1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00
23 	Abstract: rt2x00 global information.
24  */
25 
26 #ifndef RT2X00_H
27 #define RT2X00_H
28 
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41 #include <linux/usb.h>
42 #include <linux/clk.h>
43 
44 #include <net/mac80211.h>
45 
46 #include "rt2x00debug.h"
47 #include "rt2x00dump.h"
48 #include "rt2x00leds.h"
49 #include "rt2x00reg.h"
50 #include "rt2x00queue.h"
51 
52 /*
53  * Module information.
54  */
55 #define DRV_VERSION	"2.3.0"
56 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
57 
58 /* Debug definitions.
59  * Debug output has to be enabled during compile time.
60  */
61 #ifdef CONFIG_RT2X00_DEBUG
62 #define DEBUG
63 #endif /* CONFIG_RT2X00_DEBUG */
64 
65 /* Utility printing macros
66  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
67  */
68 #define rt2x00_probe_err(fmt, ...)					\
69 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
70 	       __func__, ##__VA_ARGS__)
71 #define rt2x00_err(dev, fmt, ...)					\
72 	wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt,			\
73 		  __func__, ##__VA_ARGS__)
74 #define rt2x00_warn(dev, fmt, ...)					\
75 	wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt,		\
76 		   __func__, ##__VA_ARGS__)
77 #define rt2x00_info(dev, fmt, ...)					\
78 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
79 		   __func__, ##__VA_ARGS__)
80 
81 /* Various debug levels */
82 #define rt2x00_dbg(dev, fmt, ...)					\
83 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
84 		  __func__, ##__VA_ARGS__)
85 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
86 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
87 		  __func__, ##__VA_ARGS__)
88 
89 /*
90  * Duration calculations
91  * The rate variable passed is: 100kbs.
92  * To convert from bytes to bits we multiply size with 8,
93  * then the size is multiplied with 10 to make the
94  * real rate -> rate argument correction.
95  */
96 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
97 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
98 
99 /*
100  * Determine the number of L2 padding bytes required between the header and
101  * the payload.
102  */
103 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
104 
105 /*
106  * Determine the alignment requirement,
107  * to make sure the 802.11 payload is padded to a 4-byte boundrary
108  * we must determine the address of the payload and calculate the
109  * amount of bytes needed to move the data.
110  */
111 #define ALIGN_SIZE(__skb, __header) \
112 	(((unsigned long)((__skb)->data + (__header))) & 3)
113 
114 /*
115  * Constants for extra TX headroom for alignment purposes.
116  */
117 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
118 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
119 
120 /*
121  * Standard timing and size defines.
122  * These values should follow the ieee80211 specifications.
123  */
124 #define ACK_SIZE		14
125 #define IEEE80211_HEADER	24
126 #define PLCP			48
127 #define BEACON			100
128 #define PREAMBLE		144
129 #define SHORT_PREAMBLE		72
130 #define SLOT_TIME		20
131 #define SHORT_SLOT_TIME		9
132 #define SIFS			10
133 #define PIFS			(SIFS + SLOT_TIME)
134 #define SHORT_PIFS		(SIFS + SHORT_SLOT_TIME)
135 #define DIFS			(PIFS + SLOT_TIME)
136 #define SHORT_DIFS		(SHORT_PIFS + SHORT_SLOT_TIME)
137 #define EIFS			(SIFS + DIFS + \
138 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
139 #define SHORT_EIFS		(SIFS + SHORT_DIFS + \
140 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
141 
142 enum rt2x00_chip_intf {
143 	RT2X00_CHIP_INTF_PCI,
144 	RT2X00_CHIP_INTF_PCIE,
145 	RT2X00_CHIP_INTF_USB,
146 	RT2X00_CHIP_INTF_SOC,
147 };
148 
149 /*
150  * Chipset identification
151  * The chipset on the device is composed of a RT and RF chip.
152  * The chipset combination is important for determining device capabilities.
153  */
154 struct rt2x00_chip {
155 	u16 rt;
156 #define RT2460		0x2460
157 #define RT2560		0x2560
158 #define RT2570		0x2570
159 #define RT2661		0x2661
160 #define RT2573		0x2573
161 #define RT2860		0x2860	/* 2.4GHz */
162 #define RT2872		0x2872	/* WSOC */
163 #define RT2883		0x2883	/* WSOC */
164 #define RT3070		0x3070
165 #define RT3071		0x3071
166 #define RT3090		0x3090	/* 2.4GHz PCIe */
167 #define RT3290		0x3290
168 #define RT3352		0x3352  /* WSOC */
169 #define RT3390		0x3390
170 #define RT3572		0x3572
171 #define RT3593		0x3593
172 #define RT3883		0x3883	/* WSOC */
173 #define RT5350		0x5350  /* WSOC 2.4GHz */
174 #define RT5390		0x5390  /* 2.4GHz */
175 #define RT5392		0x5392  /* 2.4GHz */
176 #define RT5592		0x5592
177 #define RT6352		0x6352  /* WSOC 2.4GHz */
178 
179 	u16 rf;
180 	u16 rev;
181 
182 	enum rt2x00_chip_intf intf;
183 };
184 
185 /*
186  * RF register values that belong to a particular channel.
187  */
188 struct rf_channel {
189 	int channel;
190 	u32 rf1;
191 	u32 rf2;
192 	u32 rf3;
193 	u32 rf4;
194 };
195 
196 /*
197  * Channel information structure
198  */
199 struct channel_info {
200 	unsigned int flags;
201 #define GEOGRAPHY_ALLOWED	0x00000001
202 
203 	short max_power;
204 	short default_power1;
205 	short default_power2;
206 	short default_power3;
207 };
208 
209 /*
210  * Antenna setup values.
211  */
212 struct antenna_setup {
213 	enum antenna rx;
214 	enum antenna tx;
215 	u8 rx_chain_num;
216 	u8 tx_chain_num;
217 };
218 
219 /*
220  * Quality statistics about the currently active link.
221  */
222 struct link_qual {
223 	/*
224 	 * Statistics required for Link tuning by driver
225 	 * The rssi value is provided by rt2x00lib during the
226 	 * link_tuner() callback function.
227 	 * The false_cca field is filled during the link_stats()
228 	 * callback function and could be used during the
229 	 * link_tuner() callback function.
230 	 */
231 	int rssi;
232 	int false_cca;
233 
234 	/*
235 	 * VGC levels
236 	 * Hardware driver will tune the VGC level during each call
237 	 * to the link_tuner() callback function. This vgc_level is
238 	 * is determined based on the link quality statistics like
239 	 * average RSSI and the false CCA count.
240 	 *
241 	 * In some cases the drivers need to differentiate between
242 	 * the currently "desired" VGC level and the level configured
243 	 * in the hardware. The latter is important to reduce the
244 	 * number of BBP register reads to reduce register access
245 	 * overhead. For this reason we store both values here.
246 	 */
247 	u8 vgc_level;
248 	u8 vgc_level_reg;
249 
250 	/*
251 	 * Statistics required for Signal quality calculation.
252 	 * These fields might be changed during the link_stats()
253 	 * callback function.
254 	 */
255 	int rx_success;
256 	int rx_failed;
257 	int tx_success;
258 	int tx_failed;
259 };
260 
261 DECLARE_EWMA(rssi, 10, 8)
262 
263 /*
264  * Antenna settings about the currently active link.
265  */
266 struct link_ant {
267 	/*
268 	 * Antenna flags
269 	 */
270 	unsigned int flags;
271 #define ANTENNA_RX_DIVERSITY	0x00000001
272 #define ANTENNA_TX_DIVERSITY	0x00000002
273 #define ANTENNA_MODE_SAMPLE	0x00000004
274 
275 	/*
276 	 * Currently active TX/RX antenna setup.
277 	 * When software diversity is used, this will indicate
278 	 * which antenna is actually used at this time.
279 	 */
280 	struct antenna_setup active;
281 
282 	/*
283 	 * RSSI history information for the antenna.
284 	 * Used to determine when to switch antenna
285 	 * when using software diversity.
286 	 */
287 	int rssi_history;
288 
289 	/*
290 	 * Current RSSI average of the currently active antenna.
291 	 * Similar to the avg_rssi in the link_qual structure
292 	 * this value is updated by using the walking average.
293 	 */
294 	struct ewma_rssi rssi_ant;
295 };
296 
297 /*
298  * To optimize the quality of the link we need to store
299  * the quality of received frames and periodically
300  * optimize the link.
301  */
302 struct link {
303 	/*
304 	 * Link tuner counter
305 	 * The number of times the link has been tuned
306 	 * since the radio has been switched on.
307 	 */
308 	u32 count;
309 
310 	/*
311 	 * Quality measurement values.
312 	 */
313 	struct link_qual qual;
314 
315 	/*
316 	 * TX/RX antenna setup.
317 	 */
318 	struct link_ant ant;
319 
320 	/*
321 	 * Currently active average RSSI value
322 	 */
323 	struct ewma_rssi avg_rssi;
324 
325 	/*
326 	 * Work structure for scheduling periodic link tuning.
327 	 */
328 	struct delayed_work work;
329 
330 	/*
331 	 * Work structure for scheduling periodic watchdog monitoring.
332 	 * This work must be scheduled on the kernel workqueue, while
333 	 * all other work structures must be queued on the mac80211
334 	 * workqueue. This guarantees that the watchdog can schedule
335 	 * other work structures and wait for their completion in order
336 	 * to bring the device/driver back into the desired state.
337 	 */
338 	struct delayed_work watchdog_work;
339 
340 	/*
341 	 * Work structure for scheduling periodic AGC adjustments.
342 	 */
343 	struct delayed_work agc_work;
344 
345 	/*
346 	 * Work structure for scheduling periodic VCO calibration.
347 	 */
348 	struct delayed_work vco_work;
349 };
350 
351 enum rt2x00_delayed_flags {
352 	DELAYED_UPDATE_BEACON,
353 };
354 
355 /*
356  * Interface structure
357  * Per interface configuration details, this structure
358  * is allocated as the private data for ieee80211_vif.
359  */
360 struct rt2x00_intf {
361 	/*
362 	 * beacon->skb must be protected with the mutex.
363 	 */
364 	struct mutex beacon_skb_mutex;
365 
366 	/*
367 	 * Entry in the beacon queue which belongs to
368 	 * this interface. Each interface has its own
369 	 * dedicated beacon entry.
370 	 */
371 	struct queue_entry *beacon;
372 	bool enable_beacon;
373 
374 	/*
375 	 * Actions that needed rescheduling.
376 	 */
377 	unsigned long delayed_flags;
378 
379 	/*
380 	 * Software sequence counter, this is only required
381 	 * for hardware which doesn't support hardware
382 	 * sequence counting.
383 	 */
384 	atomic_t seqno;
385 };
386 
vif_to_intf(struct ieee80211_vif * vif)387 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
388 {
389 	return (struct rt2x00_intf *)vif->drv_priv;
390 }
391 
392 /**
393  * struct hw_mode_spec: Hardware specifications structure
394  *
395  * Details about the supported modes, rates and channels
396  * of a particular chipset. This is used by rt2x00lib
397  * to build the ieee80211_hw_mode array for mac80211.
398  *
399  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
400  * @supported_rates: Rate types which are supported (CCK, OFDM).
401  * @num_channels: Number of supported channels. This is used as array size
402  *	for @tx_power_a, @tx_power_bg and @channels.
403  * @channels: Device/chipset specific channel values (See &struct rf_channel).
404  * @channels_info: Additional information for channels (See &struct channel_info).
405  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
406  */
407 struct hw_mode_spec {
408 	unsigned int supported_bands;
409 #define SUPPORT_BAND_2GHZ	0x00000001
410 #define SUPPORT_BAND_5GHZ	0x00000002
411 
412 	unsigned int supported_rates;
413 #define SUPPORT_RATE_CCK	0x00000001
414 #define SUPPORT_RATE_OFDM	0x00000002
415 
416 	unsigned int num_channels;
417 	const struct rf_channel *channels;
418 	const struct channel_info *channels_info;
419 
420 	struct ieee80211_sta_ht_cap ht;
421 };
422 
423 /*
424  * Configuration structure wrapper around the
425  * mac80211 configuration structure.
426  * When mac80211 configures the driver, rt2x00lib
427  * can precalculate values which are equal for all
428  * rt2x00 drivers. Those values can be stored in here.
429  */
430 struct rt2x00lib_conf {
431 	struct ieee80211_conf *conf;
432 
433 	struct rf_channel rf;
434 	struct channel_info channel;
435 };
436 
437 /*
438  * Configuration structure for erp settings.
439  */
440 struct rt2x00lib_erp {
441 	int short_preamble;
442 	int cts_protection;
443 
444 	u32 basic_rates;
445 
446 	int slot_time;
447 
448 	short sifs;
449 	short pifs;
450 	short difs;
451 	short eifs;
452 
453 	u16 beacon_int;
454 	u16 ht_opmode;
455 };
456 
457 /*
458  * Configuration structure for hardware encryption.
459  */
460 struct rt2x00lib_crypto {
461 	enum cipher cipher;
462 
463 	enum set_key_cmd cmd;
464 	const u8 *address;
465 
466 	u32 bssidx;
467 
468 	u8 key[16];
469 	u8 tx_mic[8];
470 	u8 rx_mic[8];
471 
472 	int wcid;
473 };
474 
475 /*
476  * Configuration structure wrapper around the
477  * rt2x00 interface configuration handler.
478  */
479 struct rt2x00intf_conf {
480 	/*
481 	 * Interface type
482 	 */
483 	enum nl80211_iftype type;
484 
485 	/*
486 	 * TSF sync value, this is dependent on the operation type.
487 	 */
488 	enum tsf_sync sync;
489 
490 	/*
491 	 * The MAC and BSSID addresses are simple array of bytes,
492 	 * these arrays are little endian, so when sending the addresses
493 	 * to the drivers, copy the it into a endian-signed variable.
494 	 *
495 	 * Note that all devices (except rt2500usb) have 32 bits
496 	 * register word sizes. This means that whatever variable we
497 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
498 	 * might not accept what we are sending to it.
499 	 * This will also make it easier for the driver to write
500 	 * the data to the device.
501 	 */
502 	__le32 mac[2];
503 	__le32 bssid[2];
504 };
505 
506 /*
507  * Private structure for storing STA details
508  * wcid: Wireless Client ID
509  */
510 struct rt2x00_sta {
511 	int wcid;
512 };
513 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)514 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
515 {
516 	return (struct rt2x00_sta *)sta->drv_priv;
517 }
518 
519 /*
520  * rt2x00lib callback functions.
521  */
522 struct rt2x00lib_ops {
523 	/*
524 	 * Interrupt handlers.
525 	 */
526 	irq_handler_t irq_handler;
527 
528 	/*
529 	 * TX status tasklet handler.
530 	 */
531 	void (*txstatus_tasklet) (unsigned long data);
532 	void (*pretbtt_tasklet) (unsigned long data);
533 	void (*tbtt_tasklet) (unsigned long data);
534 	void (*rxdone_tasklet) (unsigned long data);
535 	void (*autowake_tasklet) (unsigned long data);
536 
537 	/*
538 	 * Device init handlers.
539 	 */
540 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
541 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
542 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
543 			       const u8 *data, const size_t len);
544 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
545 			      const u8 *data, const size_t len);
546 
547 	/*
548 	 * Device initialization/deinitialization handlers.
549 	 */
550 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
551 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
552 
553 	/*
554 	 * queue initialization handlers
555 	 */
556 	bool (*get_entry_state) (struct queue_entry *entry);
557 	void (*clear_entry) (struct queue_entry *entry);
558 
559 	/*
560 	 * Radio control handlers.
561 	 */
562 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
563 				 enum dev_state state);
564 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
565 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
566 			    struct link_qual *qual);
567 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
568 			     struct link_qual *qual);
569 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
570 			    struct link_qual *qual, const u32 count);
571 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
572 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
573 
574 	/*
575 	 * Data queue handlers.
576 	 */
577 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
578 	void (*start_queue) (struct data_queue *queue);
579 	void (*kick_queue) (struct data_queue *queue);
580 	void (*stop_queue) (struct data_queue *queue);
581 	void (*flush_queue) (struct data_queue *queue, bool drop);
582 	void (*tx_dma_done) (struct queue_entry *entry);
583 
584 	/*
585 	 * TX control handlers
586 	 */
587 	void (*write_tx_desc) (struct queue_entry *entry,
588 			       struct txentry_desc *txdesc);
589 	void (*write_tx_data) (struct queue_entry *entry,
590 			       struct txentry_desc *txdesc);
591 	void (*write_beacon) (struct queue_entry *entry,
592 			      struct txentry_desc *txdesc);
593 	void (*clear_beacon) (struct queue_entry *entry);
594 	int (*get_tx_data_len) (struct queue_entry *entry);
595 
596 	/*
597 	 * RX control handlers
598 	 */
599 	void (*fill_rxdone) (struct queue_entry *entry,
600 			     struct rxdone_entry_desc *rxdesc);
601 
602 	/*
603 	 * Configuration handlers.
604 	 */
605 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
606 				  struct rt2x00lib_crypto *crypto,
607 				  struct ieee80211_key_conf *key);
608 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
609 				    struct rt2x00lib_crypto *crypto,
610 				    struct ieee80211_key_conf *key);
611 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
612 			       const unsigned int filter_flags);
613 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
614 			     struct rt2x00_intf *intf,
615 			     struct rt2x00intf_conf *conf,
616 			     const unsigned int flags);
617 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
618 #define CONFIG_UPDATE_MAC		( 1 << 2 )
619 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
620 
621 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
622 			    struct rt2x00lib_erp *erp,
623 			    u32 changed);
624 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
625 			    struct antenna_setup *ant);
626 	void (*config) (struct rt2x00_dev *rt2x00dev,
627 			struct rt2x00lib_conf *libconf,
628 			const unsigned int changed_flags);
629 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
630 			struct ieee80211_vif *vif,
631 			struct ieee80211_sta *sta);
632 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
633 			   struct ieee80211_sta *sta);
634 };
635 
636 /*
637  * rt2x00 driver callback operation structure.
638  */
639 struct rt2x00_ops {
640 	const char *name;
641 	const unsigned int drv_data_size;
642 	const unsigned int max_ap_intf;
643 	const unsigned int eeprom_size;
644 	const unsigned int rf_size;
645 	const unsigned int tx_queues;
646 	void (*queue_init)(struct data_queue *queue);
647 	const struct rt2x00lib_ops *lib;
648 	const void *drv;
649 	const struct ieee80211_ops *hw;
650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
651 	const struct rt2x00debug *debugfs;
652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
653 };
654 
655 /*
656  * rt2x00 state flags
657  */
658 enum rt2x00_state_flags {
659 	/*
660 	 * Device flags
661 	 */
662 	DEVICE_STATE_PRESENT,
663 	DEVICE_STATE_REGISTERED_HW,
664 	DEVICE_STATE_INITIALIZED,
665 	DEVICE_STATE_STARTED,
666 	DEVICE_STATE_ENABLED_RADIO,
667 	DEVICE_STATE_SCANNING,
668 
669 	/*
670 	 * Driver configuration
671 	 */
672 	CONFIG_CHANNEL_HT40,
673 	CONFIG_POWERSAVING,
674 	CONFIG_HT_DISABLED,
675 	CONFIG_QOS_DISABLED,
676 	CONFIG_MONITORING,
677 
678 	/*
679 	 * Mark we currently are sequentially reading TX_STA_FIFO register
680 	 * FIXME: this is for only rt2800usb, should go to private data
681 	 */
682 	TX_STATUS_READING,
683 };
684 
685 /*
686  * rt2x00 capability flags
687  */
688 enum rt2x00_capability_flags {
689 	/*
690 	 * Requirements
691 	 */
692 	REQUIRE_FIRMWARE,
693 	REQUIRE_BEACON_GUARD,
694 	REQUIRE_ATIM_QUEUE,
695 	REQUIRE_DMA,
696 	REQUIRE_COPY_IV,
697 	REQUIRE_L2PAD,
698 	REQUIRE_TXSTATUS_FIFO,
699 	REQUIRE_TASKLET_CONTEXT,
700 	REQUIRE_SW_SEQNO,
701 	REQUIRE_HT_TX_DESC,
702 	REQUIRE_PS_AUTOWAKE,
703 	REQUIRE_DELAYED_RFKILL,
704 
705 	/*
706 	 * Capabilities
707 	 */
708 	CAPABILITY_HW_BUTTON,
709 	CAPABILITY_HW_CRYPTO,
710 	CAPABILITY_POWER_LIMIT,
711 	CAPABILITY_CONTROL_FILTERS,
712 	CAPABILITY_CONTROL_FILTER_PSPOLL,
713 	CAPABILITY_PRE_TBTT_INTERRUPT,
714 	CAPABILITY_LINK_TUNING,
715 	CAPABILITY_FRAME_TYPE,
716 	CAPABILITY_RF_SEQUENCE,
717 	CAPABILITY_EXTERNAL_LNA_A,
718 	CAPABILITY_EXTERNAL_LNA_BG,
719 	CAPABILITY_DOUBLE_ANTENNA,
720 	CAPABILITY_BT_COEXIST,
721 	CAPABILITY_VCO_RECALIBRATION,
722 	CAPABILITY_EXTERNAL_PA_TX0,
723 	CAPABILITY_EXTERNAL_PA_TX1,
724 };
725 
726 /*
727  * Interface combinations
728  */
729 enum {
730 	IF_COMB_AP = 0,
731 	NUM_IF_COMB,
732 };
733 
734 /*
735  * rt2x00 device structure.
736  */
737 struct rt2x00_dev {
738 	/*
739 	 * Device structure.
740 	 * The structure stored in here depends on the
741 	 * system bus (PCI or USB).
742 	 * When accessing this variable, the rt2x00dev_{pci,usb}
743 	 * macros should be used for correct typecasting.
744 	 */
745 	struct device *dev;
746 
747 	/*
748 	 * Callback functions.
749 	 */
750 	const struct rt2x00_ops *ops;
751 
752 	/*
753 	 * Driver data.
754 	 */
755 	void *drv_data;
756 
757 	/*
758 	 * IEEE80211 control structure.
759 	 */
760 	struct ieee80211_hw *hw;
761 	struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
762 	enum nl80211_band curr_band;
763 	int curr_freq;
764 
765 	/*
766 	 * If enabled, the debugfs interface structures
767 	 * required for deregistration of debugfs.
768 	 */
769 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
770 	struct rt2x00debug_intf *debugfs_intf;
771 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
772 
773 	/*
774 	 * LED structure for changing the LED status
775 	 * by mac8011 or the kernel.
776 	 */
777 #ifdef CONFIG_RT2X00_LIB_LEDS
778 	struct rt2x00_led led_radio;
779 	struct rt2x00_led led_assoc;
780 	struct rt2x00_led led_qual;
781 	u16 led_mcu_reg;
782 #endif /* CONFIG_RT2X00_LIB_LEDS */
783 
784 	/*
785 	 * Device state flags.
786 	 * In these flags the current status is stored.
787 	 * Access to these flags should occur atomically.
788 	 */
789 	unsigned long flags;
790 
791 	/*
792 	 * Device capabiltiy flags.
793 	 * In these flags the device/driver capabilities are stored.
794 	 * Access to these flags should occur non-atomically.
795 	 */
796 	unsigned long cap_flags;
797 
798 	/*
799 	 * Device information, Bus IRQ and name (PCI, SoC)
800 	 */
801 	int irq;
802 	const char *name;
803 
804 	/*
805 	 * Chipset identification.
806 	 */
807 	struct rt2x00_chip chip;
808 
809 	/*
810 	 * hw capability specifications.
811 	 */
812 	struct hw_mode_spec spec;
813 
814 	/*
815 	 * This is the default TX/RX antenna setup as indicated
816 	 * by the device's EEPROM.
817 	 */
818 	struct antenna_setup default_ant;
819 
820 	/*
821 	 * Register pointers
822 	 * csr.base: CSR base register address. (PCI)
823 	 * csr.cache: CSR cache for usb_control_msg. (USB)
824 	 */
825 	union csr {
826 		void __iomem *base;
827 		void *cache;
828 	} csr;
829 
830 	/*
831 	 * Mutex to protect register accesses.
832 	 * For PCI and USB devices it protects against concurrent indirect
833 	 * register access (BBP, RF, MCU) since accessing those
834 	 * registers require multiple calls to the CSR registers.
835 	 * For USB devices it also protects the csr_cache since that
836 	 * field is used for normal CSR access and it cannot support
837 	 * multiple callers simultaneously.
838 	 */
839 	struct mutex csr_mutex;
840 
841 	/*
842 	 * Mutex to synchronize config and link tuner.
843 	 */
844 	struct mutex conf_mutex;
845 	/*
846 	 * Current packet filter configuration for the device.
847 	 * This contains all currently active FIF_* flags send
848 	 * to us by mac80211 during configure_filter().
849 	 */
850 	unsigned int packet_filter;
851 
852 	/*
853 	 * Interface details:
854 	 *  - Open ap interface count.
855 	 *  - Open sta interface count.
856 	 *  - Association count.
857 	 *  - Beaconing enabled count.
858 	 */
859 	unsigned int intf_ap_count;
860 	unsigned int intf_sta_count;
861 	unsigned int intf_associated;
862 	unsigned int intf_beaconing;
863 
864 	/*
865 	 * Interface combinations
866 	 */
867 	struct ieee80211_iface_limit if_limits_ap;
868 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
869 
870 	/*
871 	 * Link quality
872 	 */
873 	struct link link;
874 
875 	/*
876 	 * EEPROM data.
877 	 */
878 	__le16 *eeprom;
879 
880 	/*
881 	 * Active RF register values.
882 	 * These are stored here so we don't need
883 	 * to read the rf registers and can directly
884 	 * use this value instead.
885 	 * This field should be accessed by using
886 	 * rt2x00_rf_read() and rt2x00_rf_write().
887 	 */
888 	u32 *rf;
889 
890 	/*
891 	 * LNA gain
892 	 */
893 	short lna_gain;
894 
895 	/*
896 	 * Current TX power value.
897 	 */
898 	u16 tx_power;
899 
900 	/*
901 	 * Current retry values.
902 	 */
903 	u8 short_retry;
904 	u8 long_retry;
905 
906 	/*
907 	 * Rssi <-> Dbm offset
908 	 */
909 	u8 rssi_offset;
910 
911 	/*
912 	 * Frequency offset.
913 	 */
914 	u8 freq_offset;
915 
916 	/*
917 	 * Association id.
918 	 */
919 	u16 aid;
920 
921 	/*
922 	 * Beacon interval.
923 	 */
924 	u16 beacon_int;
925 
926 	/**
927 	 * Timestamp of last received beacon
928 	 */
929 	unsigned long last_beacon;
930 
931 	/*
932 	 * Low level statistics which will have
933 	 * to be kept up to date while device is running.
934 	 */
935 	struct ieee80211_low_level_stats low_level_stats;
936 
937 	/**
938 	 * Work queue for all work which should not be placed
939 	 * on the mac80211 workqueue (because of dependencies
940 	 * between various work structures).
941 	 */
942 	struct workqueue_struct *workqueue;
943 
944 	/*
945 	 * Scheduled work.
946 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
947 	 * which means it cannot be placed on the hw->workqueue
948 	 * due to RTNL locking requirements.
949 	 */
950 	struct work_struct intf_work;
951 
952 	/**
953 	 * Scheduled work for TX/RX done handling (USB devices)
954 	 */
955 	struct work_struct rxdone_work;
956 	struct work_struct txdone_work;
957 
958 	/*
959 	 * Powersaving work
960 	 */
961 	struct delayed_work autowakeup_work;
962 	struct work_struct sleep_work;
963 
964 	/*
965 	 * Data queue arrays for RX, TX, Beacon and ATIM.
966 	 */
967 	unsigned int data_queues;
968 	struct data_queue *rx;
969 	struct data_queue *tx;
970 	struct data_queue *bcn;
971 	struct data_queue *atim;
972 
973 	/*
974 	 * Firmware image.
975 	 */
976 	const struct firmware *fw;
977 
978 	/*
979 	 * FIFO for storing tx status reports between isr and tasklet.
980 	 */
981 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
982 
983 	/*
984 	 * Timer to ensure tx status reports are read (rt2800usb).
985 	 */
986 	struct hrtimer txstatus_timer;
987 
988 	/*
989 	 * Tasklet for processing tx status reports (rt2800pci).
990 	 */
991 	struct tasklet_struct txstatus_tasklet;
992 	struct tasklet_struct pretbtt_tasklet;
993 	struct tasklet_struct tbtt_tasklet;
994 	struct tasklet_struct rxdone_tasklet;
995 	struct tasklet_struct autowake_tasklet;
996 
997 	/*
998 	 * Used for VCO periodic calibration.
999 	 */
1000 	int rf_channel;
1001 
1002 	/*
1003 	 * Protect the interrupt mask register.
1004 	 */
1005 	spinlock_t irqmask_lock;
1006 
1007 	/*
1008 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
1009 	 */
1010 	struct list_head bar_list;
1011 	spinlock_t bar_list_lock;
1012 
1013 	/* Extra TX headroom required for alignment purposes. */
1014 	unsigned int extra_tx_headroom;
1015 
1016 	struct usb_anchor *anchor;
1017 
1018 	/* Clock for System On Chip devices. */
1019 	struct clk *clk;
1020 };
1021 
1022 struct rt2x00_bar_list_entry {
1023 	struct list_head list;
1024 	struct rcu_head head;
1025 
1026 	struct queue_entry *entry;
1027 	int block_acked;
1028 
1029 	/* Relevant parts of the IEEE80211 BAR header */
1030 	__u8 ra[6];
1031 	__u8 ta[6];
1032 	__le16 control;
1033 	__le16 start_seq_num;
1034 };
1035 
1036 /*
1037  * Register defines.
1038  * Some registers require multiple attempts before success,
1039  * in those cases REGISTER_BUSY_COUNT attempts should be
1040  * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1041  * bus delays, we do not have to loop so many times to wait
1042  * for valid register value on that bus.
1043  */
1044 #define REGISTER_BUSY_COUNT	100
1045 #define REGISTER_USB_BUSY_COUNT 20
1046 #define REGISTER_BUSY_DELAY	100
1047 
1048 /*
1049  * Generic RF access.
1050  * The RF is being accessed by word index.
1051  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1052 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1053 				 const unsigned int word)
1054 {
1055 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1056 	return rt2x00dev->rf[word - 1];
1057 }
1058 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1059 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1060 				   const unsigned int word, u32 data)
1061 {
1062 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1063 	rt2x00dev->rf[word - 1] = data;
1064 }
1065 
1066 /*
1067  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1068  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1069 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1070 				       const unsigned int word)
1071 {
1072 	return (void *)&rt2x00dev->eeprom[word];
1073 }
1074 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1075 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1076 				     const unsigned int word)
1077 {
1078 	return le16_to_cpu(rt2x00dev->eeprom[word]);
1079 }
1080 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1081 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1082 				       const unsigned int word, u16 data)
1083 {
1084 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1085 }
1086 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1087 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1088 				    const unsigned int byte)
1089 {
1090 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1091 }
1092 
1093 /*
1094  * Chipset handlers
1095  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1096 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1097 				   const u16 rt, const u16 rf, const u16 rev)
1098 {
1099 	rt2x00dev->chip.rt = rt;
1100 	rt2x00dev->chip.rf = rf;
1101 	rt2x00dev->chip.rev = rev;
1102 
1103 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1104 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1105 		    rt2x00dev->chip.rev);
1106 }
1107 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1108 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1109 				 const u16 rt, const u16 rev)
1110 {
1111 	rt2x00dev->chip.rt = rt;
1112 	rt2x00dev->chip.rev = rev;
1113 
1114 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1115 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1116 }
1117 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1118 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1119 {
1120 	rt2x00dev->chip.rf = rf;
1121 
1122 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1123 		    rt2x00dev->chip.rf);
1124 }
1125 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1126 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1127 {
1128 	return (rt2x00dev->chip.rt == rt);
1129 }
1130 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1131 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1132 {
1133 	return (rt2x00dev->chip.rf == rf);
1134 }
1135 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1136 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1137 {
1138 	return rt2x00dev->chip.rev;
1139 }
1140 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1141 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1142 				 const u16 rt, const u16 rev)
1143 {
1144 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1145 }
1146 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1147 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1148 				    const u16 rt, const u16 rev)
1149 {
1150 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1151 }
1152 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1153 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1154 				     const u16 rt, const u16 rev)
1155 {
1156 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1157 }
1158 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1159 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1160 					enum rt2x00_chip_intf intf)
1161 {
1162 	rt2x00dev->chip.intf = intf;
1163 }
1164 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1165 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1166 			       enum rt2x00_chip_intf intf)
1167 {
1168 	return (rt2x00dev->chip.intf == intf);
1169 }
1170 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1171 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1172 {
1173 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1174 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1175 }
1176 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1177 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1178 {
1179 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1180 }
1181 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1182 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1183 {
1184 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1185 }
1186 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1187 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1188 {
1189 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1190 }
1191 
1192 /* Helpers for capability flags */
1193 
1194 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1195 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1196 		    enum rt2x00_capability_flags cap_flag)
1197 {
1198 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1199 }
1200 
1201 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1202 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1203 {
1204 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1205 }
1206 
1207 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1208 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1209 {
1210 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1211 }
1212 
1213 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1214 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1215 {
1216 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1217 }
1218 
1219 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1220 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1221 {
1222 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1223 }
1224 
1225 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1226 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1227 {
1228 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1229 }
1230 
1231 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1232 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1233 {
1234 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1235 }
1236 
1237 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1238 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1239 {
1240 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1241 }
1242 
1243 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1244 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1245 {
1246 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1247 }
1248 
1249 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1250 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1251 {
1252 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1253 }
1254 
1255 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1256 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1257 {
1258 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1259 }
1260 
1261 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1262 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1263 {
1264 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1265 }
1266 
1267 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1268 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1269 {
1270 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1271 }
1272 
1273 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1274 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1275 {
1276 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1277 }
1278 
1279 /**
1280  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1281  * @entry: Pointer to &struct queue_entry
1282  *
1283  * Returns -ENOMEM if mapping fail, 0 otherwise.
1284  */
1285 int rt2x00queue_map_txskb(struct queue_entry *entry);
1286 
1287 /**
1288  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1289  * @entry: Pointer to &struct queue_entry
1290  */
1291 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1292 
1293 /**
1294  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1295  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1296  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1297  *
1298  * Returns NULL for non tx queues.
1299  */
1300 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1301 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1302 			 const enum data_queue_qid queue)
1303 {
1304 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1305 		return &rt2x00dev->tx[queue];
1306 
1307 	if (queue == QID_ATIM)
1308 		return rt2x00dev->atim;
1309 
1310 	return NULL;
1311 }
1312 
1313 /**
1314  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1315  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1316  * @index: Index identifier for obtaining the correct index.
1317  */
1318 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1319 					  enum queue_index index);
1320 
1321 /**
1322  * rt2x00queue_pause_queue - Pause a data queue
1323  * @queue: Pointer to &struct data_queue.
1324  *
1325  * This function will pause the data queue locally, preventing
1326  * new frames to be added to the queue (while the hardware is
1327  * still allowed to run).
1328  */
1329 void rt2x00queue_pause_queue(struct data_queue *queue);
1330 
1331 /**
1332  * rt2x00queue_unpause_queue - unpause a data queue
1333  * @queue: Pointer to &struct data_queue.
1334  *
1335  * This function will unpause the data queue locally, allowing
1336  * new frames to be added to the queue again.
1337  */
1338 void rt2x00queue_unpause_queue(struct data_queue *queue);
1339 
1340 /**
1341  * rt2x00queue_start_queue - Start a data queue
1342  * @queue: Pointer to &struct data_queue.
1343  *
1344  * This function will start handling all pending frames in the queue.
1345  */
1346 void rt2x00queue_start_queue(struct data_queue *queue);
1347 
1348 /**
1349  * rt2x00queue_stop_queue - Halt a data queue
1350  * @queue: Pointer to &struct data_queue.
1351  *
1352  * This function will stop all pending frames in the queue.
1353  */
1354 void rt2x00queue_stop_queue(struct data_queue *queue);
1355 
1356 /**
1357  * rt2x00queue_flush_queue - Flush a data queue
1358  * @queue: Pointer to &struct data_queue.
1359  * @drop: True to drop all pending frames.
1360  *
1361  * This function will flush the queue. After this call
1362  * the queue is guaranteed to be empty.
1363  */
1364 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1365 
1366 /**
1367  * rt2x00queue_start_queues - Start all data queues
1368  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1369  *
1370  * This function will loop through all available queues to start them
1371  */
1372 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1373 
1374 /**
1375  * rt2x00queue_stop_queues - Halt all data queues
1376  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1377  *
1378  * This function will loop through all available queues to stop
1379  * any pending frames.
1380  */
1381 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1382 
1383 /**
1384  * rt2x00queue_flush_queues - Flush all data queues
1385  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1386  * @drop: True to drop all pending frames.
1387  *
1388  * This function will loop through all available queues to flush
1389  * any pending frames.
1390  */
1391 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1392 
1393 /*
1394  * Debugfs handlers.
1395  */
1396 /**
1397  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1398  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1399  * @type: The type of frame that is being dumped.
1400  * @entry: The queue entry containing the frame to be dumped.
1401  */
1402 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1403 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1404 			    enum rt2x00_dump_type type, struct queue_entry *entry);
1405 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1406 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1407 					  enum rt2x00_dump_type type,
1408 					  struct queue_entry *entry)
1409 {
1410 }
1411 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1412 
1413 /*
1414  * Utility functions.
1415  */
1416 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1417 			 struct ieee80211_vif *vif);
1418 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1419 
1420 /*
1421  * Interrupt context handlers.
1422  */
1423 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1424 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1425 void rt2x00lib_dmastart(struct queue_entry *entry);
1426 void rt2x00lib_dmadone(struct queue_entry *entry);
1427 void rt2x00lib_txdone(struct queue_entry *entry,
1428 		      struct txdone_entry_desc *txdesc);
1429 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1430 			      struct txdone_entry_desc *txdesc);
1431 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1432 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1433 
1434 /*
1435  * mac80211 handlers.
1436  */
1437 void rt2x00mac_tx(struct ieee80211_hw *hw,
1438 		  struct ieee80211_tx_control *control,
1439 		  struct sk_buff *skb);
1440 int rt2x00mac_start(struct ieee80211_hw *hw);
1441 void rt2x00mac_stop(struct ieee80211_hw *hw);
1442 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1443 			    struct ieee80211_vif *vif);
1444 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1445 				struct ieee80211_vif *vif);
1446 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1447 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1448 				unsigned int changed_flags,
1449 				unsigned int *total_flags,
1450 				u64 multicast);
1451 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1452 		      bool set);
1453 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1454 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1455 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1456 		      struct ieee80211_key_conf *key);
1457 #else
1458 #define rt2x00mac_set_key	NULL
1459 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1460 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1461 			     struct ieee80211_vif *vif,
1462 			     const u8 *mac_addr);
1463 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1464 				struct ieee80211_vif *vif);
1465 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1466 			struct ieee80211_low_level_stats *stats);
1467 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1468 				struct ieee80211_vif *vif,
1469 				struct ieee80211_bss_conf *bss_conf,
1470 				u32 changes);
1471 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1472 		      struct ieee80211_vif *vif, u16 queue,
1473 		      const struct ieee80211_tx_queue_params *params);
1474 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1475 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1476 		     u32 queues, bool drop);
1477 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1478 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1479 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1480 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1481 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1482 
1483 /*
1484  * Driver allocation handlers.
1485  */
1486 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1487 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1488 #ifdef CONFIG_PM
1489 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1490 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1491 #endif /* CONFIG_PM */
1492 
1493 #endif /* RT2X00_H */
1494