1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called COPYING.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <linuxwifi@intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  *****************************************************************************/
63 /*
64  * Please use this file (commands.h) only for uCode API definitions.
65  * Please use iwl-xxxx-hw.h for hardware-related definitions.
66  * Please use dev.h for driver implementation definitions.
67  */
68 
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71 
72 #include <linux/ieee80211.h>
73 #include <linux/types.h>
74 
75 
76 enum {
77 	REPLY_ALIVE = 0x1,
78 	REPLY_ERROR = 0x2,
79 	REPLY_ECHO = 0x3,		/* test command */
80 
81 	/* RXON and QOS commands */
82 	REPLY_RXON = 0x10,
83 	REPLY_RXON_ASSOC = 0x11,
84 	REPLY_QOS_PARAM = 0x13,
85 	REPLY_RXON_TIMING = 0x14,
86 
87 	/* Multi-Station support */
88 	REPLY_ADD_STA = 0x18,
89 	REPLY_REMOVE_STA = 0x19,
90 	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
91 	REPLY_TXFIFO_FLUSH = 0x1e,
92 
93 	/* Security */
94 	REPLY_WEPKEY = 0x20,
95 
96 	/* RX, TX, LEDs */
97 	REPLY_TX = 0x1c,
98 	REPLY_LEDS_CMD = 0x48,
99 	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100 
101 	/* WiMAX coexistence */
102 	COEX_PRIORITY_TABLE_CMD = 0x5a,
103 	COEX_MEDIUM_NOTIFICATION = 0x5b,
104 	COEX_EVENT_CMD = 0x5c,
105 
106 	/* Calibration */
107 	TEMPERATURE_NOTIFICATION = 0x62,
108 	CALIBRATION_CFG_CMD = 0x65,
109 	CALIBRATION_RES_NOTIFICATION = 0x66,
110 	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111 
112 	/* 802.11h related */
113 	REPLY_QUIET_CMD = 0x71,		/* not used */
114 	REPLY_CHANNEL_SWITCH = 0x72,
115 	CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118 
119 	/* Power Management */
120 	POWER_TABLE_CMD = 0x77,
121 	PM_SLEEP_NOTIFICATION = 0x7A,
122 	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123 
124 	/* Scan commands and notifications */
125 	REPLY_SCAN_CMD = 0x80,
126 	REPLY_SCAN_ABORT_CMD = 0x81,
127 	SCAN_START_NOTIFICATION = 0x82,
128 	SCAN_RESULTS_NOTIFICATION = 0x83,
129 	SCAN_COMPLETE_NOTIFICATION = 0x84,
130 
131 	/* IBSS/AP commands */
132 	BEACON_NOTIFICATION = 0x90,
133 	REPLY_TX_BEACON = 0x91,
134 	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
135 
136 	/* Miscellaneous commands */
137 	REPLY_TX_POWER_DBM_CMD = 0x95,
138 	QUIET_NOTIFICATION = 0x96,		/* not used */
139 	REPLY_TX_PWR_TABLE_CMD = 0x97,
140 	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
141 	TX_ANT_CONFIGURATION_CMD = 0x98,
142 	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
143 
144 	/* Bluetooth device coexistence config command */
145 	REPLY_BT_CONFIG = 0x9b,
146 
147 	/* Statistics */
148 	REPLY_STATISTICS_CMD = 0x9c,
149 	STATISTICS_NOTIFICATION = 0x9d,
150 
151 	/* RF-KILL commands and notifications */
152 	REPLY_CARD_STATE_CMD = 0xa0,
153 	CARD_STATE_NOTIFICATION = 0xa1,
154 
155 	/* Missed beacons notification */
156 	MISSED_BEACONS_NOTIFICATION = 0xa2,
157 
158 	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 	SENSITIVITY_CMD = 0xa8,
160 	REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 	REPLY_RX_PHY_CMD = 0xc0,
162 	REPLY_RX_MPDU_CMD = 0xc1,
163 	REPLY_RX = 0xc3,
164 	REPLY_COMPRESSED_BA = 0xc5,
165 
166 	/* BT Coex */
167 	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 	REPLY_BT_COEX_PROT_ENV = 0xcd,
169 	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170 
171 	/* PAN commands */
172 	REPLY_WIPAN_PARAMS = 0xb2,
173 	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
174 	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
175 	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
176 	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
177 	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
178 	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181 
182 	REPLY_WOWLAN_PATTERNS = 0xe0,
183 	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 	REPLY_WOWLAN_GET_STATUS = 0xe5,
188 	REPLY_D3_CONFIG = 0xd3,
189 
190 	REPLY_MAX = 0xff
191 };
192 
193 /*
194  * Minimum number of queues. MAX_NUM is defined in hw specific files.
195  * Set the minimum to accommodate
196  *  - 4 standard TX queues
197  *  - the command queue
198  *  - 4 PAN TX queues
199  *  - the PAN multicast queue, and
200  *  - the AUX (TX during scan dwell) queue.
201  */
202 #define IWL_MIN_NUM_QUEUES	11
203 
204 /*
205  * Command queue depends on iPAN support.
206  */
207 #define IWL_DEFAULT_CMD_QUEUE_NUM	4
208 #define IWL_IPAN_CMD_QUEUE_NUM		9
209 
210 #define IWL_TX_FIFO_BK		0	/* shared */
211 #define IWL_TX_FIFO_BE		1
212 #define IWL_TX_FIFO_VI		2	/* shared */
213 #define IWL_TX_FIFO_VO		3
214 #define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
215 #define IWL_TX_FIFO_BE_IPAN	4
216 #define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
217 #define IWL_TX_FIFO_VO_IPAN	5
218 /* re-uses the VO FIFO, uCode will properly flush/schedule */
219 #define IWL_TX_FIFO_AUX		5
220 #define IWL_TX_FIFO_UNUSED	255
221 
222 #define IWLAGN_CMD_FIFO_NUM	7
223 
224 /*
225  * This queue number is required for proper operation
226  * because the ucode will stop/start the scheduler as
227  * required.
228  */
229 #define IWL_IPAN_MCAST_QUEUE	8
230 
231 /******************************************************************************
232  * (0)
233  * Commonly used structures and definitions:
234  * Command header, rate_n_flags, txpower
235  *
236  *****************************************************************************/
237 
238 /**
239  * iwlagn rate_n_flags bit fields
240  *
241  * rate_n_flags format is used in following iwlagn commands:
242  *  REPLY_RX (response only)
243  *  REPLY_RX_MPDU (response only)
244  *  REPLY_TX (both command and response)
245  *  REPLY_TX_LINK_QUALITY_CMD
246  *
247  * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248  *  2-0:  0)   6 Mbps
249  *        1)  12 Mbps
250  *        2)  18 Mbps
251  *        3)  24 Mbps
252  *        4)  36 Mbps
253  *        5)  48 Mbps
254  *        6)  54 Mbps
255  *        7)  60 Mbps
256  *
257  *  4-3:  0)  Single stream (SISO)
258  *        1)  Dual stream (MIMO)
259  *        2)  Triple stream (MIMO)
260  *
261  *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262  *
263  * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264  *  3-0:  0xD)   6 Mbps
265  *        0xF)   9 Mbps
266  *        0x5)  12 Mbps
267  *        0x7)  18 Mbps
268  *        0x9)  24 Mbps
269  *        0xB)  36 Mbps
270  *        0x1)  48 Mbps
271  *        0x3)  54 Mbps
272  *
273  * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274  *  6-0:   10)  1 Mbps
275  *         20)  2 Mbps
276  *         55)  5.5 Mbps
277  *        110)  11 Mbps
278  */
279 #define RATE_MCS_CODE_MSK 0x7
280 #define RATE_MCS_SPATIAL_POS 3
281 #define RATE_MCS_SPATIAL_MSK 0x18
282 #define RATE_MCS_HT_DUP_POS 5
283 #define RATE_MCS_HT_DUP_MSK 0x20
284 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285 #define RATE_MCS_RATE_MSK 0xff
286 
287 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288 #define RATE_MCS_FLAGS_POS 8
289 #define RATE_MCS_HT_POS 8
290 #define RATE_MCS_HT_MSK 0x100
291 
292 /* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
293 #define RATE_MCS_CCK_POS 9
294 #define RATE_MCS_CCK_MSK 0x200
295 
296 /* Bit 10: (1) Use Green Field preamble */
297 #define RATE_MCS_GF_POS 10
298 #define RATE_MCS_GF_MSK 0x400
299 
300 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301 #define RATE_MCS_HT40_POS 11
302 #define RATE_MCS_HT40_MSK 0x800
303 
304 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305 #define RATE_MCS_DUP_POS 12
306 #define RATE_MCS_DUP_MSK 0x1000
307 
308 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309 #define RATE_MCS_SGI_POS 13
310 #define RATE_MCS_SGI_MSK 0x2000
311 
312 /**
313  * rate_n_flags Tx antenna masks
314  * bit14:16
315  */
316 #define RATE_MCS_ANT_POS	14
317 #define RATE_MCS_ANT_A_MSK	0x04000
318 #define RATE_MCS_ANT_B_MSK	0x08000
319 #define RATE_MCS_ANT_C_MSK	0x10000
320 #define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
321 #define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
322 #define RATE_ANT_NUM 3
323 
324 #define POWER_TABLE_NUM_ENTRIES			33
325 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
326 #define POWER_TABLE_CCK_ENTRY			32
327 
328 #define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
329 #define IWL_PWR_CCK_ENTRIES			2
330 
331 /**
332  * struct tx_power_dual_stream
333  *
334  * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
335  *
336  * Same format as iwl_tx_power_dual_stream, but __le32
337  */
338 struct tx_power_dual_stream {
339 	__le32 dw;
340 } __packed;
341 
342 /**
343  * Command REPLY_TX_POWER_DBM_CMD = 0x98
344  * struct iwlagn_tx_power_dbm_cmd
345  */
346 #define IWLAGN_TX_POWER_AUTO 0x7f
347 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
348 
349 struct iwlagn_tx_power_dbm_cmd {
350 	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
351 	u8 flags;
352 	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
353 	u8 reserved;
354 } __packed;
355 
356 /**
357  * Command TX_ANT_CONFIGURATION_CMD = 0x98
358  * This command is used to configure valid Tx antenna.
359  * By default uCode concludes the valid antenna according to the radio flavor.
360  * This command enables the driver to override/modify this conclusion.
361  */
362 struct iwl_tx_ant_config_cmd {
363 	__le32 valid;
364 } __packed;
365 
366 /******************************************************************************
367  * (0a)
368  * Alive and Error Commands & Responses:
369  *
370  *****************************************************************************/
371 
372 #define UCODE_VALID_OK	cpu_to_le32(0x1)
373 
374 /**
375  * REPLY_ALIVE = 0x1 (response only, not a command)
376  *
377  * uCode issues this "alive" notification once the runtime image is ready
378  * to receive commands from the driver.  This is the *second* "alive"
379  * notification that the driver will receive after rebooting uCode;
380  * this "alive" is indicated by subtype field != 9.
381  *
382  * See comments documenting "BSM" (bootstrap state machine).
383  *
384  * This response includes two pointers to structures within the device's
385  * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
386  *
387  * 1)  log_event_table_ptr indicates base of the event log.  This traces
388  *     a 256-entry history of uCode execution within a circular buffer.
389  *     Its header format is:
390  *
391  *	__le32 log_size;     log capacity (in number of entries)
392  *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
393  *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
394  *      __le32 write_index;  next circular buffer entry that uCode would fill
395  *
396  *     The header is followed by the circular buffer of log entries.  Entries
397  *     with timestamps have the following format:
398  *
399  *	__le32 event_id;     range 0 - 1500
400  *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
401  *	__le32 data;         event_id-specific data value
402  *
403  *     Entries without timestamps contain only event_id and data.
404  *
405  *
406  * 2)  error_event_table_ptr indicates base of the error log.  This contains
407  *     information about any uCode error that occurs.  For agn, the format
408  *     of the error log is defined by struct iwl_error_event_table.
409  *
410  * The Linux driver can print both logs to the system log when a uCode error
411  * occurs.
412  */
413 
414 /*
415  * Note: This structure is read from the device with IO accesses,
416  * and the reading already does the endian conversion. As it is
417  * read with u32-sized accesses, any members with a different size
418  * need to be ordered correctly though!
419  */
420 struct iwl_error_event_table {
421 	u32 valid;		/* (nonzero) valid, (0) log is empty */
422 	u32 error_id;		/* type of error */
423 	u32 pc;			/* program counter */
424 	u32 blink1;		/* branch link */
425 	u32 blink2;		/* branch link */
426 	u32 ilink1;		/* interrupt link */
427 	u32 ilink2;		/* interrupt link */
428 	u32 data1;		/* error-specific data */
429 	u32 data2;		/* error-specific data */
430 	u32 line;		/* source code line of error */
431 	u32 bcon_time;		/* beacon timer */
432 	u32 tsf_low;		/* network timestamp function timer */
433 	u32 tsf_hi;		/* network timestamp function timer */
434 	u32 gp1;		/* GP1 timer register */
435 	u32 gp2;		/* GP2 timer register */
436 	u32 gp3;		/* GP3 timer register */
437 	u32 ucode_ver;		/* uCode version */
438 	u32 hw_ver;		/* HW Silicon version */
439 	u32 brd_ver;		/* HW board version */
440 	u32 log_pc;		/* log program counter */
441 	u32 frame_ptr;		/* frame pointer */
442 	u32 stack_ptr;		/* stack pointer */
443 	u32 hcmd;		/* last host command header */
444 	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
445 				 * rxtx_flag */
446 	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
447 				 * host_flag */
448 	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
449 				 * enc_flag */
450 	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
451 				 * time_flag */
452 	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
453 				 * wico interrupt */
454 	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
455 	u32 wait_event;		/* wait event() caller address */
456 	u32 l2p_control;	/* L2pControlField */
457 	u32 l2p_duration;	/* L2pDurationField */
458 	u32 l2p_mhvalid;	/* L2pMhValidBits */
459 	u32 l2p_addr_match;	/* L2pAddrMatchStat */
460 	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
461 				 * (LMPM_PMG_SEL) */
462 	u32 u_timestamp;	/* indicate when the date and time of the
463 				 * compilation */
464 	u32 flow_handler;	/* FH read/write pointers, RX credit */
465 } __packed;
466 
467 struct iwl_alive_resp {
468 	u8 ucode_minor;
469 	u8 ucode_major;
470 	__le16 reserved1;
471 	u8 sw_rev[8];
472 	u8 ver_type;
473 	u8 ver_subtype;			/* not "9" for runtime alive */
474 	__le16 reserved2;
475 	__le32 log_event_table_ptr;	/* SRAM address for event log */
476 	__le32 error_event_table_ptr;	/* SRAM address for error log */
477 	__le32 timestamp;
478 	__le32 is_valid;
479 } __packed;
480 
481 /*
482  * REPLY_ERROR = 0x2 (response only, not a command)
483  */
484 struct iwl_error_resp {
485 	__le32 error_type;
486 	u8 cmd_id;
487 	u8 reserved1;
488 	__le16 bad_cmd_seq_num;
489 	__le32 error_info;
490 	__le64 timestamp;
491 } __packed;
492 
493 /******************************************************************************
494  * (1)
495  * RXON Commands & Responses:
496  *
497  *****************************************************************************/
498 
499 /*
500  * Rx config defines & structure
501  */
502 /* rx_config device types  */
503 enum {
504 	RXON_DEV_TYPE_AP = 1,
505 	RXON_DEV_TYPE_ESS = 3,
506 	RXON_DEV_TYPE_IBSS = 4,
507 	RXON_DEV_TYPE_SNIFFER = 6,
508 	RXON_DEV_TYPE_CP = 7,
509 	RXON_DEV_TYPE_2STA = 8,
510 	RXON_DEV_TYPE_P2P = 9,
511 };
512 
513 
514 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
515 #define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
516 #define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
517 #define RXON_RX_CHAIN_VALID_POS			(1)
518 #define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
519 #define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
520 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
521 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
522 #define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
523 #define RXON_RX_CHAIN_CNT_POS			(10)
524 #define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
525 #define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
526 #define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
527 #define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
528 
529 /* rx_config flags */
530 /* band & modulation selection */
531 #define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
532 #define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
533 /* auto detection enable */
534 #define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
535 /* TGg protection when tx */
536 #define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
537 /* cck short slot & preamble */
538 #define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
539 #define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
540 /* antenna selection */
541 #define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
542 #define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
543 #define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
544 #define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
545 /* radar detection enable */
546 #define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
547 #define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
548 /* rx response to host with 8-byte TSF
549 * (according to ON_AIR deassertion) */
550 #define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
551 
552 
553 /* HT flags */
554 #define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
555 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
556 
557 #define RXON_FLG_HT_OPERATING_MODE_POS		(23)
558 
559 #define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
560 #define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
561 
562 #define RXON_FLG_CHANNEL_MODE_POS		(25)
563 #define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
564 
565 /* channel mode */
566 enum {
567 	CHANNEL_MODE_LEGACY = 0,
568 	CHANNEL_MODE_PURE_40 = 1,
569 	CHANNEL_MODE_MIXED = 2,
570 	CHANNEL_MODE_RESERVED = 3,
571 };
572 #define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
573 #define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
574 #define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
575 
576 /* CTS to self (if spec allows) flag */
577 #define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
578 
579 /* rx_config filter flags */
580 /* accept all data frames */
581 #define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
582 /* pass control & management to host */
583 #define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
584 /* accept multi-cast */
585 #define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
586 /* don't decrypt uni-cast frames */
587 #define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
588 /* don't decrypt multi-cast frames */
589 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
590 /* STA is associated */
591 #define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
592 /* transfer to host non bssid beacons in associated state */
593 #define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
594 
595 /**
596  * REPLY_RXON = 0x10 (command, has simple generic response)
597  *
598  * RXON tunes the radio tuner to a service channel, and sets up a number
599  * of parameters that are used primarily for Rx, but also for Tx operations.
600  *
601  * NOTE:  When tuning to a new channel, driver must set the
602  *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
603  *        info within the device, including the station tables, tx retry
604  *        rate tables, and txpower tables.  Driver must build a new station
605  *        table and txpower table before transmitting anything on the RXON
606  *        channel.
607  *
608  * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
609  *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
610  *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
611  */
612 
613 struct iwl_rxon_cmd {
614 	u8 node_addr[6];
615 	__le16 reserved1;
616 	u8 bssid_addr[6];
617 	__le16 reserved2;
618 	u8 wlap_bssid_addr[6];
619 	__le16 reserved3;
620 	u8 dev_type;
621 	u8 air_propagation;
622 	__le16 rx_chain;
623 	u8 ofdm_basic_rates;
624 	u8 cck_basic_rates;
625 	__le16 assoc_id;
626 	__le32 flags;
627 	__le32 filter_flags;
628 	__le16 channel;
629 	u8 ofdm_ht_single_stream_basic_rates;
630 	u8 ofdm_ht_dual_stream_basic_rates;
631 	u8 ofdm_ht_triple_stream_basic_rates;
632 	u8 reserved5;
633 	__le16 acquisition_data;
634 	__le16 reserved6;
635 } __packed;
636 
637 /*
638  * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
639  */
640 struct iwl_rxon_assoc_cmd {
641 	__le32 flags;
642 	__le32 filter_flags;
643 	u8 ofdm_basic_rates;
644 	u8 cck_basic_rates;
645 	__le16 reserved1;
646 	u8 ofdm_ht_single_stream_basic_rates;
647 	u8 ofdm_ht_dual_stream_basic_rates;
648 	u8 ofdm_ht_triple_stream_basic_rates;
649 	u8 reserved2;
650 	__le16 rx_chain_select_flags;
651 	__le16 acquisition_data;
652 	__le32 reserved3;
653 } __packed;
654 
655 #define IWL_CONN_MAX_LISTEN_INTERVAL	10
656 #define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
657 
658 /*
659  * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
660  */
661 struct iwl_rxon_time_cmd {
662 	__le64 timestamp;
663 	__le16 beacon_interval;
664 	__le16 atim_window;
665 	__le32 beacon_init_val;
666 	__le16 listen_interval;
667 	u8 dtim_period;
668 	u8 delta_cp_bss_tbtts;
669 } __packed;
670 
671 /*
672  * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
673  */
674 /**
675  * struct iwl5000_channel_switch_cmd
676  * @band: 0- 5.2GHz, 1- 2.4GHz
677  * @expect_beacon: 0- resume transmits after channel switch
678  *		   1- wait for beacon to resume transmits
679  * @channel: new channel number
680  * @rxon_flags: Rx on flags
681  * @rxon_filter_flags: filtering parameters
682  * @switch_time: switch time in extended beacon format
683  * @reserved: reserved bytes
684  */
685 struct iwl5000_channel_switch_cmd {
686 	u8 band;
687 	u8 expect_beacon;
688 	__le16 channel;
689 	__le32 rxon_flags;
690 	__le32 rxon_filter_flags;
691 	__le32 switch_time;
692 	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
693 } __packed;
694 
695 /**
696  * struct iwl6000_channel_switch_cmd
697  * @band: 0- 5.2GHz, 1- 2.4GHz
698  * @expect_beacon: 0- resume transmits after channel switch
699  *		   1- wait for beacon to resume transmits
700  * @channel: new channel number
701  * @rxon_flags: Rx on flags
702  * @rxon_filter_flags: filtering parameters
703  * @switch_time: switch time in extended beacon format
704  * @reserved: reserved bytes
705  */
706 struct iwl6000_channel_switch_cmd {
707 	u8 band;
708 	u8 expect_beacon;
709 	__le16 channel;
710 	__le32 rxon_flags;
711 	__le32 rxon_filter_flags;
712 	__le32 switch_time;
713 	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
714 } __packed;
715 
716 /*
717  * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
718  */
719 struct iwl_csa_notification {
720 	__le16 band;
721 	__le16 channel;
722 	__le32 status;		/* 0 - OK, 1 - fail */
723 } __packed;
724 
725 /******************************************************************************
726  * (2)
727  * Quality-of-Service (QOS) Commands & Responses:
728  *
729  *****************************************************************************/
730 
731 /**
732  * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
733  * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
734  *
735  * @cw_min: Contention window, start value in numbers of slots.
736  *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
737  * @cw_max: Contention window, max value in numbers of slots.
738  *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
739  * @aifsn:  Number of slots in Arbitration Interframe Space (before
740  *          performing random backoff timing prior to Tx).  Device default 1.
741  * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
742  *
743  * Device will automatically increase contention window by (2*CW) + 1 for each
744  * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
745  * value, to cap the CW value.
746  */
747 struct iwl_ac_qos {
748 	__le16 cw_min;
749 	__le16 cw_max;
750 	u8 aifsn;
751 	u8 reserved1;
752 	__le16 edca_txop;
753 } __packed;
754 
755 /* QoS flags defines */
756 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
757 #define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
758 #define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
759 
760 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
761 #define AC_NUM                4
762 
763 /*
764  * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
765  *
766  * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
767  * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
768  */
769 struct iwl_qosparam_cmd {
770 	__le32 qos_flags;
771 	struct iwl_ac_qos ac[AC_NUM];
772 } __packed;
773 
774 /******************************************************************************
775  * (3)
776  * Add/Modify Stations Commands & Responses:
777  *
778  *****************************************************************************/
779 /*
780  * Multi station support
781  */
782 
783 /* Special, dedicated locations within device's station table */
784 #define	IWL_AP_ID		0
785 #define	IWL_AP_ID_PAN		1
786 #define	IWL_STA_ID		2
787 #define IWLAGN_PAN_BCAST_ID	14
788 #define IWLAGN_BROADCAST_ID	15
789 #define	IWLAGN_STATION_COUNT	16
790 
791 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
792 
793 #define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
794 #define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
795 #define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
796 #define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
797 #define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
798 #define STA_FLG_MAX_AGG_SIZE_POS	(19)
799 #define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
800 #define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
801 #define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
802 #define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
803 #define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
804 
805 /* Use in mode field.  1: modify existing entry, 0: add new station entry */
806 #define STA_CONTROL_MODIFY_MSK		0x01
807 
808 /* key flags __le16*/
809 #define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
810 #define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
811 #define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
812 #define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
813 #define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
814 
815 #define STA_KEY_FLG_KEYID_POS	8
816 #define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
817 /* wep key is either from global key (0) or from station info array (1) */
818 #define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
819 
820 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
821 #define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
822 #define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
823 #define STA_KEY_MAX_NUM		8
824 #define STA_KEY_MAX_NUM_PAN	16
825 /* must not match WEP_INVALID_OFFSET */
826 #define IWLAGN_HW_KEY_DEFAULT	0xfe
827 
828 /* Flags indicate whether to modify vs. don't change various station params */
829 #define	STA_MODIFY_KEY_MASK		0x01
830 #define	STA_MODIFY_TID_DISABLE_TX	0x02
831 #define	STA_MODIFY_TX_RATE_MSK		0x04
832 #define STA_MODIFY_ADDBA_TID_MSK	0x08
833 #define STA_MODIFY_DELBA_TID_MSK	0x10
834 #define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
835 
836 /* agn */
837 struct iwl_keyinfo {
838 	__le16 key_flags;
839 	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
840 	u8 reserved1;
841 	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
842 	u8 key_offset;
843 	u8 reserved2;
844 	u8 key[16];		/* 16-byte unicast decryption key */
845 	__le64 tx_secur_seq_cnt;
846 	__le64 hw_tkip_mic_rx_key;
847 	__le64 hw_tkip_mic_tx_key;
848 } __packed;
849 
850 /**
851  * struct sta_id_modify
852  * @addr[ETH_ALEN]: station's MAC address
853  * @sta_id: index of station in uCode's station table
854  * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
855  *
856  * Driver selects unused table index when adding new station,
857  * or the index to a pre-existing station entry when modifying that station.
858  * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
859  *
860  * modify_mask flags select which parameters to modify vs. leave alone.
861  */
862 struct sta_id_modify {
863 	u8 addr[ETH_ALEN];
864 	__le16 reserved1;
865 	u8 sta_id;
866 	u8 modify_mask;
867 	__le16 reserved2;
868 } __packed;
869 
870 /*
871  * REPLY_ADD_STA = 0x18 (command)
872  *
873  * The device contains an internal table of per-station information,
874  * with info on security keys, aggregation parameters, and Tx rates for
875  * initial Tx attempt and any retries (agn devices uses
876  * REPLY_TX_LINK_QUALITY_CMD,
877  *
878  * REPLY_ADD_STA sets up the table entry for one station, either creating
879  * a new entry, or modifying a pre-existing one.
880  *
881  * NOTE:  RXON command (without "associated" bit set) wipes the station table
882  *        clean.  Moving into RF_KILL state does this also.  Driver must set up
883  *        new station table before transmitting anything on the RXON channel
884  *        (except active scans or active measurements; those commands carry
885  *        their own txpower/rate setup data).
886  *
887  *        When getting started on a new channel, driver must set up the
888  *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
889  *        station in a BSS, once an AP is selected, driver sets up the AP STA
890  *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
891  *        are all that are needed for a BSS client station.  If the device is
892  *        used as AP, or in an IBSS network, driver must set up station table
893  *        entries for all STAs in network, starting with index IWL_STA_ID.
894  */
895 
896 struct iwl_addsta_cmd {
897 	u8 mode;		/* 1: modify existing, 0: add new station */
898 	u8 reserved[3];
899 	struct sta_id_modify sta;
900 	struct iwl_keyinfo key;
901 	__le32 station_flags;		/* STA_FLG_* */
902 	__le32 station_flags_msk;	/* STA_FLG_* */
903 
904 	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
905 	 * corresponding to bit (e.g. bit 5 controls TID 5).
906 	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
907 	__le16 tid_disable_tx;
908 	__le16 legacy_reserved;
909 
910 	/* TID for which to add block-ack support.
911 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
912 	u8 add_immediate_ba_tid;
913 
914 	/* TID for which to remove block-ack support.
915 	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
916 	u8 remove_immediate_ba_tid;
917 
918 	/* Starting Sequence Number for added block-ack support.
919 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
920 	__le16 add_immediate_ba_ssn;
921 
922 	/*
923 	 * Number of packets OK to transmit to station even though
924 	 * it is asleep -- used to synchronise PS-poll and u-APSD
925 	 * responses while ucode keeps track of STA sleep state.
926 	 */
927 	__le16 sleep_tx_count;
928 
929 	__le16 reserved2;
930 } __packed;
931 
932 
933 #define ADD_STA_SUCCESS_MSK		0x1
934 #define ADD_STA_NO_ROOM_IN_TABLE	0x2
935 #define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
936 #define ADD_STA_MODIFY_NON_EXIST_STA	0x8
937 /*
938  * REPLY_ADD_STA = 0x18 (response)
939  */
940 struct iwl_add_sta_resp {
941 	u8 status;	/* ADD_STA_* */
942 } __packed;
943 
944 #define REM_STA_SUCCESS_MSK              0x1
945 /*
946  *  REPLY_REM_STA = 0x19 (response)
947  */
948 struct iwl_rem_sta_resp {
949 	u8 status;
950 } __packed;
951 
952 /*
953  *  REPLY_REM_STA = 0x19 (command)
954  */
955 struct iwl_rem_sta_cmd {
956 	u8 num_sta;     /* number of removed stations */
957 	u8 reserved[3];
958 	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
959 	u8 reserved2[2];
960 } __packed;
961 
962 
963 /* WiFi queues mask */
964 #define IWL_SCD_BK_MSK			BIT(0)
965 #define IWL_SCD_BE_MSK			BIT(1)
966 #define IWL_SCD_VI_MSK			BIT(2)
967 #define IWL_SCD_VO_MSK			BIT(3)
968 #define IWL_SCD_MGMT_MSK		BIT(3)
969 
970 /* PAN queues mask */
971 #define IWL_PAN_SCD_BK_MSK		BIT(4)
972 #define IWL_PAN_SCD_BE_MSK		BIT(5)
973 #define IWL_PAN_SCD_VI_MSK		BIT(6)
974 #define IWL_PAN_SCD_VO_MSK		BIT(7)
975 #define IWL_PAN_SCD_MGMT_MSK		BIT(7)
976 #define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
977 
978 #define IWL_AGG_TX_QUEUE_MSK		0xffc00
979 
980 #define IWL_DROP_ALL			BIT(1)
981 
982 /*
983  * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
984  *
985  * When using full FIFO flush this command checks the scheduler HW block WR/RD
986  * pointers to check if all the frames were transferred by DMA into the
987  * relevant TX FIFO queue. Only when the DMA is finished and the queue is
988  * empty the command can finish.
989  * This command is used to flush the TXFIFO from transmit commands, it may
990  * operate on single or multiple queues, the command queue can't be flushed by
991  * this command. The command response is returned when all the queue flush
992  * operations are done. Each TX command flushed return response with the FLUSH
993  * status set in the TX response status. When FIFO flush operation is used,
994  * the flush operation ends when both the scheduler DMA done and TXFIFO empty
995  * are set.
996  *
997  * @queue_control: bit mask for which queues to flush
998  * @flush_control: flush controls
999  *	0: Dump single MSDU
1000  *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1001  *	2: Dump all FIFO
1002  */
1003 struct iwl_txfifo_flush_cmd_v3 {
1004 	__le32 queue_control;
1005 	__le16 flush_control;
1006 	__le16 reserved;
1007 } __packed;
1008 
1009 struct iwl_txfifo_flush_cmd_v2 {
1010 	__le16 queue_control;
1011 	__le16 flush_control;
1012 } __packed;
1013 
1014 /*
1015  * REPLY_WEP_KEY = 0x20
1016  */
1017 struct iwl_wep_key {
1018 	u8 key_index;
1019 	u8 key_offset;
1020 	u8 reserved1[2];
1021 	u8 key_size;
1022 	u8 reserved2[3];
1023 	u8 key[16];
1024 } __packed;
1025 
1026 struct iwl_wep_cmd {
1027 	u8 num_keys;
1028 	u8 global_key_type;
1029 	u8 flags;
1030 	u8 reserved;
1031 	struct iwl_wep_key key[0];
1032 } __packed;
1033 
1034 #define WEP_KEY_WEP_TYPE 1
1035 #define WEP_KEYS_MAX 4
1036 #define WEP_INVALID_OFFSET 0xff
1037 #define WEP_KEY_LEN_64 5
1038 #define WEP_KEY_LEN_128 13
1039 
1040 /******************************************************************************
1041  * (4)
1042  * Rx Responses:
1043  *
1044  *****************************************************************************/
1045 
1046 #define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1047 #define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1048 
1049 #define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1050 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1051 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1052 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1053 #define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
1054 #define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1055 #define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
1056 
1057 #define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1058 #define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1059 #define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1060 #define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1061 #define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1062 #define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1063 
1064 #define RX_RES_STATUS_STATION_FOUND	(1<<6)
1065 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1066 
1067 #define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1068 #define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1069 #define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1070 #define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1071 #define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1072 
1073 #define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1074 #define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1075 #define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1076 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1077 
1078 
1079 #define IWLAGN_RX_RES_PHY_CNT 8
1080 #define IWLAGN_RX_RES_AGC_IDX     1
1081 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1082 #define IWLAGN_RX_RES_RSSI_C_IDX  3
1083 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1084 #define IWLAGN_OFDM_AGC_BIT_POS 9
1085 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1086 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1087 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1088 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1089 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1090 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1091 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1092 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1093 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1094 
1095 struct iwlagn_non_cfg_phy {
1096 	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1097 } __packed;
1098 
1099 
1100 /*
1101  * REPLY_RX = 0xc3 (response only, not a command)
1102  * Used only for legacy (non 11n) frames.
1103  */
1104 struct iwl_rx_phy_res {
1105 	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1106 	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1107 	u8 stat_id;		/* configurable DSP phy data set ID */
1108 	u8 reserved1;
1109 	__le64 timestamp;	/* TSF at on air rise */
1110 	__le32 beacon_time_stamp; /* beacon at on-air rise */
1111 	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1112 	__le16 channel;		/* channel number */
1113 	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1114 	__le32 rate_n_flags;	/* RATE_MCS_* */
1115 	__le16 byte_count;	/* frame's byte-count */
1116 	__le16 frame_time;	/* frame's time on the air */
1117 } __packed;
1118 
1119 struct iwl_rx_mpdu_res_start {
1120 	__le16 byte_count;
1121 	__le16 reserved;
1122 } __packed;
1123 
1124 
1125 /******************************************************************************
1126  * (5)
1127  * Tx Commands & Responses:
1128  *
1129  * Driver must place each REPLY_TX command into one of the prioritized Tx
1130  * queues in host DRAM, shared between driver and device (see comments for
1131  * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1132  * are preparing to transmit, the device pulls the Tx command over the PCI
1133  * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1134  * from which data will be transmitted.
1135  *
1136  * uCode handles all timing and protocol related to control frames
1137  * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1138  * handle reception of block-acks; uCode updates the host driver via
1139  * REPLY_COMPRESSED_BA.
1140  *
1141  * uCode handles retrying Tx when an ACK is expected but not received.
1142  * This includes trying lower data rates than the one requested in the Tx
1143  * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1144  *
1145  * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1146  * This command must be executed after every RXON command, before Tx can occur.
1147  *****************************************************************************/
1148 
1149 /* REPLY_TX Tx flags field */
1150 
1151 /*
1152  * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1153  * before this frame. if CTS-to-self required check
1154  * RXON_FLG_SELF_CTS_EN status.
1155  */
1156 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1157 
1158 /* 1: Expect ACK from receiving station
1159  * 0: Don't expect ACK (MAC header's duration field s/b 0)
1160  * Set this for unicast frames, but not broadcast/multicast. */
1161 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1162 
1163 /* For agn devices:
1164  * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1165  *    Tx command's initial_rate_index indicates first rate to try;
1166  *    uCode walks through table for additional Tx attempts.
1167  * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1168  *    This rate will be used for all Tx attempts; it will not be scaled. */
1169 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1170 
1171 /* 1: Expect immediate block-ack.
1172  * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1173 #define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1174 
1175 /* Tx antenna selection field; reserved (0) for agn devices. */
1176 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1177 
1178 /* 1: Ignore Bluetooth priority for this frame.
1179  * 0: Delay Tx until Bluetooth device is done (normal usage). */
1180 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1181 
1182 /* 1: uCode overrides sequence control field in MAC header.
1183  * 0: Driver provides sequence control field in MAC header.
1184  * Set this for management frames, non-QOS data frames, non-unicast frames,
1185  * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1186 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1187 
1188 /* 1: This frame is non-last MPDU; more fragments are coming.
1189  * 0: Last fragment, or not using fragmentation. */
1190 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1191 
1192 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1193  * 0: No TSF required in outgoing frame.
1194  * Set this for transmitting beacons and probe responses. */
1195 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1196 
1197 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1198  *    alignment of frame's payload data field.
1199  * 0: No pad
1200  * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1201  * field (but not both).  Driver must align frame data (i.e. data following
1202  * MAC header) to DWORD boundary. */
1203 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1204 
1205 /* accelerate aggregation support
1206  * 0 - no CCMP encryption; 1 - CCMP encryption */
1207 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1208 
1209 /* HCCA-AP - disable duration overwriting. */
1210 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1211 
1212 
1213 /*
1214  * TX command security control
1215  */
1216 #define TX_CMD_SEC_WEP  	0x01
1217 #define TX_CMD_SEC_CCM  	0x02
1218 #define TX_CMD_SEC_TKIP		0x03
1219 #define TX_CMD_SEC_MSK		0x03
1220 #define TX_CMD_SEC_SHIFT	6
1221 #define TX_CMD_SEC_KEY128	0x08
1222 
1223 /*
1224  * REPLY_TX = 0x1c (command)
1225  */
1226 
1227 /*
1228  * Used for managing Tx retries when expecting block-acks.
1229  * Driver should set these fields to 0.
1230  */
1231 struct iwl_dram_scratch {
1232 	u8 try_cnt;		/* Tx attempts */
1233 	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1234 	__le16 reserved;
1235 } __packed;
1236 
1237 struct iwl_tx_cmd {
1238 	/*
1239 	 * MPDU byte count:
1240 	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1241 	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1242 	 * + Data payload
1243 	 * + 8-byte MIC (not used for CCM/WEP)
1244 	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1245 	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1246 	 * Range: 14-2342 bytes.
1247 	 */
1248 	__le16 len;
1249 
1250 	/*
1251 	 * MPDU or MSDU byte count for next frame.
1252 	 * Used for fragmentation and bursting, but not 11n aggregation.
1253 	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1254 	 */
1255 	__le16 next_frame_len;
1256 
1257 	__le32 tx_flags;	/* TX_CMD_FLG_* */
1258 
1259 	/* uCode may modify this field of the Tx command (in host DRAM!).
1260 	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1261 	struct iwl_dram_scratch scratch;
1262 
1263 	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1264 	__le32 rate_n_flags;	/* RATE_MCS_* */
1265 
1266 	/* Index of destination station in uCode's station table */
1267 	u8 sta_id;
1268 
1269 	/* Type of security encryption:  CCM or TKIP */
1270 	u8 sec_ctl;		/* TX_CMD_SEC_* */
1271 
1272 	/*
1273 	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1274 	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1275 	 * data frames, this field may be used to selectively reduce initial
1276 	 * rate (via non-0 value) for special frames (e.g. management), while
1277 	 * still supporting rate scaling for all frames.
1278 	 */
1279 	u8 initial_rate_index;
1280 	u8 reserved;
1281 	u8 key[16];
1282 	__le16 next_frame_flags;
1283 	__le16 reserved2;
1284 	union {
1285 		__le32 life_time;
1286 		__le32 attempt;
1287 	} stop_time;
1288 
1289 	/* Host DRAM physical address pointer to "scratch" in this command.
1290 	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1291 	__le32 dram_lsb_ptr;
1292 	u8 dram_msb_ptr;
1293 
1294 	u8 rts_retry_limit;	/*byte 50 */
1295 	u8 data_retry_limit;	/*byte 51 */
1296 	u8 tid_tspec;
1297 	union {
1298 		__le16 pm_frame_timeout;
1299 		__le16 attempt_duration;
1300 	} timeout;
1301 
1302 	/*
1303 	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1304 	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1305 	 */
1306 	__le16 driver_txop;
1307 
1308 	/*
1309 	 * MAC header goes here, followed by 2 bytes padding if MAC header
1310 	 * length is 26 or 30 bytes, followed by payload data
1311 	 */
1312 	u8 payload[0];
1313 	struct ieee80211_hdr hdr[0];
1314 } __packed;
1315 
1316 /*
1317  * TX command response is sent after *agn* transmission attempts.
1318  *
1319  * both postpone and abort status are expected behavior from uCode. there is
1320  * no special operation required from driver; except for RFKILL_FLUSH,
1321  * which required tx flush host command to flush all the tx frames in queues
1322  */
1323 enum {
1324 	TX_STATUS_SUCCESS = 0x01,
1325 	TX_STATUS_DIRECT_DONE = 0x02,
1326 	/* postpone TX */
1327 	TX_STATUS_POSTPONE_DELAY = 0x40,
1328 	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1329 	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1330 	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1331 	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1332 	/* abort TX */
1333 	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1334 	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1335 	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1336 	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1337 	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1338 	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1339 	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1340 	TX_STATUS_FAIL_DEST_PS = 0x88,
1341 	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1342 	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1343 	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1344 	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1345 	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1346 	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1347 	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1348 	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1349 	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1350 };
1351 
1352 #define	TX_PACKET_MODE_REGULAR		0x0000
1353 #define	TX_PACKET_MODE_BURST_SEQ	0x0100
1354 #define	TX_PACKET_MODE_BURST_FIRST	0x0200
1355 
1356 enum {
1357 	TX_POWER_PA_NOT_ACTIVE = 0x0,
1358 };
1359 
1360 enum {
1361 	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1362 	TX_STATUS_DELAY_MSK = 0x00000040,
1363 	TX_STATUS_ABORT_MSK = 0x00000080,
1364 	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1365 	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1366 	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1367 	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1368 	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1369 };
1370 
1371 /* *******************************
1372  * TX aggregation status
1373  ******************************* */
1374 
1375 enum {
1376 	AGG_TX_STATE_TRANSMITTED = 0x00,
1377 	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1378 	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1379 	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1380 	AGG_TX_STATE_ABORT_MSK = 0x08,
1381 	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1382 	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1383 	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1384 	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1385 	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1386 	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1387 	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1388 	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1389 };
1390 
1391 #define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1392 #define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1393 #define AGG_TX_TRY_POS		12
1394 
1395 #define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1396 				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1397 				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1398 
1399 /* # tx attempts for first frame in aggregation */
1400 #define AGG_TX_STATE_TRY_CNT_POS 12
1401 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1402 
1403 /* Command ID and sequence number of Tx command for this frame */
1404 #define AGG_TX_STATE_SEQ_NUM_POS 16
1405 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1406 
1407 /*
1408  * REPLY_TX = 0x1c (response)
1409  *
1410  * This response may be in one of two slightly different formats, indicated
1411  * by the frame_count field:
1412  *
1413  * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1414  *     a single frame.  Multiple attempts, at various bit rates, may have
1415  *     been made for this frame.
1416  *
1417  * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1418  *     2 or more frames that used block-acknowledge.  All frames were
1419  *     transmitted at same rate.  Rate scaling may have been used if first
1420  *     frame in this new agg block failed in previous agg block(s).
1421  *
1422  *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1423  *     block-ack has not been received by the time the agn device records
1424  *     this status.
1425  *     This status relates to reasons the tx might have been blocked or aborted
1426  *     within the sending station (this agn device), rather than whether it was
1427  *     received successfully by the destination station.
1428  */
1429 struct agg_tx_status {
1430 	__le16 status;
1431 	__le16 sequence;
1432 } __packed;
1433 
1434 /* refer to ra_tid */
1435 #define IWLAGN_TX_RES_TID_POS	0
1436 #define IWLAGN_TX_RES_TID_MSK	0x0f
1437 #define IWLAGN_TX_RES_RA_POS	4
1438 #define IWLAGN_TX_RES_RA_MSK	0xf0
1439 
1440 struct iwlagn_tx_resp {
1441 	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1442 	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1443 	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1444 	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1445 
1446 	/* For non-agg:  Rate at which frame was successful.
1447 	 * For agg:  Rate at which all frames were transmitted. */
1448 	__le32 rate_n_flags;	/* RATE_MCS_*  */
1449 
1450 	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1451 	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1452 	__le16 wireless_media_time;	/* uSecs */
1453 
1454 	u8 pa_status;		/* RF power amplifier measurement (not used) */
1455 	u8 pa_integ_res_a[3];
1456 	u8 pa_integ_res_b[3];
1457 	u8 pa_integ_res_C[3];
1458 
1459 	__le32 tfd_info;
1460 	__le16 seq_ctl;
1461 	__le16 byte_cnt;
1462 	u8 tlc_info;
1463 	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1464 	__le16 frame_ctrl;
1465 	/*
1466 	 * For non-agg:  frame status TX_STATUS_*
1467 	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1468 	 *           fields follow this one, up to frame_count.
1469 	 *           Bit fields:
1470 	 *           11- 0:  AGG_TX_STATE_* status code
1471 	 *           15-12:  Retry count for 1st frame in aggregation (retries
1472 	 *                   occur if tx failed for this frame when it was a
1473 	 *                   member of a previous aggregation block).  If rate
1474 	 *                   scaling is used, retry count indicates the rate
1475 	 *                   table entry used for all frames in the new agg.
1476 	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1477 	 */
1478 	struct agg_tx_status status;	/* TX status (in aggregation -
1479 					 * status of 1st frame) */
1480 } __packed;
1481 /*
1482  * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1483  *
1484  * Reports Block-Acknowledge from recipient station
1485  */
1486 struct iwl_compressed_ba_resp {
1487 	__le32 sta_addr_lo32;
1488 	__le16 sta_addr_hi16;
1489 	__le16 reserved;
1490 
1491 	/* Index of recipient (BA-sending) station in uCode's station table */
1492 	u8 sta_id;
1493 	u8 tid;
1494 	__le16 seq_ctl;
1495 	__le64 bitmap;
1496 	__le16 scd_flow;
1497 	__le16 scd_ssn;
1498 	u8 txed;	/* number of frames sent */
1499 	u8 txed_2_done; /* number of frames acked */
1500 	__le16 reserved1;
1501 } __packed;
1502 
1503 /*
1504  * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1505  *
1506  */
1507 
1508 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1509 #define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1510 
1511 /* # of EDCA prioritized tx fifos */
1512 #define  LINK_QUAL_AC_NUM AC_NUM
1513 
1514 /* # entries in rate scale table to support Tx retries */
1515 #define  LINK_QUAL_MAX_RETRY_NUM 16
1516 
1517 /* Tx antenna selection values */
1518 #define  LINK_QUAL_ANT_A_MSK (1 << 0)
1519 #define  LINK_QUAL_ANT_B_MSK (1 << 1)
1520 #define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1521 
1522 
1523 /**
1524  * struct iwl_link_qual_general_params
1525  *
1526  * Used in REPLY_TX_LINK_QUALITY_CMD
1527  */
1528 struct iwl_link_qual_general_params {
1529 	u8 flags;
1530 
1531 	/* No entries at or above this (driver chosen) index contain MIMO */
1532 	u8 mimo_delimiter;
1533 
1534 	/* Best single antenna to use for single stream (legacy, SISO). */
1535 	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1536 
1537 	/* Best antennas to use for MIMO */
1538 	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1539 
1540 	/*
1541 	 * If driver needs to use different initial rates for different
1542 	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1543 	 * this table will set that up, by indicating the indexes in the
1544 	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1545 	 * Otherwise, driver should set all entries to 0.
1546 	 *
1547 	 * Entry usage:
1548 	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1549 	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1550 	 */
1551 	u8 start_rate_index[LINK_QUAL_AC_NUM];
1552 } __packed;
1553 
1554 #define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1555 #define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1556 #define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1557 
1558 #define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1559 #define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1560 #define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1561 
1562 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1563 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1564 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1565 
1566 /**
1567  * struct iwl_link_qual_agg_params
1568  *
1569  * Used in REPLY_TX_LINK_QUALITY_CMD
1570  */
1571 struct iwl_link_qual_agg_params {
1572 
1573 	/*
1574 	 *Maximum number of uSec in aggregation.
1575 	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1576 	 */
1577 	__le16 agg_time_limit;
1578 
1579 	/*
1580 	 * Number of Tx retries allowed for a frame, before that frame will
1581 	 * no longer be considered for the start of an aggregation sequence
1582 	 * (scheduler will then try to tx it as single frame).
1583 	 * Driver should set this to 3.
1584 	 */
1585 	u8 agg_dis_start_th;
1586 
1587 	/*
1588 	 * Maximum number of frames in aggregation.
1589 	 * 0 = no limit (default).  1 = no aggregation.
1590 	 * Other values = max # frames in aggregation.
1591 	 */
1592 	u8 agg_frame_cnt_limit;
1593 
1594 	__le32 reserved;
1595 } __packed;
1596 
1597 /*
1598  * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1599  *
1600  * For agn devices
1601  *
1602  * Each station in the agn device's internal station table has its own table
1603  * of 16
1604  * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1605  * an ACK is not received.  This command replaces the entire table for
1606  * one station.
1607  *
1608  * NOTE:  Station must already be in agn device's station table.
1609  *	  Use REPLY_ADD_STA.
1610  *
1611  * The rate scaling procedures described below work well.  Of course, other
1612  * procedures are possible, and may work better for particular environments.
1613  *
1614  *
1615  * FILLING THE RATE TABLE
1616  *
1617  * Given a particular initial rate and mode, as determined by the rate
1618  * scaling algorithm described below, the Linux driver uses the following
1619  * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1620  * Link Quality command:
1621  *
1622  *
1623  * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1624  *     a) Use this same initial rate for first 3 entries.
1625  *     b) Find next lower available rate using same mode (SISO or MIMO),
1626  *        use for next 3 entries.  If no lower rate available, switch to
1627  *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1628  *     c) If using MIMO, set command's mimo_delimiter to number of entries
1629  *        using MIMO (3 or 6).
1630  *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1631  *        no MIMO, no short guard interval), at the next lower bit rate
1632  *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1633  *        legacy procedure for remaining table entries.
1634  *
1635  * 2)  If using legacy initial rate:
1636  *     a) Use the initial rate for only one entry.
1637  *     b) For each following entry, reduce the rate to next lower available
1638  *        rate, until reaching the lowest available rate.
1639  *     c) When reducing rate, also switch antenna selection.
1640  *     d) Once lowest available rate is reached, repeat this rate until
1641  *        rate table is filled (16 entries), switching antenna each entry.
1642  *
1643  *
1644  * ACCUMULATING HISTORY
1645  *
1646  * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1647  * uses two sets of frame Tx success history:  One for the current/active
1648  * modulation mode, and one for a speculative/search mode that is being
1649  * attempted. If the speculative mode turns out to be more effective (i.e.
1650  * actual transfer rate is better), then the driver continues to use the
1651  * speculative mode as the new current active mode.
1652  *
1653  * Each history set contains, separately for each possible rate, data for a
1654  * sliding window of the 62 most recent tx attempts at that rate.  The data
1655  * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1656  * and attempted frames, from which the driver can additionally calculate a
1657  * success ratio (success / attempted) and number of failures
1658  * (attempted - success), and control the size of the window (attempted).
1659  * The driver uses the bit map to remove successes from the success sum, as
1660  * the oldest tx attempts fall out of the window.
1661  *
1662  * When the agn device makes multiple tx attempts for a given frame, each
1663  * attempt might be at a different rate, and have different modulation
1664  * characteristics (e.g. antenna, fat channel, short guard interval), as set
1665  * up in the rate scaling table in the Link Quality command.  The driver must
1666  * determine which rate table entry was used for each tx attempt, to determine
1667  * which rate-specific history to update, and record only those attempts that
1668  * match the modulation characteristics of the history set.
1669  *
1670  * When using block-ack (aggregation), all frames are transmitted at the same
1671  * rate, since there is no per-attempt acknowledgment from the destination
1672  * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1673  * rate_n_flags field.  After receiving a block-ack, the driver can update
1674  * history for the entire block all at once.
1675  *
1676  *
1677  * FINDING BEST STARTING RATE:
1678  *
1679  * When working with a selected initial modulation mode (see below), the
1680  * driver attempts to find a best initial rate.  The initial rate is the
1681  * first entry in the Link Quality command's rate table.
1682  *
1683  * 1)  Calculate actual throughput (success ratio * expected throughput, see
1684  *     table below) for current initial rate.  Do this only if enough frames
1685  *     have been attempted to make the value meaningful:  at least 6 failed
1686  *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1687  *     scaling yet.
1688  *
1689  * 2)  Find available rates adjacent to current initial rate.  Available means:
1690  *     a)  supported by hardware &&
1691  *     b)  supported by association &&
1692  *     c)  within any constraints selected by user
1693  *
1694  * 3)  Gather measured throughputs for adjacent rates.  These might not have
1695  *     enough history to calculate a throughput.  That's okay, we might try
1696  *     using one of them anyway!
1697  *
1698  * 4)  Try decreasing rate if, for current rate:
1699  *     a)  success ratio is < 15% ||
1700  *     b)  lower adjacent rate has better measured throughput ||
1701  *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1702  *
1703  *     As a sanity check, if decrease was determined above, leave rate
1704  *     unchanged if:
1705  *     a)  lower rate unavailable
1706  *     b)  success ratio at current rate > 85% (very good)
1707  *     c)  current measured throughput is better than expected throughput
1708  *         of lower rate (under perfect 100% tx conditions, see table below)
1709  *
1710  * 5)  Try increasing rate if, for current rate:
1711  *     a)  success ratio is < 15% ||
1712  *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1713  *     b)  higher adjacent rate has better measured throughput ||
1714  *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1715  *
1716  *     As a sanity check, if increase was determined above, leave rate
1717  *     unchanged if:
1718  *     a)  success ratio at current rate < 70%.  This is not particularly
1719  *         good performance; higher rate is sure to have poorer success.
1720  *
1721  * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1722  *     acknowledge, history and statistics may be calculated for the entire
1723  *     block (including prior history that fits within the history windows),
1724  *     before re-evaluation.
1725  *
1726  * FINDING BEST STARTING MODULATION MODE:
1727  *
1728  * After working with a modulation mode for a "while" (and doing rate scaling),
1729  * the driver searches for a new initial mode in an attempt to improve
1730  * throughput.  The "while" is measured by numbers of attempted frames:
1731  *
1732  * For legacy mode, search for new mode after:
1733  *   480 successful frames, or 160 failed frames
1734  * For high-throughput modes (SISO or MIMO), search for new mode after:
1735  *   4500 successful frames, or 400 failed frames
1736  *
1737  * Mode switch possibilities are (3 for each mode):
1738  *
1739  * For legacy:
1740  *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1741  * For SISO:
1742  *   Change antenna, try MIMO, try shortened guard interval (SGI)
1743  * For MIMO:
1744  *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1745  *
1746  * When trying a new mode, use the same bit rate as the old/current mode when
1747  * trying antenna switches and shortened guard interval.  When switching to
1748  * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1749  * for which the expected throughput (under perfect conditions) is about the
1750  * same or slightly better than the actual measured throughput delivered by
1751  * the old/current mode.
1752  *
1753  * Actual throughput can be estimated by multiplying the expected throughput
1754  * by the success ratio (successful / attempted tx frames).  Frame size is
1755  * not considered in this calculation; it assumes that frame size will average
1756  * out to be fairly consistent over several samples.  The following are
1757  * metric values for expected throughput assuming 100% success ratio.
1758  * Only G band has support for CCK rates:
1759  *
1760  *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1761  *
1762  *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1763  *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1764  *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1765  * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1766  *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1767  * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1768  *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1769  * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1770  *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1771  * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1772  *
1773  * After the new mode has been tried for a short while (minimum of 6 failed
1774  * frames or 8 successful frames), compare success ratio and actual throughput
1775  * estimate of the new mode with the old.  If either is better with the new
1776  * mode, continue to use the new mode.
1777  *
1778  * Continue comparing modes until all 3 possibilities have been tried.
1779  * If moving from legacy to HT, try all 3 possibilities from the new HT
1780  * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1781  * for the longer "while" described above (e.g. 480 successful frames for
1782  * legacy), and then repeat the search process.
1783  *
1784  */
1785 struct iwl_link_quality_cmd {
1786 
1787 	/* Index of destination/recipient station in uCode's station table */
1788 	u8 sta_id;
1789 	u8 reserved1;
1790 	__le16 control;		/* not used */
1791 	struct iwl_link_qual_general_params general_params;
1792 	struct iwl_link_qual_agg_params agg_params;
1793 
1794 	/*
1795 	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1796 	 * specifies 1st Tx rate attempted, via index into this table.
1797 	 * agn devices works its way through table when retrying Tx.
1798 	 */
1799 	struct {
1800 		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1801 	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1802 	__le32 reserved2;
1803 } __packed;
1804 
1805 /*
1806  * BT configuration enable flags:
1807  *   bit 0 - 1: BT channel announcement enabled
1808  *           0: disable
1809  *   bit 1 - 1: priority of BT device enabled
1810  *           0: disable
1811  *   bit 2 - 1: BT 2 wire support enabled
1812  *           0: disable
1813  */
1814 #define BT_COEX_DISABLE (0x0)
1815 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1816 #define BT_ENABLE_PRIORITY	   BIT(1)
1817 #define BT_ENABLE_2_WIRE	   BIT(2)
1818 
1819 #define BT_COEX_DISABLE (0x0)
1820 #define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1821 
1822 #define BT_LEAD_TIME_MIN (0x0)
1823 #define BT_LEAD_TIME_DEF (0x1E)
1824 #define BT_LEAD_TIME_MAX (0xFF)
1825 
1826 #define BT_MAX_KILL_MIN (0x1)
1827 #define BT_MAX_KILL_DEF (0x5)
1828 #define BT_MAX_KILL_MAX (0xFF)
1829 
1830 #define BT_DURATION_LIMIT_DEF	625
1831 #define BT_DURATION_LIMIT_MAX	1250
1832 #define BT_DURATION_LIMIT_MIN	625
1833 
1834 #define BT_ON_THRESHOLD_DEF	4
1835 #define BT_ON_THRESHOLD_MAX	1000
1836 #define BT_ON_THRESHOLD_MIN	1
1837 
1838 #define BT_FRAG_THRESHOLD_DEF	0
1839 #define BT_FRAG_THRESHOLD_MAX	0
1840 #define BT_FRAG_THRESHOLD_MIN	0
1841 
1842 #define BT_AGG_THRESHOLD_DEF	1200
1843 #define BT_AGG_THRESHOLD_MAX	8000
1844 #define BT_AGG_THRESHOLD_MIN	400
1845 
1846 /*
1847  * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1848  *
1849  * agn devices support hardware handshake with Bluetooth device on
1850  * same platform.  Bluetooth device alerts wireless device when it will Tx;
1851  * wireless device can delay or kill its own Tx to accommodate.
1852  */
1853 struct iwl_bt_cmd {
1854 	u8 flags;
1855 	u8 lead_time;
1856 	u8 max_kill;
1857 	u8 reserved;
1858 	__le32 kill_ack_mask;
1859 	__le32 kill_cts_mask;
1860 } __packed;
1861 
1862 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1863 
1864 #define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1865 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1866 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1867 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1868 #define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1869 #define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1870 
1871 #define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1872 /* Disable Sync PSPoll on SCO/eSCO */
1873 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1874 
1875 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1876 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1877 
1878 #define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1879 #define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1880 #define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1881 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1882 
1883 #define IWLAGN_BT_MAX_KILL_DEFAULT	5
1884 
1885 #define IWLAGN_BT3_T7_DEFAULT		1
1886 
1887 enum iwl_bt_kill_idx {
1888 	IWL_BT_KILL_DEFAULT = 0,
1889 	IWL_BT_KILL_OVERRIDE = 1,
1890 	IWL_BT_KILL_REDUCE = 2,
1891 };
1892 
1893 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1894 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1895 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1896 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1897 
1898 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1899 
1900 #define IWLAGN_BT3_T2_DEFAULT		0xc
1901 
1902 #define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1903 #define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1904 #define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1905 #define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1906 #define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1907 #define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1908 #define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1909 #define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1910 
1911 #define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1912 					IWLAGN_BT_VALID_BOOST | \
1913 					IWLAGN_BT_VALID_MAX_KILL | \
1914 					IWLAGN_BT_VALID_3W_TIMERS | \
1915 					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1916 					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1917 					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1918 					IWLAGN_BT_VALID_3W_LUT)
1919 
1920 #define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1921 
1922 #define IWLAGN_BT_DECISION_LUT_SIZE	12
1923 
1924 struct iwl_basic_bt_cmd {
1925 	u8 flags;
1926 	u8 ledtime; /* unused */
1927 	u8 max_kill;
1928 	u8 bt3_timer_t7_value;
1929 	__le32 kill_ack_mask;
1930 	__le32 kill_cts_mask;
1931 	u8 bt3_prio_sample_time;
1932 	u8 bt3_timer_t2_value;
1933 	__le16 bt4_reaction_time; /* unused */
1934 	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1935 	/*
1936 	 * bit 0: use reduced tx power for control frame
1937 	 * bit 1 - 7: reserved
1938 	 */
1939 	u8 reduce_txpower;
1940 	u8 reserved;
1941 	__le16 valid;
1942 };
1943 
1944 struct iwl_bt_cmd_v1 {
1945 	struct iwl_basic_bt_cmd basic;
1946 	u8 prio_boost;
1947 	/*
1948 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1949 	 * if configure the following patterns
1950 	 */
1951 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1952 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1953 };
1954 
1955 struct iwl_bt_cmd_v2 {
1956 	struct iwl_basic_bt_cmd basic;
1957 	__le32 prio_boost;
1958 	/*
1959 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1960 	 * if configure the following patterns
1961 	 */
1962 	u8 reserved;
1963 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1964 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1965 };
1966 
1967 #define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1968 
1969 struct iwlagn_bt_sco_cmd {
1970 	__le32 flags;
1971 };
1972 
1973 /******************************************************************************
1974  * (6)
1975  * Spectrum Management (802.11h) Commands, Responses, Notifications:
1976  *
1977  *****************************************************************************/
1978 
1979 /*
1980  * Spectrum Management
1981  */
1982 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1983 				 RXON_FILTER_CTL2HOST_MSK        | \
1984 				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1985 				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1986 				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1987 				 RXON_FILTER_ASSOC_MSK           | \
1988 				 RXON_FILTER_BCON_AWARE_MSK)
1989 
1990 struct iwl_measure_channel {
1991 	__le32 duration;	/* measurement duration in extended beacon
1992 				 * format */
1993 	u8 channel;		/* channel to measure */
1994 	u8 type;		/* see enum iwl_measure_type */
1995 	__le16 reserved;
1996 } __packed;
1997 
1998 /*
1999  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2000  */
2001 struct iwl_spectrum_cmd {
2002 	__le16 len;		/* number of bytes starting from token */
2003 	u8 token;		/* token id */
2004 	u8 id;			/* measurement id -- 0 or 1 */
2005 	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2006 	u8 periodic;		/* 1 = periodic */
2007 	__le16 path_loss_timeout;
2008 	__le32 start_time;	/* start time in extended beacon format */
2009 	__le32 reserved2;
2010 	__le32 flags;		/* rxon flags */
2011 	__le32 filter_flags;	/* rxon filter flags */
2012 	__le16 channel_count;	/* minimum 1, maximum 10 */
2013 	__le16 reserved3;
2014 	struct iwl_measure_channel channels[10];
2015 } __packed;
2016 
2017 /*
2018  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2019  */
2020 struct iwl_spectrum_resp {
2021 	u8 token;
2022 	u8 id;			/* id of the prior command replaced, or 0xff */
2023 	__le16 status;		/* 0 - command will be handled
2024 				 * 1 - cannot handle (conflicts with another
2025 				 *     measurement) */
2026 } __packed;
2027 
2028 enum iwl_measurement_state {
2029 	IWL_MEASUREMENT_START = 0,
2030 	IWL_MEASUREMENT_STOP = 1,
2031 };
2032 
2033 enum iwl_measurement_status {
2034 	IWL_MEASUREMENT_OK = 0,
2035 	IWL_MEASUREMENT_CONCURRENT = 1,
2036 	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2037 	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2038 	/* 4-5 reserved */
2039 	IWL_MEASUREMENT_STOPPED = 6,
2040 	IWL_MEASUREMENT_TIMEOUT = 7,
2041 	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2042 };
2043 
2044 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2045 
2046 struct iwl_measurement_histogram {
2047 	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2048 	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2049 } __packed;
2050 
2051 /* clear channel availability counters */
2052 struct iwl_measurement_cca_counters {
2053 	__le32 ofdm;
2054 	__le32 cck;
2055 } __packed;
2056 
2057 enum iwl_measure_type {
2058 	IWL_MEASURE_BASIC = (1 << 0),
2059 	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2060 	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2061 	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2062 	IWL_MEASURE_FRAME = (1 << 4),
2063 	/* bits 5:6 are reserved */
2064 	IWL_MEASURE_IDLE = (1 << 7),
2065 };
2066 
2067 /*
2068  * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2069  */
2070 struct iwl_spectrum_notification {
2071 	u8 id;			/* measurement id -- 0 or 1 */
2072 	u8 token;
2073 	u8 channel_index;	/* index in measurement channel list */
2074 	u8 state;		/* 0 - start, 1 - stop */
2075 	__le32 start_time;	/* lower 32-bits of TSF */
2076 	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2077 	u8 channel;
2078 	u8 type;		/* see enum iwl_measurement_type */
2079 	u8 reserved1;
2080 	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2081 	 * valid if applicable for measurement type requested. */
2082 	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2083 	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2084 	__le32 cca_time;	/* channel load time in usecs */
2085 	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2086 				 * unidentified */
2087 	u8 reserved2[3];
2088 	struct iwl_measurement_histogram histogram;
2089 	__le32 stop_time;	/* lower 32-bits of TSF */
2090 	__le32 status;		/* see iwl_measurement_status */
2091 } __packed;
2092 
2093 /******************************************************************************
2094  * (7)
2095  * Power Management Commands, Responses, Notifications:
2096  *
2097  *****************************************************************************/
2098 
2099 /**
2100  * struct iwl_powertable_cmd - Power Table Command
2101  * @flags: See below:
2102  *
2103  * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2104  *
2105  * PM allow:
2106  *   bit 0 - '0' Driver not allow power management
2107  *           '1' Driver allow PM (use rest of parameters)
2108  *
2109  * uCode send sleep notifications:
2110  *   bit 1 - '0' Don't send sleep notification
2111  *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2112  *
2113  * Sleep over DTIM
2114  *   bit 2 - '0' PM have to walk up every DTIM
2115  *           '1' PM could sleep over DTIM till listen Interval.
2116  *
2117  * PCI power managed
2118  *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2119  *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2120  *
2121  * Fast PD
2122  *   bit 4 - '1' Put radio to sleep when receiving frame for others
2123  *
2124  * Force sleep Modes
2125  *   bit 31/30- '00' use both mac/xtal sleeps
2126  *              '01' force Mac sleep
2127  *              '10' force xtal sleep
2128  *              '11' Illegal set
2129  *
2130  * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2131  * ucode assume sleep over DTIM is allowed and we don't need to wake up
2132  * for every DTIM.
2133  */
2134 #define IWL_POWER_VEC_SIZE 5
2135 
2136 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2137 #define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2138 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2139 #define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2140 #define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2141 #define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2142 #define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2143 #define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2144 #define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2145 #define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2146 #define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2147 
2148 struct iwl_powertable_cmd {
2149 	__le16 flags;
2150 	u8 keep_alive_seconds;
2151 	u8 debug_flags;
2152 	__le32 rx_data_timeout;
2153 	__le32 tx_data_timeout;
2154 	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2155 	__le32 keep_alive_beacons;
2156 } __packed;
2157 
2158 /*
2159  * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2160  * all devices identical.
2161  */
2162 struct iwl_sleep_notification {
2163 	u8 pm_sleep_mode;
2164 	u8 pm_wakeup_src;
2165 	__le16 reserved;
2166 	__le32 sleep_time;
2167 	__le32 tsf_low;
2168 	__le32 bcon_timer;
2169 } __packed;
2170 
2171 /* Sleep states.  all devices identical. */
2172 enum {
2173 	IWL_PM_NO_SLEEP = 0,
2174 	IWL_PM_SLP_MAC = 1,
2175 	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2176 	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2177 	IWL_PM_SLP_PHY = 4,
2178 	IWL_PM_SLP_REPENT = 5,
2179 	IWL_PM_WAKEUP_BY_TIMER = 6,
2180 	IWL_PM_WAKEUP_BY_DRIVER = 7,
2181 	IWL_PM_WAKEUP_BY_RFKILL = 8,
2182 	/* 3 reserved */
2183 	IWL_PM_NUM_OF_MODES = 12,
2184 };
2185 
2186 /*
2187  * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2188  */
2189 #define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2190 #define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2191 #define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2192 struct iwl_card_state_cmd {
2193 	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2194 } __packed;
2195 
2196 /*
2197  * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2198  */
2199 struct iwl_card_state_notif {
2200 	__le32 flags;
2201 } __packed;
2202 
2203 #define HW_CARD_DISABLED   0x01
2204 #define SW_CARD_DISABLED   0x02
2205 #define CT_CARD_DISABLED   0x04
2206 #define RXON_CARD_DISABLED 0x10
2207 
2208 struct iwl_ct_kill_config {
2209 	__le32   reserved;
2210 	__le32   critical_temperature_M;
2211 	__le32   critical_temperature_R;
2212 }  __packed;
2213 
2214 /* 1000, and 6x00 */
2215 struct iwl_ct_kill_throttling_config {
2216 	__le32   critical_temperature_exit;
2217 	__le32   reserved;
2218 	__le32   critical_temperature_enter;
2219 }  __packed;
2220 
2221 /******************************************************************************
2222  * (8)
2223  * Scan Commands, Responses, Notifications:
2224  *
2225  *****************************************************************************/
2226 
2227 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2228 #define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2229 
2230 /**
2231  * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2232  *
2233  * One for each channel in the scan list.
2234  * Each channel can independently select:
2235  * 1)  SSID for directed active scans
2236  * 2)  Txpower setting (for rate specified within Tx command)
2237  * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2238  *     quiet_plcp_th, good_CRC_th)
2239  *
2240  * To avoid uCode errors, make sure the following are true (see comments
2241  * under struct iwl_scan_cmd about max_out_time and quiet_time):
2242  * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2243  *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2244  * 2)  quiet_time <= active_dwell
2245  * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2246  *     passive_dwell < max_out_time
2247  *     active_dwell < max_out_time
2248  */
2249 
2250 struct iwl_scan_channel {
2251 	/*
2252 	 * type is defined as:
2253 	 * 0:0 1 = active, 0 = passive
2254 	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2255 	 *     SSID IE is transmitted in probe request.
2256 	 * 21:31 reserved
2257 	 */
2258 	__le32 type;
2259 	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2260 	u8 tx_gain;		/* gain for analog radio */
2261 	u8 dsp_atten;		/* gain for DSP */
2262 	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2263 	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2264 } __packed;
2265 
2266 /* set number of direct probes __le32 type */
2267 #define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2268 
2269 /**
2270  * struct iwl_ssid_ie - directed scan network information element
2271  *
2272  * Up to 20 of these may appear in REPLY_SCAN_CMD,
2273  * selected by "type" bit field in struct iwl_scan_channel;
2274  * each channel may select different ssids from among the 20 entries.
2275  * SSID IEs get transmitted in reverse order of entry.
2276  */
2277 struct iwl_ssid_ie {
2278 	u8 id;
2279 	u8 len;
2280 	u8 ssid[32];
2281 } __packed;
2282 
2283 #define PROBE_OPTION_MAX		20
2284 #define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2285 #define IWL_GOOD_CRC_TH_DISABLED	0
2286 #define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2287 #define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2288 #define IWL_MAX_CMD_SIZE 4096
2289 
2290 /*
2291  * REPLY_SCAN_CMD = 0x80 (command)
2292  *
2293  * The hardware scan command is very powerful; the driver can set it up to
2294  * maintain (relatively) normal network traffic while doing a scan in the
2295  * background.  The max_out_time and suspend_time control the ratio of how
2296  * long the device stays on an associated network channel ("service channel")
2297  * vs. how long it's away from the service channel, i.e. tuned to other channels
2298  * for scanning.
2299  *
2300  * max_out_time is the max time off-channel (in usec), and suspend_time
2301  * is how long (in "extended beacon" format) that the scan is "suspended"
2302  * after returning to the service channel.  That is, suspend_time is the
2303  * time that we stay on the service channel, doing normal work, between
2304  * scan segments.  The driver may set these parameters differently to support
2305  * scanning when associated vs. not associated, and light vs. heavy traffic
2306  * loads when associated.
2307  *
2308  * After receiving this command, the device's scan engine does the following;
2309  *
2310  * 1)  Sends SCAN_START notification to driver
2311  * 2)  Checks to see if it has time to do scan for one channel
2312  * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2313  *     to tell AP that we're going off-channel
2314  * 4)  Tunes to first channel in scan list, does active or passive scan
2315  * 5)  Sends SCAN_RESULT notification to driver
2316  * 6)  Checks to see if it has time to do scan on *next* channel in list
2317  * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2318  *     before max_out_time expires
2319  * 8)  Returns to service channel
2320  * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2321  * 10) Stays on service channel until suspend_time expires
2322  * 11) Repeats entire process 2-10 until list is complete
2323  * 12) Sends SCAN_COMPLETE notification
2324  *
2325  * For fast, efficient scans, the scan command also has support for staying on
2326  * a channel for just a short time, if doing active scanning and getting no
2327  * responses to the transmitted probe request.  This time is controlled by
2328  * quiet_time, and the number of received packets below which a channel is
2329  * considered "quiet" is controlled by quiet_plcp_threshold.
2330  *
2331  * For active scanning on channels that have regulatory restrictions against
2332  * blindly transmitting, the scan can listen before transmitting, to make sure
2333  * that there is already legitimate activity on the channel.  If enough
2334  * packets are cleanly received on the channel (controlled by good_CRC_th,
2335  * typical value 1), the scan engine starts transmitting probe requests.
2336  *
2337  * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2338  *
2339  * To avoid uCode errors, see timing restrictions described under
2340  * struct iwl_scan_channel.
2341  */
2342 
2343 enum iwl_scan_flags {
2344 	/* BIT(0) currently unused */
2345 	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2346 	/* bits 2-7 reserved */
2347 };
2348 
2349 struct iwl_scan_cmd {
2350 	__le16 len;
2351 	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2352 	u8 channel_count;	/* # channels in channel list */
2353 	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2354 				 * (only for active scan) */
2355 	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2356 	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2357 	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2358 	__le32 max_out_time;	/* max usec to be away from associated (service)
2359 				 * channel */
2360 	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2361 				 * format") when returning to service chnl:
2362 				 */
2363 	__le32 flags;		/* RXON_FLG_* */
2364 	__le32 filter_flags;	/* RXON_FILTER_* */
2365 
2366 	/* For active scans (set to all-0s for passive scans).
2367 	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2368 	struct iwl_tx_cmd tx_cmd;
2369 
2370 	/* For directed active scans (set to all-0s otherwise) */
2371 	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2372 
2373 	/*
2374 	 * Probe request frame, followed by channel list.
2375 	 *
2376 	 * Size of probe request frame is specified by byte count in tx_cmd.
2377 	 * Channel list follows immediately after probe request frame.
2378 	 * Number of channels in list is specified by channel_count.
2379 	 * Each channel in list is of type:
2380 	 *
2381 	 * struct iwl_scan_channel channels[0];
2382 	 *
2383 	 * NOTE:  Only one band of channels can be scanned per pass.  You
2384 	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2385 	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2386 	 * before requesting another scan.
2387 	 */
2388 	u8 data[0];
2389 } __packed;
2390 
2391 /* Can abort will notify by complete notification with abort status. */
2392 #define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2393 /* complete notification statuses */
2394 #define ABORT_STATUS            0x2
2395 
2396 /*
2397  * REPLY_SCAN_CMD = 0x80 (response)
2398  */
2399 struct iwl_scanreq_notification {
2400 	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2401 } __packed;
2402 
2403 /*
2404  * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2405  */
2406 struct iwl_scanstart_notification {
2407 	__le32 tsf_low;
2408 	__le32 tsf_high;
2409 	__le32 beacon_timer;
2410 	u8 channel;
2411 	u8 band;
2412 	u8 reserved[2];
2413 	__le32 status;
2414 } __packed;
2415 
2416 #define  SCAN_OWNER_STATUS 0x1
2417 #define  MEASURE_OWNER_STATUS 0x2
2418 
2419 #define IWL_PROBE_STATUS_OK		0
2420 #define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2421 /* error statuses combined with TX_FAILED */
2422 #define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2423 #define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2424 
2425 #define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2426 /*
2427  * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2428  */
2429 struct iwl_scanresults_notification {
2430 	u8 channel;
2431 	u8 band;
2432 	u8 probe_status;
2433 	u8 num_probe_not_sent; /* not enough time to send */
2434 	__le32 tsf_low;
2435 	__le32 tsf_high;
2436 	__le32 statistics[NUMBER_OF_STATISTICS];
2437 } __packed;
2438 
2439 /*
2440  * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2441  */
2442 struct iwl_scancomplete_notification {
2443 	u8 scanned_channels;
2444 	u8 status;
2445 	u8 bt_status;	/* BT On/Off status */
2446 	u8 last_channel;
2447 	__le32 tsf_low;
2448 	__le32 tsf_high;
2449 } __packed;
2450 
2451 
2452 /******************************************************************************
2453  * (9)
2454  * IBSS/AP Commands and Notifications:
2455  *
2456  *****************************************************************************/
2457 
2458 enum iwl_ibss_manager {
2459 	IWL_NOT_IBSS_MANAGER = 0,
2460 	IWL_IBSS_MANAGER = 1,
2461 };
2462 
2463 /*
2464  * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2465  */
2466 
2467 struct iwlagn_beacon_notif {
2468 	struct iwlagn_tx_resp beacon_notify_hdr;
2469 	__le32 low_tsf;
2470 	__le32 high_tsf;
2471 	__le32 ibss_mgr_status;
2472 } __packed;
2473 
2474 /*
2475  * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2476  */
2477 
2478 struct iwl_tx_beacon_cmd {
2479 	struct iwl_tx_cmd tx;
2480 	__le16 tim_idx;
2481 	u8 tim_size;
2482 	u8 reserved1;
2483 	struct ieee80211_hdr frame[0];	/* beacon frame */
2484 } __packed;
2485 
2486 /******************************************************************************
2487  * (10)
2488  * Statistics Commands and Notifications:
2489  *
2490  *****************************************************************************/
2491 
2492 #define IWL_TEMP_CONVERT 260
2493 
2494 #define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2495 #define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2496 #define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2497 
2498 /* Used for passing to driver number of successes and failures per rate */
2499 struct rate_histogram {
2500 	union {
2501 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504 	} success;
2505 	union {
2506 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2507 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2508 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2509 	} failed;
2510 } __packed;
2511 
2512 /* statistics command response */
2513 
2514 struct statistics_dbg {
2515 	__le32 burst_check;
2516 	__le32 burst_count;
2517 	__le32 wait_for_silence_timeout_cnt;
2518 	__le32 reserved[3];
2519 } __packed;
2520 
2521 struct statistics_rx_phy {
2522 	__le32 ina_cnt;
2523 	__le32 fina_cnt;
2524 	__le32 plcp_err;
2525 	__le32 crc32_err;
2526 	__le32 overrun_err;
2527 	__le32 early_overrun_err;
2528 	__le32 crc32_good;
2529 	__le32 false_alarm_cnt;
2530 	__le32 fina_sync_err_cnt;
2531 	__le32 sfd_timeout;
2532 	__le32 fina_timeout;
2533 	__le32 unresponded_rts;
2534 	__le32 rxe_frame_limit_overrun;
2535 	__le32 sent_ack_cnt;
2536 	__le32 sent_cts_cnt;
2537 	__le32 sent_ba_rsp_cnt;
2538 	__le32 dsp_self_kill;
2539 	__le32 mh_format_err;
2540 	__le32 re_acq_main_rssi_sum;
2541 	__le32 reserved3;
2542 } __packed;
2543 
2544 struct statistics_rx_ht_phy {
2545 	__le32 plcp_err;
2546 	__le32 overrun_err;
2547 	__le32 early_overrun_err;
2548 	__le32 crc32_good;
2549 	__le32 crc32_err;
2550 	__le32 mh_format_err;
2551 	__le32 agg_crc32_good;
2552 	__le32 agg_mpdu_cnt;
2553 	__le32 agg_cnt;
2554 	__le32 unsupport_mcs;
2555 } __packed;
2556 
2557 #define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2558 
2559 struct statistics_rx_non_phy {
2560 	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2561 	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2562 	__le32 non_bssid_frames;	/* number of frames with BSSID that
2563 					 * doesn't belong to the STA BSSID */
2564 	__le32 filtered_frames;	/* count frames that were dumped in the
2565 				 * filtering process */
2566 	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2567 					 * our serving channel */
2568 	__le32 channel_beacons;	/* beacons with our bss id and in our
2569 				 * serving channel */
2570 	__le32 num_missed_bcon;	/* number of missed beacons */
2571 	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2572 					 * ADC was in saturation */
2573 	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2574 					  * for INA */
2575 	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2576 	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2577 	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2578 	__le32 interference_data_flag;	/* flag for interference data
2579 					 * availability. 1 when data is
2580 					 * available. */
2581 	__le32 channel_load;		/* counts RX Enable time in uSec */
2582 	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2583 					 * and CCK) counter */
2584 	__le32 beacon_rssi_a;
2585 	__le32 beacon_rssi_b;
2586 	__le32 beacon_rssi_c;
2587 	__le32 beacon_energy_a;
2588 	__le32 beacon_energy_b;
2589 	__le32 beacon_energy_c;
2590 } __packed;
2591 
2592 struct statistics_rx_non_phy_bt {
2593 	struct statistics_rx_non_phy common;
2594 	/* additional stats for bt */
2595 	__le32 num_bt_kills;
2596 	__le32 reserved[2];
2597 } __packed;
2598 
2599 struct statistics_rx {
2600 	struct statistics_rx_phy ofdm;
2601 	struct statistics_rx_phy cck;
2602 	struct statistics_rx_non_phy general;
2603 	struct statistics_rx_ht_phy ofdm_ht;
2604 } __packed;
2605 
2606 struct statistics_rx_bt {
2607 	struct statistics_rx_phy ofdm;
2608 	struct statistics_rx_phy cck;
2609 	struct statistics_rx_non_phy_bt general;
2610 	struct statistics_rx_ht_phy ofdm_ht;
2611 } __packed;
2612 
2613 /**
2614  * struct statistics_tx_power - current tx power
2615  *
2616  * @ant_a: current tx power on chain a in 1/2 dB step
2617  * @ant_b: current tx power on chain b in 1/2 dB step
2618  * @ant_c: current tx power on chain c in 1/2 dB step
2619  */
2620 struct statistics_tx_power {
2621 	u8 ant_a;
2622 	u8 ant_b;
2623 	u8 ant_c;
2624 	u8 reserved;
2625 } __packed;
2626 
2627 struct statistics_tx_non_phy_agg {
2628 	__le32 ba_timeout;
2629 	__le32 ba_reschedule_frames;
2630 	__le32 scd_query_agg_frame_cnt;
2631 	__le32 scd_query_no_agg;
2632 	__le32 scd_query_agg;
2633 	__le32 scd_query_mismatch;
2634 	__le32 frame_not_ready;
2635 	__le32 underrun;
2636 	__le32 bt_prio_kill;
2637 	__le32 rx_ba_rsp_cnt;
2638 } __packed;
2639 
2640 struct statistics_tx {
2641 	__le32 preamble_cnt;
2642 	__le32 rx_detected_cnt;
2643 	__le32 bt_prio_defer_cnt;
2644 	__le32 bt_prio_kill_cnt;
2645 	__le32 few_bytes_cnt;
2646 	__le32 cts_timeout;
2647 	__le32 ack_timeout;
2648 	__le32 expected_ack_cnt;
2649 	__le32 actual_ack_cnt;
2650 	__le32 dump_msdu_cnt;
2651 	__le32 burst_abort_next_frame_mismatch_cnt;
2652 	__le32 burst_abort_missing_next_frame_cnt;
2653 	__le32 cts_timeout_collision;
2654 	__le32 ack_or_ba_timeout_collision;
2655 	struct statistics_tx_non_phy_agg agg;
2656 	/*
2657 	 * "tx_power" are optional parameters provided by uCode,
2658 	 * 6000 series is the only device provide the information,
2659 	 * Those are reserved fields for all the other devices
2660 	 */
2661 	struct statistics_tx_power tx_power;
2662 	__le32 reserved1;
2663 } __packed;
2664 
2665 
2666 struct statistics_div {
2667 	__le32 tx_on_a;
2668 	__le32 tx_on_b;
2669 	__le32 exec_time;
2670 	__le32 probe_time;
2671 	__le32 reserved1;
2672 	__le32 reserved2;
2673 } __packed;
2674 
2675 struct statistics_general_common {
2676 	__le32 temperature;   /* radio temperature */
2677 	__le32 temperature_m; /* radio voltage */
2678 	struct statistics_dbg dbg;
2679 	__le32 sleep_time;
2680 	__le32 slots_out;
2681 	__le32 slots_idle;
2682 	__le32 ttl_timestamp;
2683 	struct statistics_div div;
2684 	__le32 rx_enable_counter;
2685 	/*
2686 	 * num_of_sos_states:
2687 	 *  count the number of times we have to re-tune
2688 	 *  in order to get out of bad PHY status
2689 	 */
2690 	__le32 num_of_sos_states;
2691 } __packed;
2692 
2693 struct statistics_bt_activity {
2694 	/* Tx statistics */
2695 	__le32 hi_priority_tx_req_cnt;
2696 	__le32 hi_priority_tx_denied_cnt;
2697 	__le32 lo_priority_tx_req_cnt;
2698 	__le32 lo_priority_tx_denied_cnt;
2699 	/* Rx statistics */
2700 	__le32 hi_priority_rx_req_cnt;
2701 	__le32 hi_priority_rx_denied_cnt;
2702 	__le32 lo_priority_rx_req_cnt;
2703 	__le32 lo_priority_rx_denied_cnt;
2704 } __packed;
2705 
2706 struct statistics_general {
2707 	struct statistics_general_common common;
2708 	__le32 reserved2;
2709 	__le32 reserved3;
2710 } __packed;
2711 
2712 struct statistics_general_bt {
2713 	struct statistics_general_common common;
2714 	struct statistics_bt_activity activity;
2715 	__le32 reserved2;
2716 	__le32 reserved3;
2717 } __packed;
2718 
2719 #define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2720 #define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2721 #define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2722 
2723 /*
2724  * REPLY_STATISTICS_CMD = 0x9c,
2725  * all devices identical.
2726  *
2727  * This command triggers an immediate response containing uCode statistics.
2728  * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2729  *
2730  * If the CLEAR_STATS configuration flag is set, uCode will clear its
2731  * internal copy of the statistics (counters) after issuing the response.
2732  * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2733  *
2734  * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2735  * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2736  * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2737  */
2738 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2739 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2740 struct iwl_statistics_cmd {
2741 	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2742 } __packed;
2743 
2744 /*
2745  * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2746  *
2747  * By default, uCode issues this notification after receiving a beacon
2748  * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2749  * REPLY_STATISTICS_CMD 0x9c, above.
2750  *
2751  * Statistics counters continue to increment beacon after beacon, but are
2752  * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2753  * 0x9c with CLEAR_STATS bit set (see above).
2754  *
2755  * uCode also issues this notification during scans.  uCode clears statistics
2756  * appropriately so that each notification contains statistics for only the
2757  * one channel that has just been scanned.
2758  */
2759 #define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2760 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2761 
2762 struct iwl_notif_statistics {
2763 	__le32 flag;
2764 	struct statistics_rx rx;
2765 	struct statistics_tx tx;
2766 	struct statistics_general general;
2767 } __packed;
2768 
2769 struct iwl_bt_notif_statistics {
2770 	__le32 flag;
2771 	struct statistics_rx_bt rx;
2772 	struct statistics_tx tx;
2773 	struct statistics_general_bt general;
2774 } __packed;
2775 
2776 /*
2777  * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2778  *
2779  * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2780  * in regardless of how many missed beacons, which mean when driver receive the
2781  * notification, inside the command, it can find all the beacons information
2782  * which include number of total missed beacons, number of consecutive missed
2783  * beacons, number of beacons received and number of beacons expected to
2784  * receive.
2785  *
2786  * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2787  * in order to bring the radio/PHY back to working state; which has no relation
2788  * to when driver will perform sensitivity calibration.
2789  *
2790  * Driver should set it own missed_beacon_threshold to decide when to perform
2791  * sensitivity calibration based on number of consecutive missed beacons in
2792  * order to improve overall performance, especially in noisy environment.
2793  *
2794  */
2795 
2796 #define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2797 #define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2798 #define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2799 
2800 struct iwl_missed_beacon_notif {
2801 	__le32 consecutive_missed_beacons;
2802 	__le32 total_missed_becons;
2803 	__le32 num_expected_beacons;
2804 	__le32 num_recvd_beacons;
2805 } __packed;
2806 
2807 
2808 /******************************************************************************
2809  * (11)
2810  * Rx Calibration Commands:
2811  *
2812  * With the uCode used for open source drivers, most Tx calibration (except
2813  * for Tx Power) and most Rx calibration is done by uCode during the
2814  * "initialize" phase of uCode boot.  Driver must calibrate only:
2815  *
2816  * 1)  Tx power (depends on temperature), described elsewhere
2817  * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2818  * 3)  Receiver sensitivity (to optimize signal detection)
2819  *
2820  *****************************************************************************/
2821 
2822 /**
2823  * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2824  *
2825  * This command sets up the Rx signal detector for a sensitivity level that
2826  * is high enough to lock onto all signals within the associated network,
2827  * but low enough to ignore signals that are below a certain threshold, so as
2828  * not to have too many "false alarms".  False alarms are signals that the
2829  * Rx DSP tries to lock onto, but then discards after determining that they
2830  * are noise.
2831  *
2832  * The optimum number of false alarms is between 5 and 50 per 200 TUs
2833  * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2834  * time listening, not transmitting).  Driver must adjust sensitivity so that
2835  * the ratio of actual false alarms to actual Rx time falls within this range.
2836  *
2837  * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2838  * received beacon.  These provide information to the driver to analyze the
2839  * sensitivity.  Don't analyze statistics that come in from scanning, or any
2840  * other non-associated-network source.  Pertinent statistics include:
2841  *
2842  * From "general" statistics (struct statistics_rx_non_phy):
2843  *
2844  * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2845  *   Measure of energy of desired signal.  Used for establishing a level
2846  *   below which the device does not detect signals.
2847  *
2848  * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2849  *   Measure of background noise in silent period after beacon.
2850  *
2851  * channel_load
2852  *   uSecs of actual Rx time during beacon period (varies according to
2853  *   how much time was spent transmitting).
2854  *
2855  * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2856  *
2857  * false_alarm_cnt
2858  *   Signal locks abandoned early (before phy-level header).
2859  *
2860  * plcp_err
2861  *   Signal locks abandoned late (during phy-level header).
2862  *
2863  * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2864  *        beacon to beacon, i.e. each value is an accumulation of all errors
2865  *        before and including the latest beacon.  Values will wrap around to 0
2866  *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2867  *        previous beacon's values to determine # false alarms in the current
2868  *        beacon period.
2869  *
2870  * Total number of false alarms = false_alarms + plcp_errs
2871  *
2872  * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2873  * (notice that the start points for OFDM are at or close to settings for
2874  * maximum sensitivity):
2875  *
2876  *                                             START  /  MIN  /  MAX
2877  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2878  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2879  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2880  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2881  *
2882  *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2883  *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2884  *   by *adding* 1 to all 4 of the table entries above, up to the max for
2885  *   each entry.  Conversely, if false alarm rate is too low (less than 5
2886  *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2887  *   increase sensitivity.
2888  *
2889  * For CCK sensitivity, keep track of the following:
2890  *
2891  *   1).  20-beacon history of maximum background noise, indicated by
2892  *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2893  *        3 receivers.  For any given beacon, the "silence reference" is
2894  *        the maximum of last 60 samples (20 beacons * 3 receivers).
2895  *
2896  *   2).  10-beacon history of strongest signal level, as indicated
2897  *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2898  *        i.e. the strength of the signal through the best receiver at the
2899  *        moment.  These measurements are "upside down", with lower values
2900  *        for stronger signals, so max energy will be *minimum* value.
2901  *
2902  *        Then for any given beacon, the driver must determine the *weakest*
2903  *        of the strongest signals; this is the minimum level that needs to be
2904  *        successfully detected, when using the best receiver at the moment.
2905  *        "Max cck energy" is the maximum (higher value means lower energy!)
2906  *        of the last 10 minima.  Once this is determined, driver must add
2907  *        a little margin by adding "6" to it.
2908  *
2909  *   3).  Number of consecutive beacon periods with too few false alarms.
2910  *        Reset this to 0 at the first beacon period that falls within the
2911  *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2912  *
2913  * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2914  * (notice that the start points for CCK are at maximum sensitivity):
2915  *
2916  *                                             START  /  MIN  /  MAX
2917  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2918  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2919  *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2920  *
2921  *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2922  *   (greater than 50 for each 204.8 msecs listening), method for reducing
2923  *   sensitivity is:
2924  *
2925  *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2926  *       up to max 400.
2927  *
2928  *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2929  *       sensitivity has been reduced a significant amount; bring it up to
2930  *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2931  *
2932  *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2933  *       sensitivity has been reduced only a moderate or small amount;
2934  *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2935  *       down to min 0.  Otherwise (if gain has been significantly reduced),
2936  *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2937  *
2938  *       b)  Save a snapshot of the "silence reference".
2939  *
2940  *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2941  *   (less than 5 for each 204.8 msecs listening), method for increasing
2942  *   sensitivity is used only if:
2943  *
2944  *   1a)  Previous beacon did not have too many false alarms
2945  *   1b)  AND difference between previous "silence reference" and current
2946  *        "silence reference" (prev - current) is 2 or more,
2947  *   OR 2)  100 or more consecutive beacon periods have had rate of
2948  *          less than 5 false alarms per 204.8 milliseconds rx time.
2949  *
2950  *   Method for increasing sensitivity:
2951  *
2952  *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2953  *       down to min 125.
2954  *
2955  *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2956  *       down to min 200.
2957  *
2958  *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2959  *
2960  *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2961  *   (between 5 and 50 for each 204.8 msecs listening):
2962  *
2963  *   1)  Save a snapshot of the silence reference.
2964  *
2965  *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2966  *       give some extra margin to energy threshold by *subtracting* 8
2967  *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2968  *
2969  *   For all cases (too few, too many, good range), make sure that the CCK
2970  *   detection threshold (energy) is below the energy level for robust
2971  *   detection over the past 10 beacon periods, the "Max cck energy".
2972  *   Lower values mean higher energy; this means making sure that the value
2973  *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2974  *
2975  */
2976 
2977 /*
2978  * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2979  */
2980 #define HD_TABLE_SIZE  (11)	/* number of entries */
2981 #define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2982 #define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2983 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2984 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2985 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2986 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2987 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2988 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2989 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2990 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2991 #define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2992 
2993 /*
2994  * Additional table entries in enhance SENSITIVITY_CMD
2995  */
2996 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2997 #define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2998 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2999 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3000 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3001 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3002 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3003 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3004 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3005 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3006 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3007 #define HD_RESERVED					(22)
3008 
3009 /* number of entries for enhanced tbl */
3010 #define ENHANCE_HD_TABLE_SIZE  (23)
3011 
3012 /* number of additional entries for enhanced tbl */
3013 #define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3014 
3015 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3016 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3017 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3018 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3019 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3020 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3021 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3022 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3023 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3024 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3025 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3026 
3027 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3028 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3029 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3030 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3031 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3032 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3033 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3034 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3035 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3036 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3037 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3038 
3039 
3040 /* Control field in struct iwl_sensitivity_cmd */
3041 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3042 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3043 
3044 /**
3045  * struct iwl_sensitivity_cmd
3046  * @control:  (1) updates working table, (0) updates default table
3047  * @table:  energy threshold values, use HD_* as index into table
3048  *
3049  * Always use "1" in "control" to update uCode's working table and DSP.
3050  */
3051 struct iwl_sensitivity_cmd {
3052 	__le16 control;			/* always use "1" */
3053 	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3054 } __packed;
3055 
3056 /*
3057  *
3058  */
3059 struct iwl_enhance_sensitivity_cmd {
3060 	__le16 control;			/* always use "1" */
3061 	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3062 } __packed;
3063 
3064 
3065 /**
3066  * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3067  *
3068  * This command sets the relative gains of agn device's 3 radio receiver chains.
3069  *
3070  * After the first association, driver should accumulate signal and noise
3071  * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3072  * beacons from the associated network (don't collect statistics that come
3073  * in from scanning, or any other non-network source).
3074  *
3075  * DISCONNECTED ANTENNA:
3076  *
3077  * Driver should determine which antennas are actually connected, by comparing
3078  * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3079  * following values over 20 beacons, one accumulator for each of the chains
3080  * a/b/c, from struct statistics_rx_non_phy:
3081  *
3082  * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3083  *
3084  * Find the strongest signal from among a/b/c.  Compare the other two to the
3085  * strongest.  If any signal is more than 15 dB (times 20, unless you
3086  * divide the accumulated values by 20) below the strongest, the driver
3087  * considers that antenna to be disconnected, and should not try to use that
3088  * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3089  * driver should declare the stronger one as connected, and attempt to use it
3090  * (A and B are the only 2 Tx chains!).
3091  *
3092  *
3093  * RX BALANCE:
3094  *
3095  * Driver should balance the 3 receivers (but just the ones that are connected
3096  * to antennas, see above) for gain, by comparing the average signal levels
3097  * detected during the silence after each beacon (background noise).
3098  * Accumulate (add) the following values over 20 beacons, one accumulator for
3099  * each of the chains a/b/c, from struct statistics_rx_non_phy:
3100  *
3101  * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3102  *
3103  * Find the weakest background noise level from among a/b/c.  This Rx chain
3104  * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3105  * finding noise difference:
3106  *
3107  * (accum_noise[i] - accum_noise[reference]) / 30
3108  *
3109  * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3110  * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3111  * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3112  * and set bit 2 to indicate "reduce gain".  The value for the reference
3113  * (weakest) chain should be "0".
3114  *
3115  * diff_gain_[abc] bit fields:
3116  *   2: (1) reduce gain, (0) increase gain
3117  * 1-0: amount of gain, units of 1.5 dB
3118  */
3119 
3120 /* Phy calibration command for series */
3121 enum {
3122 	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3123 	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3124 	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3125 	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3126 	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3127 	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3128 	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3129 };
3130 
3131 /* This enum defines the bitmap of various calibrations to enable in both
3132  * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3133  */
3134 enum iwl_ucode_calib_cfg {
3135 	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3136 	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3137 	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3138 	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3139 	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3140 	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3141 	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3142 	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3143 	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3144 	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3145 	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3146 };
3147 
3148 #define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3149 					IWL_CALIB_CFG_DC_IDX |		\
3150 					IWL_CALIB_CFG_LO_IDX |		\
3151 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3152 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3153 					IWL_CALIB_CFG_CRYSTAL_IDX)
3154 
3155 #define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3156 					IWL_CALIB_CFG_DC_IDX |		\
3157 					IWL_CALIB_CFG_LO_IDX |		\
3158 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3159 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3160 					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3161 					IWL_CALIB_CFG_PAPD_IDX |	\
3162 					IWL_CALIB_CFG_TX_PWR_IDX |	\
3163 					IWL_CALIB_CFG_CRYSTAL_IDX)
3164 
3165 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3166 
3167 struct iwl_calib_cfg_elmnt_s {
3168 	__le32 is_enable;
3169 	__le32 start;
3170 	__le32 send_res;
3171 	__le32 apply_res;
3172 	__le32 reserved;
3173 } __packed;
3174 
3175 struct iwl_calib_cfg_status_s {
3176 	struct iwl_calib_cfg_elmnt_s once;
3177 	struct iwl_calib_cfg_elmnt_s perd;
3178 	__le32 flags;
3179 } __packed;
3180 
3181 struct iwl_calib_cfg_cmd {
3182 	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3183 	struct iwl_calib_cfg_status_s drv_calib_cfg;
3184 	__le32 reserved1;
3185 } __packed;
3186 
3187 struct iwl_calib_hdr {
3188 	u8 op_code;
3189 	u8 first_group;
3190 	u8 groups_num;
3191 	u8 data_valid;
3192 } __packed;
3193 
3194 struct iwl_calib_cmd {
3195 	struct iwl_calib_hdr hdr;
3196 	u8 data[0];
3197 } __packed;
3198 
3199 struct iwl_calib_xtal_freq_cmd {
3200 	struct iwl_calib_hdr hdr;
3201 	u8 cap_pin1;
3202 	u8 cap_pin2;
3203 	u8 pad[2];
3204 } __packed;
3205 
3206 #define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3207 struct iwl_calib_temperature_offset_cmd {
3208 	struct iwl_calib_hdr hdr;
3209 	__le16 radio_sensor_offset;
3210 	__le16 reserved;
3211 } __packed;
3212 
3213 struct iwl_calib_temperature_offset_v2_cmd {
3214 	struct iwl_calib_hdr hdr;
3215 	__le16 radio_sensor_offset_high;
3216 	__le16 radio_sensor_offset_low;
3217 	__le16 burntVoltageRef;
3218 	__le16 reserved;
3219 } __packed;
3220 
3221 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3222 struct iwl_calib_chain_noise_reset_cmd {
3223 	struct iwl_calib_hdr hdr;
3224 	u8 data[0];
3225 };
3226 
3227 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3228 struct iwl_calib_chain_noise_gain_cmd {
3229 	struct iwl_calib_hdr hdr;
3230 	u8 delta_gain_1;
3231 	u8 delta_gain_2;
3232 	u8 pad[2];
3233 } __packed;
3234 
3235 /******************************************************************************
3236  * (12)
3237  * Miscellaneous Commands:
3238  *
3239  *****************************************************************************/
3240 
3241 /*
3242  * LEDs Command & Response
3243  * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3244  *
3245  * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3246  * this command turns it on or off, or sets up a periodic blinking cycle.
3247  */
3248 struct iwl_led_cmd {
3249 	__le32 interval;	/* "interval" in uSec */
3250 	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3251 	u8 off;			/* # intervals off while blinking;
3252 				 * "0", with >0 "on" value, turns LED on */
3253 	u8 on;			/* # intervals on while blinking;
3254 				 * "0", regardless of "off", turns LED off */
3255 	u8 reserved;
3256 } __packed;
3257 
3258 /*
3259  * station priority table entries
3260  * also used as potential "events" value for both
3261  * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3262  */
3263 
3264 /*
3265  * COEX events entry flag masks
3266  * RP - Requested Priority
3267  * WP - Win Medium Priority: priority assigned when the contention has been won
3268  */
3269 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3270 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3271 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3272 
3273 #define COEX_CU_UNASSOC_IDLE_RP               4
3274 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3275 #define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3276 #define COEX_CU_CALIBRATION_RP                4
3277 #define COEX_CU_PERIODIC_CALIBRATION_RP       4
3278 #define COEX_CU_CONNECTION_ESTAB_RP           4
3279 #define COEX_CU_ASSOCIATED_IDLE_RP            4
3280 #define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3281 #define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3282 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3283 #define COEX_CU_RF_ON_RP                      6
3284 #define COEX_CU_RF_OFF_RP                     4
3285 #define COEX_CU_STAND_ALONE_DEBUG_RP          6
3286 #define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3287 #define COEX_CU_RSRVD1_RP                     4
3288 #define COEX_CU_RSRVD2_RP                     4
3289 
3290 #define COEX_CU_UNASSOC_IDLE_WP               3
3291 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3292 #define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3293 #define COEX_CU_CALIBRATION_WP                3
3294 #define COEX_CU_PERIODIC_CALIBRATION_WP       3
3295 #define COEX_CU_CONNECTION_ESTAB_WP           3
3296 #define COEX_CU_ASSOCIATED_IDLE_WP            3
3297 #define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3298 #define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3299 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3300 #define COEX_CU_RF_ON_WP                      3
3301 #define COEX_CU_RF_OFF_WP                     3
3302 #define COEX_CU_STAND_ALONE_DEBUG_WP          6
3303 #define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3304 #define COEX_CU_RSRVD1_WP                     3
3305 #define COEX_CU_RSRVD2_WP                     3
3306 
3307 #define COEX_UNASSOC_IDLE_FLAGS                     0
3308 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3309 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3310 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3311 #define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3312 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3313 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3314 #define COEX_CALIBRATION_FLAGS			\
3315 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3316 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3317 #define COEX_PERIODIC_CALIBRATION_FLAGS             0
3318 /*
3319  * COEX_CONNECTION_ESTAB:
3320  * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3321  */
3322 #define COEX_CONNECTION_ESTAB_FLAGS		\
3323 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3324 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3325 	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3326 #define COEX_ASSOCIATED_IDLE_FLAGS                  0
3327 #define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3328 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3329 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3330 #define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3331 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3332 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3334 #define COEX_RF_ON_FLAGS                            0
3335 #define COEX_RF_OFF_FLAGS                           0
3336 #define COEX_STAND_ALONE_DEBUG_FLAGS		\
3337 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3338 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339 #define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3340 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3341 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3342 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3343 #define COEX_RSRVD1_FLAGS                           0
3344 #define COEX_RSRVD2_FLAGS                           0
3345 /*
3346  * COEX_CU_RF_ON is the event wrapping all radio ownership.
3347  * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3348  */
3349 #define COEX_CU_RF_ON_FLAGS			\
3350 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3352 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3353 
3354 
3355 enum {
3356 	/* un-association part */
3357 	COEX_UNASSOC_IDLE		= 0,
3358 	COEX_UNASSOC_MANUAL_SCAN	= 1,
3359 	COEX_UNASSOC_AUTO_SCAN		= 2,
3360 	/* calibration */
3361 	COEX_CALIBRATION		= 3,
3362 	COEX_PERIODIC_CALIBRATION	= 4,
3363 	/* connection */
3364 	COEX_CONNECTION_ESTAB		= 5,
3365 	/* association part */
3366 	COEX_ASSOCIATED_IDLE		= 6,
3367 	COEX_ASSOC_MANUAL_SCAN		= 7,
3368 	COEX_ASSOC_AUTO_SCAN		= 8,
3369 	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3370 	/* RF ON/OFF */
3371 	COEX_RF_ON			= 10,
3372 	COEX_RF_OFF			= 11,
3373 	COEX_STAND_ALONE_DEBUG		= 12,
3374 	/* IPAN */
3375 	COEX_IPAN_ASSOC_LEVEL		= 13,
3376 	/* reserved */
3377 	COEX_RSRVD1			= 14,
3378 	COEX_RSRVD2			= 15,
3379 	COEX_NUM_OF_EVENTS		= 16
3380 };
3381 
3382 /*
3383  * Coexistence WIFI/WIMAX  Command
3384  * COEX_PRIORITY_TABLE_CMD = 0x5a
3385  *
3386  */
3387 struct iwl_wimax_coex_event_entry {
3388 	u8 request_prio;
3389 	u8 win_medium_prio;
3390 	u8 reserved;
3391 	u8 flags;
3392 } __packed;
3393 
3394 /* COEX flag masks */
3395 
3396 /* Station table is valid */
3397 #define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3398 /* UnMask wake up src at unassociated sleep */
3399 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3400 /* UnMask wake up src at associated sleep */
3401 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3402 /* Enable CoEx feature. */
3403 #define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3404 
3405 struct iwl_wimax_coex_cmd {
3406 	u8 flags;
3407 	u8 reserved[3];
3408 	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3409 } __packed;
3410 
3411 /*
3412  * Coexistence MEDIUM NOTIFICATION
3413  * COEX_MEDIUM_NOTIFICATION = 0x5b
3414  *
3415  * notification from uCode to host to indicate medium changes
3416  *
3417  */
3418 /*
3419  * status field
3420  * bit 0 - 2: medium status
3421  * bit 3: medium change indication
3422  * bit 4 - 31: reserved
3423  */
3424 /* status option values, (0 - 2 bits) */
3425 #define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3426 #define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3427 #define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3428 #define COEX_MEDIUM_MSK		(0x7)
3429 
3430 /* send notification status (1 bit) */
3431 #define COEX_MEDIUM_CHANGED	(0x8)
3432 #define COEX_MEDIUM_CHANGED_MSK	(0x8)
3433 #define COEX_MEDIUM_SHIFT	(3)
3434 
3435 struct iwl_coex_medium_notification {
3436 	__le32 status;
3437 	__le32 events;
3438 } __packed;
3439 
3440 /*
3441  * Coexistence EVENT  Command
3442  * COEX_EVENT_CMD = 0x5c
3443  *
3444  * send from host to uCode for coex event request.
3445  */
3446 /* flags options */
3447 #define COEX_EVENT_REQUEST_MSK	(0x1)
3448 
3449 struct iwl_coex_event_cmd {
3450 	u8 flags;
3451 	u8 event;
3452 	__le16 reserved;
3453 } __packed;
3454 
3455 struct iwl_coex_event_resp {
3456 	__le32 status;
3457 } __packed;
3458 
3459 
3460 /******************************************************************************
3461  * Bluetooth Coexistence commands
3462  *
3463  *****************************************************************************/
3464 
3465 /*
3466  * BT Status notification
3467  * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3468  */
3469 enum iwl_bt_coex_profile_traffic_load {
3470 	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3471 	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3472 	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3473 	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3474 /*
3475  * There are no more even though below is a u8, the
3476  * indication from the BT device only has two bits.
3477  */
3478 };
3479 
3480 #define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3481 #define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3482 
3483 /* BT UART message - Share Part (BT -> WiFi) */
3484 #define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3485 #define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3486 		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3487 #define BT_UART_MSG_FRAME1SSN_POS		(3)
3488 #define BT_UART_MSG_FRAME1SSN_MSK		\
3489 		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3490 #define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3491 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3492 		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3493 #define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3494 #define BT_UART_MSG_FRAME1RESERVED_MSK		\
3495 		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3496 
3497 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3498 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3499 		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3500 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3501 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3502 		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3503 #define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3504 #define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3505 		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3506 #define BT_UART_MSG_FRAME2INBAND_POS		(5)
3507 #define BT_UART_MSG_FRAME2INBAND_MSK		\
3508 		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3509 #define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3510 #define BT_UART_MSG_FRAME2RESERVED_MSK		\
3511 		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3512 
3513 #define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3514 #define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3515 		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3516 #define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3517 #define BT_UART_MSG_FRAME3SNIFF_MSK		\
3518 		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3519 #define BT_UART_MSG_FRAME3A2DP_POS		(2)
3520 #define BT_UART_MSG_FRAME3A2DP_MSK		\
3521 		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3522 #define BT_UART_MSG_FRAME3ACL_POS		(3)
3523 #define BT_UART_MSG_FRAME3ACL_MSK		\
3524 		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3525 #define BT_UART_MSG_FRAME3MASTER_POS		(4)
3526 #define BT_UART_MSG_FRAME3MASTER_MSK		\
3527 		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3528 #define BT_UART_MSG_FRAME3OBEX_POS		(5)
3529 #define BT_UART_MSG_FRAME3OBEX_MSK		\
3530 		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3531 #define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3532 #define BT_UART_MSG_FRAME3RESERVED_MSK		\
3533 		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3534 
3535 #define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3536 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3537 		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3538 #define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3539 #define BT_UART_MSG_FRAME4RESERVED_MSK		\
3540 		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3541 
3542 #define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3543 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3544 		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3545 #define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3546 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3547 		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3548 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3549 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3550 		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3551 #define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3552 #define BT_UART_MSG_FRAME5RESERVED_MSK		\
3553 		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3554 
3555 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3556 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3557 		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3558 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3559 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3560 		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3561 #define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3562 #define BT_UART_MSG_FRAME6RESERVED_MSK		\
3563 		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3564 
3565 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3566 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3567 		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3568 #define BT_UART_MSG_FRAME7PAGE_POS		(3)
3569 #define BT_UART_MSG_FRAME7PAGE_MSK		\
3570 		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3571 #define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3572 #define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3573 		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3574 #define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3575 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3576 		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3577 #define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3578 #define BT_UART_MSG_FRAME7RESERVED_MSK		\
3579 		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3580 
3581 /* BT Session Activity 2 UART message (BT -> WiFi) */
3582 #define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3583 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3584 		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3585 #define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3586 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3587 		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3588 
3589 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3590 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3591 		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3592 #define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3593 #define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3594 		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3595 
3596 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3597 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3598 		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3599 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3600 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3601 		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3602 #define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3603 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3604 		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3605 #define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3606 #define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3607 		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3608 
3609 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3610 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3611 		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3612 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3613 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3614 		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3615 #define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3616 #define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3617 		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3618 
3619 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3620 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3621 		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3622 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3623 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3624 		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3625 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3626 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3627 		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3628 #define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3629 #define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3630 		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3631 
3632 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3633 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3634 		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3635 #define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3636 #define BT_UART_MSG_2_FRAME6RFU_MSK		\
3637 		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3638 #define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3639 #define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3640 		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3641 
3642 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3643 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3644 		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3645 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3646 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3647 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3648 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3649 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3650 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3651 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3652 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3653 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3654 #define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3655 #define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3656 		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3657 
3658 
3659 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3660 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3661 
3662 struct iwl_bt_uart_msg {
3663 	u8 header;
3664 	u8 frame1;
3665 	u8 frame2;
3666 	u8 frame3;
3667 	u8 frame4;
3668 	u8 frame5;
3669 	u8 frame6;
3670 	u8 frame7;
3671 } __packed;
3672 
3673 struct iwl_bt_coex_profile_notif {
3674 	struct iwl_bt_uart_msg last_bt_uart_msg;
3675 	u8 bt_status; /* 0 - off, 1 - on */
3676 	u8 bt_traffic_load; /* 0 .. 3? */
3677 	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3678 	u8 reserved;
3679 } __packed;
3680 
3681 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3682 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3683 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3684 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3685 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3686 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3687 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3688 
3689 /*
3690  * BT Coexistence Priority table
3691  * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3692  */
3693 enum bt_coex_prio_table_events {
3694 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3695 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3696 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3697 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3698 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3699 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3700 	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3701 	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3702 	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3703 	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3704 	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3705 	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3706 	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3707 	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3708 	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3709 	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3710 	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3711 	BT_COEX_PRIO_TBL_EVT_MAX,
3712 };
3713 
3714 enum bt_coex_prio_table_priorities {
3715 	BT_COEX_PRIO_TBL_DISABLED = 0,
3716 	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3717 	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3718 	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3719 	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3720 	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3721 	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3722 	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3723 	BT_COEX_PRIO_TBL_MAX,
3724 };
3725 
3726 struct iwl_bt_coex_prio_table_cmd {
3727 	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3728 } __packed;
3729 
3730 #define IWL_BT_COEX_ENV_CLOSE	0
3731 #define IWL_BT_COEX_ENV_OPEN	1
3732 /*
3733  * BT Protection Envelope
3734  * REPLY_BT_COEX_PROT_ENV = 0xcd
3735  */
3736 struct iwl_bt_coex_prot_env_cmd {
3737 	u8 action; /* 0 = closed, 1 = open */
3738 	u8 type; /* 0 .. 15 */
3739 	u8 reserved[2];
3740 } __packed;
3741 
3742 /*
3743  * REPLY_D3_CONFIG
3744  */
3745 enum iwlagn_d3_wakeup_filters {
3746 	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3747 	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3748 };
3749 
3750 struct iwlagn_d3_config_cmd {
3751 	__le32 min_sleep_time;
3752 	__le32 wakeup_flags;
3753 } __packed;
3754 
3755 /*
3756  * REPLY_WOWLAN_PATTERNS
3757  */
3758 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3759 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3760 
3761 struct iwlagn_wowlan_pattern {
3762 	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3763 	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3764 	u8 mask_size;
3765 	u8 pattern_size;
3766 	__le16 reserved;
3767 } __packed;
3768 
3769 #define IWLAGN_WOWLAN_MAX_PATTERNS	20
3770 
3771 struct iwlagn_wowlan_patterns_cmd {
3772 	__le32 n_patterns;
3773 	struct iwlagn_wowlan_pattern patterns[];
3774 } __packed;
3775 
3776 /*
3777  * REPLY_WOWLAN_WAKEUP_FILTER
3778  */
3779 enum iwlagn_wowlan_wakeup_filters {
3780 	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3781 	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3782 	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3783 	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3784 	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3785 	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3786 	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3787 	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3788 	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3789 };
3790 
3791 struct iwlagn_wowlan_wakeup_filter_cmd {
3792 	__le32 enabled;
3793 	__le16 non_qos_seq;
3794 	__le16 reserved;
3795 	__le16 qos_seq[8];
3796 };
3797 
3798 /*
3799  * REPLY_WOWLAN_TSC_RSC_PARAMS
3800  */
3801 #define IWLAGN_NUM_RSC	16
3802 
3803 struct tkip_sc {
3804 	__le16 iv16;
3805 	__le16 pad;
3806 	__le32 iv32;
3807 } __packed;
3808 
3809 struct iwlagn_tkip_rsc_tsc {
3810 	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3811 	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3812 	struct tkip_sc tsc;
3813 } __packed;
3814 
3815 struct aes_sc {
3816 	__le64 pn;
3817 } __packed;
3818 
3819 struct iwlagn_aes_rsc_tsc {
3820 	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3821 	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3822 	struct aes_sc tsc;
3823 } __packed;
3824 
3825 union iwlagn_all_tsc_rsc {
3826 	struct iwlagn_tkip_rsc_tsc tkip;
3827 	struct iwlagn_aes_rsc_tsc aes;
3828 };
3829 
3830 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3831 	union iwlagn_all_tsc_rsc all_tsc_rsc;
3832 } __packed;
3833 
3834 /*
3835  * REPLY_WOWLAN_TKIP_PARAMS
3836  */
3837 #define IWLAGN_MIC_KEY_SIZE	8
3838 #define IWLAGN_P1K_SIZE		5
3839 struct iwlagn_mic_keys {
3840 	u8 tx[IWLAGN_MIC_KEY_SIZE];
3841 	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3842 	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3843 } __packed;
3844 
3845 struct iwlagn_p1k_cache {
3846 	__le16 p1k[IWLAGN_P1K_SIZE];
3847 } __packed;
3848 
3849 #define IWLAGN_NUM_RX_P1K_CACHE	2
3850 
3851 struct iwlagn_wowlan_tkip_params_cmd {
3852 	struct iwlagn_mic_keys mic_keys;
3853 	struct iwlagn_p1k_cache tx;
3854 	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3855 	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3856 } __packed;
3857 
3858 /*
3859  * REPLY_WOWLAN_KEK_KCK_MATERIAL
3860  */
3861 
3862 #define IWLAGN_KCK_MAX_SIZE	32
3863 #define IWLAGN_KEK_MAX_SIZE	32
3864 
3865 struct iwlagn_wowlan_kek_kck_material_cmd {
3866 	u8	kck[IWLAGN_KCK_MAX_SIZE];
3867 	u8	kek[IWLAGN_KEK_MAX_SIZE];
3868 	__le16	kck_len;
3869 	__le16	kek_len;
3870 	__le64	replay_ctr;
3871 } __packed;
3872 
3873 #define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3874 
3875 /*
3876  * REPLY_WOWLAN_GET_STATUS = 0xe5
3877  */
3878 struct iwlagn_wowlan_status {
3879 	__le64 replay_ctr;
3880 	__le32 rekey_status;
3881 	__le32 wakeup_reason;
3882 	u8 pattern_number;
3883 	u8 reserved1;
3884 	__le16 qos_seq_ctr[8];
3885 	__le16 non_qos_seq_ctr;
3886 	__le16 reserved2;
3887 	union iwlagn_all_tsc_rsc tsc_rsc;
3888 	__le16 reserved3;
3889 } __packed;
3890 
3891 /*
3892  * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3893  */
3894 
3895 /*
3896  * Minimum slot time in TU
3897  */
3898 #define IWL_MIN_SLOT_TIME	20
3899 
3900 /**
3901  * struct iwl_wipan_slot
3902  * @width: Time in TU
3903  * @type:
3904  *   0 - BSS
3905  *   1 - PAN
3906  */
3907 struct iwl_wipan_slot {
3908 	__le16 width;
3909 	u8 type;
3910 	u8 reserved;
3911 } __packed;
3912 
3913 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3914 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3915 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3916 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3917 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3918 
3919 /**
3920  * struct iwl_wipan_params_cmd
3921  * @flags:
3922  *   bit0: reserved
3923  *   bit1: CP leave channel with CTS
3924  *   bit2: CP leave channel qith Quiet
3925  *   bit3: slotted mode
3926  *     1 - work in slotted mode
3927  *     0 - work in non slotted mode
3928  *   bit4: filter beacon notification
3929  *   bit5: full tx slotted mode. if this flag is set,
3930  *         uCode will perform leaving channel methods in context switch
3931  *         also when working in same channel mode
3932  * @num_slots: 1 - 10
3933  */
3934 struct iwl_wipan_params_cmd {
3935 	__le16 flags;
3936 	u8 reserved;
3937 	u8 num_slots;
3938 	struct iwl_wipan_slot slots[10];
3939 } __packed;
3940 
3941 /*
3942  * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3943  *
3944  * TODO: Figure out what this is used for,
3945  *	 it can only switch between 2.4 GHz
3946  *	 channels!!
3947  */
3948 
3949 struct iwl_wipan_p2p_channel_switch_cmd {
3950 	__le16 channel;
3951 	__le16 reserved;
3952 };
3953 
3954 /*
3955  * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3956  *
3957  * This is used by the device to notify us of the
3958  * NoA schedule it determined so we can forward it
3959  * to userspace for inclusion in probe responses.
3960  *
3961  * In beacons, the NoA schedule is simply appended
3962  * to the frame we give the device.
3963  */
3964 
3965 struct iwl_wipan_noa_descriptor {
3966 	u8 count;
3967 	__le32 duration;
3968 	__le32 interval;
3969 	__le32 starttime;
3970 } __packed;
3971 
3972 struct iwl_wipan_noa_attribute {
3973 	u8 id;
3974 	__le16 length;
3975 	u8 index;
3976 	u8 ct_window;
3977 	struct iwl_wipan_noa_descriptor descr0, descr1;
3978 	u8 reserved;
3979 } __packed;
3980 
3981 struct iwl_wipan_noa_notification {
3982 	u32 noa_active;
3983 	struct iwl_wipan_noa_attribute noa_attribute;
3984 } __packed;
3985 
3986 #endif				/* __iwl_commands_h__ */
3987