1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Variant of atomic_t specialized for reference counts.
4  *
5  * The interface matches the atomic_t interface (to aid in porting) but only
6  * provides the few functions one should use for reference counting.
7  *
8  * Saturation semantics
9  * ====================
10  *
11  * refcount_t differs from atomic_t in that the counter saturates at
12  * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the
13  * counter and causing 'spurious' use-after-free issues. In order to avoid the
14  * cost associated with introducing cmpxchg() loops into all of the saturating
15  * operations, we temporarily allow the counter to take on an unchecked value
16  * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow
17  * or overflow has occurred. Although this is racy when multiple threads
18  * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly
19  * equidistant from 0 and INT_MAX we minimise the scope for error:
20  *
21  * 	                           INT_MAX     REFCOUNT_SATURATED   UINT_MAX
22  *   0                          (0x7fff_ffff)    (0xc000_0000)    (0xffff_ffff)
23  *   +--------------------------------+----------------+----------------+
24  *                                     <---------- bad value! ---------->
25  *
26  * (in a signed view of the world, the "bad value" range corresponds to
27  * a negative counter value).
28  *
29  * As an example, consider a refcount_inc() operation that causes the counter
30  * to overflow:
31  *
32  * 	int old = atomic_fetch_add_relaxed(r);
33  *	// old is INT_MAX, refcount now INT_MIN (0x8000_0000)
34  *	if (old < 0)
35  *		atomic_set(r, REFCOUNT_SATURATED);
36  *
37  * If another thread also performs a refcount_inc() operation between the two
38  * atomic operations, then the count will continue to edge closer to 0. If it
39  * reaches a value of 1 before /any/ of the threads reset it to the saturated
40  * value, then a concurrent refcount_dec_and_test() may erroneously free the
41  * underlying object.
42  * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently
43  * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK).
44  * With the current PID limit, if no batched refcounting operations are used and
45  * the attacker can't repeatedly trigger kernel oopses in the middle of refcount
46  * operations, this makes it impossible for a saturated refcount to leave the
47  * saturation range, even if it is possible for multiple uses of the same
48  * refcount to nest in the context of a single task:
49  *
50  *     (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT =
51  *     0x40000000 / 0x400000 = 0x100 = 256
52  *
53  * If hundreds of references are added/removed with a single refcounting
54  * operation, it may potentially be possible to leave the saturation range; but
55  * given the precise timing details involved with the round-robin scheduling of
56  * each thread manipulating the refcount and the need to hit the race multiple
57  * times in succession, there doesn't appear to be a practical avenue of attack
58  * even if using refcount_add() operations with larger increments.
59  *
60  * Memory ordering
61  * ===============
62  *
63  * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
64  * and provide only what is strictly required for refcounts.
65  *
66  * The increments are fully relaxed; these will not provide ordering. The
67  * rationale is that whatever is used to obtain the object we're increasing the
68  * reference count on will provide the ordering. For locked data structures,
69  * its the lock acquire, for RCU/lockless data structures its the dependent
70  * load.
71  *
72  * Do note that inc_not_zero() provides a control dependency which will order
73  * future stores against the inc, this ensures we'll never modify the object
74  * if we did not in fact acquire a reference.
75  *
76  * The decrements will provide release order, such that all the prior loads and
77  * stores will be issued before, it also provides a control dependency, which
78  * will order us against the subsequent free().
79  *
80  * The control dependency is against the load of the cmpxchg (ll/sc) that
81  * succeeded. This means the stores aren't fully ordered, but this is fine
82  * because the 1->0 transition indicates no concurrency.
83  *
84  * Note that the allocator is responsible for ordering things between free()
85  * and alloc().
86  *
87  * The decrements dec_and_test() and sub_and_test() also provide acquire
88  * ordering on success.
89  *
90  */
91 
92 #ifndef _LINUX_REFCOUNT_H
93 #define _LINUX_REFCOUNT_H
94 
95 #include <linux/atomic.h>
96 #include <linux/bug.h>
97 #include <linux/compiler.h>
98 #include <linux/limits.h>
99 #include <linux/spinlock_types.h>
100 
101 struct mutex;
102 
103 /**
104  * struct refcount_t - variant of atomic_t specialized for reference counts
105  * @refs: atomic_t counter field
106  *
107  * The counter saturates at REFCOUNT_SATURATED and will not move once
108  * there. This avoids wrapping the counter and causing 'spurious'
109  * use-after-free bugs.
110  */
111 typedef struct refcount_struct {
112 	atomic_t refs;
113 } refcount_t;
114 
115 #define REFCOUNT_INIT(n)	{ .refs = ATOMIC_INIT(n), }
116 #define REFCOUNT_MAX		INT_MAX
117 #define REFCOUNT_SATURATED	(INT_MIN / 2)
118 
119 enum refcount_saturation_type {
120 	REFCOUNT_ADD_NOT_ZERO_OVF,
121 	REFCOUNT_ADD_OVF,
122 	REFCOUNT_ADD_UAF,
123 	REFCOUNT_SUB_UAF,
124 	REFCOUNT_DEC_LEAK,
125 };
126 
127 void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t);
128 
129 /**
130  * refcount_set - set a refcount's value
131  * @r: the refcount
132  * @n: value to which the refcount will be set
133  */
refcount_set(refcount_t * r,int n)134 static inline void refcount_set(refcount_t *r, int n)
135 {
136 	atomic_set(&r->refs, n);
137 }
138 
139 /**
140  * refcount_read - get a refcount's value
141  * @r: the refcount
142  *
143  * Return: the refcount's value
144  */
refcount_read(const refcount_t * r)145 static inline unsigned int refcount_read(const refcount_t *r)
146 {
147 	return atomic_read(&r->refs);
148 }
149 
__refcount_add_not_zero(int i,refcount_t * r,int * oldp)150 static inline __must_check bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp)
151 {
152 	int old = refcount_read(r);
153 
154 	do {
155 		if (!old)
156 			break;
157 	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i));
158 
159 	if (oldp)
160 		*oldp = old;
161 
162 	if (unlikely(old < 0 || old + i < 0))
163 		refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
164 
165 	return old;
166 }
167 
168 /**
169  * refcount_add_not_zero - add a value to a refcount unless it is 0
170  * @i: the value to add to the refcount
171  * @r: the refcount
172  *
173  * Will saturate at REFCOUNT_SATURATED and WARN.
174  *
175  * Provides no memory ordering, it is assumed the caller has guaranteed the
176  * object memory to be stable (RCU, etc.). It does provide a control dependency
177  * and thereby orders future stores. See the comment on top.
178  *
179  * Use of this function is not recommended for the normal reference counting
180  * use case in which references are taken and released one at a time.  In these
181  * cases, refcount_inc(), or one of its variants, should instead be used to
182  * increment a reference count.
183  *
184  * Return: false if the passed refcount is 0, true otherwise
185  */
refcount_add_not_zero(int i,refcount_t * r)186 static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
187 {
188 	return __refcount_add_not_zero(i, r, NULL);
189 }
190 
__refcount_add(int i,refcount_t * r,int * oldp)191 static inline void __refcount_add(int i, refcount_t *r, int *oldp)
192 {
193 	int old = atomic_fetch_add_relaxed(i, &r->refs);
194 
195 	if (oldp)
196 		*oldp = old;
197 
198 	if (unlikely(!old))
199 		refcount_warn_saturate(r, REFCOUNT_ADD_UAF);
200 	else if (unlikely(old < 0 || old + i < 0))
201 		refcount_warn_saturate(r, REFCOUNT_ADD_OVF);
202 }
203 
204 /**
205  * refcount_add - add a value to a refcount
206  * @i: the value to add to the refcount
207  * @r: the refcount
208  *
209  * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
210  *
211  * Provides no memory ordering, it is assumed the caller has guaranteed the
212  * object memory to be stable (RCU, etc.). It does provide a control dependency
213  * and thereby orders future stores. See the comment on top.
214  *
215  * Use of this function is not recommended for the normal reference counting
216  * use case in which references are taken and released one at a time.  In these
217  * cases, refcount_inc(), or one of its variants, should instead be used to
218  * increment a reference count.
219  */
refcount_add(int i,refcount_t * r)220 static inline void refcount_add(int i, refcount_t *r)
221 {
222 	__refcount_add(i, r, NULL);
223 }
224 
__refcount_inc_not_zero(refcount_t * r,int * oldp)225 static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp)
226 {
227 	return __refcount_add_not_zero(1, r, oldp);
228 }
229 
230 /**
231  * refcount_inc_not_zero - increment a refcount unless it is 0
232  * @r: the refcount to increment
233  *
234  * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
235  * and WARN.
236  *
237  * Provides no memory ordering, it is assumed the caller has guaranteed the
238  * object memory to be stable (RCU, etc.). It does provide a control dependency
239  * and thereby orders future stores. See the comment on top.
240  *
241  * Return: true if the increment was successful, false otherwise
242  */
refcount_inc_not_zero(refcount_t * r)243 static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
244 {
245 	return __refcount_inc_not_zero(r, NULL);
246 }
247 
__refcount_inc(refcount_t * r,int * oldp)248 static inline void __refcount_inc(refcount_t *r, int *oldp)
249 {
250 	__refcount_add(1, r, oldp);
251 }
252 
253 /**
254  * refcount_inc - increment a refcount
255  * @r: the refcount to increment
256  *
257  * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
258  *
259  * Provides no memory ordering, it is assumed the caller already has a
260  * reference on the object.
261  *
262  * Will WARN if the refcount is 0, as this represents a possible use-after-free
263  * condition.
264  */
refcount_inc(refcount_t * r)265 static inline void refcount_inc(refcount_t *r)
266 {
267 	__refcount_inc(r, NULL);
268 }
269 
__refcount_sub_and_test(int i,refcount_t * r,int * oldp)270 static inline __must_check bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp)
271 {
272 	int old = atomic_fetch_sub_release(i, &r->refs);
273 
274 	if (oldp)
275 		*oldp = old;
276 
277 	if (old == i) {
278 		smp_acquire__after_ctrl_dep();
279 		return true;
280 	}
281 
282 	if (unlikely(old < 0 || old - i < 0))
283 		refcount_warn_saturate(r, REFCOUNT_SUB_UAF);
284 
285 	return false;
286 }
287 
288 /**
289  * refcount_sub_and_test - subtract from a refcount and test if it is 0
290  * @i: amount to subtract from the refcount
291  * @r: the refcount
292  *
293  * Similar to atomic_dec_and_test(), but it will WARN, return false and
294  * ultimately leak on underflow and will fail to decrement when saturated
295  * at REFCOUNT_SATURATED.
296  *
297  * Provides release memory ordering, such that prior loads and stores are done
298  * before, and provides an acquire ordering on success such that free()
299  * must come after.
300  *
301  * Use of this function is not recommended for the normal reference counting
302  * use case in which references are taken and released one at a time.  In these
303  * cases, refcount_dec(), or one of its variants, should instead be used to
304  * decrement a reference count.
305  *
306  * Return: true if the resulting refcount is 0, false otherwise
307  */
refcount_sub_and_test(int i,refcount_t * r)308 static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
309 {
310 	return __refcount_sub_and_test(i, r, NULL);
311 }
312 
__refcount_dec_and_test(refcount_t * r,int * oldp)313 static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp)
314 {
315 	return __refcount_sub_and_test(1, r, oldp);
316 }
317 
318 /**
319  * refcount_dec_and_test - decrement a refcount and test if it is 0
320  * @r: the refcount
321  *
322  * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
323  * decrement when saturated at REFCOUNT_SATURATED.
324  *
325  * Provides release memory ordering, such that prior loads and stores are done
326  * before, and provides an acquire ordering on success such that free()
327  * must come after.
328  *
329  * Return: true if the resulting refcount is 0, false otherwise
330  */
refcount_dec_and_test(refcount_t * r)331 static inline __must_check bool refcount_dec_and_test(refcount_t *r)
332 {
333 	return __refcount_dec_and_test(r, NULL);
334 }
335 
__refcount_dec(refcount_t * r,int * oldp)336 static inline void __refcount_dec(refcount_t *r, int *oldp)
337 {
338 	int old = atomic_fetch_sub_release(1, &r->refs);
339 
340 	if (oldp)
341 		*oldp = old;
342 
343 	if (unlikely(old <= 1))
344 		refcount_warn_saturate(r, REFCOUNT_DEC_LEAK);
345 }
346 
347 /**
348  * refcount_dec - decrement a refcount
349  * @r: the refcount
350  *
351  * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
352  * when saturated at REFCOUNT_SATURATED.
353  *
354  * Provides release memory ordering, such that prior loads and stores are done
355  * before.
356  */
refcount_dec(refcount_t * r)357 static inline void refcount_dec(refcount_t *r)
358 {
359 	__refcount_dec(r, NULL);
360 }
361 
362 extern __must_check bool refcount_dec_if_one(refcount_t *r);
363 extern __must_check bool refcount_dec_not_one(refcount_t *r);
364 extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock);
365 extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock);
366 extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
367 						       spinlock_t *lock,
368 						       unsigned long *flags);
369 #endif /* _LINUX_REFCOUNT_H */
370