1  /*
2   * POSIX message queues filesystem for Linux.
3   *
4   * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5   *                          Michal Wronski          (michal.wronski@gmail.com)
6   *
7   * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8   * Lockless receive & send, fd based notify:
9   *			    Manfred Spraul	    (manfred@colorfullife.com)
10   *
11   * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12   *
13   * This file is released under the GPL.
14   */
15  
16  #include <linux/capability.h>
17  #include <linux/init.h>
18  #include <linux/pagemap.h>
19  #include <linux/file.h>
20  #include <linux/mount.h>
21  #include <linux/fs_context.h>
22  #include <linux/namei.h>
23  #include <linux/sysctl.h>
24  #include <linux/poll.h>
25  #include <linux/mqueue.h>
26  #include <linux/msg.h>
27  #include <linux/skbuff.h>
28  #include <linux/vmalloc.h>
29  #include <linux/netlink.h>
30  #include <linux/syscalls.h>
31  #include <linux/audit.h>
32  #include <linux/signal.h>
33  #include <linux/mutex.h>
34  #include <linux/nsproxy.h>
35  #include <linux/pid.h>
36  #include <linux/ipc_namespace.h>
37  #include <linux/user_namespace.h>
38  #include <linux/slab.h>
39  #include <linux/sched/wake_q.h>
40  #include <linux/sched/signal.h>
41  #include <linux/sched/user.h>
42  
43  #include <net/sock.h>
44  #include "util.h"
45  
46  struct mqueue_fs_context {
47  	struct ipc_namespace	*ipc_ns;
48  	bool			 newns;	/* Set if newly created ipc namespace */
49  };
50  
51  #define MQUEUE_MAGIC	0x19800202
52  #define DIRENT_SIZE	20
53  #define FILENT_SIZE	80
54  
55  #define SEND		0
56  #define RECV		1
57  
58  #define STATE_NONE	0
59  #define STATE_READY	1
60  
61  struct posix_msg_tree_node {
62  	struct rb_node		rb_node;
63  	struct list_head	msg_list;
64  	int			priority;
65  };
66  
67  /*
68   * Locking:
69   *
70   * Accesses to a message queue are synchronized by acquiring info->lock.
71   *
72   * There are two notable exceptions:
73   * - The actual wakeup of a sleeping task is performed using the wake_q
74   *   framework. info->lock is already released when wake_up_q is called.
75   * - The exit codepaths after sleeping check ext_wait_queue->state without
76   *   any locks. If it is STATE_READY, then the syscall is completed without
77   *   acquiring info->lock.
78   *
79   * MQ_BARRIER:
80   * To achieve proper release/acquire memory barrier pairing, the state is set to
81   * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82   * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83   *
84   * This prevents the following races:
85   *
86   * 1) With the simple wake_q_add(), the task could be gone already before
87   *    the increase of the reference happens
88   * Thread A
89   *				Thread B
90   * WRITE_ONCE(wait.state, STATE_NONE);
91   * schedule_hrtimeout()
92   *				wake_q_add(A)
93   *				if (cmpxchg()) // success
94   *				   ->state = STATE_READY (reordered)
95   * <timeout returns>
96   * if (wait.state == STATE_READY) return;
97   * sysret to user space
98   * sys_exit()
99   *				get_task_struct() // UaF
100   *
101   * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102   * the smp_store_release() that does ->state = STATE_READY.
103   *
104   * 2) Without proper _release/_acquire barriers, the woken up task
105   *    could read stale data
106   *
107   * Thread A
108   *				Thread B
109   * do_mq_timedreceive
110   * WRITE_ONCE(wait.state, STATE_NONE);
111   * schedule_hrtimeout()
112   *				state = STATE_READY;
113   * <timeout returns>
114   * if (wait.state == STATE_READY) return;
115   * msg_ptr = wait.msg;		// Access to stale data!
116   *				receiver->msg = message; (reordered)
117   *
118   * Solution: use _release and _acquire barriers.
119   *
120   * 3) There is intentionally no barrier when setting current->state
121   *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122   *    release memory barrier, and the wakeup is triggered when holding
123   *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
124   *    acquire memory barrier.
125   */
126  
127  struct ext_wait_queue {		/* queue of sleeping tasks */
128  	struct task_struct *task;
129  	struct list_head list;
130  	struct msg_msg *msg;	/* ptr of loaded message */
131  	int state;		/* one of STATE_* values */
132  };
133  
134  struct mqueue_inode_info {
135  	spinlock_t lock;
136  	struct inode vfs_inode;
137  	wait_queue_head_t wait_q;
138  
139  	struct rb_root msg_tree;
140  	struct rb_node *msg_tree_rightmost;
141  	struct posix_msg_tree_node *node_cache;
142  	struct mq_attr attr;
143  
144  	struct sigevent notify;
145  	struct pid *notify_owner;
146  	u32 notify_self_exec_id;
147  	struct user_namespace *notify_user_ns;
148  	struct ucounts *ucounts;	/* user who created, for accounting */
149  	struct sock *notify_sock;
150  	struct sk_buff *notify_cookie;
151  
152  	/* for tasks waiting for free space and messages, respectively */
153  	struct ext_wait_queue e_wait_q[2];
154  
155  	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156  };
157  
158  static struct file_system_type mqueue_fs_type;
159  static const struct inode_operations mqueue_dir_inode_operations;
160  static const struct file_operations mqueue_file_operations;
161  static const struct super_operations mqueue_super_ops;
162  static const struct fs_context_operations mqueue_fs_context_ops;
163  static void remove_notification(struct mqueue_inode_info *info);
164  
165  static struct kmem_cache *mqueue_inode_cachep;
166  
MQUEUE_I(struct inode * inode)167  static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
168  {
169  	return container_of(inode, struct mqueue_inode_info, vfs_inode);
170  }
171  
172  /*
173   * This routine should be called with the mq_lock held.
174   */
__get_ns_from_inode(struct inode * inode)175  static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
176  {
177  	return get_ipc_ns(inode->i_sb->s_fs_info);
178  }
179  
get_ns_from_inode(struct inode * inode)180  static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
181  {
182  	struct ipc_namespace *ns;
183  
184  	spin_lock(&mq_lock);
185  	ns = __get_ns_from_inode(inode);
186  	spin_unlock(&mq_lock);
187  	return ns;
188  }
189  
190  /* Auxiliary functions to manipulate messages' list */
msg_insert(struct msg_msg * msg,struct mqueue_inode_info * info)191  static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
192  {
193  	struct rb_node **p, *parent = NULL;
194  	struct posix_msg_tree_node *leaf;
195  	bool rightmost = true;
196  
197  	p = &info->msg_tree.rb_node;
198  	while (*p) {
199  		parent = *p;
200  		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
201  
202  		if (likely(leaf->priority == msg->m_type))
203  			goto insert_msg;
204  		else if (msg->m_type < leaf->priority) {
205  			p = &(*p)->rb_left;
206  			rightmost = false;
207  		} else
208  			p = &(*p)->rb_right;
209  	}
210  	if (info->node_cache) {
211  		leaf = info->node_cache;
212  		info->node_cache = NULL;
213  	} else {
214  		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
215  		if (!leaf)
216  			return -ENOMEM;
217  		INIT_LIST_HEAD(&leaf->msg_list);
218  	}
219  	leaf->priority = msg->m_type;
220  
221  	if (rightmost)
222  		info->msg_tree_rightmost = &leaf->rb_node;
223  
224  	rb_link_node(&leaf->rb_node, parent, p);
225  	rb_insert_color(&leaf->rb_node, &info->msg_tree);
226  insert_msg:
227  	info->attr.mq_curmsgs++;
228  	info->qsize += msg->m_ts;
229  	list_add_tail(&msg->m_list, &leaf->msg_list);
230  	return 0;
231  }
232  
msg_tree_erase(struct posix_msg_tree_node * leaf,struct mqueue_inode_info * info)233  static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234  				  struct mqueue_inode_info *info)
235  {
236  	struct rb_node *node = &leaf->rb_node;
237  
238  	if (info->msg_tree_rightmost == node)
239  		info->msg_tree_rightmost = rb_prev(node);
240  
241  	rb_erase(node, &info->msg_tree);
242  	if (info->node_cache)
243  		kfree(leaf);
244  	else
245  		info->node_cache = leaf;
246  }
247  
msg_get(struct mqueue_inode_info * info)248  static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
249  {
250  	struct rb_node *parent = NULL;
251  	struct posix_msg_tree_node *leaf;
252  	struct msg_msg *msg;
253  
254  try_again:
255  	/*
256  	 * During insert, low priorities go to the left and high to the
257  	 * right.  On receive, we want the highest priorities first, so
258  	 * walk all the way to the right.
259  	 */
260  	parent = info->msg_tree_rightmost;
261  	if (!parent) {
262  		if (info->attr.mq_curmsgs) {
263  			pr_warn_once("Inconsistency in POSIX message queue, "
264  				     "no tree element, but supposedly messages "
265  				     "should exist!\n");
266  			info->attr.mq_curmsgs = 0;
267  		}
268  		return NULL;
269  	}
270  	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
271  	if (unlikely(list_empty(&leaf->msg_list))) {
272  		pr_warn_once("Inconsistency in POSIX message queue, "
273  			     "empty leaf node but we haven't implemented "
274  			     "lazy leaf delete!\n");
275  		msg_tree_erase(leaf, info);
276  		goto try_again;
277  	} else {
278  		msg = list_first_entry(&leaf->msg_list,
279  				       struct msg_msg, m_list);
280  		list_del(&msg->m_list);
281  		if (list_empty(&leaf->msg_list)) {
282  			msg_tree_erase(leaf, info);
283  		}
284  	}
285  	info->attr.mq_curmsgs--;
286  	info->qsize -= msg->m_ts;
287  	return msg;
288  }
289  
mqueue_get_inode(struct super_block * sb,struct ipc_namespace * ipc_ns,umode_t mode,struct mq_attr * attr)290  static struct inode *mqueue_get_inode(struct super_block *sb,
291  		struct ipc_namespace *ipc_ns, umode_t mode,
292  		struct mq_attr *attr)
293  {
294  	struct inode *inode;
295  	int ret = -ENOMEM;
296  
297  	inode = new_inode(sb);
298  	if (!inode)
299  		goto err;
300  
301  	inode->i_ino = get_next_ino();
302  	inode->i_mode = mode;
303  	inode->i_uid = current_fsuid();
304  	inode->i_gid = current_fsgid();
305  	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
306  
307  	if (S_ISREG(mode)) {
308  		struct mqueue_inode_info *info;
309  		unsigned long mq_bytes, mq_treesize;
310  
311  		inode->i_fop = &mqueue_file_operations;
312  		inode->i_size = FILENT_SIZE;
313  		/* mqueue specific info */
314  		info = MQUEUE_I(inode);
315  		spin_lock_init(&info->lock);
316  		init_waitqueue_head(&info->wait_q);
317  		INIT_LIST_HEAD(&info->e_wait_q[0].list);
318  		INIT_LIST_HEAD(&info->e_wait_q[1].list);
319  		info->notify_owner = NULL;
320  		info->notify_user_ns = NULL;
321  		info->qsize = 0;
322  		info->ucounts = NULL;	/* set when all is ok */
323  		info->msg_tree = RB_ROOT;
324  		info->msg_tree_rightmost = NULL;
325  		info->node_cache = NULL;
326  		memset(&info->attr, 0, sizeof(info->attr));
327  		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
328  					   ipc_ns->mq_msg_default);
329  		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
330  					    ipc_ns->mq_msgsize_default);
331  		if (attr) {
332  			info->attr.mq_maxmsg = attr->mq_maxmsg;
333  			info->attr.mq_msgsize = attr->mq_msgsize;
334  		}
335  		/*
336  		 * We used to allocate a static array of pointers and account
337  		 * the size of that array as well as one msg_msg struct per
338  		 * possible message into the queue size. That's no longer
339  		 * accurate as the queue is now an rbtree and will grow and
340  		 * shrink depending on usage patterns.  We can, however, still
341  		 * account one msg_msg struct per message, but the nodes are
342  		 * allocated depending on priority usage, and most programs
343  		 * only use one, or a handful, of priorities.  However, since
344  		 * this is pinned memory, we need to assume worst case, so
345  		 * that means the min(mq_maxmsg, max_priorities) * struct
346  		 * posix_msg_tree_node.
347  		 */
348  
349  		ret = -EINVAL;
350  		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
351  			goto out_inode;
352  		if (capable(CAP_SYS_RESOURCE)) {
353  			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
354  			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
355  				goto out_inode;
356  		} else {
357  			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
358  					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
359  				goto out_inode;
360  		}
361  		ret = -EOVERFLOW;
362  		/* check for overflow */
363  		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
364  			goto out_inode;
365  		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
366  			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
367  			sizeof(struct posix_msg_tree_node);
368  		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
369  		if (mq_bytes + mq_treesize < mq_bytes)
370  			goto out_inode;
371  		mq_bytes += mq_treesize;
372  		info->ucounts = get_ucounts(current_ucounts());
373  		if (info->ucounts) {
374  			long msgqueue;
375  
376  			spin_lock(&mq_lock);
377  			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
378  			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
379  				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
380  				spin_unlock(&mq_lock);
381  				put_ucounts(info->ucounts);
382  				info->ucounts = NULL;
383  				/* mqueue_evict_inode() releases info->messages */
384  				ret = -EMFILE;
385  				goto out_inode;
386  			}
387  			spin_unlock(&mq_lock);
388  		}
389  	} else if (S_ISDIR(mode)) {
390  		inc_nlink(inode);
391  		/* Some things misbehave if size == 0 on a directory */
392  		inode->i_size = 2 * DIRENT_SIZE;
393  		inode->i_op = &mqueue_dir_inode_operations;
394  		inode->i_fop = &simple_dir_operations;
395  	}
396  
397  	return inode;
398  out_inode:
399  	iput(inode);
400  err:
401  	return ERR_PTR(ret);
402  }
403  
mqueue_fill_super(struct super_block * sb,struct fs_context * fc)404  static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
405  {
406  	struct inode *inode;
407  	struct ipc_namespace *ns = sb->s_fs_info;
408  
409  	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
410  	sb->s_blocksize = PAGE_SIZE;
411  	sb->s_blocksize_bits = PAGE_SHIFT;
412  	sb->s_magic = MQUEUE_MAGIC;
413  	sb->s_op = &mqueue_super_ops;
414  
415  	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
416  	if (IS_ERR(inode))
417  		return PTR_ERR(inode);
418  
419  	sb->s_root = d_make_root(inode);
420  	if (!sb->s_root)
421  		return -ENOMEM;
422  	return 0;
423  }
424  
mqueue_get_tree(struct fs_context * fc)425  static int mqueue_get_tree(struct fs_context *fc)
426  {
427  	struct mqueue_fs_context *ctx = fc->fs_private;
428  
429  	/*
430  	 * With a newly created ipc namespace, we don't need to do a search
431  	 * for an ipc namespace match, but we still need to set s_fs_info.
432  	 */
433  	if (ctx->newns) {
434  		fc->s_fs_info = ctx->ipc_ns;
435  		return get_tree_nodev(fc, mqueue_fill_super);
436  	}
437  	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
438  }
439  
mqueue_fs_context_free(struct fs_context * fc)440  static void mqueue_fs_context_free(struct fs_context *fc)
441  {
442  	struct mqueue_fs_context *ctx = fc->fs_private;
443  
444  	put_ipc_ns(ctx->ipc_ns);
445  	kfree(ctx);
446  }
447  
mqueue_init_fs_context(struct fs_context * fc)448  static int mqueue_init_fs_context(struct fs_context *fc)
449  {
450  	struct mqueue_fs_context *ctx;
451  
452  	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
453  	if (!ctx)
454  		return -ENOMEM;
455  
456  	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
457  	put_user_ns(fc->user_ns);
458  	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
459  	fc->fs_private = ctx;
460  	fc->ops = &mqueue_fs_context_ops;
461  	return 0;
462  }
463  
464  /*
465   * mq_init_ns() is currently the only caller of mq_create_mount().
466   * So the ns parameter is always a newly created ipc namespace.
467   */
mq_create_mount(struct ipc_namespace * ns)468  static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
469  {
470  	struct mqueue_fs_context *ctx;
471  	struct fs_context *fc;
472  	struct vfsmount *mnt;
473  
474  	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
475  	if (IS_ERR(fc))
476  		return ERR_CAST(fc);
477  
478  	ctx = fc->fs_private;
479  	ctx->newns = true;
480  	put_ipc_ns(ctx->ipc_ns);
481  	ctx->ipc_ns = get_ipc_ns(ns);
482  	put_user_ns(fc->user_ns);
483  	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
484  
485  	mnt = fc_mount(fc);
486  	put_fs_context(fc);
487  	return mnt;
488  }
489  
init_once(void * foo)490  static void init_once(void *foo)
491  {
492  	struct mqueue_inode_info *p = foo;
493  
494  	inode_init_once(&p->vfs_inode);
495  }
496  
mqueue_alloc_inode(struct super_block * sb)497  static struct inode *mqueue_alloc_inode(struct super_block *sb)
498  {
499  	struct mqueue_inode_info *ei;
500  
501  	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
502  	if (!ei)
503  		return NULL;
504  	return &ei->vfs_inode;
505  }
506  
mqueue_free_inode(struct inode * inode)507  static void mqueue_free_inode(struct inode *inode)
508  {
509  	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
510  }
511  
mqueue_evict_inode(struct inode * inode)512  static void mqueue_evict_inode(struct inode *inode)
513  {
514  	struct mqueue_inode_info *info;
515  	struct ipc_namespace *ipc_ns;
516  	struct msg_msg *msg, *nmsg;
517  	LIST_HEAD(tmp_msg);
518  
519  	clear_inode(inode);
520  
521  	if (S_ISDIR(inode->i_mode))
522  		return;
523  
524  	ipc_ns = get_ns_from_inode(inode);
525  	info = MQUEUE_I(inode);
526  	spin_lock(&info->lock);
527  	while ((msg = msg_get(info)) != NULL)
528  		list_add_tail(&msg->m_list, &tmp_msg);
529  	kfree(info->node_cache);
530  	spin_unlock(&info->lock);
531  
532  	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
533  		list_del(&msg->m_list);
534  		free_msg(msg);
535  	}
536  
537  	if (info->ucounts) {
538  		unsigned long mq_bytes, mq_treesize;
539  
540  		/* Total amount of bytes accounted for the mqueue */
541  		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
542  			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
543  			sizeof(struct posix_msg_tree_node);
544  
545  		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
546  					  info->attr.mq_msgsize);
547  
548  		spin_lock(&mq_lock);
549  		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
550  		/*
551  		 * get_ns_from_inode() ensures that the
552  		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
553  		 * to which we now hold a reference, or it is NULL.
554  		 * We can't put it here under mq_lock, though.
555  		 */
556  		if (ipc_ns)
557  			ipc_ns->mq_queues_count--;
558  		spin_unlock(&mq_lock);
559  		put_ucounts(info->ucounts);
560  		info->ucounts = NULL;
561  	}
562  	if (ipc_ns)
563  		put_ipc_ns(ipc_ns);
564  }
565  
mqueue_create_attr(struct dentry * dentry,umode_t mode,void * arg)566  static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
567  {
568  	struct inode *dir = dentry->d_parent->d_inode;
569  	struct inode *inode;
570  	struct mq_attr *attr = arg;
571  	int error;
572  	struct ipc_namespace *ipc_ns;
573  
574  	spin_lock(&mq_lock);
575  	ipc_ns = __get_ns_from_inode(dir);
576  	if (!ipc_ns) {
577  		error = -EACCES;
578  		goto out_unlock;
579  	}
580  
581  	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
582  	    !capable(CAP_SYS_RESOURCE)) {
583  		error = -ENOSPC;
584  		goto out_unlock;
585  	}
586  	ipc_ns->mq_queues_count++;
587  	spin_unlock(&mq_lock);
588  
589  	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
590  	if (IS_ERR(inode)) {
591  		error = PTR_ERR(inode);
592  		spin_lock(&mq_lock);
593  		ipc_ns->mq_queues_count--;
594  		goto out_unlock;
595  	}
596  
597  	put_ipc_ns(ipc_ns);
598  	dir->i_size += DIRENT_SIZE;
599  	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
600  
601  	d_instantiate(dentry, inode);
602  	dget(dentry);
603  	return 0;
604  out_unlock:
605  	spin_unlock(&mq_lock);
606  	if (ipc_ns)
607  		put_ipc_ns(ipc_ns);
608  	return error;
609  }
610  
mqueue_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)611  static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
612  			 struct dentry *dentry, umode_t mode, bool excl)
613  {
614  	return mqueue_create_attr(dentry, mode, NULL);
615  }
616  
mqueue_unlink(struct inode * dir,struct dentry * dentry)617  static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
618  {
619  	struct inode *inode = d_inode(dentry);
620  
621  	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
622  	dir->i_size -= DIRENT_SIZE;
623  	drop_nlink(inode);
624  	dput(dentry);
625  	return 0;
626  }
627  
628  /*
629  *	This is routine for system read from queue file.
630  *	To avoid mess with doing here some sort of mq_receive we allow
631  *	to read only queue size & notification info (the only values
632  *	that are interesting from user point of view and aren't accessible
633  *	through std routines)
634  */
mqueue_read_file(struct file * filp,char __user * u_data,size_t count,loff_t * off)635  static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
636  				size_t count, loff_t *off)
637  {
638  	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
639  	char buffer[FILENT_SIZE];
640  	ssize_t ret;
641  
642  	spin_lock(&info->lock);
643  	snprintf(buffer, sizeof(buffer),
644  			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
645  			info->qsize,
646  			info->notify_owner ? info->notify.sigev_notify : 0,
647  			(info->notify_owner &&
648  			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
649  				info->notify.sigev_signo : 0,
650  			pid_vnr(info->notify_owner));
651  	spin_unlock(&info->lock);
652  	buffer[sizeof(buffer)-1] = '\0';
653  
654  	ret = simple_read_from_buffer(u_data, count, off, buffer,
655  				strlen(buffer));
656  	if (ret <= 0)
657  		return ret;
658  
659  	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
660  	return ret;
661  }
662  
mqueue_flush_file(struct file * filp,fl_owner_t id)663  static int mqueue_flush_file(struct file *filp, fl_owner_t id)
664  {
665  	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
666  
667  	spin_lock(&info->lock);
668  	if (task_tgid(current) == info->notify_owner)
669  		remove_notification(info);
670  
671  	spin_unlock(&info->lock);
672  	return 0;
673  }
674  
mqueue_poll_file(struct file * filp,struct poll_table_struct * poll_tab)675  static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
676  {
677  	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
678  	__poll_t retval = 0;
679  
680  	poll_wait(filp, &info->wait_q, poll_tab);
681  
682  	spin_lock(&info->lock);
683  	if (info->attr.mq_curmsgs)
684  		retval = EPOLLIN | EPOLLRDNORM;
685  
686  	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
687  		retval |= EPOLLOUT | EPOLLWRNORM;
688  	spin_unlock(&info->lock);
689  
690  	return retval;
691  }
692  
693  /* Adds current to info->e_wait_q[sr] before element with smaller prio */
wq_add(struct mqueue_inode_info * info,int sr,struct ext_wait_queue * ewp)694  static void wq_add(struct mqueue_inode_info *info, int sr,
695  			struct ext_wait_queue *ewp)
696  {
697  	struct ext_wait_queue *walk;
698  
699  	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
700  		if (walk->task->prio <= current->prio) {
701  			list_add_tail(&ewp->list, &walk->list);
702  			return;
703  		}
704  	}
705  	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
706  }
707  
708  /*
709   * Puts current task to sleep. Caller must hold queue lock. After return
710   * lock isn't held.
711   * sr: SEND or RECV
712   */
wq_sleep(struct mqueue_inode_info * info,int sr,ktime_t * timeout,struct ext_wait_queue * ewp)713  static int wq_sleep(struct mqueue_inode_info *info, int sr,
714  		    ktime_t *timeout, struct ext_wait_queue *ewp)
715  	__releases(&info->lock)
716  {
717  	int retval;
718  	signed long time;
719  
720  	wq_add(info, sr, ewp);
721  
722  	for (;;) {
723  		/* memory barrier not required, we hold info->lock */
724  		__set_current_state(TASK_INTERRUPTIBLE);
725  
726  		spin_unlock(&info->lock);
727  		time = schedule_hrtimeout_range_clock(timeout, 0,
728  			HRTIMER_MODE_ABS, CLOCK_REALTIME);
729  
730  		if (READ_ONCE(ewp->state) == STATE_READY) {
731  			/* see MQ_BARRIER for purpose/pairing */
732  			smp_acquire__after_ctrl_dep();
733  			retval = 0;
734  			goto out;
735  		}
736  		spin_lock(&info->lock);
737  
738  		/* we hold info->lock, so no memory barrier required */
739  		if (READ_ONCE(ewp->state) == STATE_READY) {
740  			retval = 0;
741  			goto out_unlock;
742  		}
743  		if (signal_pending(current)) {
744  			retval = -ERESTARTSYS;
745  			break;
746  		}
747  		if (time == 0) {
748  			retval = -ETIMEDOUT;
749  			break;
750  		}
751  	}
752  	list_del(&ewp->list);
753  out_unlock:
754  	spin_unlock(&info->lock);
755  out:
756  	return retval;
757  }
758  
759  /*
760   * Returns waiting task that should be serviced first or NULL if none exists
761   */
wq_get_first_waiter(struct mqueue_inode_info * info,int sr)762  static struct ext_wait_queue *wq_get_first_waiter(
763  		struct mqueue_inode_info *info, int sr)
764  {
765  	struct list_head *ptr;
766  
767  	ptr = info->e_wait_q[sr].list.prev;
768  	if (ptr == &info->e_wait_q[sr].list)
769  		return NULL;
770  	return list_entry(ptr, struct ext_wait_queue, list);
771  }
772  
773  
set_cookie(struct sk_buff * skb,char code)774  static inline void set_cookie(struct sk_buff *skb, char code)
775  {
776  	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
777  }
778  
779  /*
780   * The next function is only to split too long sys_mq_timedsend
781   */
__do_notify(struct mqueue_inode_info * info)782  static void __do_notify(struct mqueue_inode_info *info)
783  {
784  	/* notification
785  	 * invoked when there is registered process and there isn't process
786  	 * waiting synchronously for message AND state of queue changed from
787  	 * empty to not empty. Here we are sure that no one is waiting
788  	 * synchronously. */
789  	if (info->notify_owner &&
790  	    info->attr.mq_curmsgs == 1) {
791  		switch (info->notify.sigev_notify) {
792  		case SIGEV_NONE:
793  			break;
794  		case SIGEV_SIGNAL: {
795  			struct kernel_siginfo sig_i;
796  			struct task_struct *task;
797  
798  			/* do_mq_notify() accepts sigev_signo == 0, why?? */
799  			if (!info->notify.sigev_signo)
800  				break;
801  
802  			clear_siginfo(&sig_i);
803  			sig_i.si_signo = info->notify.sigev_signo;
804  			sig_i.si_errno = 0;
805  			sig_i.si_code = SI_MESGQ;
806  			sig_i.si_value = info->notify.sigev_value;
807  			rcu_read_lock();
808  			/* map current pid/uid into info->owner's namespaces */
809  			sig_i.si_pid = task_tgid_nr_ns(current,
810  						ns_of_pid(info->notify_owner));
811  			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
812  						current_uid());
813  			/*
814  			 * We can't use kill_pid_info(), this signal should
815  			 * bypass check_kill_permission(). It is from kernel
816  			 * but si_fromuser() can't know this.
817  			 * We do check the self_exec_id, to avoid sending
818  			 * signals to programs that don't expect them.
819  			 */
820  			task = pid_task(info->notify_owner, PIDTYPE_TGID);
821  			if (task && task->self_exec_id ==
822  						info->notify_self_exec_id) {
823  				do_send_sig_info(info->notify.sigev_signo,
824  						&sig_i, task, PIDTYPE_TGID);
825  			}
826  			rcu_read_unlock();
827  			break;
828  		}
829  		case SIGEV_THREAD:
830  			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
831  			netlink_sendskb(info->notify_sock, info->notify_cookie);
832  			break;
833  		}
834  		/* after notification unregisters process */
835  		put_pid(info->notify_owner);
836  		put_user_ns(info->notify_user_ns);
837  		info->notify_owner = NULL;
838  		info->notify_user_ns = NULL;
839  	}
840  	wake_up(&info->wait_q);
841  }
842  
prepare_timeout(const struct __kernel_timespec __user * u_abs_timeout,struct timespec64 * ts)843  static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
844  			   struct timespec64 *ts)
845  {
846  	if (get_timespec64(ts, u_abs_timeout))
847  		return -EFAULT;
848  	if (!timespec64_valid(ts))
849  		return -EINVAL;
850  	return 0;
851  }
852  
remove_notification(struct mqueue_inode_info * info)853  static void remove_notification(struct mqueue_inode_info *info)
854  {
855  	if (info->notify_owner != NULL &&
856  	    info->notify.sigev_notify == SIGEV_THREAD) {
857  		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
858  		netlink_sendskb(info->notify_sock, info->notify_cookie);
859  	}
860  	put_pid(info->notify_owner);
861  	put_user_ns(info->notify_user_ns);
862  	info->notify_owner = NULL;
863  	info->notify_user_ns = NULL;
864  }
865  
prepare_open(struct dentry * dentry,int oflag,int ro,umode_t mode,struct filename * name,struct mq_attr * attr)866  static int prepare_open(struct dentry *dentry, int oflag, int ro,
867  			umode_t mode, struct filename *name,
868  			struct mq_attr *attr)
869  {
870  	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
871  						  MAY_READ | MAY_WRITE };
872  	int acc;
873  
874  	if (d_really_is_negative(dentry)) {
875  		if (!(oflag & O_CREAT))
876  			return -ENOENT;
877  		if (ro)
878  			return ro;
879  		audit_inode_parent_hidden(name, dentry->d_parent);
880  		return vfs_mkobj(dentry, mode & ~current_umask(),
881  				  mqueue_create_attr, attr);
882  	}
883  	/* it already existed */
884  	audit_inode(name, dentry, 0);
885  	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
886  		return -EEXIST;
887  	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
888  		return -EINVAL;
889  	acc = oflag2acc[oflag & O_ACCMODE];
890  	return inode_permission(&init_user_ns, d_inode(dentry), acc);
891  }
892  
do_mq_open(const char __user * u_name,int oflag,umode_t mode,struct mq_attr * attr)893  static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
894  		      struct mq_attr *attr)
895  {
896  	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
897  	struct dentry *root = mnt->mnt_root;
898  	struct filename *name;
899  	struct path path;
900  	int fd, error;
901  	int ro;
902  
903  	audit_mq_open(oflag, mode, attr);
904  
905  	if (IS_ERR(name = getname(u_name)))
906  		return PTR_ERR(name);
907  
908  	fd = get_unused_fd_flags(O_CLOEXEC);
909  	if (fd < 0)
910  		goto out_putname;
911  
912  	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
913  	inode_lock(d_inode(root));
914  	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
915  	if (IS_ERR(path.dentry)) {
916  		error = PTR_ERR(path.dentry);
917  		goto out_putfd;
918  	}
919  	path.mnt = mntget(mnt);
920  	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
921  	if (!error) {
922  		struct file *file = dentry_open(&path, oflag, current_cred());
923  		if (!IS_ERR(file))
924  			fd_install(fd, file);
925  		else
926  			error = PTR_ERR(file);
927  	}
928  	path_put(&path);
929  out_putfd:
930  	if (error) {
931  		put_unused_fd(fd);
932  		fd = error;
933  	}
934  	inode_unlock(d_inode(root));
935  	if (!ro)
936  		mnt_drop_write(mnt);
937  out_putname:
938  	putname(name);
939  	return fd;
940  }
941  
SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,umode_t,mode,struct mq_attr __user *,u_attr)942  SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
943  		struct mq_attr __user *, u_attr)
944  {
945  	struct mq_attr attr;
946  	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
947  		return -EFAULT;
948  
949  	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
950  }
951  
SYSCALL_DEFINE1(mq_unlink,const char __user *,u_name)952  SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
953  {
954  	int err;
955  	struct filename *name;
956  	struct dentry *dentry;
957  	struct inode *inode = NULL;
958  	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
959  	struct vfsmount *mnt = ipc_ns->mq_mnt;
960  
961  	name = getname(u_name);
962  	if (IS_ERR(name))
963  		return PTR_ERR(name);
964  
965  	audit_inode_parent_hidden(name, mnt->mnt_root);
966  	err = mnt_want_write(mnt);
967  	if (err)
968  		goto out_name;
969  	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
970  	dentry = lookup_one_len(name->name, mnt->mnt_root,
971  				strlen(name->name));
972  	if (IS_ERR(dentry)) {
973  		err = PTR_ERR(dentry);
974  		goto out_unlock;
975  	}
976  
977  	inode = d_inode(dentry);
978  	if (!inode) {
979  		err = -ENOENT;
980  	} else {
981  		ihold(inode);
982  		err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
983  				 dentry, NULL);
984  	}
985  	dput(dentry);
986  
987  out_unlock:
988  	inode_unlock(d_inode(mnt->mnt_root));
989  	iput(inode);
990  	mnt_drop_write(mnt);
991  out_name:
992  	putname(name);
993  
994  	return err;
995  }
996  
997  /* Pipelined send and receive functions.
998   *
999   * If a receiver finds no waiting message, then it registers itself in the
1000   * list of waiting receivers. A sender checks that list before adding the new
1001   * message into the message array. If there is a waiting receiver, then it
1002   * bypasses the message array and directly hands the message over to the
1003   * receiver. The receiver accepts the message and returns without grabbing the
1004   * queue spinlock:
1005   *
1006   * - Set pointer to message.
1007   * - Queue the receiver task for later wakeup (without the info->lock).
1008   * - Update its state to STATE_READY. Now the receiver can continue.
1009   * - Wake up the process after the lock is dropped. Should the process wake up
1010   *   before this wakeup (due to a timeout or a signal) it will either see
1011   *   STATE_READY and continue or acquire the lock to check the state again.
1012   *
1013   * The same algorithm is used for senders.
1014   */
1015  
__pipelined_op(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct ext_wait_queue * this)1016  static inline void __pipelined_op(struct wake_q_head *wake_q,
1017  				  struct mqueue_inode_info *info,
1018  				  struct ext_wait_queue *this)
1019  {
1020  	struct task_struct *task;
1021  
1022  	list_del(&this->list);
1023  	task = get_task_struct(this->task);
1024  
1025  	/* see MQ_BARRIER for purpose/pairing */
1026  	smp_store_release(&this->state, STATE_READY);
1027  	wake_q_add_safe(wake_q, task);
1028  }
1029  
1030  /* pipelined_send() - send a message directly to the task waiting in
1031   * sys_mq_timedreceive() (without inserting message into a queue).
1032   */
pipelined_send(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct msg_msg * message,struct ext_wait_queue * receiver)1033  static inline void pipelined_send(struct wake_q_head *wake_q,
1034  				  struct mqueue_inode_info *info,
1035  				  struct msg_msg *message,
1036  				  struct ext_wait_queue *receiver)
1037  {
1038  	receiver->msg = message;
1039  	__pipelined_op(wake_q, info, receiver);
1040  }
1041  
1042  /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1043   * gets its message and put to the queue (we have one free place for sure). */
pipelined_receive(struct wake_q_head * wake_q,struct mqueue_inode_info * info)1044  static inline void pipelined_receive(struct wake_q_head *wake_q,
1045  				     struct mqueue_inode_info *info)
1046  {
1047  	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1048  
1049  	if (!sender) {
1050  		/* for poll */
1051  		wake_up_interruptible(&info->wait_q);
1052  		return;
1053  	}
1054  	if (msg_insert(sender->msg, info))
1055  		return;
1056  
1057  	__pipelined_op(wake_q, info, sender);
1058  }
1059  
do_mq_timedsend(mqd_t mqdes,const char __user * u_msg_ptr,size_t msg_len,unsigned int msg_prio,struct timespec64 * ts)1060  static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1061  		size_t msg_len, unsigned int msg_prio,
1062  		struct timespec64 *ts)
1063  {
1064  	struct fd f;
1065  	struct inode *inode;
1066  	struct ext_wait_queue wait;
1067  	struct ext_wait_queue *receiver;
1068  	struct msg_msg *msg_ptr;
1069  	struct mqueue_inode_info *info;
1070  	ktime_t expires, *timeout = NULL;
1071  	struct posix_msg_tree_node *new_leaf = NULL;
1072  	int ret = 0;
1073  	DEFINE_WAKE_Q(wake_q);
1074  
1075  	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1076  		return -EINVAL;
1077  
1078  	if (ts) {
1079  		expires = timespec64_to_ktime(*ts);
1080  		timeout = &expires;
1081  	}
1082  
1083  	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1084  
1085  	f = fdget(mqdes);
1086  	if (unlikely(!f.file)) {
1087  		ret = -EBADF;
1088  		goto out;
1089  	}
1090  
1091  	inode = file_inode(f.file);
1092  	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1093  		ret = -EBADF;
1094  		goto out_fput;
1095  	}
1096  	info = MQUEUE_I(inode);
1097  	audit_file(f.file);
1098  
1099  	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1100  		ret = -EBADF;
1101  		goto out_fput;
1102  	}
1103  
1104  	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1105  		ret = -EMSGSIZE;
1106  		goto out_fput;
1107  	}
1108  
1109  	/* First try to allocate memory, before doing anything with
1110  	 * existing queues. */
1111  	msg_ptr = load_msg(u_msg_ptr, msg_len);
1112  	if (IS_ERR(msg_ptr)) {
1113  		ret = PTR_ERR(msg_ptr);
1114  		goto out_fput;
1115  	}
1116  	msg_ptr->m_ts = msg_len;
1117  	msg_ptr->m_type = msg_prio;
1118  
1119  	/*
1120  	 * msg_insert really wants us to have a valid, spare node struct so
1121  	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1122  	 * fall back to that if necessary.
1123  	 */
1124  	if (!info->node_cache)
1125  		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1126  
1127  	spin_lock(&info->lock);
1128  
1129  	if (!info->node_cache && new_leaf) {
1130  		/* Save our speculative allocation into the cache */
1131  		INIT_LIST_HEAD(&new_leaf->msg_list);
1132  		info->node_cache = new_leaf;
1133  		new_leaf = NULL;
1134  	} else {
1135  		kfree(new_leaf);
1136  	}
1137  
1138  	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1139  		if (f.file->f_flags & O_NONBLOCK) {
1140  			ret = -EAGAIN;
1141  		} else {
1142  			wait.task = current;
1143  			wait.msg = (void *) msg_ptr;
1144  
1145  			/* memory barrier not required, we hold info->lock */
1146  			WRITE_ONCE(wait.state, STATE_NONE);
1147  			ret = wq_sleep(info, SEND, timeout, &wait);
1148  			/*
1149  			 * wq_sleep must be called with info->lock held, and
1150  			 * returns with the lock released
1151  			 */
1152  			goto out_free;
1153  		}
1154  	} else {
1155  		receiver = wq_get_first_waiter(info, RECV);
1156  		if (receiver) {
1157  			pipelined_send(&wake_q, info, msg_ptr, receiver);
1158  		} else {
1159  			/* adds message to the queue */
1160  			ret = msg_insert(msg_ptr, info);
1161  			if (ret)
1162  				goto out_unlock;
1163  			__do_notify(info);
1164  		}
1165  		inode->i_atime = inode->i_mtime = inode->i_ctime =
1166  				current_time(inode);
1167  	}
1168  out_unlock:
1169  	spin_unlock(&info->lock);
1170  	wake_up_q(&wake_q);
1171  out_free:
1172  	if (ret)
1173  		free_msg(msg_ptr);
1174  out_fput:
1175  	fdput(f);
1176  out:
1177  	return ret;
1178  }
1179  
do_mq_timedreceive(mqd_t mqdes,char __user * u_msg_ptr,size_t msg_len,unsigned int __user * u_msg_prio,struct timespec64 * ts)1180  static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1181  		size_t msg_len, unsigned int __user *u_msg_prio,
1182  		struct timespec64 *ts)
1183  {
1184  	ssize_t ret;
1185  	struct msg_msg *msg_ptr;
1186  	struct fd f;
1187  	struct inode *inode;
1188  	struct mqueue_inode_info *info;
1189  	struct ext_wait_queue wait;
1190  	ktime_t expires, *timeout = NULL;
1191  	struct posix_msg_tree_node *new_leaf = NULL;
1192  
1193  	if (ts) {
1194  		expires = timespec64_to_ktime(*ts);
1195  		timeout = &expires;
1196  	}
1197  
1198  	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1199  
1200  	f = fdget(mqdes);
1201  	if (unlikely(!f.file)) {
1202  		ret = -EBADF;
1203  		goto out;
1204  	}
1205  
1206  	inode = file_inode(f.file);
1207  	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1208  		ret = -EBADF;
1209  		goto out_fput;
1210  	}
1211  	info = MQUEUE_I(inode);
1212  	audit_file(f.file);
1213  
1214  	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1215  		ret = -EBADF;
1216  		goto out_fput;
1217  	}
1218  
1219  	/* checks if buffer is big enough */
1220  	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1221  		ret = -EMSGSIZE;
1222  		goto out_fput;
1223  	}
1224  
1225  	/*
1226  	 * msg_insert really wants us to have a valid, spare node struct so
1227  	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1228  	 * fall back to that if necessary.
1229  	 */
1230  	if (!info->node_cache)
1231  		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1232  
1233  	spin_lock(&info->lock);
1234  
1235  	if (!info->node_cache && new_leaf) {
1236  		/* Save our speculative allocation into the cache */
1237  		INIT_LIST_HEAD(&new_leaf->msg_list);
1238  		info->node_cache = new_leaf;
1239  	} else {
1240  		kfree(new_leaf);
1241  	}
1242  
1243  	if (info->attr.mq_curmsgs == 0) {
1244  		if (f.file->f_flags & O_NONBLOCK) {
1245  			spin_unlock(&info->lock);
1246  			ret = -EAGAIN;
1247  		} else {
1248  			wait.task = current;
1249  
1250  			/* memory barrier not required, we hold info->lock */
1251  			WRITE_ONCE(wait.state, STATE_NONE);
1252  			ret = wq_sleep(info, RECV, timeout, &wait);
1253  			msg_ptr = wait.msg;
1254  		}
1255  	} else {
1256  		DEFINE_WAKE_Q(wake_q);
1257  
1258  		msg_ptr = msg_get(info);
1259  
1260  		inode->i_atime = inode->i_mtime = inode->i_ctime =
1261  				current_time(inode);
1262  
1263  		/* There is now free space in queue. */
1264  		pipelined_receive(&wake_q, info);
1265  		spin_unlock(&info->lock);
1266  		wake_up_q(&wake_q);
1267  		ret = 0;
1268  	}
1269  	if (ret == 0) {
1270  		ret = msg_ptr->m_ts;
1271  
1272  		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1273  			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1274  			ret = -EFAULT;
1275  		}
1276  		free_msg(msg_ptr);
1277  	}
1278  out_fput:
1279  	fdput(f);
1280  out:
1281  	return ret;
1282  }
1283  
SYSCALL_DEFINE5(mq_timedsend,mqd_t,mqdes,const char __user *,u_msg_ptr,size_t,msg_len,unsigned int,msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1284  SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1285  		size_t, msg_len, unsigned int, msg_prio,
1286  		const struct __kernel_timespec __user *, u_abs_timeout)
1287  {
1288  	struct timespec64 ts, *p = NULL;
1289  	if (u_abs_timeout) {
1290  		int res = prepare_timeout(u_abs_timeout, &ts);
1291  		if (res)
1292  			return res;
1293  		p = &ts;
1294  	}
1295  	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1296  }
1297  
SYSCALL_DEFINE5(mq_timedreceive,mqd_t,mqdes,char __user *,u_msg_ptr,size_t,msg_len,unsigned int __user *,u_msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1298  SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1299  		size_t, msg_len, unsigned int __user *, u_msg_prio,
1300  		const struct __kernel_timespec __user *, u_abs_timeout)
1301  {
1302  	struct timespec64 ts, *p = NULL;
1303  	if (u_abs_timeout) {
1304  		int res = prepare_timeout(u_abs_timeout, &ts);
1305  		if (res)
1306  			return res;
1307  		p = &ts;
1308  	}
1309  	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1310  }
1311  
1312  /*
1313   * Notes: the case when user wants us to deregister (with NULL as pointer)
1314   * and he isn't currently owner of notification, will be silently discarded.
1315   * It isn't explicitly defined in the POSIX.
1316   */
do_mq_notify(mqd_t mqdes,const struct sigevent * notification)1317  static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1318  {
1319  	int ret;
1320  	struct fd f;
1321  	struct sock *sock;
1322  	struct inode *inode;
1323  	struct mqueue_inode_info *info;
1324  	struct sk_buff *nc;
1325  
1326  	audit_mq_notify(mqdes, notification);
1327  
1328  	nc = NULL;
1329  	sock = NULL;
1330  	if (notification != NULL) {
1331  		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1332  			     notification->sigev_notify != SIGEV_SIGNAL &&
1333  			     notification->sigev_notify != SIGEV_THREAD))
1334  			return -EINVAL;
1335  		if (notification->sigev_notify == SIGEV_SIGNAL &&
1336  			!valid_signal(notification->sigev_signo)) {
1337  			return -EINVAL;
1338  		}
1339  		if (notification->sigev_notify == SIGEV_THREAD) {
1340  			long timeo;
1341  
1342  			/* create the notify skb */
1343  			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1344  			if (!nc)
1345  				return -ENOMEM;
1346  
1347  			if (copy_from_user(nc->data,
1348  					notification->sigev_value.sival_ptr,
1349  					NOTIFY_COOKIE_LEN)) {
1350  				ret = -EFAULT;
1351  				goto free_skb;
1352  			}
1353  
1354  			/* TODO: add a header? */
1355  			skb_put(nc, NOTIFY_COOKIE_LEN);
1356  			/* and attach it to the socket */
1357  retry:
1358  			f = fdget(notification->sigev_signo);
1359  			if (!f.file) {
1360  				ret = -EBADF;
1361  				goto out;
1362  			}
1363  			sock = netlink_getsockbyfilp(f.file);
1364  			fdput(f);
1365  			if (IS_ERR(sock)) {
1366  				ret = PTR_ERR(sock);
1367  				goto free_skb;
1368  			}
1369  
1370  			timeo = MAX_SCHEDULE_TIMEOUT;
1371  			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1372  			if (ret == 1) {
1373  				sock = NULL;
1374  				goto retry;
1375  			}
1376  			if (ret)
1377  				return ret;
1378  		}
1379  	}
1380  
1381  	f = fdget(mqdes);
1382  	if (!f.file) {
1383  		ret = -EBADF;
1384  		goto out;
1385  	}
1386  
1387  	inode = file_inode(f.file);
1388  	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1389  		ret = -EBADF;
1390  		goto out_fput;
1391  	}
1392  	info = MQUEUE_I(inode);
1393  
1394  	ret = 0;
1395  	spin_lock(&info->lock);
1396  	if (notification == NULL) {
1397  		if (info->notify_owner == task_tgid(current)) {
1398  			remove_notification(info);
1399  			inode->i_atime = inode->i_ctime = current_time(inode);
1400  		}
1401  	} else if (info->notify_owner != NULL) {
1402  		ret = -EBUSY;
1403  	} else {
1404  		switch (notification->sigev_notify) {
1405  		case SIGEV_NONE:
1406  			info->notify.sigev_notify = SIGEV_NONE;
1407  			break;
1408  		case SIGEV_THREAD:
1409  			info->notify_sock = sock;
1410  			info->notify_cookie = nc;
1411  			sock = NULL;
1412  			nc = NULL;
1413  			info->notify.sigev_notify = SIGEV_THREAD;
1414  			break;
1415  		case SIGEV_SIGNAL:
1416  			info->notify.sigev_signo = notification->sigev_signo;
1417  			info->notify.sigev_value = notification->sigev_value;
1418  			info->notify.sigev_notify = SIGEV_SIGNAL;
1419  			info->notify_self_exec_id = current->self_exec_id;
1420  			break;
1421  		}
1422  
1423  		info->notify_owner = get_pid(task_tgid(current));
1424  		info->notify_user_ns = get_user_ns(current_user_ns());
1425  		inode->i_atime = inode->i_ctime = current_time(inode);
1426  	}
1427  	spin_unlock(&info->lock);
1428  out_fput:
1429  	fdput(f);
1430  out:
1431  	if (sock)
1432  		netlink_detachskb(sock, nc);
1433  	else
1434  free_skb:
1435  		dev_kfree_skb(nc);
1436  
1437  	return ret;
1438  }
1439  
SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct sigevent __user *,u_notification)1440  SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1441  		const struct sigevent __user *, u_notification)
1442  {
1443  	struct sigevent n, *p = NULL;
1444  	if (u_notification) {
1445  		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1446  			return -EFAULT;
1447  		p = &n;
1448  	}
1449  	return do_mq_notify(mqdes, p);
1450  }
1451  
do_mq_getsetattr(int mqdes,struct mq_attr * new,struct mq_attr * old)1452  static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1453  {
1454  	struct fd f;
1455  	struct inode *inode;
1456  	struct mqueue_inode_info *info;
1457  
1458  	if (new && (new->mq_flags & (~O_NONBLOCK)))
1459  		return -EINVAL;
1460  
1461  	f = fdget(mqdes);
1462  	if (!f.file)
1463  		return -EBADF;
1464  
1465  	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1466  		fdput(f);
1467  		return -EBADF;
1468  	}
1469  
1470  	inode = file_inode(f.file);
1471  	info = MQUEUE_I(inode);
1472  
1473  	spin_lock(&info->lock);
1474  
1475  	if (old) {
1476  		*old = info->attr;
1477  		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1478  	}
1479  	if (new) {
1480  		audit_mq_getsetattr(mqdes, new);
1481  		spin_lock(&f.file->f_lock);
1482  		if (new->mq_flags & O_NONBLOCK)
1483  			f.file->f_flags |= O_NONBLOCK;
1484  		else
1485  			f.file->f_flags &= ~O_NONBLOCK;
1486  		spin_unlock(&f.file->f_lock);
1487  
1488  		inode->i_atime = inode->i_ctime = current_time(inode);
1489  	}
1490  
1491  	spin_unlock(&info->lock);
1492  	fdput(f);
1493  	return 0;
1494  }
1495  
SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct mq_attr __user *,u_mqstat,struct mq_attr __user *,u_omqstat)1496  SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1497  		const struct mq_attr __user *, u_mqstat,
1498  		struct mq_attr __user *, u_omqstat)
1499  {
1500  	int ret;
1501  	struct mq_attr mqstat, omqstat;
1502  	struct mq_attr *new = NULL, *old = NULL;
1503  
1504  	if (u_mqstat) {
1505  		new = &mqstat;
1506  		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1507  			return -EFAULT;
1508  	}
1509  	if (u_omqstat)
1510  		old = &omqstat;
1511  
1512  	ret = do_mq_getsetattr(mqdes, new, old);
1513  	if (ret || !old)
1514  		return ret;
1515  
1516  	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1517  		return -EFAULT;
1518  	return 0;
1519  }
1520  
1521  #ifdef CONFIG_COMPAT
1522  
1523  struct compat_mq_attr {
1524  	compat_long_t mq_flags;      /* message queue flags		     */
1525  	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1526  	compat_long_t mq_msgsize;    /* maximum message size		     */
1527  	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1528  	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1529  };
1530  
get_compat_mq_attr(struct mq_attr * attr,const struct compat_mq_attr __user * uattr)1531  static inline int get_compat_mq_attr(struct mq_attr *attr,
1532  			const struct compat_mq_attr __user *uattr)
1533  {
1534  	struct compat_mq_attr v;
1535  
1536  	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1537  		return -EFAULT;
1538  
1539  	memset(attr, 0, sizeof(*attr));
1540  	attr->mq_flags = v.mq_flags;
1541  	attr->mq_maxmsg = v.mq_maxmsg;
1542  	attr->mq_msgsize = v.mq_msgsize;
1543  	attr->mq_curmsgs = v.mq_curmsgs;
1544  	return 0;
1545  }
1546  
put_compat_mq_attr(const struct mq_attr * attr,struct compat_mq_attr __user * uattr)1547  static inline int put_compat_mq_attr(const struct mq_attr *attr,
1548  			struct compat_mq_attr __user *uattr)
1549  {
1550  	struct compat_mq_attr v;
1551  
1552  	memset(&v, 0, sizeof(v));
1553  	v.mq_flags = attr->mq_flags;
1554  	v.mq_maxmsg = attr->mq_maxmsg;
1555  	v.mq_msgsize = attr->mq_msgsize;
1556  	v.mq_curmsgs = attr->mq_curmsgs;
1557  	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1558  		return -EFAULT;
1559  	return 0;
1560  }
1561  
COMPAT_SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,compat_mode_t,mode,struct compat_mq_attr __user *,u_attr)1562  COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1563  		       int, oflag, compat_mode_t, mode,
1564  		       struct compat_mq_attr __user *, u_attr)
1565  {
1566  	struct mq_attr attr, *p = NULL;
1567  	if (u_attr && oflag & O_CREAT) {
1568  		p = &attr;
1569  		if (get_compat_mq_attr(&attr, u_attr))
1570  			return -EFAULT;
1571  	}
1572  	return do_mq_open(u_name, oflag, mode, p);
1573  }
1574  
COMPAT_SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct compat_sigevent __user *,u_notification)1575  COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1576  		       const struct compat_sigevent __user *, u_notification)
1577  {
1578  	struct sigevent n, *p = NULL;
1579  	if (u_notification) {
1580  		if (get_compat_sigevent(&n, u_notification))
1581  			return -EFAULT;
1582  		if (n.sigev_notify == SIGEV_THREAD)
1583  			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1584  		p = &n;
1585  	}
1586  	return do_mq_notify(mqdes, p);
1587  }
1588  
COMPAT_SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct compat_mq_attr __user *,u_mqstat,struct compat_mq_attr __user *,u_omqstat)1589  COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1590  		       const struct compat_mq_attr __user *, u_mqstat,
1591  		       struct compat_mq_attr __user *, u_omqstat)
1592  {
1593  	int ret;
1594  	struct mq_attr mqstat, omqstat;
1595  	struct mq_attr *new = NULL, *old = NULL;
1596  
1597  	if (u_mqstat) {
1598  		new = &mqstat;
1599  		if (get_compat_mq_attr(new, u_mqstat))
1600  			return -EFAULT;
1601  	}
1602  	if (u_omqstat)
1603  		old = &omqstat;
1604  
1605  	ret = do_mq_getsetattr(mqdes, new, old);
1606  	if (ret || !old)
1607  		return ret;
1608  
1609  	if (put_compat_mq_attr(old, u_omqstat))
1610  		return -EFAULT;
1611  	return 0;
1612  }
1613  #endif
1614  
1615  #ifdef CONFIG_COMPAT_32BIT_TIME
compat_prepare_timeout(const struct old_timespec32 __user * p,struct timespec64 * ts)1616  static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1617  				   struct timespec64 *ts)
1618  {
1619  	if (get_old_timespec32(ts, p))
1620  		return -EFAULT;
1621  	if (!timespec64_valid(ts))
1622  		return -EINVAL;
1623  	return 0;
1624  }
1625  
SYSCALL_DEFINE5(mq_timedsend_time32,mqd_t,mqdes,const char __user *,u_msg_ptr,unsigned int,msg_len,unsigned int,msg_prio,const struct old_timespec32 __user *,u_abs_timeout)1626  SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1627  		const char __user *, u_msg_ptr,
1628  		unsigned int, msg_len, unsigned int, msg_prio,
1629  		const struct old_timespec32 __user *, u_abs_timeout)
1630  {
1631  	struct timespec64 ts, *p = NULL;
1632  	if (u_abs_timeout) {
1633  		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1634  		if (res)
1635  			return res;
1636  		p = &ts;
1637  	}
1638  	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1639  }
1640  
SYSCALL_DEFINE5(mq_timedreceive_time32,mqd_t,mqdes,char __user *,u_msg_ptr,unsigned int,msg_len,unsigned int __user *,u_msg_prio,const struct old_timespec32 __user *,u_abs_timeout)1641  SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1642  		char __user *, u_msg_ptr,
1643  		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1644  		const struct old_timespec32 __user *, u_abs_timeout)
1645  {
1646  	struct timespec64 ts, *p = NULL;
1647  	if (u_abs_timeout) {
1648  		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1649  		if (res)
1650  			return res;
1651  		p = &ts;
1652  	}
1653  	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1654  }
1655  #endif
1656  
1657  static const struct inode_operations mqueue_dir_inode_operations = {
1658  	.lookup = simple_lookup,
1659  	.create = mqueue_create,
1660  	.unlink = mqueue_unlink,
1661  };
1662  
1663  static const struct file_operations mqueue_file_operations = {
1664  	.flush = mqueue_flush_file,
1665  	.poll = mqueue_poll_file,
1666  	.read = mqueue_read_file,
1667  	.llseek = default_llseek,
1668  };
1669  
1670  static const struct super_operations mqueue_super_ops = {
1671  	.alloc_inode = mqueue_alloc_inode,
1672  	.free_inode = mqueue_free_inode,
1673  	.evict_inode = mqueue_evict_inode,
1674  	.statfs = simple_statfs,
1675  };
1676  
1677  static const struct fs_context_operations mqueue_fs_context_ops = {
1678  	.free		= mqueue_fs_context_free,
1679  	.get_tree	= mqueue_get_tree,
1680  };
1681  
1682  static struct file_system_type mqueue_fs_type = {
1683  	.name			= "mqueue",
1684  	.init_fs_context	= mqueue_init_fs_context,
1685  	.kill_sb		= kill_litter_super,
1686  	.fs_flags		= FS_USERNS_MOUNT,
1687  };
1688  
mq_init_ns(struct ipc_namespace * ns)1689  int mq_init_ns(struct ipc_namespace *ns)
1690  {
1691  	struct vfsmount *m;
1692  
1693  	ns->mq_queues_count  = 0;
1694  	ns->mq_queues_max    = DFLT_QUEUESMAX;
1695  	ns->mq_msg_max       = DFLT_MSGMAX;
1696  	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1697  	ns->mq_msg_default   = DFLT_MSG;
1698  	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1699  
1700  	m = mq_create_mount(ns);
1701  	if (IS_ERR(m))
1702  		return PTR_ERR(m);
1703  	ns->mq_mnt = m;
1704  	return 0;
1705  }
1706  
mq_clear_sbinfo(struct ipc_namespace * ns)1707  void mq_clear_sbinfo(struct ipc_namespace *ns)
1708  {
1709  	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1710  }
1711  
mq_put_mnt(struct ipc_namespace * ns)1712  void mq_put_mnt(struct ipc_namespace *ns)
1713  {
1714  	kern_unmount(ns->mq_mnt);
1715  }
1716  
init_mqueue_fs(void)1717  static int __init init_mqueue_fs(void)
1718  {
1719  	int error;
1720  
1721  	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1722  				sizeof(struct mqueue_inode_info), 0,
1723  				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1724  	if (mqueue_inode_cachep == NULL)
1725  		return -ENOMEM;
1726  
1727  	if (!setup_mq_sysctls(&init_ipc_ns)) {
1728  		pr_warn("sysctl registration failed\n");
1729  		return -ENOMEM;
1730  	}
1731  
1732  	error = register_filesystem(&mqueue_fs_type);
1733  	if (error)
1734  		goto out_sysctl;
1735  
1736  	spin_lock_init(&mq_lock);
1737  
1738  	error = mq_init_ns(&init_ipc_ns);
1739  	if (error)
1740  		goto out_filesystem;
1741  
1742  	return 0;
1743  
1744  out_filesystem:
1745  	unregister_filesystem(&mqueue_fs_type);
1746  out_sysctl:
1747  	kmem_cache_destroy(mqueue_inode_cachep);
1748  	retire_mq_sysctls(&init_ipc_ns);
1749  	return error;
1750  }
1751  
1752  device_initcall(init_mqueue_fs);
1753