buff *skb = skb_peek_tail(list);
2098 	if (skb)
2099 		__skb_unlink(skb, list);
2100 	return skb;
2101 }
2102 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2103 
2104 
skb_is_nonlinear(const struct sk_buff * skb)2105 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2106 {
2107 	return skb->data_len;
2108 }
2109 
skb_headlen(const struct sk_buff * skb)2110 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2111 {
2112 	return skb->len - skb->data_len;
2113 }
2114 
__skb_pagelen(const struct sk_buff * skb)2115 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2116 {
2117 	unsigned int i, len = 0;
2118 
2119 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2120 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2121 	return len;
2122 }
2123 
skb_pagelen(const struct sk_buff * skb)2124 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2125 {
2126 	return skb_headlen(skb) + __skb_pagelen(skb);
2127 }
2128 
2129 /**
2130  * __skb_fill_page_desc - initialise a paged fragment in an skb
2131  * @skb: buffer containing fragment to be initialised
2132  * @i: paged fragment index to initialise
2133  * @page: the page to use for this fragment
2134  * @off: the offset to the data with @page
2135  * @size: the length of the data
2136  *
2137  * Initialises the @i'th fragment of @skb to point to &size bytes at
2138  * offset @off within @page.
2139  *
2140  * Does not take any additional reference on the fragment.
2141  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2142 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2143 					struct page *page, int off, int size)
2144 {
2145 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2146 
2147 	/*
2148 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2149 	 * that not all callers have unique ownership of the page but rely
2150 	 * on page_is_pfmemalloc doing the right thing(tm).
2151 	 */
2152 	frag->bv_page		  = page;
2153 	frag->bv_offset		  = off;
2154 	skb_frag_size_set(frag, size);
2155 
2156 	page = compound_head(page);
2157 	if (page_is_pfmemalloc(page))
2158 		skb->pfmemalloc	= true;
2159 }
2160 
2161 /**
2162  * skb_fill_page_desc - initialise a paged fragment in an skb
2163  * @skb: buffer containing fragment to be initialised
2164  * @i: paged fragment index to initialise
2165  * @page: the page to use for this fragment
2166  * @off: the offset to the data with @page
2167  * @size: the length of the data
2168  *
2169  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2170  * @skb to point to @size bytes at offset @off within @page. In
2171  * addition updates @skb such that @i is the last fragment.
2172  *
2173  * Does not take any additional reference on the fragment.
2174  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2175 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2176 				      struct page *page, int off, int size)
2177 {
2178 	__skb_fill_page_desc(skb, i, page, off, size);
2179 	skb_shinfo(skb)->nr_frags = i + 1;
2180 }
2181 
2182 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2183 		     int size, unsigned int truesize);
2184 
2185 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2186 			  unsigned int truesize);
2187 
2188 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2189 
2190 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2191 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2192 {
2193 	return skb->head + skb->tail;
2194 }
2195 
skb_reset_tail_pointer(struct sk_buff * skb)2196 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2197 {
2198 	skb->tail = skb->data - skb->head;
2199 }
2200 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2201 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2202 {
2203 	skb_reset_tail_pointer(skb);
2204 	skb->tail += offset;
2205 }
2206 
2207 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2208 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2209 {
2210 	return skb->tail;
2211 }
2212 
skb_reset_tail_pointer(struct sk_buff * skb)2213 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2214 {
2215 	skb->tail = skb->data;
2216 }
2217 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2218 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2219 {
2220 	skb->tail = skb->data + offset;
2221 }
2222 
2223 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2224 
2225 /*
2226  *	Add data to an sk_buff
2227  */
2228 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2229 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2230 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2231 {
2232 	void *tmp = skb_tail_pointer(skb);
2233 	SKB_LINEAR_ASSERT(skb);
2234 	skb->tail += len;
2235 	skb->len  += len;
2236 	return tmp;
2237 }
2238 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2239 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2240 {
2241 	void *tmp = __skb_put(skb, len);
2242 
2243 	memset(tmp, 0, len);
2244 	return tmp;
2245 }
2246 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2247 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2248 				   unsigned int len)
2249 {
2250 	void *tmp = __skb_put(skb, len);
2251 
2252 	memcpy(tmp, data, len);
2253 	return tmp;
2254 }
2255 
__skb_put_u8(struct sk_buff * skb,u8 val)2256 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2257 {
2258 	*(u8 *)__skb_put(skb, 1) = val;
2259 }
2260 
skb_put_zero(struct sk_buff * skb,unsigned int len)2261 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2262 {
2263 	void *tmp = skb_put(skb, len);
2264 
2265 	memset(tmp, 0, len);
2266 
2267 	return tmp;
2268 }
2269 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2270 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2271 				 unsigned int len)
2272 {
2273 	void *tmp = skb_put(skb, len);
2274 
2275 	memcpy(tmp, data, len);
2276 
2277 	return tmp;
2278 }
2279 
skb_put_u8(struct sk_buff * skb,u8 val)2280 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2281 {
2282 	*(u8 *)skb_put(skb, 1) = val;
2283 }
2284 
2285 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2286 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2287 {
2288 	skb->data -= len;
2289 	skb->len  += len;
2290 	return skb->data;
2291 }
2292 
2293 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2294 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2295 {
2296 	skb->len -= len;
2297 	BUG_ON(skb->len < skb->data_len);
2298 	return skb->data += len;
2299 }
2300 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2301 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2302 {
2303 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2304 }
2305 
2306 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2307 
__pskb_pull(struct sk_buff * skb,unsigned int len)2308 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2309 {
2310 	if (len > skb_headlen(skb) &&
2311 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2312 		return NULL;
2313 	skb->len -= len;
2314 	return skb->data += len;
2315 }
2316 
pskb_pull(struct sk_buff * skb,unsigned int len)2317 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2318 {
2319 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2320 }
2321 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2322 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2323 {
2324 	if (likely(len <= skb_headlen(skb)))
2325 		return true;
2326 	if (unlikely(len > skb->len))
2327 		return false;
2328 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2329 }
2330 
2331 void skb_condense(struct sk_buff *skb);
2332 
2333 /**
2334  *	skb_headroom - bytes at buffer head
2335  *	@skb: buffer to check
2336  *
2337  *	Return the number of bytes of free space at the head of an &sk_buff.
2338  */
skb_headroom(const struct sk_buff * skb)2339 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2340 {
2341 	return skb->data - skb->head;
2342 }
2343 
2344 /**
2345  *	skb_tailroom - bytes at buffer end
2346  *	@skb: buffer to check
2347  *
2348  *	Return the number of bytes of free space at the tail of an sk_buff
2349  */
skb_tailroom(const struct sk_buff * skb)2350 static inline int skb_tailroom(const struct sk_buff *skb)
2351 {
2352 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2353 }
2354 
2355 /**
2356  *	skb_availroom - bytes at buffer end
2357  *	@skb: buffer to check
2358  *
2359  *	Return the number of bytes of free space at the tail of an sk_buff
2360  *	allocated by sk_stream_alloc()
2361  */
skb_availroom(const struct sk_buff * skb)2362 static inline int skb_availroom(const struct sk_buff *skb)
2363 {
2364 	if (skb_is_nonlinear(skb))
2365 		return 0;
2366 
2367 	return skb->end - skb->tail - skb->reserved_tailroom;
2368 }
2369 
2370 /**
2371  *	skb_reserve - adjust headroom
2372  *	@skb: buffer to alter
2373  *	@len: bytes to move
2374  *
2375  *	Increase the headroom of an empty &sk_buff by reducing the tail
2376  *	room. This is only allowed for an empty buffer.
2377  */
skb_reserve(struct sk_buff * skb,int len)2378 static inline void skb_reserve(struct sk_buff *skb, int len)
2379 {
2380 	skb->data += len;
2381 	skb->tail += len;
2382 }
2383 
2384 /**
2385  *	skb_tailroom_reserve - adjust reserved_tailroom
2386  *	@skb: buffer to alter
2387  *	@mtu: maximum amount of headlen permitted
2388  *	@needed_tailroom: minimum amount of reserved_tailroom
2389  *
2390  *	Set reserved_tailroom so that headlen can be as large as possible but
2391  *	not larger than mtu and tailroom cannot be smaller than
2392  *	needed_tailroom.
2393  *	The required headroom should already have been reserved before using
2394  *	this function.
2395  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2396 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2397 					unsigned int needed_tailroom)
2398 {
2399 	SKB_LINEAR_ASSERT(skb);
2400 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2401 		/* use at most mtu */
2402 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2403 	else
2404 		/* use up to all available space */
2405 		skb->reserved_tailroom = needed_tailroom;
2406 }
2407 
2408 #define ENCAP_TYPE_ETHER	0
2409 #define ENCAP_TYPE_IPPROTO	1
2410 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2411 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2412 					  __be16 protocol)
2413 {
2414 	skb->inner_protocol = protocol;
2415 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2416 }
2417 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2418 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2419 					 __u8 ipproto)
2420 {
2421 	skb->inner_ipproto = ipproto;
2422 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2423 }
2424 
skb_reset_inner_headers(struct sk_buff * skb)2425 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2426 {
2427 	skb->inner_mac_header = skb->mac_header;
2428 	skb->inner_network_header = skb->network_header;
2429 	skb->inner_transport_header = skb->transport_header;
2430 }
2431 
skb_reset_mac_len(struct sk_buff * skb)2432 static inline void skb_reset_mac_len(struct sk_buff *skb)
2433 {
2434 	skb->mac_len = skb->network_header - skb->mac_header;
2435 }
2436 
skb_inner_transport_header(const struct sk_buff * skb)2437 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2438 							*skb)
2439 {
2440 	return skb->head + skb->inner_transport_header;
2441 }
2442 
skb_inner_transport_offset(const struct sk_buff * skb)2443 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2444 {
2445 	return skb_inner_transport_header(skb) - skb->data;
2446 }
2447 
skb_reset_inner_transport_header(struct sk_buff * skb)2448 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2449 {
2450 	skb->inner_transport_header = skb->data - skb->head;
2451 }
2452 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2453 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2454 						   const int offset)
2455 {
2456 	skb_reset_inner_transport_header(skb);
2457 	skb->inner_transport_header += offset;
2458 }
2459 
skb_inner_network_header(const struct sk_buff * skb)2460 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2461 {
2462 	return skb->head + skb->inner_network_header;
2463 }
2464 
skb_reset_inner_network_header(struct sk_buff * skb)2465 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2466 {
2467 	skb->inner_network_header = skb->data - skb->head;
2468 }
2469 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2470 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2471 						const int offset)
2472 {
2473 	skb_reset_inner_network_header(skb);
2474 	skb->inner_network_header += offset;
2475 }
2476 
skb_inner_mac_header(const struct sk_buff * skb)2477 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2478 {
2479 	return skb->head + skb->inner_mac_header;
2480 }
2481 
skb_reset_inner_mac_header(struct sk_buff * skb)2482 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2483 {
2484 	skb->inner_mac_header = skb->data - skb->head;
2485 }
2486 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2487 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2488 					    const int offset)
2489 {
2490 	skb_reset_inner_mac_header(skb);
2491 	skb->inner_mac_header += offset;
2492 }
skb_transport_header_was_set(const struct sk_buff * skb)2493 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2494 {
2495 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2496 }
2497 
skb_transport_header(const struct sk_buff * skb)2498 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2499 {
2500 	return skb->head + skb->transport_header;
2501 }
2502 
skb_reset_transport_header(struct sk_buff * skb)2503 static inline void skb_reset_transport_header(struct sk_buff *skb)
2504 {
2505 	skb->transport_header = skb->data - skb->head;
2506 }
2507 
skb_set_transport_header(struct sk_buff * skb,const int offset)2508 static inline void skb_set_transport_header(struct sk_buff *skb,
2509 					    const int offset)
2510 {
2511 	skb_reset_transport_header(skb);
2512 	skb->transport_header += offset;
2513 }
2514 
skb_network_header(const struct sk_buff * skb)2515 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2516 {
2517 	return skb->head + skb->network_header;
2518 }
2519 
skb_reset_network_header(struct sk_buff * skb)2520 static inline void skb_reset_network_header(struct sk_buff *skb)
2521 {
2522 	skb->network_header = skb->data - skb->head;
2523 }
2524 
skb_set_network_header(struct sk_buff * skb,const int offset)2525 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2526 {
2527 	skb_reset_network_header(skb);
2528 	skb->network_header += offset;
2529 }
2530 
skb_mac_header(const struct sk_buff * skb)2531 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2532 {
2533 	return skb->head + skb->mac_header;
2534 }
2535 
skb_mac_offset(const struct sk_buff * skb)2536 static inline int skb_mac_offset(const struct sk_buff *skb)
2537 {
2538 	return skb_mac_header(skb) - skb->data;
2539 }
2540 
skb_mac_header_len(const struct sk_buff * skb)2541 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2542 {
2543 	return skb->network_header - skb->mac_header;
2544 }
2545 
skb_mac_header_was_set(const struct sk_buff * skb)2546 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2547 {
2548 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2549 }
2550 
skb_unset_mac_header(struct sk_buff * skb)2551 static inline void skb_unset_mac_header(struct sk_buff *skb)
2552 {
2553 	skb->mac_header = (typeof(skb->mac_header))~0U;
2554 }
2555 
skb_reset_mac_header(struct sk_buff * skb)2556 static inline void skb_reset_mac_header(struct sk_buff *skb)
2557 {
2558 	skb->mac_header = skb->data - skb->head;
2559 }
2560 
skb_set_mac_header(struct sk_buff * skb,const int offset)2561 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2562 {
2563 	skb_reset_mac_header(skb);
2564 	skb->mac_header += offset;
2565 }
2566 
skb_pop_mac_header(struct sk_buff * skb)2567 static inline void skb_pop_mac_header(struct sk_buff *skb)
2568 {
2569 	skb->mac_header = skb->network_header;
2570 }
2571 
skb_probe_transport_header(struct sk_buff * skb)2572 static inline void skb_probe_transport_header(struct sk_buff *skb)
2573 {
2574 	struct flow_keys_basic keys;
2575 
2576 	if (skb_transport_header_was_set(skb))
2577 		return;
2578 
2579 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2580 					     NULL, 0, 0, 0, 0))
2581 		skb_set_transport_header(skb, keys.control.thoff);
2582 }
2583 
skb_mac_header_rebuild(struct sk_buff * skb)2584 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2585 {
2586 	if (skb_mac_header_was_set(skb)) {
2587 		const unsigned char *old_mac = skb_mac_header(skb);
2588 
2589 		skb_set_mac_header(skb, -skb->mac_len);
2590 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2591 	}
2592 }
2593 
skb_checksum_start_offset(const struct sk_buff * skb)2594 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2595 {
2596 	return skb->csum_start - skb_headroom(skb);
2597 }
2598 
skb_checksum_start(const struct sk_buff * skb)2599 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2600 {
2601 	return skb->head + skb->csum_start;
2602 }
2603 
skb_transport_offset(const struct sk_buff * skb)2604 static inline int skb_transport_offset(const struct sk_buff *skb)
2605 {
2606 	return skb_transport_header(skb) - skb->data;
2607 }
2608 
skb_network_header_len(const struct sk_buff * skb)2609 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2610 {
2611 	return skb->transport_header - skb->network_header;
2612 }
2613 
skb_inner_network_header_len(const struct sk_buff * skb)2614 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2615 {
2616 	return skb->inner_transport_header - skb->inner_network_header;
2617 }
2618 
skb_network_offset(const struct sk_buff * skb)2619 static inline int skb_network_offset(const struct sk_buff *skb)
2620 {
2621 	return skb_network_header(skb) - skb->data;
2622 }
2623 
skb_inner_network_offset(const struct sk_buff * skb)2624 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2625 {
2626 	return skb_inner_network_header(skb) - skb->data;
2627 }
2628 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2629 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2630 {
2631 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2632 }
2633 
2634 /*
2635  * CPUs often take a performance hit when accessing unaligned memory
2636  * locations. The actual performance hit varies, it can be small if the
2637  * hardware handles it or large if we have to take an exception and fix it
2638  * in software.
2639  *
2640  * Since an ethernet header is 14 bytes network drivers often end up with
2641  * the IP header at an unaligned offset. The IP header can be aligned by
2642  * shifting the start of the packet by 2 bytes. Drivers should do this
2643  * with:
2644  *
2645  * skb_reserve(skb, NET_IP_ALIGN);
2646  *
2647  * The downside to this alignment of the IP header is that the DMA is now
2648  * unaligned. On some architectures the cost of an unaligned DMA is high
2649  * and this cost outweighs the gains made by aligning the IP header.
2650  *
2651  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2652  * to be overridden.
2653  */
2654 #ifndef NET_IP_ALIGN
2655 #define NET_IP_ALIGN	2
2656 #endif
2657 
2658 /*
2659  * The networking layer reserves some headroom in skb data (via
2660  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2661  * the header has to grow. In the default case, if the header has to grow
2662  * 32 bytes or less we avoid the reallocation.
2663  *
2664  * Unfortunately this headroom changes the DMA alignment of the resulting
2665  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2666  * on some architectures. An architecture can override this value,
2667  * perhaps setting it to a cacheline in size (since that will maintain
2668  * cacheline alignment of the DMA). It must be a power of 2.
2669  *
2670  * Various parts of the networking layer expect at least 32 bytes of
2671  * headroom, you should not reduce this.
2672  *
2673  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2674  * to reduce average number of cache lines per packet.
2675  * get_rps_cpu() for example only access one 64 bytes aligned block :
2676  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2677  */
2678 #ifndef NET_SKB_PAD
2679 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2680 #endif
2681 
2682 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2683 
__skb_set_length(struct sk_buff * skb,unsigned int len)2684 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2685 {
2686 	if (WARN_ON(skb_is_nonlinear(skb)))
2687 		return;
2688 	skb->len = len;
2689 	skb_set_tail_pointer(skb, len);
2690 }
2691 
__skb_trim(struct sk_buff * skb,unsigned int len)2692 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2693 {
2694 	__skb_set_length(skb, len);
2695 }
2696 
2697 void skb_trim(struct sk_buff *skb, unsigned int len);
2698 
__pskb_trim(struct sk_buff * skb,unsigned int len)2699 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2700 {
2701 	if (skb->data_len)
2702 		return ___pskb_trim(skb, len);
2703 	__skb_trim(skb, len);
2704 	return 0;
2705 }
2706 
pskb_trim(struct sk_buff * skb,unsigned int len)2707 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2708 {
2709 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2710 }
2711 
2712 /**
2713  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2714  *	@skb: buffer to alter
2715  *	@len: new length
2716  *
2717  *	This is identical to pskb_trim except that the caller knows that
2718  *	the skb is not cloned so we should never get an error due to out-
2719  *	of-memory.
2720  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2721 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2722 {
2723 	int err = pskb_trim(skb, len);
2724 	BUG_ON(err);
2725 }
2726 
__skb_grow(struct sk_buff * skb,unsigned int len)2727 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2728 {
2729 	unsigned int diff = len - skb->len;
2730 
2731 	if (skb_tailroom(skb) < diff) {
2732 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2733 					   GFP_ATOMIC);
2734 		if (ret)
2735 			return ret;
2736 	}
2737 	__skb_set_length(skb, len);
2738 	return 0;
2739 }
2740 
2741 /**
2742  *	skb_orphan - orphan a buffer
2743  *	@skb: buffer to orphan
2744  *
2745  *	If a buffer currently has an owner then we call the owner's
2746  *	destructor function and make the @skb unowned. The buffer continues
2747  *	to exist but is no longer charged to its former owner.
2748  */
skb_orphan(struct sk_buff * skb)2749 static inline void skb_orphan(struct sk_buff *skb)
2750 {
2751 	if (skb->destructor) {
2752 		skb->destructor(skb);
2753 		skb->destructor = NULL;
2754 		skb->sk		= NULL;
2755 	} else {
2756 		BUG_ON(skb->sk);
2757 	}
2758 }
2759 
2760 /**
2761  *	skb_orphan_frags - orphan the frags contained in a buffer
2762  *	@skb: buffer to orphan frags from
2763  *	@gfp_mask: allocation mask for replacement pages
2764  *
2765  *	For each frag in the SKB which needs a destructor (i.e. has an
2766  *	owner) create a copy of that frag and release the original
2767  *	page by calling the destructor.
2768  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2769 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2770 {
2771 	if (likely(!skb_zcopy(skb)))
2772 		return 0;
2773 	if (!skb_zcopy_is_nouarg(skb) &&
2774 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2775 		return 0;
2776 	return skb_copy_ubufs(skb, gfp_mask);
2777 }
2778 
2779 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2780 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2781 {
2782 	if (likely(!skb_zcopy(skb)))
2783 		return 0;
2784 	return skb_copy_ubufs(skb, gfp_mask);
2785 }
2786 
2787 /**
2788  *	__skb_queue_purge - empty a list
2789  *	@list: list to empty
2790  *
2791  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2792  *	the list and one reference dropped. This function does not take the
2793  *	list lock and the caller must hold the relevant locks to use it.
2794  */
__skb_queue_purge(struct sk_buff_head * list)2795 static inline void __skb_queue_purge(struct sk_buff_head *list)
2796 {
2797 	struct sk_buff *skb;
2798 	while ((skb = __skb_dequeue(list)) != NULL)
2799 		kfree_skb(skb);
2800 }
2801 void skb_queue_purge(struct sk_buff_head *list);
2802 
2803 unsigned int skb_rbtree_purge(struct rb_root *root);
2804 
2805 void *netdev_alloc_frag(unsigned int fragsz);
2806 
2807 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2808 				   gfp_t gfp_mask);
2809 
2810 /**
2811  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2812  *	@dev: network device to receive on
2813  *	@length: length to allocate
2814  *
2815  *	Allocate a new &sk_buff and assign it a usage count of one. The
2816  *	buffer has unspecified headroom built in. Users should allocate
2817  *	the headroom they think they need without accounting for the
2818  *	built in space. The built in space is used for optimisations.
2819  *
2820  *	%NULL is returned if there is no free memory. Although this function
2821  *	allocates memory it can be called from an interrupt.
2822  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2823 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2824 					       unsigned int length)
2825 {
2826 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2827 }
2828 
2829 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2830 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2831 					      gfp_t gfp_mask)
2832 {
2833 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2834 }
2835 
2836 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2837 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2838 {
2839 	return netdev_alloc_skb(NULL, length);
2840 }
2841 
2842 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2843 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2844 		unsigned int length, gfp_t gfp)
2845 {
2846 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2847 
2848 	if (NET_IP_ALIGN && skb)
2849 		skb_reserve(skb, NET_IP_ALIGN);
2850 	return skb;
2851 }
2852 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2853 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2854 		unsigned int length)
2855 {
2856 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2857 }
2858 
skb_free_frag(void * addr)2859 static inline void skb_free_frag(void *addr)
2860 {
2861 	page_frag_free(addr);
2862 }
2863 
2864 void *napi_alloc_frag(unsigned int fragsz);
2865 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2866 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2867 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2868 					     unsigned int length)
2869 {
2870 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2871 }
2872 void napi_consume_skb(struct sk_buff *skb, int budget);
2873 
2874 void __kfree_skb_flush(void);
2875 void __kfree_skb_defer(struct sk_buff *skb);
2876 
2877 /**
2878  * __dev_alloc_pages - allocate page for network Rx
2879  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2880  * @order: size of the allocation
2881  *
2882  * Allocate a new page.
2883  *
2884  * %NULL is returned if there is no free memory.
2885 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2886 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2887 					     unsigned int order)
2888 {
2889 	/* This piece of code contains several assumptions.
2890 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2891 	 * 2.  The expectation is the user wants a compound page.
2892 	 * 3.  If requesting a order 0 page it will not be compound
2893 	 *     due to the check to see if order has a value in prep_new_page
2894 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2895 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2896 	 */
2897 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2898 
2899 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2900 }
2901 
dev_alloc_pages(unsigned int order)2902 static inline struct page *dev_alloc_pages(unsigned int order)
2903 {
2904 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2905 }
2906 
2907 /**
2908  * __dev_alloc_page - allocate a page for network Rx
2909  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2910  *
2911  * Allocate a new page.
2912  *
2913  * %NULL is returned if there is no free memory.
2914  */
__dev_alloc_page(gfp_t gfp_mask)2915 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2916 {
2917 	return __dev_alloc_pages(gfp_mask, 0);
2918 }
2919 
dev_alloc_page(void)2920 static inline struct page *dev_alloc_page(void)
2921 {
2922 	return dev_alloc_pages(0);
2923 }
2924 
2925 /**
2926  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2927  *	@page: The page that was allocated from skb_alloc_page
2928  *	@skb: The skb that may need pfmemalloc set
2929  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2930 static inline void skb_propagate_pfmemalloc(struct page *page,
2931 					     struct sk_buff *skb)
2932 {
2933 	if (page_is_pfmemalloc(page))
2934 		skb->pfmemalloc = true;
2935 }
2936 
2937 /**
2938  * skb_frag_off() - Returns the offset of a skb fragment
2939  * @frag: the paged fragment
2940  */
skb_frag_off(const skb_frag_t * frag)2941 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2942 {
2943 	return frag->bv_offset;
2944 }
2945 
2946 /**
2947  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2948  * @frag: skb fragment
2949  * @delta: value to add
2950  */
skb_frag_off_add(skb_frag_t * frag,int delta)2951 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2952 {
2953 	frag->bv_offset += delta;
2954 }
2955 
2956 /**
2957  * skb_frag_off_set() - Sets the offset of a skb fragment
2958  * @frag: skb fragment
2959  * @offset: offset of fragment
2960  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)2961 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2962 {
2963 	frag->bv_offset = offset;
2964 }
2965 
2966 /**
2967  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2968  * @fragto: skb fragment where offset is set
2969  * @fragfrom: skb fragment offset is copied from
2970  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)2971 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2972 				     const skb_frag_t *fragfrom)
2973 {
2974 	fragto->bv_offset = fragfrom->bv_offset;
2975 }
2976 
2977 /**
2978  * skb_frag_page - retrieve the page referred to by a paged fragment
2979  * @frag: the paged fragment
2980  *
2981  * Returns the &struct page associated with @frag.
2982  */
skb_frag_page(const skb_frag_t * frag)2983 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2984 {
2985 	return frag->bv_page;
2986 }
2987 
2988 /**
2989  * __skb_frag_ref - take an addition reference on a paged fragment.
2990  * @frag: the paged fragment
2991  *
2992  * Takes an additional reference on the paged fragment @frag.
2993  */
__skb_frag_ref(skb_frag_t * frag)2994 static inline void __skb_frag_ref(skb_frag_t *frag)
2995 {
2996 	get_page(skb_frag_page(frag));
2997 }
2998 
2999 /**
3000  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3001  * @skb: the buffer
3002  * @f: the fragment offset.
3003  *
3004  * Takes an additional reference on the @f'th paged fragment of @skb.
3005  */
skb_frag_ref(struct sk_buff * skb,int f)3006 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3007 {
3008 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3009 }
3010 
3011 /**
3012  * __skb_frag_unref - release a reference on a paged fragment.
3013  * @frag: the paged fragment
3014  *
3015  * Releases a reference on the paged fragment @frag.
3016  */
__skb_frag_unref(skb_frag_t * frag)3017 static inline void __skb_frag_unref(skb_frag_t *frag)
3018 {
3019 	put_page(skb_frag_page(frag));
3020 }
3021 
3022 /**
3023  * skb_frag_unref - release a reference on a paged fragment of an skb.
3024  * @skb: the buffer
3025  * @f: the fragment offset
3026  *
3027  * Releases a reference on the @f'th paged fragment of @skb.
3028  */
skb_frag_unref(struct sk_buff * skb,int f)3029 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3030 {
3031 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3032 }
3033 
3034 /**
3035  * skb_frag_address - gets the address of the data contained in a paged fragment
3036  * @frag: the paged fragment buffer
3037  *
3038  * Returns the address of the data within @frag. The page must already
3039  * be mapped.
3040  */
skb_frag_address(const skb_frag_t * frag)3041 static inline void *skb_frag_address(const skb_frag_t *frag)
3042 {
3043 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3044 }
3045 
3046 /**
3047  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3048  * @frag: the paged fragment buffer
3049  *
3050  * Returns the address of the data within @frag. Checks that the page
3051  * is mapped and returns %NULL otherwise.
3052  */
skb_frag_address_safe(const skb_frag_t * frag)3053 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3054 {
3055 	void *ptr = page_address(skb_frag_page(frag));
3056 	if (unlikely(!ptr))
3057 		return NULL;
3058 
3059 	return ptr + skb_frag_off(frag);
3060 }
3061 
3062 /**
3063  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3064  * @fragto: skb fragment where page is set
3065  * @fragfrom: skb fragment page is copied from
3066  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3067 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3068 				      const skb_frag_t *fragfrom)
3069 {
3070 	fragto->bv_page = fragfrom->bv_page;
3071 }
3072 
3073 /**
3074  * __skb_frag_set_page - sets the page contained in a paged fragment
3075  * @frag: the paged fragment
3076  * @page: the page to set
3077  *
3078  * Sets the fragment @frag to contain @page.
3079  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3080 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3081 {
3082 	frag->bv_page = page;
3083 }
3084 
3085 /**
3086  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3087  * @skb: the buffer
3088  * @f: the fragment offset
3089  * @page: the page to set
3090  *
3091  * Sets the @f'th fragment of @skb to contain @page.
3092  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3093 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3094 				     struct page *page)
3095 {
3096 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3097 }
3098 
3099 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3100 
3101 /**
3102  * skb_frag_dma_map - maps a paged fragment via the DMA API
3103  * @dev: the device to map the fragment to
3104  * @frag: the paged fragment to map
3105  * @offset: the offset within the fragment (starting at the
3106  *          fragment's own offset)
3107  * @size: the number of bytes to map
3108  * @dir: the direction of the mapping (``PCI_DMA_*``)
3109  *
3110  * Maps the page associated with @frag to @device.
3111  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3112 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3113 					  const skb_frag_t *frag,
3114 					  size_t offset, size_t size,
3115 					  enum dma_data_direction dir)
3116 {
3117 	return dma_map_page(dev, skb_frag_page(frag),
3118 			    skb_frag_off(frag) + offset, size, dir);
3119 }
3120 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3121 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3122 					gfp_t gfp_mask)
3123 {
3124 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3125 }
3126 
3127 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3128 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3129 						  gfp_t gfp_mask)
3130 {
3131 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3132 }
3133 
3134 
3135 /**
3136  *	skb_clone_writable - is the header of a clone writable
3137  *	@skb: buffer to check
3138  *	@len: length up to which to write
3139  *
3140  *	Returns true if modifying the header part of the cloned buffer
3141  *	does not requires the data to be copied.
3142  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3143 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3144 {
3145 	return !skb_header_cloned(skb) &&
3146 	       skb_headroom(skb) + len <= skb->hdr_len;
3147 }
3148 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3149 static inline int skb_try_make_writable(struct sk_buff *skb,
3150 					unsigned int write_len)
3151 {
3152 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3153 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3154 }
3155 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3156 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3157 			    int cloned)
3158 {
3159 	int delta = 0;
3160 
3161 	if (headroom > skb_headroom(skb))
3162 		delta = headroom - skb_headroom(skb);
3163 
3164 	if (delta || cloned)
3165 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3166 					GFP_ATOMIC);
3167 	return 0;
3168 }
3169 
3170 /**
3171  *	skb_cow - copy header of skb when it is required
3172  *	@skb: buffer to cow
3173  *	@headroom: needed headroom
3174  *
3175  *	If the skb passed lacks sufficient headroom or its data part
3176  *	is shared, data is reallocated. If reallocation fails, an error
3177  *	is returned and original skb is not changed.
3178  *
3179  *	The result is skb with writable area skb->head...skb->tail
3180  *	and at least @headroom of space at head.
3181  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3182 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3183 {
3184 	return __skb_cow(skb, headroom, skb_cloned(skb));
3185 }
3186 
3187 /**
3188  *	skb_cow_head - skb_cow but only making the head writable
3189  *	@skb: buffer to cow
3190  *	@headroom: needed headroom
3191  *
3192  *	This function is identical to skb_cow except that we replace the
3193  *	skb_cloned check by skb_header_cloned.  It should be used when
3194  *	you only need to push on some header and do not need to modify
3195  *	the data.
3196  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3197 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3198 {
3199 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3200 }
3201 
3202 /**
3203  *	skb_padto	- pad an skbuff up to a minimal size
3204  *	@skb: buffer to pad
3205  *	@len: minimal length
3206  *
3207  *	Pads up a buffer to ensure the trailing bytes exist and are
3208  *	blanked. If the buffer already contains sufficient data it
3209  *	is untouched. Otherwise it is extended. Returns zero on
3210  *	success. The skb is freed on error.
3211  */
skb_padto(struct sk_buff * skb,unsigned int len)3212 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3213 {
3214 	unsigned int size = skb->len;
3215 	if (likely(size >= len))
3216 		return 0;
3217 	return skb_pad(skb, len - size);
3218 }
3219 
3220 /**
3221  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3222  *	@skb: buffer to pad
3223  *	@len: minimal length
3224  *	@free_on_error: free buffer on error
3225  *
3226  *	Pads up a buffer to ensure the trailing bytes exist and are
3227  *	blanked. If the buffer already contains sufficient data it
3228  *	is untouched. Otherwise it is extended. Returns zero on
3229  *	success. The skb is freed on error if @free_on_error is true.
3230  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3231 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3232 					       unsigned int len,
3233 					       bool free_on_error)
3234 {
3235 	unsigned int size = skb->len;
3236 
3237 	if (unlikely(size < len)) {
3238 		len -= size;
3239 		if (__skb_pad(skb, len, free_on_error))
3240 			return -ENOMEM;
3241 		__skb_put(skb, len);
3242 	}
3243 	return 0;
3244 }
3245 
3246 /**
3247  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3248  *	@skb: buffer to pad
3249  *	@len: minimal length
3250  *
3251  *	Pads up a buffer to ensure the trailing bytes exist and are
3252  *	blanked. If the buffer already contains sufficient data it
3253  *	is untouched. Otherwise it is extended. Returns zero on
3254  *	success. The skb is freed on error.
3255  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3256 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3257 {
3258 	return __skb_put_padto(skb, len, true);
3259 }
3260 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3261 static inline int skb_add_data(struct sk_buff *skb,
3262 			       struct iov_iter *from, int copy)
3263 {
3264 	const int off = skb->len;
3265 
3266 	if (skb->ip_summed == CHECKSUM_NONE) {
3267 		__wsum csum = 0;
3268 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3269 					         &csum, from)) {
3270 			skb->csum = csum_block_add(skb->csum, csum, off);
3271 			return 0;
3272 		}
3273 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3274 		return 0;
3275 
3276 	__skb_trim(skb, off);
3277 	return -EFAULT;
3278 }
3279 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3280 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3281 				    const struct page *page, int off)
3282 {
3283 	if (skb_zcopy(skb))
3284 		return false;
3285 	if (i) {
3286 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3287 
3288 		return page == skb_frag_page(frag) &&
3289 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3290 	}
3291 	return false;
3292 }
3293 
__skb_linearize(struct sk_buff * skb)3294 static inline int __skb_linearize(struct sk_buff *skb)
3295 {
3296 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3297 }
3298 
3299 /**
3300  *	skb_linearize - convert paged skb to linear one
3301  *	@skb: buffer to linarize
3302  *
3303  *	If there is no free memory -ENOMEM is returned, otherwise zero
3304  *	is returned and the old skb data released.
3305  */
skb_linearize(struct sk_buff * skb)3306 static inline int skb_linearize(struct sk_buff *skb)
3307 {
3308 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3309 }
3310 
3311 /**
3312  * skb_has_shared_frag - can any frag be overwritten
3313  * @skb: buffer to test
3314  *
3315  * Return true if the skb has at least one frag that might be modified
3316  * by an external entity (as in vmsplice()/sendfile())
3317  */
skb_has_shared_frag(const struct sk_buff * skb)3318 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3319 {
3320 	return skb_is_nonlinear(skb) &&
3321 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3322 }
3323 
3324 /**
3325  *	skb_linearize_cow - make sure skb is linear and writable
3326  *	@skb: buffer to process
3327  *
3328  *	If there is no free memory -ENOMEM is returned, otherwise zero
3329  *	is returned and the old skb data released.
3330  */
skb_linearize_cow(struct sk_buff * skb)3331 static inline int skb_linearize_cow(struct sk_buff *skb)
3332 {
3333 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3334 	       __skb_linearize(skb) : 0;
3335 }
3336 
3337 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3338 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3339 		     unsigned int off)
3340 {
3341 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3342 		skb->csum = csum_block_sub(skb->csum,
3343 					   csum_partial(start, len, 0), off);
3344 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3345 		 skb_checksum_start_offset(skb) < 0)
3346 		skb->ip_summed = CHECKSUM_NONE;
3347 }
3348 
3349 /**
3350  *	skb_postpull_rcsum - update checksum for received skb after pull
3351  *	@skb: buffer to update
3352  *	@start: start of data before pull
3353  *	@len: length of data pulled
3354  *
3355  *	After doing a pull on a received packet, you need to call this to
3356  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3357  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3358  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3359 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3360 				      const void *start, unsigned int len)
3361 {
3362 	__skb_postpull_rcsum(skb, start, len, 0);
3363 }
3364 
3365 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3366 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3367 		     unsigned int off)
3368 {
3369 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3370 		skb->csum = csum_block_add(skb->csum,
3371 					   csum_partial(start, len, 0), off);
3372 }
3373 
3374 /**
3375  *	skb_postpush_rcsum - update checksum for received skb after push
3376  *	@skb: buffer to update
3377  *	@start: start of data after push
3378  *	@len: length of data pushed
3379  *
3380  *	After doing a push on a received packet, you need to call this to
3381  *	update the CHECKSUM_COMPLETE checksum.
3382  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3383 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3384 				      const void *start, unsigned int len)
3385 {
3386 	__skb_postpush_rcsum(skb, start, len, 0);
3387 }
3388 
3389 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3390 
3391 /**
3392  *	skb_push_rcsum - push skb and update receive checksum
3393  *	@skb: buffer to update
3394  *	@len: length of data pulled
3395  *
3396  *	This function performs an skb_push on the packet and updates
3397  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3398  *	receive path processing instead of skb_push unless you know
3399  *	that the checksum difference is zero (e.g., a valid IP header)
3400  *	or you are setting ip_summed to CHECKSUM_NONE.
3401  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3402 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3403 {
3404 	skb_push(skb, len);
3405 	skb_postpush_rcsum(skb, skb->data, len);
3406 	return skb->data;
3407 }
3408 
3409 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3410 /**
3411  *	pskb_trim_rcsum - trim received skb and update checksum
3412  *	@skb: buffer to trim
3413  *	@len: new length
3414  *
3415  *	This is exactly the same as pskb_trim except that it ensures the
3416  *	checksum of received packets are still valid after the operation.
3417  *	It can change skb pointers.
3418  */
3419 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3420 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3421 {
3422 	if (likely(len >= skb->len))
3423 		return 0;
3424 	return pskb_trim_rcsum_slow(skb, len);
3425 }
3426 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3427 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3428 {
3429 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3430 		skb->ip_summed = CHECKSUM_NONE;
3431 	__skb_trim(skb, len);
3432 	return 0;
3433 }
3434 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3435 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3436 {
3437 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3438 		skb->ip_summed = CHECKSUM_NONE;
3439 	return __skb_grow(skb, len);
3440 }
3441 
3442 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3443 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3444 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3445 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3446 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3447 
3448 #define skb_queue_walk(queue, skb) \
3449 		for (skb = (queue)->next;					\
3450 		     skb != (struct sk_buff *)(queue);				\
3451 		     skb = skb->next)
3452 
3453 #define skb_queue_walk_safe(queue, skb, tmp)					\
3454 		for (skb = (queue)->next, tmp = skb->next;			\
3455 		     skb != (struct sk_buff *)(queue);				\
3456 		     skb = tmp, tmp = skb->next)
3457 
3458 #define skb_queue_walk_from(queue, skb)						\
3459 		for (; skb != (struct sk_buff *)(queue);			\
3460 		     skb = skb->next)
3461 
3462 #define skb_rbtree_walk(skb, root)						\
3463 		for (skb = skb_rb_first(root); skb != NULL;			\
3464 		     skb = skb_rb_next(skb))
3465 
3466 #define skb_rbtree_walk_from(skb)						\
3467 		for (; skb != NULL;						\
3468 		     skb = skb_rb_next(skb))
3469 
3470 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3471 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3472 		     skb = tmp)
3473 
3474 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3475 		for (tmp = skb->next;						\
3476 		     skb != (struct sk_buff *)(queue);				\
3477 		     skb = tmp, tmp = skb->next)
3478 
3479 #define skb_queue_reverse_walk(queue, skb) \
3480 		for (skb = (queue)->prev;					\
3481 		     skb != (struct sk_buff *)(queue);				\
3482 		     skb = skb->prev)
3483 
3484 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3485 		for (skb = (queue)->prev, tmp = skb->prev;			\
3486 		     skb != (struct sk_buff *)(queue);				\
3487 		     skb = tmp, tmp = skb->prev)
3488 
3489 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3490 		for (tmp = skb->prev;						\
3491 		     skb != (struct sk_buff *)(queue);				\
3492 		     skb = tmp, tmp = skb->prev)
3493 
skb_has_frag_list(const struct sk_buff * skb)3494 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3495 {
3496 	return skb_shinfo(skb)->frag_list != NULL;
3497 }
3498 
skb_frag_list_init(struct sk_buff * skb)3499 static inline void skb_frag_list_init(struct sk_buff *skb)
3500 {
3501 	skb_shinfo(skb)->frag_list = NULL;
3502 }
3503 
3504 #define skb_walk_frags(skb, iter)	\
3505 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3506 
3507 
3508 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3509 				int *err, long *timeo_p,
3510 				const struct sk_buff *skb);
3511 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3512 					  struct sk_buff_head *queue,
3513 					  unsigned int flags,
3514 					  int *off, int *err,
3515 					  struct sk_buff **last);
3516 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3517 					struct sk_buff_head *queue,
3518 					unsigned int flags, int *off, int *err,
3519 					struct sk_buff **last);
3520 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3521 				    struct sk_buff_head *sk_queue,
3522 				    unsigned int flags, int *off, int *err);
3523 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3524 				  int *err);
3525 __poll_t datagram_poll(struct file *file, struct socket *sock,
3526 			   struct poll_table_struct *wait);
3527 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3528 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3529 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3530 					struct msghdr *msg, int size)
3531 {
3532 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3533 }
3534 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3535 				   struct msghdr *msg);
3536 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3537 			   struct iov_iter *to, int len,
3538 			   struct ahash_request *hash);
3539 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3540 				 struct iov_iter *from, int len);
3541 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3542 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3543 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3544 static inline void skb_free_datagram_locked(struct sock *sk,
3545 					    struct sk_buff *skb)
3546 {
3547 	__skb_free_datagram_locked(sk, skb, 0);
3548 }
3549 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3550 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3551 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3552 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3553 			      int len);
3554 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3555 		    struct pipe_inode_info *pipe, unsigned int len,
3556 		    unsigned int flags);
3557 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3558 			 int len);
3559 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3560 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3561 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3562 		 int len, int hlen);
3563 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3564 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3565 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3566 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3567 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3568 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3569 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3570 				 unsigned int offset);
3571 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3572 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3573 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3574 int skb_vlan_pop(struct sk_buff *skb);
3575 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3576 int skb_eth_pop(struct sk_buff *skb);
3577 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3578 		 const unsigned char *src);
3579 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3580 		  int mac_len, bool ethernet);
3581 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3582 		 bool ethernet);
3583 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3584 int skb_mpls_dec_ttl(struct sk_buff *skb);
3585 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3586 			     gfp_t gfp);
3587 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3588 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3589 {
3590 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3591 }
3592 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3593 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3594 {
3595 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3596 }
3597 
3598 struct skb_checksum_ops {
3599 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3600 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3601 };
3602 
3603 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3604 
3605 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3606 		      __wsum csum, const struct skb_checksum_ops *ops);
3607 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3608 		    __wsum csum);
3609 
3610 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3611 __skb_header_pointer(const struct sk_buff *skb, int offset,
3612 		     int len, void *data, int hlen, void *buffer)
3613 {
3614 	if (hlen - offset >= len)
3615 		return data + offset;
3616 
3617 	if (!skb ||
3618 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3619 		return NULL;
3620 
3621 	return buffer;
3622 }
3623 
3624 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3625 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3626 {
3627 	return __skb_header_pointer(skb, offset, len, skb->data,
3628 				    skb_headlen(skb), buffer);
3629 }
3630 
3631 /**
3632  *	skb_needs_linearize - check if we need to linearize a given skb
3633  *			      depending on the given device features.
3634  *	@skb: socket buffer to check
3635  *	@features: net device features
3636  *
3637  *	Returns true if either:
3638  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3639  *	2. skb is fragmented and the device does not support SG.
3640  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3641 static inline bool skb_needs_linearize(struct sk_buff *skb,
3642 				       netdev_features_t features)
3643 {
3644 	return skb_is_nonlinear(skb) &&
3645 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3646 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3647 }
3648 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3649 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3650 					     void *to,
3651 					     const unsigned int len)
3652 {
3653 	memcpy(to, skb->data, len);
3654 }
3655 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3656 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3657 						    const int offset, void *to,
3658 						    const unsigned int len)
3659 {
3660 	memcpy(to, skb->data + offset, len);
3661 }
3662 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3663 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3664 					   const void *from,
3665 					   const unsigned int len)
3666 {
3667 	memcpy(skb->data, from, len);
3668 }
3669 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3670 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3671 						  const int offset,
3672 						  const void *from,
3673 						  const unsigned int len)
3674 {
3675 	memcpy(skb->data + offset, from, len);
3676 }
3677 
3678 void skb_init(void);
3679 
skb_get_ktime(const struct sk_buff * skb)3680 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3681 {
3682 	return skb->tstamp;
3683 }
3684 
3685 /**
3686  *	skb_get_timestamp - get timestamp from a skb
3687  *	@skb: skb to get stamp from
3688  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3689  *
3690  *	Timestamps are stored in the skb as offsets to a base timestamp.
3691  *	This function converts the offset back to a struct timeval and stores
3692  *	it in stamp.
3693  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3694 static inline void skb_get_timestamp(const struct sk_buff *skb,
3695 				     struct __kernel_old_timeval *stamp)
3696 {
3697 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3698 }
3699 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3700 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3701 					 struct __kernel_sock_timeval *stamp)
3702 {
3703 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3704 
3705 	stamp->tv_sec = ts.tv_sec;
3706 	stamp->tv_usec = ts.tv_nsec / 1000;
3707 }
3708 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3709 static inline void skb_get_timestampns(const struct sk_buff *skb,
3710 				       struct __kernel_old_timespec *stamp)
3711 {
3712 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3713 
3714 	stamp->tv_sec = ts.tv_sec;
3715 	stamp->tv_nsec = ts.tv_nsec;
3716 }
3717 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3718 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3719 					   struct __kernel_timespec *stamp)
3720 {
3721 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3722 
3723 	stamp->tv_sec = ts.tv_sec;
3724 	stamp->tv_nsec = ts.tv_nsec;
3725 }
3726 
__net_timestamp(struct sk_buff * skb)3727 static inline void __net_timestamp(struct sk_buff *skb)
3728 {
3729 	skb->tstamp = ktime_get_real();
3730 }
3731 
net_timedelta(ktime_t t)3732 static inline ktime_t net_timedelta(ktime_t t)
3733 {
3734 	return ktime_sub(ktime_get_real(), t);
3735 }
3736 
net_invalid_timestamp(void)3737 static inline ktime_t net_invalid_timestamp(void)
3738 {
3739 	return 0;
3740 }
3741 
skb_metadata_len(const struct sk_buff * skb)3742 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3743 {
3744 	return skb_shinfo(skb)->meta_len;
3745 }
3746 
skb_metadata_end(const struct sk_buff * skb)3747 static inline void *skb_metadata_end(const struct sk_buff *skb)
3748 {
3749 	return skb_mac_header(skb);
3750 }
3751 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3752 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3753 					  const struct sk_buff *skb_b,
3754 					  u8 meta_len)
3755 {
3756 	const void *a = skb_metadata_end(skb_a);
3757 	const void *b = skb_metadata_end(skb_b);
3758 	/* Using more efficient varaiant than plain call to memcmp(). */
3759 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3760 	u64 diffs = 0;
3761 
3762 	switch (meta_len) {
3763 #define __it(x, op) (x -= sizeof(u##op))
3764 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3765 	case 32: diffs |= __it_diff(a, b, 64);
3766 		fallthrough;
3767 	case 24: diffs |= __it_diff(a, b, 64);
3768 		fallthrough;
3769 	case 16: diffs |= __it_diff(a, b, 64);
3770 		fallthrough;
3771 	case  8: diffs |= __it_diff(a, b, 64);
3772 		break;
3773 	case 28: diffs |= __it_diff(a, b, 64);
3774 		fallthrough;
3775 	case 20: diffs |= __it_diff(a, b, 64);
3776 		fallthrough;
3777 	case 12: diffs |= __it_diff(a, b, 64);
3778 		fallthrough;
3779 	case  4: diffs |= __it_diff(a, b, 32);
3780 		break;
3781 	}
3782 	return diffs;
3783 #else
3784 	return memcmp(a - meta_len, b - meta_len, meta_len);
3785 #endif
3786 }
3787 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3788 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3789 					const struct sk_buff *skb_b)
3790 {
3791 	u8 len_a = skb_metadata_len(skb_a);
3792 	u8 len_b = skb_metadata_len(skb_b);
3793 
3794 	if (!(len_a | len_b))
3795 		return false;
3796 
3797 	return len_a != len_b ?
3798 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3799 }
3800 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3801 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3802 {
3803 	skb_shinfo(skb)->meta_len = meta_len;
3804 }
3805 
skb_metadata_clear(struct sk_buff * skb)3806 static inline void skb_metadata_clear(struct sk_buff *skb)
3807 {
3808 	skb_metadata_set(skb, 0);
3809 }
3810 
3811 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3812 
3813 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3814 
3815 void skb_clone_tx_timestamp(struct sk_buff *skb);
3816 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3817 
3818 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3819 
skb_clone_tx_timestamp(struct sk_buff * skb)3820 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3821 {
3822 }
3823 
skb_defer_rx_timestamp(struct sk_buff * skb)3824 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3825 {
3826 	return false;
3827 }
3828 
3829 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3830 
3831 /**
3832  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3833  *
3834  * PHY drivers may accept clones of transmitted packets for
3835  * timestamping via their phy_driver.txtstamp method. These drivers
3836  * must call this function to return the skb back to the stack with a
3837  * timestamp.
3838  *
3839  * @skb: clone of the original outgoing packet
3840  * @hwtstamps: hardware time stamps
3841  *
3842  */
3843 void skb_complete_tx_timestamp(struct sk_buff *skb,
3844 			       struct skb_shared_hwtstamps *hwtstamps);
3845 
3846 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3847 		     struct skb_shared_hwtstamps *hwtstamps,
3848 		     struct sock *sk, int tstype);
3849 
3850 /**
3851  * skb_tstamp_tx - queue clone of skb with send time stamps
3852  * @orig_skb:	the original outgoing packet
3853  * @hwtstamps:	hardware time stamps, may be NULL if not available
3854  *
3855  * If the skb has a socket associated, then this function clones the
3856  * skb (thus sharing the actual data and optional structures), stores
3857  * the optional hardware time stamping information (if non NULL) or
3858  * generates a software time stamp (otherwise), then queues the clone
3859  * to the error queue of the socket.  Errors are silently ignored.
3860  */
3861 void skb_tstamp_tx(struct sk_buff *orig_skb,
3862 		   struct skb_shared_hwtstamps *hwtstamps);
3863 
3864 /**
3865  * skb_tx_timestamp() - Driver hook for transmit timestamping
3866  *
3867  * Ethernet MAC Drivers should call this function in their hard_xmit()
3868  * function immediately before giving the sk_buff to the MAC hardware.
3869  *
3870  * Specifically, one should make absolutely sure that this function is
3871  * called before TX completion of this packet can trigger.  Otherwise
3872  * the packet could potentially already be freed.
3873  *
3874  * @skb: A socket buffer.
3875  */
skb_tx_timestamp(struct sk_buff * skb)3876 static inline void skb_tx_timestamp(struct sk_buff *skb)
3877 {
3878 	skb_clone_tx_timestamp(skb);
3879 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3880 		skb_tstamp_tx(skb, NULL);
3881 }
3882 
3883 /**
3884  * skb_complete_wifi_ack - deliver skb with wifi status
3885  *
3886  * @skb: the original outgoing packet
3887  * @acked: ack status
3888  *
3889  */
3890 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3891 
3892 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3893 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3894 
skb_csum_unnecessary(const struct sk_buff * skb)3895 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3896 {
3897 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3898 		skb->csum_valid ||
3899 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3900 		 skb_checksum_start_offset(skb) >= 0));
3901 }
3902 
3903 /**
3904  *	skb_checksum_complete - Calculate checksum of an entire packet
3905  *	@skb: packet to process
3906  *
3907  *	This function calculates the checksum over the entire packet plus
3908  *	the value of skb->csum.  The latter can be used to supply the
3909  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3910  *	checksum.
3911  *
3912  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3913  *	this function can be used to verify that checksum on received
3914  *	packets.  In that case the function should return zero if the
3915  *	checksum is correct.  In particular, this function will return zero
3916  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3917  *	hardware has already verified the correctness of the checksum.
3918  */
skb_checksum_complete(struct sk_buff * skb)3919 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3920 {
3921 	return skb_csum_unnecessary(skb) ?
3922 	       0 : __skb_checksum_complete(skb);
3923 }
3924 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3925 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3926 {
3927 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3928 		if (skb->csum_level == 0)
3929 			skb->ip_summed = CHECKSUM_NONE;
3930 		else
3931 			skb->csum_level--;
3932 	}
3933 }
3934 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3935 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3936 {
3937 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3938 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3939 			skb->csum_level++;
3940 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3941 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3942 		skb->csum_level = 0;
3943 	}
3944 }
3945 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)3946 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3947 {
3948 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3949 		skb->ip_summed = CHECKSUM_NONE;
3950 		skb->csum_level = 0;
3951 	}
3952 }
3953 
3954 /* Check if we need to perform checksum complete validation.
3955  *
3956  * Returns true if checksum complete is needed, false otherwise
3957  * (either checksum is unnecessary or zero checksum is allowed).
3958  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3959 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3960 						  bool zero_okay,
3961 						  __sum16 check)
3962 {
3963 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3964 		skb->csum_valid = 1;
3965 		__skb_decr_checksum_unnecessary(skb);
3966 		return false;
3967 	}
3968 
3969 	return true;
3970 }
3971 
3972 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3973  * in checksum_init.
3974  */
3975 #define CHECKSUM_BREAK 76
3976 
3977 /* Unset checksum-complete
3978  *
3979  * Unset checksum complete can be done when packet is being modified
3980  * (uncompressed for instance) and checksum-complete value is
3981  * invalidated.
3982  */
skb_checksum_complete_unset(struct sk_buff * skb)3983 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3984 {
3985 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3986 		skb->ip_summed = CHECKSUM_NONE;
3987 }
3988 
3989 /* Validate (init) checksum based on checksum complete.
3990  *
3991  * Return values:
3992  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3993  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3994  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3995  *   non-zero: value of invalid checksum
3996  *
3997  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3998 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3999 						       bool complete,
4000 						       __wsum psum)
4001 {
4002 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4003 		if (!csum_fold(csum_add(psum, skb->csum))) {
4004 			skb->csum_valid = 1;
4005 			return 0;
4006 		}
4007 	}
4008 
4009 	skb->csum = psum;
4010 
4011 	if (complete || skb->len <= CHECKSUM_BREAK) {
4012 		__sum16 csum;
4013 
4014 		csum = __skb_checksum_complete(skb);
4015 		skb->csum_valid = !csum;
4016 		return csum;
4017 	}
4018 
4019 	return 0;
4020 }
4021 
null_compute_pseudo(struct sk_buff * skb,int proto)4022 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4023 {
4024 	return 0;
4025 }
4026 
4027 /* Perform checksum validate (init). Note that this is a macro since we only
4028  * want to calculate the pseudo header which is an input function if necessary.
4029  * First we try to validate without any computation (checksum unnecessary) and
4030  * then calculate based on checksum complete calling the function to compute
4031  * pseudo header.
4032  *
4033  * Return values:
4034  *   0: checksum is validated or try to in skb_checksum_complete
4035  *   non-zero: value of invalid checksum
4036  */
4037 #define __skb_checksum_validate(skb, proto, complete,			\
4038 				zero_okay, check, compute_pseudo)	\
4039 ({									\
4040 	__sum16 __ret = 0;						\
4041 	skb->csum_valid = 0;						\
4042 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4043 		__ret = __skb_checksum_validate_complete(skb,		\
4044 				complete, compute_pseudo(skb, proto));	\
4045 	__ret;								\
4046 })
4047 
4048 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4049 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4050 
4051 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4052 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4053 
4054 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4055 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4056 
4057 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4058 					 compute_pseudo)		\
4059 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4060 
4061 #define skb_checksum_simple_validate(skb)				\
4062 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4063 
__skb_checksum_convert_check(struct sk_buff * skb)4064 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4065 {
4066 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4067 }
4068 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4069 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4070 {
4071 	skb->csum = ~pseudo;
4072 	skb->ip_summed = CHECKSUM_COMPLETE;
4073 }
4074 
4075 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4076 do {									\
4077 	if (__skb_checksum_convert_check(skb))				\
4078 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4079 } while (0)
4080 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4081 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4082 					      u16 start, u16 offset)
4083 {
4084 	skb->ip_summed = CHECKSUM_PARTIAL;
4085 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4086 	skb->csum_offset = offset - start;
4087 }
4088 
4089 /* Update skbuf and packet to reflect the remote checksum offload operation.
4090  * When called, ptr indicates the starting point for skb->csum when
4091  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4092  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4093  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4094 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4095 				       int start, int offset, bool nopartial)
4096 {
4097 	__wsum delta;
4098 
4099 	if (!nopartial) {
4100 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4101 		return;
4102 	}
4103 
4104 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4105 		__skb_checksum_complete(skb);
4106 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4107 	}
4108 
4109 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4110 
4111 	/* Adjust skb->csum since we changed the packet */
4112 	skb->csum = csum_add(skb->csum, delta);
4113 }
4114 
skb_nfct(const struct sk_buff * skb)4115 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4116 {
4117 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4118 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4119 #else
4120 	return NULL;
4121 #endif
4122 }
4123 
skb_get_nfct(const struct sk_buff * skb)4124 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4125 {
4126 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4127 	return skb->_nfct;
4128 #else
4129 	return 0UL;
4130 #endif
4131 }
4132 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4133 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4134 {
4135 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4136 	skb->_nfct = nfct;
4137 #endif
4138 }
4139 
4140 #ifdef CONFIG_SKB_EXTENSIONS
4141 enum skb_ext_id {
4142 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4143 	SKB_EXT_BRIDGE_NF,
4144 #endif
4145 #ifdef CONFIG_XFRM
4146 	SKB_EXT_SEC_PATH,
4147 #endif
4148 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4149 	TC_SKB_EXT,
4150 #endif
4151 #if IS_ENABLED(CONFIG_MPTCP)
4152 	SKB_EXT_MPTCP,
4153 #endif
4154 	SKB_EXT_NUM, /* must be last */
4155 };
4156 
4157 /**
4158  *	struct skb_ext - sk_buff extensions
4159  *	@refcnt: 1 on allocation, deallocated on 0
4160  *	@offset: offset to add to @data to obtain extension address
4161  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4162  *	@data: start of extension data, variable sized
4163  *
4164  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4165  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4166  */
4167 struct skb_ext {
4168 	refcount_t refcnt;
4169 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4170 	u8 chunks;		/* same */
4171 	char data[] __aligned(8);
4172 };
4173 
4174 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4175 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4176 		    struct skb_ext *ext);
4177 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4178 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4179 void __skb_ext_put(struct skb_ext *ext);
4180 
skb_ext_put(struct sk_buff * skb)4181 static inline void skb_ext_put(struct sk_buff *skb)
4182 {
4183 	if (skb->active_extensions)
4184 		__skb_ext_put(skb->extensions);
4185 }
4186 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4187 static inline void __skb_ext_copy(struct sk_buff *dst,
4188 				  const struct sk_buff *src)
4189 {
4190 	dst->active_extensions = src->active_extensions;
4191 
4192 	if (src->active_extensions) {
4193 		struct skb_ext *ext = src->extensions;
4194 
4195 		refcount_inc(&ext->refcnt);
4196 		dst->extensions = ext;
4197 	}
4198 }
4199 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4200 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4201 {
4202 	skb_ext_put(dst);
4203 	__skb_ext_copy(dst, src);
4204 }
4205 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4206 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4207 {
4208 	return !!ext->offset[i];
4209 }
4210 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4211 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4212 {
4213 	return skb->active_extensions & (1 << id);
4214 }
4215 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4216 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4217 {
4218 	if (skb_ext_exist(skb, id))
4219 		__skb_ext_del(skb, id);
4220 }
4221 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4222 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4223 {
4224 	if (skb_ext_exist(skb, id)) {
4225 		struct skb_ext *ext = skb->extensions;
4226 
4227 		return (void *)ext + (ext->offset[id] << 3);
4228 	}
4229 
4230 	return NULL;
4231 }
4232 
skb_ext_reset(struct sk_buff * skb)4233 static inline void skb_ext_reset(struct sk_buff *skb)
4234 {
4235 	if (unlikely(skb->active_extensions)) {
4236 		__skb_ext_put(skb->extensions);
4237 		skb->active_extensions = 0;
4238 	}
4239 }
4240 
skb_has_extensions(struct sk_buff * skb)4241 static inline bool skb_has_extensions(struct sk_buff *skb)
4242 {
4243 	return unlikely(skb->active_extensions);
4244 }
4245 #else
skb_ext_put(struct sk_buff * skb)4246 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4247 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4248 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4249 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4250 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4251 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4252 #endif /* CONFIG_SKB_EXTENSIONS */
4253 
nf_reset_ct(struct sk_buff * skb)4254 static inline void nf_reset_ct(struct sk_buff *skb)
4255 {
4256 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4257 	nf_conntrack_put(skb_nfct(skb));
4258 	skb->_nfct = 0;
4259 #endif
4260 }
4261 
nf_reset_trace(struct sk_buff * skb)4262 static inline void nf_reset_trace(struct sk_buff *skb)
4263 {
4264 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4265 	skb->nf_trace = 0;
4266 #endif
4267 }
4268 
ipvs_reset(struct sk_buff * skb)4269 static inline void ipvs_reset(struct sk_buff *skb)
4270 {
4271 #if IS_ENABLED(CONFIG_IP_VS)
4272 	skb->ipvs_property = 0;
4273 #endif
4274 }
4275 
4276 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4277 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4278 			     bool copy)
4279 {
4280 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4281 	dst->_nfct = src->_nfct;
4282 	nf_conntrack_get(skb_nfct(src));
4283 #endif
4284 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4285 	if (copy)
4286 		dst->nf_trace = src->nf_trace;
4287 #endif
4288 }
4289 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4290 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4291 {
4292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4293 	nf_conntrack_put(skb_nfct(dst));
4294 #endif
4295 	__nf_copy(dst, src, true);
4296 }
4297 
4298 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4299 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4300 {
4301 	to->secmark = from->secmark;
4302 }
4303 
skb_init_secmark(struct sk_buff * skb)4304 static inline void skb_init_secmark(struct sk_buff *skb)
4305 {
4306 	skb->secmark = 0;
4307 }
4308 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4309 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4310 { }
4311 
skb_init_secmark(struct sk_buff * skb)4312 static inline void skb_init_secmark(struct sk_buff *skb)
4313 { }
4314 #endif
4315 
secpath_exists(const struct sk_buff * skb)4316 static inline int secpath_exists(const struct sk_buff *skb)
4317 {
4318 #ifdef CONFIG_XFRM
4319 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4320 #else
4321 	return 0;
4322 #endif
4323 }
4324 
skb_irq_freeable(const struct sk_buff * skb)4325 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4326 {
4327 	return !skb->destructor &&
4328 		!secpath_exists(skb) &&
4329 		!skb_nfct(skb) &&
4330 		!skb->_skb_refdst &&
4331 		!skb_has_frag_list(skb);
4332 }
4333 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4334 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4335 {
4336 	skb->queue_mapping = queue_mapping;
4337 }
4338 
skb_get_queue_mapping(const struct sk_buff * skb)4339 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4340 {
4341 	return skb->queue_mapping;
4342 }
4343 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4344 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4345 {
4346 	to->queue_mapping = from->queue_mapping;
4347 }
4348 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4349 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4350 {
4351 	skb->queue_mapping = rx_queue + 1;
4352 }
4353 
skb_get_rx_queue(const struct sk_buff * skb)4354 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4355 {
4356 	return skb->queue_mapping - 1;
4357 }
4358 
skb_rx_queue_recorded(const struct sk_buff * skb)4359 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4360 {
4361 	return skb->queue_mapping != 0;
4362 }
4363 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4364 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4365 {
4366 	skb->dst_pending_confirm = val;
4367 }
4368 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4369 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4370 {
4371 	return skb->dst_pending_confirm != 0;
4372 }
4373 
skb_sec_path(const struct sk_buff * skb)4374 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4375 {
4376 #ifdef CONFIG_XFRM
4377 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4378 #else
4379 	return NULL;
4380 #endif
4381 }
4382 
4383 /* Keeps track of mac header offset relative to skb->head.
4384  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4385  * For non-tunnel skb it points to skb_mac_header() and for
4386  * tunnel skb it points to outer mac header.
4387  * Keeps track of level of encapsulation of network headers.
4388  */
4389 struct skb_gso_cb {
4390 	union {
4391 		int	mac_offset;
4392 		int	data_offset;
4393 	};
4394 	int	encap_level;
4395 	__wsum	csum;
4396 	__u16	csum_start;
4397 };
4398 #define SKB_GSO_CB_OFFSET	32
4399 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4400 
skb_tnl_header_len(const struct sk_buff * inner_skb)4401 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4402 {
4403 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4404 		SKB_GSO_CB(inner_skb)->mac_offset;
4405 }
4406 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4407 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4408 {
4409 	int new_headroom, headroom;
4410 	int ret;
4411 
4412 	headroom = skb_headroom(skb);
4413 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4414 	if (ret)
4415 		return ret;
4416 
4417 	new_headroom = skb_headroom(skb);
4418 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4419 	return 0;
4420 }
4421 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4422 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4423 {
4424 	/* Do not update partial checksums if remote checksum is enabled. */
4425 	if (skb->remcsum_offload)
4426 		return;
4427 
4428 	SKB_GSO_CB(skb)->csum = res;
4429 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4430 }
4431 
4432 /* Compute the checksum for a gso segment. First compute the checksum value
4433  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4434  * then add in skb->csum (checksum from csum_start to end of packet).
4435  * skb->csum and csum_start are then updated to reflect the checksum of the
4436  * resultant packet starting from the transport header-- the resultant checksum
4437  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4438  * header.
4439  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4440 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4441 {
4442 	unsigned char *csum_start = skb_transport_header(skb);
4443 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4444 	__wsum partial = SKB_GSO_CB(skb)->csum;
4445 
4446 	SKB_GSO_CB(skb)->csum = res;
4447 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4448 
4449 	return csum_fold(csum_partial(csum_start, plen, partial));
4450 }
4451 
skb_is_gso(const struct sk_buff * skb)4452 static inline bool skb_is_gso(const struct sk_buff *skb)
4453 {
4454 	return skb_shinfo(skb)->gso_size;
4455 }
4456 
4457 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4458 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4459 {
4460 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4461 }
4462 
4463 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4464 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4465 {
4466 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4467 }
4468 
4469 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4470 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4471 {
4472 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4473 }
4474 
skb_gso_reset(struct sk_buff * skb)4475 static inline void skb_gso_reset(struct sk_buff *skb)
4476 {
4477 	skb_shinfo(skb)->gso_size = 0;
4478 	skb_shinfo(skb)->gso_segs = 0;
4479 	skb_shinfo(skb)->gso_type = 0;
4480 }
4481 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4482 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4483 					 u16 increment)
4484 {
4485 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4486 		return;
4487 	shinfo->gso_size += increment;
4488 }
4489 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4490 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4491 					 u16 decrement)
4492 {
4493 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4494 		return;
4495 	shinfo->gso_size -= decrement;
4496 }
4497 
4498 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4499 
skb_warn_if_lro(const struct sk_buff * skb)4500 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4501 {
4502 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4503 	 * wanted then gso_type will be set. */
4504 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4505 
4506 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4507 	    unlikely(shinfo->gso_type == 0)) {
4508 		__skb_warn_lro_forwarding(skb);
4509 		return true;
4510 	}
4511 	return false;
4512 }
4513 
skb_forward_csum(struct sk_buff * skb)4514 static inline void skb_forward_csum(struct sk_buff *skb)
4515 {
4516 	/* Unfortunately we don't support this one.  Any brave souls? */
4517 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4518 		skb->ip_summed = CHECKSUM_NONE;
4519 }
4520 
4521 /**
4522  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4523  * @skb: skb to check
4524  *
4525  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4526  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4527  * use this helper, to document places where we make this assertion.
4528  */
skb_checksum_none_assert(const struct sk_buff * skb)4529 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4530 {
4531 #ifdef DEBUG
4532 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4533 #endif
4534 }
4535 
4536 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4537 
4538 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4539 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4540 				     unsigned int transport_len,
4541 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4542 
4543 /**
4544  * skb_head_is_locked - Determine if the skb->head is locked down
4545  * @skb: skb to check
4546  *
4547  * The head on skbs build around a head frag can be removed if they are
4548  * not cloned.  This function returns true if the skb head is locked down
4549  * due to either being allocated via kmalloc, or by being a clone with
4550  * multiple references to the head.
4551  */
skb_head_is_locked(const struct sk_buff * skb)4552 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4553 {
4554 	return !skb->head_frag || skb_cloned(skb);
4555 }
4556 
4557 /* Local Checksum Offload.
4558  * Compute outer checksum based on the assumption that the
4559  * inner checksum will be offloaded later.
4560  * See Documentation/networking/checksum-offloads.rst for
4561  * explanation of how this works.
4562  * Fill in outer checksum adjustment (e.g. with sum of outer
4563  * pseudo-header) before calling.
4564  * Also ensure that inner checksum is in linear data area.
4565  */
lco_csum(struct sk_buff * skb)4566 static inline __wsum lco_csum(struct sk_buff *skb)
4567 {
4568 	unsigned char *csum_start = skb_checksum_start(skb);
4569 	unsigned char *l4_hdr = skb_transport_header(skb);
4570 	__wsum partial;
4571 
4572 	/* Start with complement of inner checksum adjustment */
4573 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4574 						    skb->csum_offset));
4575 
4576 	/* Add in checksum of our headers (incl. outer checksum
4577 	 * adjustment filled in by caller) and return result.
4578 	 */
4579 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4580 }
4581 
skb_is_redirected(const struct sk_buff * skb)4582 static inline bool skb_is_redirected(const struct sk_buff *skb)
4583 {
4584 #ifdef CONFIG_NET_REDIRECT
4585 	return skb->redirected;
4586 #else
4587 	return false;
4588 #endif
4589 }
4590 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4591 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4592 {
4593 #ifdef CONFIG_NET_REDIRECT
4594 	skb->redirected = 1;
4595 	skb->from_ingress = from_ingress;
4596 	if (skb->from_ingress)
4597 		skb->tstamp = 0;
4598 #endif
4599 }
4600 
skb_reset_redirect(struct sk_buff * skb)4601 static inline void skb_reset_redirect(struct sk_buff *skb)
4602 {
4603 #ifdef CONFIG_NET_REDIRECT
4604 	skb->redirected = 0;
4605 #endif
4606 }
4607 
4608 #endif	/* __KERNEL__ */
4609 #endif	/* _LINUX_SKBUFF_H */
4610