1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
is_migrate_movable(int mt)80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
96 			PB_migrate_end, MIGRATETYPE_MASK)
97 
98 struct free_area {
99 	struct list_head	free_list[MIGRATE_TYPES];
100 	unsigned long		nr_free;
101 };
102 
103 /* Used for pages not on another list */
add_to_free_area(struct page * page,struct free_area * area,int migratetype)104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105 			     int migratetype)
106 {
107 	list_add(&page->lru, &area->free_list[migratetype]);
108 	area->nr_free++;
109 }
110 
111 /* Used for pages not on another list */
add_to_free_area_tail(struct page * page,struct free_area * area,int migratetype)112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 				  int migratetype)
114 {
115 	list_add_tail(&page->lru, &area->free_list[migratetype]);
116 	area->nr_free++;
117 }
118 
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122 		int migratetype);
123 #else
add_to_free_area_random(struct page * page,struct free_area * area,int migratetype)124 static inline void add_to_free_area_random(struct page *page,
125 		struct free_area *area, int migratetype)
126 {
127 	add_to_free_area(page, area, migratetype);
128 }
129 #endif
130 
131 /* Used for pages which are on another list */
move_to_free_area(struct page * page,struct free_area * area,int migratetype)132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133 			     int migratetype)
134 {
135 	list_move(&page->lru, &area->free_list[migratetype]);
136 }
137 
get_page_from_free_area(struct free_area * area,int migratetype)138 static inline struct page *get_page_from_free_area(struct free_area *area,
139 					    int migratetype)
140 {
141 	return list_first_entry_or_null(&area->free_list[migratetype],
142 					struct page, lru);
143 }
144 
del_page_from_free_area(struct page * page,struct free_area * area)145 static inline void del_page_from_free_area(struct page *page,
146 		struct free_area *area)
147 {
148 	list_del(&page->lru);
149 	__ClearPageBuddy(page);
150 	set_page_private(page, 0);
151 	area->nr_free--;
152 }
153 
free_area_empty(struct free_area * area,int migratetype)154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156 	return list_empty(&area->free_list[migratetype]);
157 }
158 
159 struct pglist_data;
160 
161 /*
162  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163  * So add a wild amount of padding here to ensure that they fall into separate
164  * cachelines.  There are very few zone structures in the machine, so space
165  * consumption is not a concern here.
166  */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169 	char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name)	struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175 
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178 	NUMA_HIT,		/* allocated in intended node */
179 	NUMA_MISS,		/* allocated in non intended node */
180 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
181 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
182 	NUMA_LOCAL,		/* allocation from local node */
183 	NUMA_OTHER,		/* allocation from other node */
184 	NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189 
190 enum zone_stat_item {
191 	/* First 128 byte cacheline (assuming 64 bit words) */
192 	NR_FREE_PAGES,
193 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 	NR_ZONE_ACTIVE_ANON,
196 	NR_ZONE_INACTIVE_FILE,
197 	NR_ZONE_ACTIVE_FILE,
198 	NR_ZONE_UNEVICTABLE,
199 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
200 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
201 	NR_PAGETABLE,		/* used for pagetables */
202 	NR_KERNEL_STACK_KB,	/* measured in KiB */
203 	/* Second 128 byte cacheline */
204 	NR_BOUNCE,
205 #if IS_ENABLED(CONFIG_ZSMALLOC)
206 	NR_ZSPAGES,		/* allocated in zsmalloc */
207 #endif
208 	NR_FREE_CMA_PAGES,
209 	NR_VM_ZONE_STAT_ITEMS };
210 
211 enum node_stat_item {
212 	NR_LRU_BASE,
213 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
215 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
216 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
217 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
218 	NR_SLAB_RECLAIMABLE,	/* Please do not reorder this item */
219 	NR_SLAB_UNRECLAIMABLE,	/* and this one without looking at
220 				 * memcg_flush_percpu_vmstats() first. */
221 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
222 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
223 	WORKINGSET_NODES,
224 	WORKINGSET_REFAULT,
225 	WORKINGSET_ACTIVATE,
226 	WORKINGSET_RESTORE,
227 	WORKINGSET_NODERECLAIM,
228 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
229 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
230 			   only modified from process context */
231 	NR_FILE_PAGES,
232 	NR_FILE_DIRTY,
233 	NR_WRITEBACK,
234 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
235 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
236 	NR_SHMEM_THPS,
237 	NR_SHMEM_PMDMAPPED,
238 	NR_FILE_THPS,
239 	NR_FILE_PMDMAPPED,
240 	NR_ANON_THPS,
241 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
242 	NR_VMSCAN_WRITE,
243 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
244 	NR_DIRTIED,		/* page dirtyings since bootup */
245 	NR_WRITTEN,		/* page writings since bootup */
246 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
247 	NR_VM_NODE_STAT_ITEMS
248 };
249 
250 /*
251  * We do arithmetic on the LRU lists in various places in the code,
252  * so it is important to keep the active lists LRU_ACTIVE higher in
253  * the array than the corresponding inactive lists, and to keep
254  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255  *
256  * This has to be kept in sync with the statistics in zone_stat_item
257  * above and the descriptions in vmstat_text in mm/vmstat.c
258  */
259 #define LRU_BASE 0
260 #define LRU_ACTIVE 1
261 #define LRU_FILE 2
262 
263 enum lru_list {
264 	LRU_INACTIVE_ANON = LRU_BASE,
265 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
268 	LRU_UNEVICTABLE,
269 	NR_LRU_LISTS
270 };
271 
272 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
273 
274 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
275 
is_file_lru(enum lru_list lru)276 static inline int is_file_lru(enum lru_list lru)
277 {
278 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
279 }
280 
is_active_lru(enum lru_list lru)281 static inline int is_active_lru(enum lru_list lru)
282 {
283 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
284 }
285 
286 struct zone_reclaim_stat {
287 	/*
288 	 * The pageout code in vmscan.c keeps track of how many of the
289 	 * mem/swap backed and file backed pages are referenced.
290 	 * The higher the rotated/scanned ratio, the more valuable
291 	 * that cache is.
292 	 *
293 	 * The anon LRU stats live in [0], file LRU stats in [1]
294 	 */
295 	unsigned long		recent_rotated[2];
296 	unsigned long		recent_scanned[2];
297 };
298 
299 struct lruvec {
300 	struct list_head		lists[NR_LRU_LISTS];
301 	struct zone_reclaim_stat	reclaim_stat;
302 	/* Evictions & activations on the inactive file list */
303 	atomic_long_t			inactive_age;
304 	/* Refaults at the time of last reclaim cycle */
305 	unsigned long			refaults;
306 #ifdef CONFIG_MEMCG
307 	struct pglist_data *pgdat;
308 #endif
309 };
310 
311 /* Isolate unmapped file */
312 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
313 /* Isolate for asynchronous migration */
314 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
315 /* Isolate unevictable pages */
316 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
317 
318 /* LRU Isolation modes. */
319 typedef unsigned __bitwise isolate_mode_t;
320 
321 enum zone_watermarks {
322 	WMARK_MIN,
323 	WMARK_LOW,
324 	WMARK_HIGH,
325 	NR_WMARK
326 };
327 
328 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
329 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
330 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
331 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
332 
333 struct per_cpu_pages {
334 	int count;		/* number of pages in the list */
335 	int high;		/* high watermark, emptying needed */
336 	int batch;		/* chunk size for buddy add/remove */
337 
338 	/* Lists of pages, one per migrate type stored on the pcp-lists */
339 	struct list_head lists[MIGRATE_PCPTYPES];
340 };
341 
342 struct per_cpu_pageset {
343 	struct per_cpu_pages pcp;
344 #ifdef CONFIG_NUMA
345 	s8 expire;
346 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
347 #endif
348 #ifdef CONFIG_SMP
349 	s8 stat_threshold;
350 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
351 #endif
352 };
353 
354 struct per_cpu_nodestat {
355 	s8 stat_threshold;
356 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
357 };
358 
359 #endif /* !__GENERATING_BOUNDS.H */
360 
361 enum zone_type {
362 #ifdef CONFIG_ZONE_DMA
363 	/*
364 	 * ZONE_DMA is used when there are devices that are not able
365 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
366 	 * carve out the portion of memory that is needed for these devices.
367 	 * The range is arch specific.
368 	 *
369 	 * Some examples
370 	 *
371 	 * Architecture		Limit
372 	 * ---------------------------
373 	 * parisc, ia64, sparc	<4G
374 	 * s390, powerpc	<2G
375 	 * arm			Various
376 	 * alpha		Unlimited or 0-16MB.
377 	 *
378 	 * i386, x86_64 and multiple other arches
379 	 * 			<16M.
380 	 */
381 	ZONE_DMA,
382 #endif
383 #ifdef CONFIG_ZONE_DMA32
384 	/*
385 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
386 	 * only able to do DMA to the lower 16M but also 32 bit devices that
387 	 * can only do DMA areas below 4G.
388 	 */
389 	ZONE_DMA32,
390 #endif
391 	/*
392 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
393 	 * performed on pages in ZONE_NORMAL if the DMA devices support
394 	 * transfers to all addressable memory.
395 	 */
396 	ZONE_NORMAL,
397 #ifdef CONFIG_HIGHMEM
398 	/*
399 	 * A memory area that is only addressable by the kernel through
400 	 * mapping portions into its own address space. This is for example
401 	 * used by i386 to allow the kernel to address the memory beyond
402 	 * 900MB. The kernel will set up special mappings (page
403 	 * table entries on i386) for each page that the kernel needs to
404 	 * access.
405 	 */
406 	ZONE_HIGHMEM,
407 #endif
408 	ZONE_MOVABLE,
409 #ifdef CONFIG_ZONE_DEVICE
410 	ZONE_DEVICE,
411 #endif
412 	__MAX_NR_ZONES
413 
414 };
415 
416 #ifndef __GENERATING_BOUNDS_H
417 
418 struct zone {
419 	/* Read-mostly fields */
420 
421 	/* zone watermarks, access with *_wmark_pages(zone) macros */
422 	unsigned long _watermark[NR_WMARK];
423 	unsigned long watermark_boost;
424 
425 	unsigned long nr_reserved_highatomic;
426 
427 	/*
428 	 * We don't know if the memory that we're going to allocate will be
429 	 * freeable or/and it will be released eventually, so to avoid totally
430 	 * wasting several GB of ram we must reserve some of the lower zone
431 	 * memory (otherwise we risk to run OOM on the lower zones despite
432 	 * there being tons of freeable ram on the higher zones).  This array is
433 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
434 	 * changes.
435 	 */
436 	long lowmem_reserve[MAX_NR_ZONES];
437 
438 #ifdef CONFIG_NUMA
439 	int node;
440 #endif
441 	struct pglist_data	*zone_pgdat;
442 	struct per_cpu_pageset __percpu *pageset;
443 
444 #ifndef CONFIG_SPARSEMEM
445 	/*
446 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
447 	 * In SPARSEMEM, this map is stored in struct mem_section
448 	 */
449 	unsigned long		*pageblock_flags;
450 #endif /* CONFIG_SPARSEMEM */
451 
452 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
453 	unsigned long		zone_start_pfn;
454 
455 	/*
456 	 * spanned_pages is the total pages spanned by the zone, including
457 	 * holes, which is calculated as:
458 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
459 	 *
460 	 * present_pages is physical pages existing within the zone, which
461 	 * is calculated as:
462 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
463 	 *
464 	 * managed_pages is present pages managed by the buddy system, which
465 	 * is calculated as (reserved_pages includes pages allocated by the
466 	 * bootmem allocator):
467 	 *	managed_pages = present_pages - reserved_pages;
468 	 *
469 	 * So present_pages may be used by memory hotplug or memory power
470 	 * management logic to figure out unmanaged pages by checking
471 	 * (present_pages - managed_pages). And managed_pages should be used
472 	 * by page allocator and vm scanner to calculate all kinds of watermarks
473 	 * and thresholds.
474 	 *
475 	 * Locking rules:
476 	 *
477 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
478 	 * It is a seqlock because it has to be read outside of zone->lock,
479 	 * and it is done in the main allocator path.  But, it is written
480 	 * quite infrequently.
481 	 *
482 	 * The span_seq lock is declared along with zone->lock because it is
483 	 * frequently read in proximity to zone->lock.  It's good to
484 	 * give them a chance of being in the same cacheline.
485 	 *
486 	 * Write access to present_pages at runtime should be protected by
487 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
488 	 * present_pages should get_online_mems() to get a stable value.
489 	 */
490 	atomic_long_t		managed_pages;
491 	unsigned long		spanned_pages;
492 	unsigned long		present_pages;
493 
494 	const char		*name;
495 
496 #ifdef CONFIG_MEMORY_ISOLATION
497 	/*
498 	 * Number of isolated pageblock. It is used to solve incorrect
499 	 * freepage counting problem due to racy retrieving migratetype
500 	 * of pageblock. Protected by zone->lock.
501 	 */
502 	unsigned long		nr_isolate_pageblock;
503 #endif
504 
505 #ifdef CONFIG_MEMORY_HOTPLUG
506 	/* see spanned/present_pages for more description */
507 	seqlock_t		span_seqlock;
508 #endif
509 
510 	int initialized;
511 
512 	/* Write-intensive fields used from the page allocator */
513 	ZONE_PADDING(_pad1_)
514 
515 	/* free areas of different sizes */
516 	struct free_area	free_area[MAX_ORDER];
517 
518 	/* zone flags, see below */
519 	unsigned long		flags;
520 
521 	/* Primarily protects free_area */
522 	spinlock_t		lock;
523 
524 	/* Write-intensive fields used by compaction and vmstats. */
525 	ZONE_PADDING(_pad2_)
526 
527 	/*
528 	 * When free pages are below this point, additional steps are taken
529 	 * when reading the number of free pages to avoid per-cpu counter
530 	 * drift allowing watermarks to be breached
531 	 */
532 	unsigned long percpu_drift_mark;
533 
534 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
535 	/* pfn where compaction free scanner should start */
536 	unsigned long		compact_cached_free_pfn;
537 	/* pfn where async and sync compaction migration scanner should start */
538 	unsigned long		compact_cached_migrate_pfn[2];
539 	unsigned long		compact_init_migrate_pfn;
540 	unsigned long		compact_init_free_pfn;
541 #endif
542 
543 #ifdef CONFIG_COMPACTION
544 	/*
545 	 * On compaction failure, 1<<compact_defer_shift compactions
546 	 * are skipped before trying again. The number attempted since
547 	 * last failure is tracked with compact_considered.
548 	 */
549 	unsigned int		compact_considered;
550 	unsigned int		compact_defer_shift;
551 	int			compact_order_failed;
552 #endif
553 
554 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
555 	/* Set to true when the PG_migrate_skip bits should be cleared */
556 	bool			compact_blockskip_flush;
557 #endif
558 
559 	bool			contiguous;
560 
561 	ZONE_PADDING(_pad3_)
562 	/* Zone statistics */
563 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
564 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
565 } ____cacheline_internodealigned_in_smp;
566 
567 enum pgdat_flags {
568 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
569 					 * a congested BDI
570 					 */
571 	PGDAT_DIRTY,			/* reclaim scanning has recently found
572 					 * many dirty file pages at the tail
573 					 * of the LRU.
574 					 */
575 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
576 					 * many pages under writeback
577 					 */
578 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
579 };
580 
581 enum zone_flags {
582 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
583 					 * Cleared when kswapd is woken.
584 					 */
585 };
586 
zone_managed_pages(struct zone * zone)587 static inline unsigned long zone_managed_pages(struct zone *zone)
588 {
589 	return (unsigned long)atomic_long_read(&zone->managed_pages);
590 }
591 
zone_end_pfn(const struct zone * zone)592 static inline unsigned long zone_end_pfn(const struct zone *zone)
593 {
594 	return zone->zone_start_pfn + zone->spanned_pages;
595 }
596 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)597 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
598 {
599 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
600 }
601 
zone_is_initialized(struct zone * zone)602 static inline bool zone_is_initialized(struct zone *zone)
603 {
604 	return zone->initialized;
605 }
606 
zone_is_empty(struct zone * zone)607 static inline bool zone_is_empty(struct zone *zone)
608 {
609 	return zone->spanned_pages == 0;
610 }
611 
612 /*
613  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
614  * intersection with the given zone
615  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)616 static inline bool zone_intersects(struct zone *zone,
617 		unsigned long start_pfn, unsigned long nr_pages)
618 {
619 	if (zone_is_empty(zone))
620 		return false;
621 	if (start_pfn >= zone_end_pfn(zone) ||
622 	    start_pfn + nr_pages <= zone->zone_start_pfn)
623 		return false;
624 
625 	return true;
626 }
627 
628 /*
629  * The "priority" of VM scanning is how much of the queues we will scan in one
630  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
631  * queues ("queue_length >> 12") during an aging round.
632  */
633 #define DEF_PRIORITY 12
634 
635 /* Maximum number of zones on a zonelist */
636 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
637 
638 enum {
639 	ZONELIST_FALLBACK,	/* zonelist with fallback */
640 #ifdef CONFIG_NUMA
641 	/*
642 	 * The NUMA zonelists are doubled because we need zonelists that
643 	 * restrict the allocations to a single node for __GFP_THISNODE.
644 	 */
645 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
646 #endif
647 	MAX_ZONELISTS
648 };
649 
650 /*
651  * This struct contains information about a zone in a zonelist. It is stored
652  * here to avoid dereferences into large structures and lookups of tables
653  */
654 struct zoneref {
655 	struct zone *zone;	/* Pointer to actual zone */
656 	int zone_idx;		/* zone_idx(zoneref->zone) */
657 };
658 
659 /*
660  * One allocation request operates on a zonelist. A zonelist
661  * is a list of zones, the first one is the 'goal' of the
662  * allocation, the other zones are fallback zones, in decreasing
663  * priority.
664  *
665  * To speed the reading of the zonelist, the zonerefs contain the zone index
666  * of the entry being read. Helper functions to access information given
667  * a struct zoneref are
668  *
669  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
670  * zonelist_zone_idx()	- Return the index of the zone for an entry
671  * zonelist_node_idx()	- Return the index of the node for an entry
672  */
673 struct zonelist {
674 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
675 };
676 
677 #ifndef CONFIG_DISCONTIGMEM
678 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
679 extern struct page *mem_map;
680 #endif
681 
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
683 struct deferred_split {
684 	spinlock_t split_queue_lock;
685 	struct list_head split_queue;
686 	unsigned long split_queue_len;
687 };
688 #endif
689 
690 /*
691  * On NUMA machines, each NUMA node would have a pg_data_t to describe
692  * it's memory layout. On UMA machines there is a single pglist_data which
693  * describes the whole memory.
694  *
695  * Memory statistics and page replacement data structures are maintained on a
696  * per-zone basis.
697  */
698 struct bootmem_data;
699 typedef struct pglist_data {
700 	struct zone node_zones[MAX_NR_ZONES];
701 	struct zonelist node_zonelists[MAX_ZONELISTS];
702 	int nr_zones;
703 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
704 	struct page *node_mem_map;
705 #ifdef CONFIG_PAGE_EXTENSION
706 	struct page_ext *node_page_ext;
707 #endif
708 #endif
709 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
710 	/*
711 	 * Must be held any time you expect node_start_pfn,
712 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
713 	 *
714 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
715 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
716 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
717 	 *
718 	 * Nests above zone->lock and zone->span_seqlock
719 	 */
720 	spinlock_t node_size_lock;
721 #endif
722 	unsigned long node_start_pfn;
723 	unsigned long node_present_pages; /* total number of physical pages */
724 	unsigned long node_spanned_pages; /* total size of physical page
725 					     range, including holes */
726 	int node_id;
727 	wait_queue_head_t kswapd_wait;
728 	wait_queue_head_t pfmemalloc_wait;
729 	struct task_struct *kswapd;	/* Protected by
730 					   mem_hotplug_begin/end() */
731 	int kswapd_order;
732 	enum zone_type kswapd_classzone_idx;
733 
734 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
735 
736 #ifdef CONFIG_COMPACTION
737 	int kcompactd_max_order;
738 	enum zone_type kcompactd_classzone_idx;
739 	wait_queue_head_t kcompactd_wait;
740 	struct task_struct *kcompactd;
741 #endif
742 	/*
743 	 * This is a per-node reserve of pages that are not available
744 	 * to userspace allocations.
745 	 */
746 	unsigned long		totalreserve_pages;
747 
748 #ifdef CONFIG_NUMA
749 	/*
750 	 * zone reclaim becomes active if more unmapped pages exist.
751 	 */
752 	unsigned long		min_unmapped_pages;
753 	unsigned long		min_slab_pages;
754 #endif /* CONFIG_NUMA */
755 
756 	/* Write-intensive fields used by page reclaim */
757 	ZONE_PADDING(_pad1_)
758 	spinlock_t		lru_lock;
759 
760 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
761 	/*
762 	 * If memory initialisation on large machines is deferred then this
763 	 * is the first PFN that needs to be initialised.
764 	 */
765 	unsigned long first_deferred_pfn;
766 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
767 
768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
769 	struct deferred_split deferred_split_queue;
770 #endif
771 
772 	/* Fields commonly accessed by the page reclaim scanner */
773 	struct lruvec		lruvec;
774 
775 	unsigned long		flags;
776 
777 	ZONE_PADDING(_pad2_)
778 
779 	/* Per-node vmstats */
780 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
781 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
782 } pg_data_t;
783 
784 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
785 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
786 #ifdef CONFIG_FLAT_NODE_MEM_MAP
787 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
788 #else
789 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
790 #endif
791 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
792 
793 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
794 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
795 
node_lruvec(struct pglist_data * pgdat)796 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
797 {
798 	return &pgdat->lruvec;
799 }
800 
pgdat_end_pfn(pg_data_t * pgdat)801 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
802 {
803 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
804 }
805 
pgdat_is_empty(pg_data_t * pgdat)806 static inline bool pgdat_is_empty(pg_data_t *pgdat)
807 {
808 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
809 }
810 
811 #include <linux/memory_hotplug.h>
812 
813 void build_all_zonelists(pg_data_t *pgdat);
814 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
815 		   enum zone_type classzone_idx);
816 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
817 			 int classzone_idx, unsigned int alloc_flags,
818 			 long free_pages);
819 bool zone_watermark_ok(struct zone *z, unsigned int order,
820 		unsigned long mark, int classzone_idx,
821 		unsigned int alloc_flags);
822 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
823 		unsigned long mark, int classzone_idx);
824 enum memmap_context {
825 	MEMMAP_EARLY,
826 	MEMMAP_HOTPLUG,
827 };
828 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
829 				     unsigned long size);
830 
831 extern void lruvec_init(struct lruvec *lruvec);
832 
lruvec_pgdat(struct lruvec * lruvec)833 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
834 {
835 #ifdef CONFIG_MEMCG
836 	return lruvec->pgdat;
837 #else
838 	return container_of(lruvec, struct pglist_data, lruvec);
839 #endif
840 }
841 
842 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
843 
844 #ifdef CONFIG_HAVE_MEMORY_PRESENT
845 void memory_present(int nid, unsigned long start, unsigned long end);
846 #else
memory_present(int nid,unsigned long start,unsigned long end)847 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
848 #endif
849 
850 #if defined(CONFIG_SPARSEMEM)
851 void memblocks_present(void);
852 #else
memblocks_present(void)853 static inline void memblocks_present(void) {}
854 #endif
855 
856 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
857 int local_memory_node(int node_id);
858 #else
local_memory_node(int node_id)859 static inline int local_memory_node(int node_id) { return node_id; };
860 #endif
861 
862 /*
863  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
864  */
865 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
866 
867 /*
868  * Returns true if a zone has pages managed by the buddy allocator.
869  * All the reclaim decisions have to use this function rather than
870  * populated_zone(). If the whole zone is reserved then we can easily
871  * end up with populated_zone() && !managed_zone().
872  */
managed_zone(struct zone * zone)873 static inline bool managed_zone(struct zone *zone)
874 {
875 	return zone_managed_pages(zone);
876 }
877 
878 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)879 static inline bool populated_zone(struct zone *zone)
880 {
881 	return zone->present_pages;
882 }
883 
884 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)885 static inline int zone_to_nid(struct zone *zone)
886 {
887 	return zone->node;
888 }
889 
zone_set_nid(struct zone * zone,int nid)890 static inline void zone_set_nid(struct zone *zone, int nid)
891 {
892 	zone->node = nid;
893 }
894 #else
zone_to_nid(struct zone * zone)895 static inline int zone_to_nid(struct zone *zone)
896 {
897 	return 0;
898 }
899 
zone_set_nid(struct zone * zone,int nid)900 static inline void zone_set_nid(struct zone *zone, int nid) {}
901 #endif
902 
903 extern int movable_zone;
904 
905 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)906 static inline int zone_movable_is_highmem(void)
907 {
908 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
909 	return movable_zone == ZONE_HIGHMEM;
910 #else
911 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
912 #endif
913 }
914 #endif
915 
is_highmem_idx(enum zone_type idx)916 static inline int is_highmem_idx(enum zone_type idx)
917 {
918 #ifdef CONFIG_HIGHMEM
919 	return (idx == ZONE_HIGHMEM ||
920 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
921 #else
922 	return 0;
923 #endif
924 }
925 
926 /**
927  * is_highmem - helper function to quickly check if a struct zone is a
928  *              highmem zone or not.  This is an attempt to keep references
929  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
930  * @zone - pointer to struct zone variable
931  */
is_highmem(struct zone * zone)932 static inline int is_highmem(struct zone *zone)
933 {
934 #ifdef CONFIG_HIGHMEM
935 	return is_highmem_idx(zone_idx(zone));
936 #else
937 	return 0;
938 #endif
939 }
940 
941 /* These two functions are used to setup the per zone pages min values */
942 struct ctl_table;
943 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
944 					void __user *, size_t *, loff_t *);
945 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
946 					void __user *, size_t *, loff_t *);
947 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
948 					void __user *, size_t *, loff_t *);
949 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
950 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
951 					void __user *, size_t *, loff_t *);
952 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
953 					void __user *, size_t *, loff_t *);
954 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
955 			void __user *, size_t *, loff_t *);
956 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
957 			void __user *, size_t *, loff_t *);
958 
959 extern int numa_zonelist_order_handler(struct ctl_table *, int,
960 			void __user *, size_t *, loff_t *);
961 extern char numa_zonelist_order[];
962 #define NUMA_ZONELIST_ORDER_LEN	16
963 
964 #ifndef CONFIG_NEED_MULTIPLE_NODES
965 
966 extern struct pglist_data contig_page_data;
967 #define NODE_DATA(nid)		(&contig_page_data)
968 #define NODE_MEM_MAP(nid)	mem_map
969 
970 #else /* CONFIG_NEED_MULTIPLE_NODES */
971 
972 #include <asm/mmzone.h>
973 
974 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
975 
976 extern struct pglist_data *first_online_pgdat(void);
977 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
978 extern struct zone *next_zone(struct zone *zone);
979 
980 /**
981  * for_each_online_pgdat - helper macro to iterate over all online nodes
982  * @pgdat - pointer to a pg_data_t variable
983  */
984 #define for_each_online_pgdat(pgdat)			\
985 	for (pgdat = first_online_pgdat();		\
986 	     pgdat;					\
987 	     pgdat = next_online_pgdat(pgdat))
988 /**
989  * for_each_zone - helper macro to iterate over all memory zones
990  * @zone - pointer to struct zone variable
991  *
992  * The user only needs to declare the zone variable, for_each_zone
993  * fills it in.
994  */
995 #define for_each_zone(zone)			        \
996 	for (zone = (first_online_pgdat())->node_zones; \
997 	     zone;					\
998 	     zone = next_zone(zone))
999 
1000 #define for_each_populated_zone(zone)		        \
1001 	for (zone = (first_online_pgdat())->node_zones; \
1002 	     zone;					\
1003 	     zone = next_zone(zone))			\
1004 		if (!populated_zone(zone))		\
1005 			; /* do nothing */		\
1006 		else
1007 
zonelist_zone(struct zoneref * zoneref)1008 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1009 {
1010 	return zoneref->zone;
1011 }
1012 
zonelist_zone_idx(struct zoneref * zoneref)1013 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1014 {
1015 	return zoneref->zone_idx;
1016 }
1017 
zonelist_node_idx(struct zoneref * zoneref)1018 static inline int zonelist_node_idx(struct zoneref *zoneref)
1019 {
1020 	return zone_to_nid(zoneref->zone);
1021 }
1022 
1023 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1024 					enum zone_type highest_zoneidx,
1025 					nodemask_t *nodes);
1026 
1027 /**
1028  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1029  * @z - The cursor used as a starting point for the search
1030  * @highest_zoneidx - The zone index of the highest zone to return
1031  * @nodes - An optional nodemask to filter the zonelist with
1032  *
1033  * This function returns the next zone at or below a given zone index that is
1034  * within the allowed nodemask using a cursor as the starting point for the
1035  * search. The zoneref returned is a cursor that represents the current zone
1036  * being examined. It should be advanced by one before calling
1037  * next_zones_zonelist again.
1038  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1039 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1040 					enum zone_type highest_zoneidx,
1041 					nodemask_t *nodes)
1042 {
1043 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1044 		return z;
1045 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1046 }
1047 
1048 /**
1049  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1050  * @zonelist - The zonelist to search for a suitable zone
1051  * @highest_zoneidx - The zone index of the highest zone to return
1052  * @nodes - An optional nodemask to filter the zonelist with
1053  * @return - Zoneref pointer for the first suitable zone found (see below)
1054  *
1055  * This function returns the first zone at or below a given zone index that is
1056  * within the allowed nodemask. The zoneref returned is a cursor that can be
1057  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1058  * one before calling.
1059  *
1060  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1061  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1062  * update due to cpuset modification.
1063  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1064 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1065 					enum zone_type highest_zoneidx,
1066 					nodemask_t *nodes)
1067 {
1068 	return next_zones_zonelist(zonelist->_zonerefs,
1069 							highest_zoneidx, nodes);
1070 }
1071 
1072 /**
1073  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1074  * @zone - The current zone in the iterator
1075  * @z - The current pointer within zonelist->zones being iterated
1076  * @zlist - The zonelist being iterated
1077  * @highidx - The zone index of the highest zone to return
1078  * @nodemask - Nodemask allowed by the allocator
1079  *
1080  * This iterator iterates though all zones at or below a given zone index and
1081  * within a given nodemask
1082  */
1083 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1084 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1085 		zone;							\
1086 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1087 			zone = zonelist_zone(z))
1088 
1089 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1090 	for (zone = z->zone;	\
1091 		zone;							\
1092 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1093 			zone = zonelist_zone(z))
1094 
1095 
1096 /**
1097  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1098  * @zone - The current zone in the iterator
1099  * @z - The current pointer within zonelist->zones being iterated
1100  * @zlist - The zonelist being iterated
1101  * @highidx - The zone index of the highest zone to return
1102  *
1103  * This iterator iterates though all zones at or below a given zone index.
1104  */
1105 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1106 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1107 
1108 #ifdef CONFIG_SPARSEMEM
1109 #include <asm/sparsemem.h>
1110 #endif
1111 
1112 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1113 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)1114 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1115 {
1116 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1117 	return 0;
1118 }
1119 #endif
1120 
1121 #ifdef CONFIG_FLATMEM
1122 #define pfn_to_nid(pfn)		(0)
1123 #endif
1124 
1125 #ifdef CONFIG_SPARSEMEM
1126 
1127 /*
1128  * SECTION_SHIFT    		#bits space required to store a section #
1129  *
1130  * PA_SECTION_SHIFT		physical address to/from section number
1131  * PFN_SECTION_SHIFT		pfn to/from section number
1132  */
1133 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1134 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1135 
1136 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1137 
1138 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1139 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1140 
1141 #define SECTION_BLOCKFLAGS_BITS \
1142 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1143 
1144 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1145 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1146 #endif
1147 
pfn_to_section_nr(unsigned long pfn)1148 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1149 {
1150 	return pfn >> PFN_SECTION_SHIFT;
1151 }
section_nr_to_pfn(unsigned long sec)1152 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1153 {
1154 	return sec << PFN_SECTION_SHIFT;
1155 }
1156 
1157 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1158 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1159 
1160 #define SUBSECTION_SHIFT 21
1161 
1162 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1163 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1164 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1165 
1166 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1167 #error Subsection size exceeds section size
1168 #else
1169 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1170 #endif
1171 
1172 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1173 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1174 
1175 struct mem_section_usage {
1176 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1177 	/* See declaration of similar field in struct zone */
1178 	unsigned long pageblock_flags[0];
1179 };
1180 
1181 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1182 
1183 struct page;
1184 struct page_ext;
1185 struct mem_section {
1186 	/*
1187 	 * This is, logically, a pointer to an array of struct
1188 	 * pages.  However, it is stored with some other magic.
1189 	 * (see sparse.c::sparse_init_one_section())
1190 	 *
1191 	 * Additionally during early boot we encode node id of
1192 	 * the location of the section here to guide allocation.
1193 	 * (see sparse.c::memory_present())
1194 	 *
1195 	 * Making it a UL at least makes someone do a cast
1196 	 * before using it wrong.
1197 	 */
1198 	unsigned long section_mem_map;
1199 
1200 	struct mem_section_usage *usage;
1201 #ifdef CONFIG_PAGE_EXTENSION
1202 	/*
1203 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1204 	 * section. (see page_ext.h about this.)
1205 	 */
1206 	struct page_ext *page_ext;
1207 	unsigned long pad;
1208 #endif
1209 	/*
1210 	 * WARNING: mem_section must be a power-of-2 in size for the
1211 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1212 	 */
1213 };
1214 
1215 #ifdef CONFIG_SPARSEMEM_EXTREME
1216 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1217 #else
1218 #define SECTIONS_PER_ROOT	1
1219 #endif
1220 
1221 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1222 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1223 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1224 
1225 #ifdef CONFIG_SPARSEMEM_EXTREME
1226 extern struct mem_section **mem_section;
1227 #else
1228 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1229 #endif
1230 
section_to_usemap(struct mem_section * ms)1231 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1232 {
1233 	return ms->usage->pageblock_flags;
1234 }
1235 
__nr_to_section(unsigned long nr)1236 static inline struct mem_section *__nr_to_section(unsigned long nr)
1237 {
1238 #ifdef CONFIG_SPARSEMEM_EXTREME
1239 	if (!mem_section)
1240 		return NULL;
1241 #endif
1242 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1243 		return NULL;
1244 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1245 }
1246 extern unsigned long __section_nr(struct mem_section *ms);
1247 extern size_t mem_section_usage_size(void);
1248 
1249 /*
1250  * We use the lower bits of the mem_map pointer to store
1251  * a little bit of information.  The pointer is calculated
1252  * as mem_map - section_nr_to_pfn(pnum).  The result is
1253  * aligned to the minimum alignment of the two values:
1254  *   1. All mem_map arrays are page-aligned.
1255  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1256  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1257  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1258  *      worst combination is powerpc with 256k pages,
1259  *      which results in PFN_SECTION_SHIFT equal 6.
1260  * To sum it up, at least 6 bits are available.
1261  */
1262 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1263 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1264 #define SECTION_IS_ONLINE	(1UL<<2)
1265 #define SECTION_IS_EARLY	(1UL<<3)
1266 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1267 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1268 #define SECTION_NID_SHIFT	3
1269 
__section_mem_map_addr(struct mem_section * section)1270 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1271 {
1272 	unsigned long map = section->section_mem_map;
1273 	map &= SECTION_MAP_MASK;
1274 	return (struct page *)map;
1275 }
1276 
present_section(struct mem_section * section)1277 static inline int present_section(struct mem_section *section)
1278 {
1279 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1280 }
1281 
present_section_nr(unsigned long nr)1282 static inline int present_section_nr(unsigned long nr)
1283 {
1284 	return present_section(__nr_to_section(nr));
1285 }
1286 
valid_section(struct mem_section * section)1287 static inline int valid_section(struct mem_section *section)
1288 {
1289 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1290 }
1291 
early_section(struct mem_section * section)1292 static inline int early_section(struct mem_section *section)
1293 {
1294 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1295 }
1296 
valid_section_nr(unsigned long nr)1297 static inline int valid_section_nr(unsigned long nr)
1298 {
1299 	return valid_section(__nr_to_section(nr));
1300 }
1301 
online_section(struct mem_section * section)1302 static inline int online_section(struct mem_section *section)
1303 {
1304 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1305 }
1306 
online_section_nr(unsigned long nr)1307 static inline int online_section_nr(unsigned long nr)
1308 {
1309 	return online_section(__nr_to_section(nr));
1310 }
1311 
1312 #ifdef CONFIG_MEMORY_HOTPLUG
1313 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1314 #ifdef CONFIG_MEMORY_HOTREMOVE
1315 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1316 #endif
1317 #endif
1318 
__pfn_to_section(unsigned long pfn)1319 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1320 {
1321 	return __nr_to_section(pfn_to_section_nr(pfn));
1322 }
1323 
1324 extern unsigned long __highest_present_section_nr;
1325 
subsection_map_index(unsigned long pfn)1326 static inline int subsection_map_index(unsigned long pfn)
1327 {
1328 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1329 }
1330 
1331 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1332 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1333 {
1334 	int idx = subsection_map_index(pfn);
1335 
1336 	return test_bit(idx, ms->usage->subsection_map);
1337 }
1338 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1339 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1340 {
1341 	return 1;
1342 }
1343 #endif
1344 
1345 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1346 static inline int pfn_valid(unsigned long pfn)
1347 {
1348 	struct mem_section *ms;
1349 
1350 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1351 		return 0;
1352 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1353 	if (!valid_section(ms))
1354 		return 0;
1355 	/*
1356 	 * Traditionally early sections always returned pfn_valid() for
1357 	 * the entire section-sized span.
1358 	 */
1359 	return early_section(ms) || pfn_section_valid(ms, pfn);
1360 }
1361 #endif
1362 
pfn_present(unsigned long pfn)1363 static inline int pfn_present(unsigned long pfn)
1364 {
1365 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1366 		return 0;
1367 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1368 }
1369 
1370 /*
1371  * These are _only_ used during initialisation, therefore they
1372  * can use __initdata ...  They could have names to indicate
1373  * this restriction.
1374  */
1375 #ifdef CONFIG_NUMA
1376 #define pfn_to_nid(pfn)							\
1377 ({									\
1378 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1379 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1380 })
1381 #else
1382 #define pfn_to_nid(pfn)		(0)
1383 #endif
1384 
1385 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1386 void sparse_init(void);
1387 #else
1388 #define sparse_init()	do {} while (0)
1389 #define sparse_index_init(_sec, _nid)  do {} while (0)
1390 #define pfn_present pfn_valid
1391 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1392 #endif /* CONFIG_SPARSEMEM */
1393 
1394 /*
1395  * During memory init memblocks map pfns to nids. The search is expensive and
1396  * this caches recent lookups. The implementation of __early_pfn_to_nid
1397  * may treat start/end as pfns or sections.
1398  */
1399 struct mminit_pfnnid_cache {
1400 	unsigned long last_start;
1401 	unsigned long last_end;
1402 	int last_nid;
1403 };
1404 
1405 #ifndef early_pfn_valid
1406 #define early_pfn_valid(pfn)	(1)
1407 #endif
1408 
1409 void memory_present(int nid, unsigned long start, unsigned long end);
1410 
1411 /*
1412  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1413  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1414  * pfn_valid_within() should be used in this case; we optimise this away
1415  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1416  */
1417 #ifdef CONFIG_HOLES_IN_ZONE
1418 #define pfn_valid_within(pfn) pfn_valid(pfn)
1419 #else
1420 #define pfn_valid_within(pfn) (1)
1421 #endif
1422 
1423 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1424 /*
1425  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1426  * associated with it or not. This means that a struct page exists for this
1427  * pfn. The caller cannot assume the page is fully initialized in general.
1428  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1429  * will ensure the struct page is fully online and initialized. Special pages
1430  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1431  *
1432  * In FLATMEM, it is expected that holes always have valid memmap as long as
1433  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1434  * that a valid section has a memmap for the entire section.
1435  *
1436  * However, an ARM, and maybe other embedded architectures in the future
1437  * free memmap backing holes to save memory on the assumption the memmap is
1438  * never used. The page_zone linkages are then broken even though pfn_valid()
1439  * returns true. A walker of the full memmap must then do this additional
1440  * check to ensure the memmap they are looking at is sane by making sure
1441  * the zone and PFN linkages are still valid. This is expensive, but walkers
1442  * of the full memmap are extremely rare.
1443  */
1444 bool memmap_valid_within(unsigned long pfn,
1445 					struct page *page, struct zone *zone);
1446 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1447 static inline bool memmap_valid_within(unsigned long pfn,
1448 					struct page *page, struct zone *zone)
1449 {
1450 	return true;
1451 }
1452 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1453 
1454 #endif /* !__GENERATING_BOUNDS.H */
1455 #endif /* !__ASSEMBLY__ */
1456 #endif /* _LINUX_MMZONE_H */
1457