1 #ifndef DEF_RDMAVT_INCQP_H
2 #define DEF_RDMAVT_INCQP_H
3
4 /*
5 * Copyright(c) 2016 - 2019 Intel Corporation.
6 *
7 * This file is provided under a dual BSD/GPLv2 license. When using or
8 * redistributing this file, you may do so under either license.
9 *
10 * GPL LICENSE SUMMARY
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of version 2 of the GNU General Public License as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * BSD LICENSE
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51 #include <rdma/rdma_vt.h>
52 #include <rdma/ib_pack.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/rdmavt_cq.h>
55 #include <rdma/rvt-abi.h>
56 /*
57 * Atomic bit definitions for r_aflags.
58 */
59 #define RVT_R_WRID_VALID 0
60 #define RVT_R_REWIND_SGE 1
61
62 /*
63 * Bit definitions for r_flags.
64 */
65 #define RVT_R_REUSE_SGE 0x01
66 #define RVT_R_RDMAR_SEQ 0x02
67 #define RVT_R_RSP_NAK 0x04
68 #define RVT_R_RSP_SEND 0x08
69 #define RVT_R_COMM_EST 0x10
70
71 /*
72 * Bit definitions for s_flags.
73 *
74 * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled
75 * RVT_S_BUSY - send tasklet is processing the QP
76 * RVT_S_TIMER - the RC retry timer is active
77 * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics
78 * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs
79 * before processing the next SWQE
80 * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete
81 * before processing the next SWQE
82 * RVT_S_WAIT_RNR - waiting for RNR timeout
83 * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
84 * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating
85 * next send completion entry not via send DMA
86 * RVT_S_WAIT_PIO - waiting for a send buffer to be available
87 * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available
88 * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available
89 * RVT_S_WAIT_KMEM - waiting for kernel memory to be available
90 * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue
91 * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests
92 * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK
93 * RVT_S_ECN - a BECN was queued to the send engine
94 * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt
95 */
96 #define RVT_S_SIGNAL_REQ_WR 0x0001
97 #define RVT_S_BUSY 0x0002
98 #define RVT_S_TIMER 0x0004
99 #define RVT_S_RESP_PENDING 0x0008
100 #define RVT_S_ACK_PENDING 0x0010
101 #define RVT_S_WAIT_FENCE 0x0020
102 #define RVT_S_WAIT_RDMAR 0x0040
103 #define RVT_S_WAIT_RNR 0x0080
104 #define RVT_S_WAIT_SSN_CREDIT 0x0100
105 #define RVT_S_WAIT_DMA 0x0200
106 #define RVT_S_WAIT_PIO 0x0400
107 #define RVT_S_WAIT_TX 0x0800
108 #define RVT_S_WAIT_DMA_DESC 0x1000
109 #define RVT_S_WAIT_KMEM 0x2000
110 #define RVT_S_WAIT_PSN 0x4000
111 #define RVT_S_WAIT_ACK 0x8000
112 #define RVT_S_SEND_ONE 0x10000
113 #define RVT_S_UNLIMITED_CREDIT 0x20000
114 #define RVT_S_ECN 0x40000
115 #define RVT_S_MAX_BIT_MASK 0x800000
116
117 /*
118 * Drivers should use s_flags starting with bit 31 down to the bit next to
119 * RVT_S_MAX_BIT_MASK
120 */
121
122 /*
123 * Wait flags that would prevent any packet type from being sent.
124 */
125 #define RVT_S_ANY_WAIT_IO \
126 (RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \
127 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM)
128
129 /*
130 * Wait flags that would prevent send work requests from making progress.
131 */
132 #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \
133 RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \
134 RVT_S_WAIT_PSN | RVT_S_WAIT_ACK)
135
136 #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND)
137
138 /* Number of bits to pay attention to in the opcode for checking qp type */
139 #define RVT_OPCODE_QP_MASK 0xE0
140
141 /* Flags for checking QP state (see ib_rvt_state_ops[]) */
142 #define RVT_POST_SEND_OK 0x01
143 #define RVT_POST_RECV_OK 0x02
144 #define RVT_PROCESS_RECV_OK 0x04
145 #define RVT_PROCESS_SEND_OK 0x08
146 #define RVT_PROCESS_NEXT_SEND_OK 0x10
147 #define RVT_FLUSH_SEND 0x20
148 #define RVT_FLUSH_RECV 0x40
149 #define RVT_PROCESS_OR_FLUSH_SEND \
150 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND)
151 #define RVT_SEND_OR_FLUSH_OR_RECV_OK \
152 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK)
153
154 /*
155 * Internal send flags
156 */
157 #define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START
158 #define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1)
159
160 /**
161 * rvt_ud_wr - IB UD work plus AH cache
162 * @wr: valid IB work request
163 * @attr: pointer to an allocated AH attribute
164 *
165 * Special case the UD WR so we can keep track of the AH attributes.
166 *
167 * NOTE: This data structure is stricly ordered wr then attr. I.e the attr
168 * MUST come after wr. The ib_ud_wr is sized and copied in rvt_post_one_wr.
169 * The copy assumes that wr is first.
170 */
171 struct rvt_ud_wr {
172 struct ib_ud_wr wr;
173 struct rdma_ah_attr *attr;
174 };
175
176 /*
177 * Send work request queue entry.
178 * The size of the sg_list is determined when the QP is created and stored
179 * in qp->s_max_sge.
180 */
181 struct rvt_swqe {
182 union {
183 struct ib_send_wr wr; /* don't use wr.sg_list */
184 struct rvt_ud_wr ud_wr;
185 struct ib_reg_wr reg_wr;
186 struct ib_rdma_wr rdma_wr;
187 struct ib_atomic_wr atomic_wr;
188 };
189 u32 psn; /* first packet sequence number */
190 u32 lpsn; /* last packet sequence number */
191 u32 ssn; /* send sequence number */
192 u32 length; /* total length of data in sg_list */
193 void *priv; /* driver dependent field */
194 struct rvt_sge sg_list[0];
195 };
196
197 /**
198 * struct rvt_krwq - kernel struct receive work request
199 * @p_lock: lock to protect producer of the kernel buffer
200 * @head: index of next entry to fill
201 * @c_lock:lock to protect consumer of the kernel buffer
202 * @tail: index of next entry to pull
203 * @count: count is aproximate of total receive enteries posted
204 * @rvt_rwqe: struct of receive work request queue entry
205 *
206 * This structure is used to contain the head pointer,
207 * tail pointer and receive work queue entries for kernel
208 * mode user.
209 */
210 struct rvt_krwq {
211 spinlock_t p_lock; /* protect producer */
212 u32 head; /* new work requests posted to the head */
213
214 /* protect consumer */
215 spinlock_t c_lock ____cacheline_aligned_in_smp;
216 u32 tail; /* receives pull requests from here. */
217 u32 count; /* approx count of receive entries posted */
218 struct rvt_rwqe *curr_wq;
219 struct rvt_rwqe wq[];
220 };
221
222 /*
223 * rvt_get_swqe_ah - Return the pointer to the struct rvt_ah
224 * @swqe: valid Send WQE
225 *
226 */
rvt_get_swqe_ah(struct rvt_swqe * swqe)227 static inline struct rvt_ah *rvt_get_swqe_ah(struct rvt_swqe *swqe)
228 {
229 return ibah_to_rvtah(swqe->ud_wr.wr.ah);
230 }
231
232 /**
233 * rvt_get_swqe_ah_attr - Return the cached ah attribute information
234 * @swqe: valid Send WQE
235 *
236 */
rvt_get_swqe_ah_attr(struct rvt_swqe * swqe)237 static inline struct rdma_ah_attr *rvt_get_swqe_ah_attr(struct rvt_swqe *swqe)
238 {
239 return swqe->ud_wr.attr;
240 }
241
242 /**
243 * rvt_get_swqe_remote_qpn - Access the remote QPN value
244 * @swqe: valid Send WQE
245 *
246 */
rvt_get_swqe_remote_qpn(struct rvt_swqe * swqe)247 static inline u32 rvt_get_swqe_remote_qpn(struct rvt_swqe *swqe)
248 {
249 return swqe->ud_wr.wr.remote_qpn;
250 }
251
252 /**
253 * rvt_get_swqe_remote_qkey - Acces the remote qkey value
254 * @swqe: valid Send WQE
255 *
256 */
rvt_get_swqe_remote_qkey(struct rvt_swqe * swqe)257 static inline u32 rvt_get_swqe_remote_qkey(struct rvt_swqe *swqe)
258 {
259 return swqe->ud_wr.wr.remote_qkey;
260 }
261
262 /**
263 * rvt_get_swqe_pkey_index - Access the pkey index
264 * @swqe: valid Send WQE
265 *
266 */
rvt_get_swqe_pkey_index(struct rvt_swqe * swqe)267 static inline u16 rvt_get_swqe_pkey_index(struct rvt_swqe *swqe)
268 {
269 return swqe->ud_wr.wr.pkey_index;
270 }
271
272 struct rvt_rq {
273 struct rvt_rwq *wq;
274 struct rvt_krwq *kwq;
275 u32 size; /* size of RWQE array */
276 u8 max_sge;
277 /* protect changes in this struct */
278 spinlock_t lock ____cacheline_aligned_in_smp;
279 };
280
281 /*
282 * This structure holds the information that the send tasklet needs
283 * to send a RDMA read response or atomic operation.
284 */
285 struct rvt_ack_entry {
286 struct rvt_sge rdma_sge;
287 u64 atomic_data;
288 u32 psn;
289 u32 lpsn;
290 u8 opcode;
291 u8 sent;
292 void *priv;
293 };
294
295 #define RC_QP_SCALING_INTERVAL 5
296
297 #define RVT_OPERATION_PRIV 0x00000001
298 #define RVT_OPERATION_ATOMIC 0x00000002
299 #define RVT_OPERATION_ATOMIC_SGE 0x00000004
300 #define RVT_OPERATION_LOCAL 0x00000008
301 #define RVT_OPERATION_USE_RESERVE 0x00000010
302 #define RVT_OPERATION_IGN_RNR_CNT 0x00000020
303
304 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1)
305
306 /**
307 * rvt_operation_params - op table entry
308 * @length - the length to copy into the swqe entry
309 * @qpt_support - a bit mask indicating QP type support
310 * @flags - RVT_OPERATION flags (see above)
311 *
312 * This supports table driven post send so that
313 * the driver can have differing an potentially
314 * different sets of operations.
315 *
316 **/
317
318 struct rvt_operation_params {
319 size_t length;
320 u32 qpt_support;
321 u32 flags;
322 };
323
324 /*
325 * Common variables are protected by both r_rq.lock and s_lock in that order
326 * which only happens in modify_qp() or changing the QP 'state'.
327 */
328 struct rvt_qp {
329 struct ib_qp ibqp;
330 void *priv; /* Driver private data */
331 /* read mostly fields above and below */
332 struct rdma_ah_attr remote_ah_attr;
333 struct rdma_ah_attr alt_ah_attr;
334 struct rvt_qp __rcu *next; /* link list for QPN hash table */
335 struct rvt_swqe *s_wq; /* send work queue */
336 struct rvt_mmap_info *ip;
337
338 unsigned long timeout_jiffies; /* computed from timeout */
339
340 int srate_mbps; /* s_srate (below) converted to Mbit/s */
341 pid_t pid; /* pid for user mode QPs */
342 u32 remote_qpn;
343 u32 qkey; /* QKEY for this QP (for UD or RD) */
344 u32 s_size; /* send work queue size */
345
346 u16 pmtu; /* decoded from path_mtu */
347 u8 log_pmtu; /* shift for pmtu */
348 u8 state; /* QP state */
349 u8 allowed_ops; /* high order bits of allowed opcodes */
350 u8 qp_access_flags;
351 u8 alt_timeout; /* Alternate path timeout for this QP */
352 u8 timeout; /* Timeout for this QP */
353 u8 s_srate;
354 u8 s_mig_state;
355 u8 port_num;
356 u8 s_pkey_index; /* PKEY index to use */
357 u8 s_alt_pkey_index; /* Alternate path PKEY index to use */
358 u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */
359 u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */
360 u8 s_retry_cnt; /* number of times to retry */
361 u8 s_rnr_retry_cnt;
362 u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */
363 u8 s_max_sge; /* size of s_wq->sg_list */
364 u8 s_draining;
365
366 /* start of read/write fields */
367 atomic_t refcount ____cacheline_aligned_in_smp;
368 wait_queue_head_t wait;
369
370 struct rvt_ack_entry *s_ack_queue;
371 struct rvt_sge_state s_rdma_read_sge;
372
373 spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */
374 u32 r_psn; /* expected rcv packet sequence number */
375 unsigned long r_aflags;
376 u64 r_wr_id; /* ID for current receive WQE */
377 u32 r_ack_psn; /* PSN for next ACK or atomic ACK */
378 u32 r_len; /* total length of r_sge */
379 u32 r_rcv_len; /* receive data len processed */
380 u32 r_msn; /* message sequence number */
381
382 u8 r_state; /* opcode of last packet received */
383 u8 r_flags;
384 u8 r_head_ack_queue; /* index into s_ack_queue[] */
385 u8 r_adefered; /* defered ack count */
386
387 struct list_head rspwait; /* link for waiting to respond */
388
389 struct rvt_sge_state r_sge; /* current receive data */
390 struct rvt_rq r_rq; /* receive work queue */
391
392 /* post send line */
393 spinlock_t s_hlock ____cacheline_aligned_in_smp;
394 u32 s_head; /* new entries added here */
395 u32 s_next_psn; /* PSN for next request */
396 u32 s_avail; /* number of entries avail */
397 u32 s_ssn; /* SSN of tail entry */
398 atomic_t s_reserved_used; /* reserved entries in use */
399
400 spinlock_t s_lock ____cacheline_aligned_in_smp;
401 u32 s_flags;
402 struct rvt_sge_state *s_cur_sge;
403 struct rvt_swqe *s_wqe;
404 struct rvt_sge_state s_sge; /* current send request data */
405 struct rvt_mregion *s_rdma_mr;
406 u32 s_len; /* total length of s_sge */
407 u32 s_rdma_read_len; /* total length of s_rdma_read_sge */
408 u32 s_last_psn; /* last response PSN processed */
409 u32 s_sending_psn; /* lowest PSN that is being sent */
410 u32 s_sending_hpsn; /* highest PSN that is being sent */
411 u32 s_psn; /* current packet sequence number */
412 u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */
413 u32 s_ack_psn; /* PSN for acking sends and RDMA writes */
414 u32 s_tail; /* next entry to process */
415 u32 s_cur; /* current work queue entry */
416 u32 s_acked; /* last un-ACK'ed entry */
417 u32 s_last; /* last completed entry */
418 u32 s_lsn; /* limit sequence number (credit) */
419 u32 s_ahgpsn; /* set to the psn in the copy of the header */
420 u16 s_cur_size; /* size of send packet in bytes */
421 u16 s_rdma_ack_cnt;
422 u8 s_hdrwords; /* size of s_hdr in 32 bit words */
423 s8 s_ahgidx;
424 u8 s_state; /* opcode of last packet sent */
425 u8 s_ack_state; /* opcode of packet to ACK */
426 u8 s_nak_state; /* non-zero if NAK is pending */
427 u8 r_nak_state; /* non-zero if NAK is pending */
428 u8 s_retry; /* requester retry counter */
429 u8 s_rnr_retry; /* requester RNR retry counter */
430 u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */
431 u8 s_tail_ack_queue; /* index into s_ack_queue[] */
432 u8 s_acked_ack_queue; /* index into s_ack_queue[] */
433
434 struct rvt_sge_state s_ack_rdma_sge;
435 struct timer_list s_timer;
436 struct hrtimer s_rnr_timer;
437
438 atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */
439
440 /*
441 * This sge list MUST be last. Do not add anything below here.
442 */
443 struct rvt_sge r_sg_list[0] /* verified SGEs */
444 ____cacheline_aligned_in_smp;
445 };
446
447 struct rvt_srq {
448 struct ib_srq ibsrq;
449 struct rvt_rq rq;
450 struct rvt_mmap_info *ip;
451 /* send signal when number of RWQEs < limit */
452 u32 limit;
453 };
454
ibsrq_to_rvtsrq(struct ib_srq * ibsrq)455 static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq)
456 {
457 return container_of(ibsrq, struct rvt_srq, ibsrq);
458 }
459
ibqp_to_rvtqp(struct ib_qp * ibqp)460 static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp)
461 {
462 return container_of(ibqp, struct rvt_qp, ibqp);
463 }
464
465 #define RVT_QPN_MAX BIT(24)
466 #define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE)
467 #define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE)
468 #define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1)
469 #define RVT_QPN_MASK IB_QPN_MASK
470
471 /*
472 * QPN-map pages start out as NULL, they get allocated upon
473 * first use and are never deallocated. This way,
474 * large bitmaps are not allocated unless large numbers of QPs are used.
475 */
476 struct rvt_qpn_map {
477 void *page;
478 };
479
480 struct rvt_qpn_table {
481 spinlock_t lock; /* protect changes to the qp table */
482 unsigned flags; /* flags for QP0/1 allocated for each port */
483 u32 last; /* last QP number allocated */
484 u32 nmaps; /* size of the map table */
485 u16 limit;
486 u8 incr;
487 /* bit map of free QP numbers other than 0/1 */
488 struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES];
489 };
490
491 struct rvt_qp_ibdev {
492 u32 qp_table_size;
493 u32 qp_table_bits;
494 struct rvt_qp __rcu **qp_table;
495 spinlock_t qpt_lock; /* qptable lock */
496 struct rvt_qpn_table qpn_table;
497 };
498
499 /*
500 * There is one struct rvt_mcast for each multicast GID.
501 * All attached QPs are then stored as a list of
502 * struct rvt_mcast_qp.
503 */
504 struct rvt_mcast_qp {
505 struct list_head list;
506 struct rvt_qp *qp;
507 };
508
509 struct rvt_mcast_addr {
510 union ib_gid mgid;
511 u16 lid;
512 };
513
514 struct rvt_mcast {
515 struct rb_node rb_node;
516 struct rvt_mcast_addr mcast_addr;
517 struct list_head qp_list;
518 wait_queue_head_t wait;
519 atomic_t refcount;
520 int n_attached;
521 };
522
523 /*
524 * Since struct rvt_swqe is not a fixed size, we can't simply index into
525 * struct rvt_qp.s_wq. This function does the array index computation.
526 */
rvt_get_swqe_ptr(struct rvt_qp * qp,unsigned n)527 static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp,
528 unsigned n)
529 {
530 return (struct rvt_swqe *)((char *)qp->s_wq +
531 (sizeof(struct rvt_swqe) +
532 qp->s_max_sge *
533 sizeof(struct rvt_sge)) * n);
534 }
535
536 /*
537 * Since struct rvt_rwqe is not a fixed size, we can't simply index into
538 * struct rvt_rwq.wq. This function does the array index computation.
539 */
rvt_get_rwqe_ptr(struct rvt_rq * rq,unsigned n)540 static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n)
541 {
542 return (struct rvt_rwqe *)
543 ((char *)rq->kwq->curr_wq +
544 (sizeof(struct rvt_rwqe) +
545 rq->max_sge * sizeof(struct ib_sge)) * n);
546 }
547
548 /**
549 * rvt_is_user_qp - return if this is user mode QP
550 * @qp - the target QP
551 */
rvt_is_user_qp(struct rvt_qp * qp)552 static inline bool rvt_is_user_qp(struct rvt_qp *qp)
553 {
554 return !!qp->pid;
555 }
556
557 /**
558 * rvt_get_qp - get a QP reference
559 * @qp - the QP to hold
560 */
rvt_get_qp(struct rvt_qp * qp)561 static inline void rvt_get_qp(struct rvt_qp *qp)
562 {
563 atomic_inc(&qp->refcount);
564 }
565
566 /**
567 * rvt_put_qp - release a QP reference
568 * @qp - the QP to release
569 */
rvt_put_qp(struct rvt_qp * qp)570 static inline void rvt_put_qp(struct rvt_qp *qp)
571 {
572 if (qp && atomic_dec_and_test(&qp->refcount))
573 wake_up(&qp->wait);
574 }
575
576 /**
577 * rvt_put_swqe - drop mr refs held by swqe
578 * @wqe - the send wqe
579 *
580 * This drops any mr references held by the swqe
581 */
rvt_put_swqe(struct rvt_swqe * wqe)582 static inline void rvt_put_swqe(struct rvt_swqe *wqe)
583 {
584 int i;
585
586 for (i = 0; i < wqe->wr.num_sge; i++) {
587 struct rvt_sge *sge = &wqe->sg_list[i];
588
589 rvt_put_mr(sge->mr);
590 }
591 }
592
593 /**
594 * rvt_qp_wqe_reserve - reserve operation
595 * @qp - the rvt qp
596 * @wqe - the send wqe
597 *
598 * This routine used in post send to record
599 * a wqe relative reserved operation use.
600 */
rvt_qp_wqe_reserve(struct rvt_qp * qp,struct rvt_swqe * wqe)601 static inline void rvt_qp_wqe_reserve(
602 struct rvt_qp *qp,
603 struct rvt_swqe *wqe)
604 {
605 atomic_inc(&qp->s_reserved_used);
606 }
607
608 /**
609 * rvt_qp_wqe_unreserve - clean reserved operation
610 * @qp - the rvt qp
611 * @flags - send wqe flags
612 *
613 * This decrements the reserve use count.
614 *
615 * This call MUST precede the change to
616 * s_last to insure that post send sees a stable
617 * s_avail.
618 *
619 * An smp_mp__after_atomic() is used to insure
620 * the compiler does not juggle the order of the s_last
621 * ring index and the decrementing of s_reserved_used.
622 */
rvt_qp_wqe_unreserve(struct rvt_qp * qp,int flags)623 static inline void rvt_qp_wqe_unreserve(struct rvt_qp *qp, int flags)
624 {
625 if (unlikely(flags & RVT_SEND_RESERVE_USED)) {
626 atomic_dec(&qp->s_reserved_used);
627 /* insure no compiler re-order up to s_last change */
628 smp_mb__after_atomic();
629 }
630 }
631
632 extern const enum ib_wc_opcode ib_rvt_wc_opcode[];
633
634 /*
635 * Compare the lower 24 bits of the msn values.
636 * Returns an integer <, ==, or > than zero.
637 */
rvt_cmp_msn(u32 a,u32 b)638 static inline int rvt_cmp_msn(u32 a, u32 b)
639 {
640 return (((int)a) - ((int)b)) << 8;
641 }
642
643 /**
644 * rvt_compute_aeth - compute the AETH (syndrome + MSN)
645 * @qp: the queue pair to compute the AETH for
646 *
647 * Returns the AETH.
648 */
649 __be32 rvt_compute_aeth(struct rvt_qp *qp);
650
651 /**
652 * rvt_get_credit - flush the send work queue of a QP
653 * @qp: the qp who's send work queue to flush
654 * @aeth: the Acknowledge Extended Transport Header
655 *
656 * The QP s_lock should be held.
657 */
658 void rvt_get_credit(struct rvt_qp *qp, u32 aeth);
659
660 /**
661 * rvt_restart_sge - rewind the sge state for a wqe
662 * @ss: the sge state pointer
663 * @wqe: the wqe to rewind
664 * @len: the data length from the start of the wqe in bytes
665 *
666 * Returns the remaining data length.
667 */
668 u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len);
669
670 /**
671 * @qp - the qp pair
672 * @len - the length
673 *
674 * Perform a shift based mtu round up divide
675 */
rvt_div_round_up_mtu(struct rvt_qp * qp,u32 len)676 static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len)
677 {
678 return (len + qp->pmtu - 1) >> qp->log_pmtu;
679 }
680
681 /**
682 * @qp - the qp pair
683 * @len - the length
684 *
685 * Perform a shift based mtu divide
686 */
rvt_div_mtu(struct rvt_qp * qp,u32 len)687 static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len)
688 {
689 return len >> qp->log_pmtu;
690 }
691
692 /**
693 * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies
694 * @timeout - timeout input(0 - 31).
695 *
696 * Return a timeout value in jiffies.
697 */
rvt_timeout_to_jiffies(u8 timeout)698 static inline unsigned long rvt_timeout_to_jiffies(u8 timeout)
699 {
700 if (timeout > 31)
701 timeout = 31;
702
703 return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL;
704 }
705
706 /**
707 * rvt_lookup_qpn - return the QP with the given QPN
708 * @ibp: the ibport
709 * @qpn: the QP number to look up
710 *
711 * The caller must hold the rcu_read_lock(), and keep the lock until
712 * the returned qp is no longer in use.
713 */
rvt_lookup_qpn(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,u32 qpn)714 static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi,
715 struct rvt_ibport *rvp,
716 u32 qpn) __must_hold(RCU)
717 {
718 struct rvt_qp *qp = NULL;
719
720 if (unlikely(qpn <= 1)) {
721 qp = rcu_dereference(rvp->qp[qpn]);
722 } else {
723 u32 n = hash_32(qpn, rdi->qp_dev->qp_table_bits);
724
725 for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp;
726 qp = rcu_dereference(qp->next))
727 if (qp->ibqp.qp_num == qpn)
728 break;
729 }
730 return qp;
731 }
732
733 /**
734 * rvt_mod_retry_timer - mod a retry timer
735 * @qp - the QP
736 * @shift - timeout shift to wait for multiple packets
737 * Modify a potentially already running retry timer
738 */
rvt_mod_retry_timer_ext(struct rvt_qp * qp,u8 shift)739 static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift)
740 {
741 struct ib_qp *ibqp = &qp->ibqp;
742 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
743
744 lockdep_assert_held(&qp->s_lock);
745 qp->s_flags |= RVT_S_TIMER;
746 /* 4.096 usec. * (1 << qp->timeout) */
747 mod_timer(&qp->s_timer, jiffies + rdi->busy_jiffies +
748 (qp->timeout_jiffies << shift));
749 }
750
rvt_mod_retry_timer(struct rvt_qp * qp)751 static inline void rvt_mod_retry_timer(struct rvt_qp *qp)
752 {
753 return rvt_mod_retry_timer_ext(qp, 0);
754 }
755
756 /**
757 * rvt_put_qp_swqe - drop refs held by swqe
758 * @qp: the send qp
759 * @wqe: the send wqe
760 *
761 * This drops any references held by the swqe
762 */
rvt_put_qp_swqe(struct rvt_qp * qp,struct rvt_swqe * wqe)763 static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
764 {
765 rvt_put_swqe(wqe);
766 if (qp->allowed_ops == IB_OPCODE_UD)
767 rdma_destroy_ah_attr(wqe->ud_wr.attr);
768 }
769
770 /**
771 * rvt_qp_sqwe_incr - increment ring index
772 * @qp: the qp
773 * @val: the starting value
774 *
775 * Return: the new value wrapping as appropriate
776 */
777 static inline u32
rvt_qp_swqe_incr(struct rvt_qp * qp,u32 val)778 rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val)
779 {
780 if (++val >= qp->s_size)
781 val = 0;
782 return val;
783 }
784
785 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err);
786
787 /**
788 * rvt_recv_cq - add a new entry to completion queue
789 * by receive queue
790 * @qp: receive queue
791 * @wc: work completion entry to add
792 * @solicited: true if @entry is solicited
793 *
794 * This is wrapper function for rvt_enter_cq function call by
795 * receive queue. If rvt_cq_enter return false, it means cq is
796 * full and the qp is put into error state.
797 */
rvt_recv_cq(struct rvt_qp * qp,struct ib_wc * wc,bool solicited)798 static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc,
799 bool solicited)
800 {
801 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.recv_cq);
802
803 if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
804 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR);
805 }
806
807 /**
808 * rvt_send_cq - add a new entry to completion queue
809 * by send queue
810 * @qp: send queue
811 * @wc: work completion entry to add
812 * @solicited: true if @entry is solicited
813 *
814 * This is wrapper function for rvt_enter_cq function call by
815 * send queue. If rvt_cq_enter return false, it means cq is
816 * full and the qp is put into error state.
817 */
rvt_send_cq(struct rvt_qp * qp,struct ib_wc * wc,bool solicited)818 static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc,
819 bool solicited)
820 {
821 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.send_cq);
822
823 if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
824 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR);
825 }
826
827 /**
828 * rvt_qp_complete_swqe - insert send completion
829 * @qp - the qp
830 * @wqe - the send wqe
831 * @opcode - wc operation (driver dependent)
832 * @status - completion status
833 *
834 * Update the s_last information, and then insert a send
835 * completion into the completion
836 * queue if the qp indicates it should be done.
837 *
838 * See IBTA 10.7.3.1 for info on completion
839 * control.
840 *
841 * Return: new last
842 */
843 static inline u32
rvt_qp_complete_swqe(struct rvt_qp * qp,struct rvt_swqe * wqe,enum ib_wc_opcode opcode,enum ib_wc_status status)844 rvt_qp_complete_swqe(struct rvt_qp *qp,
845 struct rvt_swqe *wqe,
846 enum ib_wc_opcode opcode,
847 enum ib_wc_status status)
848 {
849 bool need_completion;
850 u64 wr_id;
851 u32 byte_len, last;
852 int flags = wqe->wr.send_flags;
853
854 rvt_qp_wqe_unreserve(qp, flags);
855 rvt_put_qp_swqe(qp, wqe);
856
857 need_completion =
858 !(flags & RVT_SEND_RESERVE_USED) &&
859 (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
860 (flags & IB_SEND_SIGNALED) ||
861 status != IB_WC_SUCCESS);
862 if (need_completion) {
863 wr_id = wqe->wr.wr_id;
864 byte_len = wqe->length;
865 /* above fields required before writing s_last */
866 }
867 last = rvt_qp_swqe_incr(qp, qp->s_last);
868 /* see rvt_qp_is_avail() */
869 smp_store_release(&qp->s_last, last);
870 if (need_completion) {
871 struct ib_wc w = {
872 .wr_id = wr_id,
873 .status = status,
874 .opcode = opcode,
875 .qp = &qp->ibqp,
876 .byte_len = byte_len,
877 };
878 rvt_send_cq(qp, &w, status != IB_WC_SUCCESS);
879 }
880 return last;
881 }
882
883 extern const int ib_rvt_state_ops[];
884
885 struct rvt_dev_info;
886 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only);
887 void rvt_comm_est(struct rvt_qp *qp);
888 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err);
889 unsigned long rvt_rnr_tbl_to_usec(u32 index);
890 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t);
891 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth);
892 void rvt_del_timers_sync(struct rvt_qp *qp);
893 void rvt_stop_rc_timers(struct rvt_qp *qp);
894 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift);
rvt_add_retry_timer(struct rvt_qp * qp)895 static inline void rvt_add_retry_timer(struct rvt_qp *qp)
896 {
897 rvt_add_retry_timer_ext(qp, 0);
898 }
899
900 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
901 void *data, u32 length,
902 bool release, bool copy_last);
903 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
904 enum ib_wc_status status);
905 void rvt_ruc_loopback(struct rvt_qp *qp);
906
907 /**
908 * struct rvt_qp_iter - the iterator for QPs
909 * @qp - the current QP
910 *
911 * This structure defines the current iterator
912 * state for sequenced access to all QPs relative
913 * to an rvt_dev_info.
914 */
915 struct rvt_qp_iter {
916 struct rvt_qp *qp;
917 /* private: backpointer */
918 struct rvt_dev_info *rdi;
919 /* private: callback routine */
920 void (*cb)(struct rvt_qp *qp, u64 v);
921 /* private: for arg to callback routine */
922 u64 v;
923 /* private: number of SMI,GSI QPs for device */
924 int specials;
925 /* private: current iterator index */
926 int n;
927 };
928
929 /**
930 * ib_cq_tail - Return tail index of cq buffer
931 * @send_cq - The cq for send
932 *
933 * This is called in qp_iter_print to get tail
934 * of cq buffer.
935 */
ib_cq_tail(struct ib_cq * send_cq)936 static inline u32 ib_cq_tail(struct ib_cq *send_cq)
937 {
938 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq);
939
940 return ibcq_to_rvtcq(send_cq)->ip ?
941 RDMA_READ_UAPI_ATOMIC(cq->queue->tail) :
942 ibcq_to_rvtcq(send_cq)->kqueue->tail;
943 }
944
945 /**
946 * ib_cq_head - Return head index of cq buffer
947 * @send_cq - The cq for send
948 *
949 * This is called in qp_iter_print to get head
950 * of cq buffer.
951 */
ib_cq_head(struct ib_cq * send_cq)952 static inline u32 ib_cq_head(struct ib_cq *send_cq)
953 {
954 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq);
955
956 return ibcq_to_rvtcq(send_cq)->ip ?
957 RDMA_READ_UAPI_ATOMIC(cq->queue->head) :
958 ibcq_to_rvtcq(send_cq)->kqueue->head;
959 }
960
961 /**
962 * rvt_free_rq - free memory allocated for rvt_rq struct
963 * @rvt_rq: request queue data structure
964 *
965 * This function should only be called if the rvt_mmap_info()
966 * has not succeeded.
967 */
rvt_free_rq(struct rvt_rq * rq)968 static inline void rvt_free_rq(struct rvt_rq *rq)
969 {
970 kvfree(rq->kwq);
971 rq->kwq = NULL;
972 vfree(rq->wq);
973 rq->wq = NULL;
974 }
975
976 /**
977 * rvt_to_iport - Get the ibport pointer
978 * @qp: the qp pointer
979 *
980 * This function returns the ibport pointer from the qp pointer.
981 */
rvt_to_iport(struct rvt_qp * qp)982 static inline struct rvt_ibport *rvt_to_iport(struct rvt_qp *qp)
983 {
984 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
985
986 return rdi->ports[qp->port_num - 1];
987 }
988
989 /**
990 * rvt_rc_credit_avail - Check if there are enough RC credits for the request
991 * @qp: the qp
992 * @wqe: the request
993 *
994 * This function returns false when there are not enough credits for the given
995 * request and true otherwise.
996 */
rvt_rc_credit_avail(struct rvt_qp * qp,struct rvt_swqe * wqe)997 static inline bool rvt_rc_credit_avail(struct rvt_qp *qp, struct rvt_swqe *wqe)
998 {
999 lockdep_assert_held(&qp->s_lock);
1000 if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) &&
1001 rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) {
1002 struct rvt_ibport *rvp = rvt_to_iport(qp);
1003
1004 qp->s_flags |= RVT_S_WAIT_SSN_CREDIT;
1005 rvp->n_rc_crwaits++;
1006 return false;
1007 }
1008 return true;
1009 }
1010
1011 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
1012 u64 v,
1013 void (*cb)(struct rvt_qp *qp, u64 v));
1014 int rvt_qp_iter_next(struct rvt_qp_iter *iter);
1015 void rvt_qp_iter(struct rvt_dev_info *rdi,
1016 u64 v,
1017 void (*cb)(struct rvt_qp *qp, u64 v));
1018 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey);
1019 #endif /* DEF_RDMAVT_INCQP_H */
1020