1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Block data types and constants.  Directly include this file only to
4  * break include dependency loop.
5  */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8 
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/ktime.h>
12 
13 struct bio_set;
14 struct bio;
15 struct bio_integrity_payload;
16 struct page;
17 struct block_device;
18 struct io_context;
19 struct cgroup_subsys_state;
20 typedef void (bio_end_io_t) (struct bio *);
21 
22 /*
23  * Block error status values.  See block/blk-core:blk_errors for the details.
24  * Alpha cannot write a byte atomically, so we need to use 32-bit value.
25  */
26 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
27 typedef u32 __bitwise blk_status_t;
28 #else
29 typedef u8 __bitwise blk_status_t;
30 #endif
31 #define	BLK_STS_OK 0
32 #define BLK_STS_NOTSUPP		((__force blk_status_t)1)
33 #define BLK_STS_TIMEOUT		((__force blk_status_t)2)
34 #define BLK_STS_NOSPC		((__force blk_status_t)3)
35 #define BLK_STS_TRANSPORT	((__force blk_status_t)4)
36 #define BLK_STS_TARGET		((__force blk_status_t)5)
37 #define BLK_STS_NEXUS		((__force blk_status_t)6)
38 #define BLK_STS_MEDIUM		((__force blk_status_t)7)
39 #define BLK_STS_PROTECTION	((__force blk_status_t)8)
40 #define BLK_STS_RESOURCE	((__force blk_status_t)9)
41 #define BLK_STS_IOERR		((__force blk_status_t)10)
42 
43 /* hack for device mapper, don't use elsewhere: */
44 #define BLK_STS_DM_REQUEUE    ((__force blk_status_t)11)
45 
46 #define BLK_STS_AGAIN		((__force blk_status_t)12)
47 
48 /*
49  * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
50  * device related resources are unavailable, but the driver can guarantee
51  * that the queue will be rerun in the future once resources become
52  * available again. This is typically the case for device specific
53  * resources that are consumed for IO. If the driver fails allocating these
54  * resources, we know that inflight (or pending) IO will free these
55  * resource upon completion.
56  *
57  * This is different from BLK_STS_RESOURCE in that it explicitly references
58  * a device specific resource. For resources of wider scope, allocation
59  * failure can happen without having pending IO. This means that we can't
60  * rely on request completions freeing these resources, as IO may not be in
61  * flight. Examples of that are kernel memory allocations, DMA mappings, or
62  * any other system wide resources.
63  */
64 #define BLK_STS_DEV_RESOURCE	((__force blk_status_t)13)
65 
66 /**
67  * blk_path_error - returns true if error may be path related
68  * @error: status the request was completed with
69  *
70  * Description:
71  *     This classifies block error status into non-retryable errors and ones
72  *     that may be successful if retried on a failover path.
73  *
74  * Return:
75  *     %false - retrying failover path will not help
76  *     %true  - may succeed if retried
77  */
blk_path_error(blk_status_t error)78 static inline bool blk_path_error(blk_status_t error)
79 {
80 	switch (error) {
81 	case BLK_STS_NOTSUPP:
82 	case BLK_STS_NOSPC:
83 	case BLK_STS_TARGET:
84 	case BLK_STS_NEXUS:
85 	case BLK_STS_MEDIUM:
86 	case BLK_STS_PROTECTION:
87 		return false;
88 	}
89 
90 	/* Anything else could be a path failure, so should be retried */
91 	return true;
92 }
93 
94 /*
95  * From most significant bit:
96  * 1 bit: reserved for other usage, see below
97  * 12 bits: original size of bio
98  * 51 bits: issue time of bio
99  */
100 #define BIO_ISSUE_RES_BITS      1
101 #define BIO_ISSUE_SIZE_BITS     12
102 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
103 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
104 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
105 #define BIO_ISSUE_SIZE_MASK     \
106 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
107 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
108 
109 /* Reserved bit for blk-throtl */
110 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
111 
112 struct bio_issue {
113 	u64 value;
114 };
115 
__bio_issue_time(u64 time)116 static inline u64 __bio_issue_time(u64 time)
117 {
118 	return time & BIO_ISSUE_TIME_MASK;
119 }
120 
bio_issue_time(struct bio_issue * issue)121 static inline u64 bio_issue_time(struct bio_issue *issue)
122 {
123 	return __bio_issue_time(issue->value);
124 }
125 
bio_issue_size(struct bio_issue * issue)126 static inline sector_t bio_issue_size(struct bio_issue *issue)
127 {
128 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
129 }
130 
bio_issue_init(struct bio_issue * issue,sector_t size)131 static inline void bio_issue_init(struct bio_issue *issue,
132 				       sector_t size)
133 {
134 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
135 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
136 			(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
137 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
138 }
139 
140 /*
141  * main unit of I/O for the block layer and lower layers (ie drivers and
142  * stacking drivers)
143  */
144 struct bio {
145 	struct bio		*bi_next;	/* request queue link */
146 	struct gendisk		*bi_disk;
147 	unsigned int		bi_opf;		/* bottom bits req flags,
148 						 * top bits REQ_OP. Use
149 						 * accessors.
150 						 */
151 	unsigned short		bi_flags;	/* status, etc and bvec pool number */
152 	unsigned short		bi_ioprio;
153 	unsigned short		bi_write_hint;
154 	blk_status_t		bi_status;
155 	u8			bi_partno;
156 
157 	struct bvec_iter	bi_iter;
158 
159 	atomic_t		__bi_remaining;
160 	bio_end_io_t		*bi_end_io;
161 
162 	void			*bi_private;
163 #ifdef CONFIG_BLK_CGROUP
164 	/*
165 	 * Represents the association of the css and request_queue for the bio.
166 	 * If a bio goes direct to device, it will not have a blkg as it will
167 	 * not have a request_queue associated with it.  The reference is put
168 	 * on release of the bio.
169 	 */
170 	struct blkcg_gq		*bi_blkg;
171 	struct bio_issue	bi_issue;
172 #ifdef CONFIG_BLK_CGROUP_IOCOST
173 	u64			bi_iocost_cost;
174 #endif
175 #endif
176 	union {
177 #if defined(CONFIG_BLK_DEV_INTEGRITY)
178 		struct bio_integrity_payload *bi_integrity; /* data integrity */
179 #endif
180 	};
181 
182 	unsigned short		bi_vcnt;	/* how many bio_vec's */
183 
184 	/*
185 	 * Everything starting with bi_max_vecs will be preserved by bio_reset()
186 	 */
187 
188 	unsigned short		bi_max_vecs;	/* max bvl_vecs we can hold */
189 
190 	atomic_t		__bi_cnt;	/* pin count */
191 
192 	struct bio_vec		*bi_io_vec;	/* the actual vec list */
193 
194 	struct bio_set		*bi_pool;
195 
196 	/*
197 	 * We can inline a number of vecs at the end of the bio, to avoid
198 	 * double allocations for a small number of bio_vecs. This member
199 	 * MUST obviously be kept at the very end of the bio.
200 	 */
201 	struct bio_vec		bi_inline_vecs[0];
202 };
203 
204 #define BIO_RESET_BYTES		offsetof(struct bio, bi_max_vecs)
205 
206 /*
207  * bio flags
208  */
209 enum {
210 	BIO_NO_PAGE_REF,	/* don't put release vec pages */
211 	BIO_CLONED,		/* doesn't own data */
212 	BIO_BOUNCED,		/* bio is a bounce bio */
213 	BIO_USER_MAPPED,	/* contains user pages */
214 	BIO_NULL_MAPPED,	/* contains invalid user pages */
215 	BIO_WORKINGSET,		/* contains userspace workingset pages */
216 	BIO_QUIET,		/* Make BIO Quiet */
217 	BIO_CHAIN,		/* chained bio, ->bi_remaining in effect */
218 	BIO_REFFED,		/* bio has elevated ->bi_cnt */
219 	BIO_THROTTLED,		/* This bio has already been subjected to
220 				 * throttling rules. Don't do it again. */
221 	BIO_TRACE_COMPLETION,	/* bio_endio() should trace the final completion
222 				 * of this bio. */
223 	BIO_QUEUE_ENTERED,	/* can use blk_queue_enter_live() */
224 	BIO_TRACKED,		/* set if bio goes through the rq_qos path */
225 	BIO_FLAG_LAST
226 };
227 
228 /* See BVEC_POOL_OFFSET below before adding new flags */
229 
230 /*
231  * We support 6 different bvec pools, the last one is magic in that it
232  * is backed by a mempool.
233  */
234 #define BVEC_POOL_NR		6
235 #define BVEC_POOL_MAX		(BVEC_POOL_NR - 1)
236 
237 /*
238  * Top 3 bits of bio flags indicate the pool the bvecs came from.  We add
239  * 1 to the actual index so that 0 indicates that there are no bvecs to be
240  * freed.
241  */
242 #define BVEC_POOL_BITS		(3)
243 #define BVEC_POOL_OFFSET	(16 - BVEC_POOL_BITS)
244 #define BVEC_POOL_IDX(bio)	((bio)->bi_flags >> BVEC_POOL_OFFSET)
245 #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
246 # error "BVEC_POOL_BITS is too small"
247 #endif
248 
249 /*
250  * Flags starting here get preserved by bio_reset() - this includes
251  * only BVEC_POOL_IDX()
252  */
253 #define BIO_RESET_BITS	BVEC_POOL_OFFSET
254 
255 typedef __u32 __bitwise blk_mq_req_flags_t;
256 
257 /*
258  * Operations and flags common to the bio and request structures.
259  * We use 8 bits for encoding the operation, and the remaining 24 for flags.
260  *
261  * The least significant bit of the operation number indicates the data
262  * transfer direction:
263  *
264  *   - if the least significant bit is set transfers are TO the device
265  *   - if the least significant bit is not set transfers are FROM the device
266  *
267  * If a operation does not transfer data the least significant bit has no
268  * meaning.
269  */
270 #define REQ_OP_BITS	8
271 #define REQ_OP_MASK	((1 << REQ_OP_BITS) - 1)
272 #define REQ_FLAG_BITS	24
273 
274 enum req_opf {
275 	/* read sectors from the device */
276 	REQ_OP_READ		= 0,
277 	/* write sectors to the device */
278 	REQ_OP_WRITE		= 1,
279 	/* flush the volatile write cache */
280 	REQ_OP_FLUSH		= 2,
281 	/* discard sectors */
282 	REQ_OP_DISCARD		= 3,
283 	/* securely erase sectors */
284 	REQ_OP_SECURE_ERASE	= 5,
285 	/* reset a zone write pointer */
286 	REQ_OP_ZONE_RESET	= 6,
287 	/* write the same sector many times */
288 	REQ_OP_WRITE_SAME	= 7,
289 	/* reset all the zone present on the device */
290 	REQ_OP_ZONE_RESET_ALL	= 8,
291 	/* write the zero filled sector many times */
292 	REQ_OP_WRITE_ZEROES	= 9,
293 
294 	/* SCSI passthrough using struct scsi_request */
295 	REQ_OP_SCSI_IN		= 32,
296 	REQ_OP_SCSI_OUT		= 33,
297 	/* Driver private requests */
298 	REQ_OP_DRV_IN		= 34,
299 	REQ_OP_DRV_OUT		= 35,
300 
301 	REQ_OP_LAST,
302 };
303 
304 enum req_flag_bits {
305 	__REQ_FAILFAST_DEV =	/* no driver retries of device errors */
306 		REQ_OP_BITS,
307 	__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
308 	__REQ_FAILFAST_DRIVER,	/* no driver retries of driver errors */
309 	__REQ_SYNC,		/* request is sync (sync write or read) */
310 	__REQ_META,		/* metadata io request */
311 	__REQ_PRIO,		/* boost priority in cfq */
312 	__REQ_NOMERGE,		/* don't touch this for merging */
313 	__REQ_IDLE,		/* anticipate more IO after this one */
314 	__REQ_INTEGRITY,	/* I/O includes block integrity payload */
315 	__REQ_FUA,		/* forced unit access */
316 	__REQ_PREFLUSH,		/* request for cache flush */
317 	__REQ_RAHEAD,		/* read ahead, can fail anytime */
318 	__REQ_BACKGROUND,	/* background IO */
319 	__REQ_NOWAIT,           /* Don't wait if request will block */
320 	__REQ_NOWAIT_INLINE,	/* Return would-block error inline */
321 	/*
322 	 * When a shared kthread needs to issue a bio for a cgroup, doing
323 	 * so synchronously can lead to priority inversions as the kthread
324 	 * can be trapped waiting for that cgroup.  CGROUP_PUNT flag makes
325 	 * submit_bio() punt the actual issuing to a dedicated per-blkcg
326 	 * work item to avoid such priority inversions.
327 	 */
328 	__REQ_CGROUP_PUNT,
329 
330 	/* command specific flags for REQ_OP_WRITE_ZEROES: */
331 	__REQ_NOUNMAP,		/* do not free blocks when zeroing */
332 
333 	__REQ_HIPRI,
334 
335 	/* for driver use */
336 	__REQ_DRV,
337 	__REQ_SWAP,		/* swapping request. */
338 	__REQ_NR_BITS,		/* stops here */
339 };
340 
341 #define REQ_FAILFAST_DEV	(1ULL << __REQ_FAILFAST_DEV)
342 #define REQ_FAILFAST_TRANSPORT	(1ULL << __REQ_FAILFAST_TRANSPORT)
343 #define REQ_FAILFAST_DRIVER	(1ULL << __REQ_FAILFAST_DRIVER)
344 #define REQ_SYNC		(1ULL << __REQ_SYNC)
345 #define REQ_META		(1ULL << __REQ_META)
346 #define REQ_PRIO		(1ULL << __REQ_PRIO)
347 #define REQ_NOMERGE		(1ULL << __REQ_NOMERGE)
348 #define REQ_IDLE		(1ULL << __REQ_IDLE)
349 #define REQ_INTEGRITY		(1ULL << __REQ_INTEGRITY)
350 #define REQ_FUA			(1ULL << __REQ_FUA)
351 #define REQ_PREFLUSH		(1ULL << __REQ_PREFLUSH)
352 #define REQ_RAHEAD		(1ULL << __REQ_RAHEAD)
353 #define REQ_BACKGROUND		(1ULL << __REQ_BACKGROUND)
354 #define REQ_NOWAIT		(1ULL << __REQ_NOWAIT)
355 #define REQ_NOWAIT_INLINE	(1ULL << __REQ_NOWAIT_INLINE)
356 #define REQ_CGROUP_PUNT		(1ULL << __REQ_CGROUP_PUNT)
357 
358 #define REQ_NOUNMAP		(1ULL << __REQ_NOUNMAP)
359 #define REQ_HIPRI		(1ULL << __REQ_HIPRI)
360 
361 #define REQ_DRV			(1ULL << __REQ_DRV)
362 #define REQ_SWAP		(1ULL << __REQ_SWAP)
363 
364 #define REQ_FAILFAST_MASK \
365 	(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
366 
367 #define REQ_NOMERGE_FLAGS \
368 	(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
369 
370 enum stat_group {
371 	STAT_READ,
372 	STAT_WRITE,
373 	STAT_DISCARD,
374 
375 	NR_STAT_GROUPS
376 };
377 
378 #define bio_op(bio) \
379 	((bio)->bi_opf & REQ_OP_MASK)
380 #define req_op(req) \
381 	((req)->cmd_flags & REQ_OP_MASK)
382 
383 /* obsolete, don't use in new code */
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)384 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
385 		unsigned op_flags)
386 {
387 	bio->bi_opf = op | op_flags;
388 }
389 
op_is_write(unsigned int op)390 static inline bool op_is_write(unsigned int op)
391 {
392 	return (op & 1);
393 }
394 
395 /*
396  * Check if the bio or request is one that needs special treatment in the
397  * flush state machine.
398  */
op_is_flush(unsigned int op)399 static inline bool op_is_flush(unsigned int op)
400 {
401 	return op & (REQ_FUA | REQ_PREFLUSH);
402 }
403 
404 /*
405  * Reads are always treated as synchronous, as are requests with the FUA or
406  * PREFLUSH flag.  Other operations may be marked as synchronous using the
407  * REQ_SYNC flag.
408  */
op_is_sync(unsigned int op)409 static inline bool op_is_sync(unsigned int op)
410 {
411 	return (op & REQ_OP_MASK) == REQ_OP_READ ||
412 		(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
413 }
414 
op_is_discard(unsigned int op)415 static inline bool op_is_discard(unsigned int op)
416 {
417 	return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
418 }
419 
op_stat_group(unsigned int op)420 static inline int op_stat_group(unsigned int op)
421 {
422 	if (op_is_discard(op))
423 		return STAT_DISCARD;
424 	return op_is_write(op);
425 }
426 
427 typedef unsigned int blk_qc_t;
428 #define BLK_QC_T_NONE		-1U
429 #define BLK_QC_T_EAGAIN		-2U
430 #define BLK_QC_T_SHIFT		16
431 #define BLK_QC_T_INTERNAL	(1U << 31)
432 
blk_qc_t_valid(blk_qc_t cookie)433 static inline bool blk_qc_t_valid(blk_qc_t cookie)
434 {
435 	return cookie != BLK_QC_T_NONE && cookie != BLK_QC_T_EAGAIN;
436 }
437 
blk_qc_t_to_queue_num(blk_qc_t cookie)438 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
439 {
440 	return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
441 }
442 
blk_qc_t_to_tag(blk_qc_t cookie)443 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
444 {
445 	return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
446 }
447 
blk_qc_t_is_internal(blk_qc_t cookie)448 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
449 {
450 	return (cookie & BLK_QC_T_INTERNAL) != 0;
451 }
452 
453 struct blk_rq_stat {
454 	u64 mean;
455 	u64 min;
456 	u64 max;
457 	u32 nr_samples;
458 	u64 batch;
459 };
460 
461 #endif /* __LINUX_BLK_TYPES_H */
462