1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29
30 struct module;
31 struct scsi_ioctl_command;
32
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64 /*
65 * request flags */
66 typedef __u32 __bitwise req_flags_t;
67
68 /* elevator knows about this request */
69 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83 "quiesce" state must be ignored. */
84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
85 /* vaguely specified driver internal error. Ignored by the block layer */
86 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
87 /* don't warn about errors */
88 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
89 /* elevator private data attached */
90 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
91 /* account into disk and partition IO statistics */
92 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
93 /* request came from our alloc pool */
94 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
95 /* runtime pm request */
96 #define RQF_PM ((__force req_flags_t)(1 << 15))
97 /* on IO scheduler merge hash */
98 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
99 /* track IO completion time */
100 #define RQF_STATS ((__force req_flags_t)(1 << 17))
101 /* Look at ->special_vec for the actual data payload instead of the
102 bio chain. */
103 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
104 /* The per-zone write lock is held for this request */
105 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
106 /* already slept for hybrid poll */
107 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
108 /* ->timeout has been called, don't expire again */
109 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
110
111 /* flags that prevent us from merging requests: */
112 #define RQF_NOMERGE_FLAGS \
113 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
114
115 /*
116 * Request state for blk-mq.
117 */
118 enum mq_rq_state {
119 MQ_RQ_IDLE = 0,
120 MQ_RQ_IN_FLIGHT = 1,
121 MQ_RQ_COMPLETE = 2,
122 };
123
124 /*
125 * Try to put the fields that are referenced together in the same cacheline.
126 *
127 * If you modify this structure, make sure to update blk_rq_init() and
128 * especially blk_mq_rq_ctx_init() to take care of the added fields.
129 */
130 struct request {
131 struct request_queue *q;
132 struct blk_mq_ctx *mq_ctx;
133 struct blk_mq_hw_ctx *mq_hctx;
134
135 unsigned int cmd_flags; /* op and common flags */
136 req_flags_t rq_flags;
137
138 int tag;
139 int internal_tag;
140
141 /* the following two fields are internal, NEVER access directly */
142 unsigned int __data_len; /* total data len */
143 sector_t __sector; /* sector cursor */
144
145 struct bio *bio;
146 struct bio *biotail;
147
148 struct list_head queuelist;
149
150 /*
151 * The hash is used inside the scheduler, and killed once the
152 * request reaches the dispatch list. The ipi_list is only used
153 * to queue the request for softirq completion, which is long
154 * after the request has been unhashed (and even removed from
155 * the dispatch list).
156 */
157 union {
158 struct hlist_node hash; /* merge hash */
159 struct list_head ipi_list;
160 };
161
162 /*
163 * The rb_node is only used inside the io scheduler, requests
164 * are pruned when moved to the dispatch queue. So let the
165 * completion_data share space with the rb_node.
166 */
167 union {
168 struct rb_node rb_node; /* sort/lookup */
169 struct bio_vec special_vec;
170 void *completion_data;
171 int error_count; /* for legacy drivers, don't use */
172 };
173
174 /*
175 * Three pointers are available for the IO schedulers, if they need
176 * more they have to dynamically allocate it. Flush requests are
177 * never put on the IO scheduler. So let the flush fields share
178 * space with the elevator data.
179 */
180 union {
181 struct {
182 struct io_cq *icq;
183 void *priv[2];
184 } elv;
185
186 struct {
187 unsigned int seq;
188 struct list_head list;
189 rq_end_io_fn *saved_end_io;
190 } flush;
191 };
192
193 struct gendisk *rq_disk;
194 struct hd_struct *part;
195 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
196 /* Time that the first bio started allocating this request. */
197 u64 alloc_time_ns;
198 #endif
199 /* Time that this request was allocated for this IO. */
200 u64 start_time_ns;
201 /* Time that I/O was submitted to the device. */
202 u64 io_start_time_ns;
203
204 #ifdef CONFIG_BLK_WBT
205 unsigned short wbt_flags;
206 #endif
207 /*
208 * rq sectors used for blk stats. It has the same value
209 * with blk_rq_sectors(rq), except that it never be zeroed
210 * by completion.
211 */
212 unsigned short stats_sectors;
213
214 /*
215 * Number of scatter-gather DMA addr+len pairs after
216 * physical address coalescing is performed.
217 */
218 unsigned short nr_phys_segments;
219
220 #if defined(CONFIG_BLK_DEV_INTEGRITY)
221 unsigned short nr_integrity_segments;
222 #endif
223
224 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
225 struct bio_crypt_ctx *crypt_ctx;
226 struct blk_ksm_keyslot *crypt_keyslot;
227 #endif
228
229 unsigned short write_hint;
230 unsigned short ioprio;
231
232 enum mq_rq_state state;
233 refcount_t ref;
234
235 unsigned int timeout;
236 unsigned long deadline;
237
238 union {
239 struct __call_single_data csd;
240 u64 fifo_time;
241 };
242
243 /*
244 * completion callback.
245 */
246 rq_end_io_fn *end_io;
247 void *end_io_data;
248 };
249
blk_op_is_scsi(unsigned int op)250 static inline bool blk_op_is_scsi(unsigned int op)
251 {
252 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
253 }
254
blk_op_is_private(unsigned int op)255 static inline bool blk_op_is_private(unsigned int op)
256 {
257 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
258 }
259
blk_rq_is_scsi(struct request * rq)260 static inline bool blk_rq_is_scsi(struct request *rq)
261 {
262 return blk_op_is_scsi(req_op(rq));
263 }
264
blk_rq_is_private(struct request * rq)265 static inline bool blk_rq_is_private(struct request *rq)
266 {
267 return blk_op_is_private(req_op(rq));
268 }
269
blk_rq_is_passthrough(struct request * rq)270 static inline bool blk_rq_is_passthrough(struct request *rq)
271 {
272 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
273 }
274
bio_is_passthrough(struct bio * bio)275 static inline bool bio_is_passthrough(struct bio *bio)
276 {
277 unsigned op = bio_op(bio);
278
279 return blk_op_is_scsi(op) || blk_op_is_private(op);
280 }
281
req_get_ioprio(struct request * req)282 static inline unsigned short req_get_ioprio(struct request *req)
283 {
284 return req->ioprio;
285 }
286
287 #include <linux/elevator.h>
288
289 struct blk_queue_ctx;
290
291 struct bio_vec;
292
293 enum blk_eh_timer_return {
294 BLK_EH_DONE, /* drivers has completed the command */
295 BLK_EH_RESET_TIMER, /* reset timer and try again */
296 };
297
298 enum blk_queue_state {
299 Queue_down,
300 Queue_up,
301 };
302
303 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
304 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
305
306 #define BLK_SCSI_MAX_CMDS (256)
307 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
308
309 /*
310 * Zoned block device models (zoned limit).
311 *
312 * Note: This needs to be ordered from the least to the most severe
313 * restrictions for the inheritance in blk_stack_limits() to work.
314 */
315 enum blk_zoned_model {
316 BLK_ZONED_NONE = 0, /* Regular block device */
317 BLK_ZONED_HA, /* Host-aware zoned block device */
318 BLK_ZONED_HM, /* Host-managed zoned block device */
319 };
320
321 struct queue_limits {
322 unsigned long bounce_pfn;
323 unsigned long seg_boundary_mask;
324 unsigned long virt_boundary_mask;
325
326 unsigned int max_hw_sectors;
327 unsigned int max_dev_sectors;
328 unsigned int chunk_sectors;
329 unsigned int max_sectors;
330 unsigned int max_segment_size;
331 unsigned int physical_block_size;
332 unsigned int logical_block_size;
333 unsigned int alignment_offset;
334 unsigned int io_min;
335 unsigned int io_opt;
336 unsigned int max_discard_sectors;
337 unsigned int max_hw_discard_sectors;
338 unsigned int max_write_same_sectors;
339 unsigned int max_write_zeroes_sectors;
340 unsigned int max_zone_append_sectors;
341 unsigned int discard_granularity;
342 unsigned int discard_alignment;
343
344 unsigned short max_segments;
345 unsigned short max_integrity_segments;
346 unsigned short max_discard_segments;
347
348 unsigned char misaligned;
349 unsigned char discard_misaligned;
350 unsigned char raid_partial_stripes_expensive;
351 enum blk_zoned_model zoned;
352 };
353
354 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
355 void *data);
356
357 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
358
359 #ifdef CONFIG_BLK_DEV_ZONED
360
361 #define BLK_ALL_ZONES ((unsigned int)-1)
362 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
363 unsigned int nr_zones, report_zones_cb cb, void *data);
364 unsigned int blkdev_nr_zones(struct gendisk *disk);
365 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
366 sector_t sectors, sector_t nr_sectors,
367 gfp_t gfp_mask);
368 int blk_revalidate_disk_zones(struct gendisk *disk,
369 void (*update_driver_data)(struct gendisk *disk));
370
371 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
372 unsigned int cmd, unsigned long arg);
373 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
374 unsigned int cmd, unsigned long arg);
375
376 #else /* CONFIG_BLK_DEV_ZONED */
377
blkdev_nr_zones(struct gendisk * disk)378 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
379 {
380 return 0;
381 }
382
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)383 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
384 fmode_t mode, unsigned int cmd,
385 unsigned long arg)
386 {
387 return -ENOTTY;
388 }
389
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)390 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
391 fmode_t mode, unsigned int cmd,
392 unsigned long arg)
393 {
394 return -ENOTTY;
395 }
396
397 #endif /* CONFIG_BLK_DEV_ZONED */
398
399 struct request_queue {
400 struct request *last_merge;
401 struct elevator_queue *elevator;
402
403 struct percpu_ref q_usage_counter;
404
405 struct blk_queue_stats *stats;
406 struct rq_qos *rq_qos;
407
408 const struct blk_mq_ops *mq_ops;
409
410 /* sw queues */
411 struct blk_mq_ctx __percpu *queue_ctx;
412
413 unsigned int queue_depth;
414
415 /* hw dispatch queues */
416 struct blk_mq_hw_ctx **queue_hw_ctx;
417 unsigned int nr_hw_queues;
418
419 struct backing_dev_info *backing_dev_info;
420
421 /*
422 * The queue owner gets to use this for whatever they like.
423 * ll_rw_blk doesn't touch it.
424 */
425 void *queuedata;
426
427 /*
428 * various queue flags, see QUEUE_* below
429 */
430 unsigned long queue_flags;
431 /*
432 * Number of contexts that have called blk_set_pm_only(). If this
433 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
434 * processed.
435 */
436 atomic_t pm_only;
437
438 /*
439 * ida allocated id for this queue. Used to index queues from
440 * ioctx.
441 */
442 int id;
443
444 /*
445 * queue needs bounce pages for pages above this limit
446 */
447 gfp_t bounce_gfp;
448
449 spinlock_t queue_lock;
450
451 /*
452 * queue kobject
453 */
454 struct kobject kobj;
455
456 /*
457 * mq queue kobject
458 */
459 struct kobject *mq_kobj;
460
461 #ifdef CONFIG_BLK_DEV_INTEGRITY
462 struct blk_integrity integrity;
463 #endif /* CONFIG_BLK_DEV_INTEGRITY */
464
465 #ifdef CONFIG_PM
466 struct device *dev;
467 enum rpm_status rpm_status;
468 unsigned int nr_pending;
469 #endif
470
471 /*
472 * queue settings
473 */
474 unsigned long nr_requests; /* Max # of requests */
475
476 unsigned int dma_pad_mask;
477 unsigned int dma_alignment;
478
479 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
480 /* Inline crypto capabilities */
481 struct blk_keyslot_manager *ksm;
482 #endif
483
484 unsigned int rq_timeout;
485 int poll_nsec;
486
487 struct blk_stat_callback *poll_cb;
488 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
489
490 struct timer_list timeout;
491 struct work_struct timeout_work;
492
493 atomic_t nr_active_requests_shared_sbitmap;
494
495 struct list_head icq_list;
496 #ifdef CONFIG_BLK_CGROUP
497 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
498 struct blkcg_gq *root_blkg;
499 struct list_head blkg_list;
500 #endif
501
502 struct queue_limits limits;
503
504 unsigned int required_elevator_features;
505
506 #ifdef CONFIG_BLK_DEV_ZONED
507 /*
508 * Zoned block device information for request dispatch control.
509 * nr_zones is the total number of zones of the device. This is always
510 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
511 * bits which indicates if a zone is conventional (bit set) or
512 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
513 * bits which indicates if a zone is write locked, that is, if a write
514 * request targeting the zone was dispatched. All three fields are
515 * initialized by the low level device driver (e.g. scsi/sd.c).
516 * Stacking drivers (device mappers) may or may not initialize
517 * these fields.
518 *
519 * Reads of this information must be protected with blk_queue_enter() /
520 * blk_queue_exit(). Modifying this information is only allowed while
521 * no requests are being processed. See also blk_mq_freeze_queue() and
522 * blk_mq_unfreeze_queue().
523 */
524 unsigned int nr_zones;
525 unsigned long *conv_zones_bitmap;
526 unsigned long *seq_zones_wlock;
527 unsigned int max_open_zones;
528 unsigned int max_active_zones;
529 #endif /* CONFIG_BLK_DEV_ZONED */
530
531 /*
532 * sg stuff
533 */
534 unsigned int sg_timeout;
535 unsigned int sg_reserved_size;
536 int node;
537 struct mutex debugfs_mutex;
538 #ifdef CONFIG_BLK_DEV_IO_TRACE
539 struct blk_trace __rcu *blk_trace;
540 #endif
541 /*
542 * for flush operations
543 */
544 struct blk_flush_queue *fq;
545
546 struct list_head requeue_list;
547 spinlock_t requeue_lock;
548 struct delayed_work requeue_work;
549
550 struct mutex sysfs_lock;
551 struct mutex sysfs_dir_lock;
552
553 /*
554 * for reusing dead hctx instance in case of updating
555 * nr_hw_queues
556 */
557 struct list_head unused_hctx_list;
558 spinlock_t unused_hctx_lock;
559
560 int mq_freeze_depth;
561
562 #if defined(CONFIG_BLK_DEV_BSG)
563 struct bsg_class_device bsg_dev;
564 #endif
565
566 #ifdef CONFIG_BLK_DEV_THROTTLING
567 /* Throttle data */
568 struct throtl_data *td;
569 #endif
570 struct rcu_head rcu_head;
571 wait_queue_head_t mq_freeze_wq;
572 /*
573 * Protect concurrent access to q_usage_counter by
574 * percpu_ref_kill() and percpu_ref_reinit().
575 */
576 struct mutex mq_freeze_lock;
577
578 struct blk_mq_tag_set *tag_set;
579 struct list_head tag_set_list;
580 struct bio_set bio_split;
581
582 struct dentry *debugfs_dir;
583
584 #ifdef CONFIG_BLK_DEBUG_FS
585 struct dentry *sched_debugfs_dir;
586 struct dentry *rqos_debugfs_dir;
587 #endif
588
589 bool mq_sysfs_init_done;
590
591 size_t cmd_size;
592
593 #define BLK_MAX_WRITE_HINTS 5
594 u64 write_hints[BLK_MAX_WRITE_HINTS];
595 };
596
597 /* Keep blk_queue_flag_name[] in sync with the definitions below */
598 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
599 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
600 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
601 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
602 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
603 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
604 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
605 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
606 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
607 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
608 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
609 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
610 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
611 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
612 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
613 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
614 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
615 #define QUEUE_FLAG_WC 17 /* Write back caching */
616 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
617 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
618 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
619 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
620 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
621 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
622 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
623 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
624 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
625 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
626 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
627 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
628
629 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
630 (1 << QUEUE_FLAG_SAME_COMP) | \
631 (1 << QUEUE_FLAG_NOWAIT))
632
633 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
634 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
635 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
636
637 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
638 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
639 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
640 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
641 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
642 #define blk_queue_noxmerges(q) \
643 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
644 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
645 #define blk_queue_stable_writes(q) \
646 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
647 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
648 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
649 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
650 #define blk_queue_zone_resetall(q) \
651 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
652 #define blk_queue_secure_erase(q) \
653 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
654 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
655 #define blk_queue_scsi_passthrough(q) \
656 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
657 #define blk_queue_pci_p2pdma(q) \
658 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
659 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
660 #define blk_queue_rq_alloc_time(q) \
661 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
662 #else
663 #define blk_queue_rq_alloc_time(q) false
664 #endif
665
666 #define blk_noretry_request(rq) \
667 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
668 REQ_FAILFAST_DRIVER))
669 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
670 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
671 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
672 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
673 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
674
675 extern void blk_set_pm_only(struct request_queue *q);
676 extern void blk_clear_pm_only(struct request_queue *q);
677
blk_account_rq(struct request * rq)678 static inline bool blk_account_rq(struct request *rq)
679 {
680 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
681 }
682
683 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
684
685 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
686
687 #define rq_dma_dir(rq) \
688 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
689
690 #define dma_map_bvec(dev, bv, dir, attrs) \
691 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
692 (dir), (attrs))
693
queue_is_mq(struct request_queue * q)694 static inline bool queue_is_mq(struct request_queue *q)
695 {
696 return q->mq_ops;
697 }
698
699 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)700 blk_queue_zoned_model(struct request_queue *q)
701 {
702 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
703 return q->limits.zoned;
704 return BLK_ZONED_NONE;
705 }
706
blk_queue_is_zoned(struct request_queue * q)707 static inline bool blk_queue_is_zoned(struct request_queue *q)
708 {
709 switch (blk_queue_zoned_model(q)) {
710 case BLK_ZONED_HA:
711 case BLK_ZONED_HM:
712 return true;
713 default:
714 return false;
715 }
716 }
717
blk_queue_zone_sectors(struct request_queue * q)718 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
719 {
720 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
721 }
722
723 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)724 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
725 {
726 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
727 }
728
blk_queue_zone_no(struct request_queue * q,sector_t sector)729 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
730 sector_t sector)
731 {
732 if (!blk_queue_is_zoned(q))
733 return 0;
734 return sector >> ilog2(q->limits.chunk_sectors);
735 }
736
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)737 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
738 sector_t sector)
739 {
740 if (!blk_queue_is_zoned(q))
741 return false;
742 if (!q->conv_zones_bitmap)
743 return true;
744 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
745 }
746
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)747 static inline void blk_queue_max_open_zones(struct request_queue *q,
748 unsigned int max_open_zones)
749 {
750 q->max_open_zones = max_open_zones;
751 }
752
queue_max_open_zones(const struct request_queue * q)753 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
754 {
755 return q->max_open_zones;
756 }
757
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)758 static inline void blk_queue_max_active_zones(struct request_queue *q,
759 unsigned int max_active_zones)
760 {
761 q->max_active_zones = max_active_zones;
762 }
763
queue_max_active_zones(const struct request_queue * q)764 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
765 {
766 return q->max_active_zones;
767 }
768 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)769 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
770 {
771 return 0;
772 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)773 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
774 sector_t sector)
775 {
776 return false;
777 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)778 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
779 sector_t sector)
780 {
781 return 0;
782 }
queue_max_open_zones(const struct request_queue * q)783 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
784 {
785 return 0;
786 }
queue_max_active_zones(const struct request_queue * q)787 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
788 {
789 return 0;
790 }
791 #endif /* CONFIG_BLK_DEV_ZONED */
792
rq_is_sync(struct request * rq)793 static inline bool rq_is_sync(struct request *rq)
794 {
795 return op_is_sync(rq->cmd_flags);
796 }
797
rq_mergeable(struct request * rq)798 static inline bool rq_mergeable(struct request *rq)
799 {
800 if (blk_rq_is_passthrough(rq))
801 return false;
802
803 if (req_op(rq) == REQ_OP_FLUSH)
804 return false;
805
806 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
807 return false;
808
809 if (req_op(rq) == REQ_OP_ZONE_APPEND)
810 return false;
811
812 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
813 return false;
814 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
815 return false;
816
817 return true;
818 }
819
blk_write_same_mergeable(struct bio * a,struct bio * b)820 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
821 {
822 if (bio_page(a) == bio_page(b) &&
823 bio_offset(a) == bio_offset(b))
824 return true;
825
826 return false;
827 }
828
blk_queue_depth(struct request_queue * q)829 static inline unsigned int blk_queue_depth(struct request_queue *q)
830 {
831 if (q->queue_depth)
832 return q->queue_depth;
833
834 return q->nr_requests;
835 }
836
837 extern unsigned long blk_max_low_pfn, blk_max_pfn;
838
839 /*
840 * standard bounce addresses:
841 *
842 * BLK_BOUNCE_HIGH : bounce all highmem pages
843 * BLK_BOUNCE_ANY : don't bounce anything
844 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
845 */
846
847 #if BITS_PER_LONG == 32
848 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
849 #else
850 #define BLK_BOUNCE_HIGH -1ULL
851 #endif
852 #define BLK_BOUNCE_ANY (-1ULL)
853 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
854
855 /*
856 * default timeout for SG_IO if none specified
857 */
858 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
859 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
860
861 struct rq_map_data {
862 struct page **pages;
863 int page_order;
864 int nr_entries;
865 unsigned long offset;
866 int null_mapped;
867 int from_user;
868 };
869
870 struct req_iterator {
871 struct bvec_iter iter;
872 struct bio *bio;
873 };
874
875 /* This should not be used directly - use rq_for_each_segment */
876 #define for_each_bio(_bio) \
877 for (; _bio; _bio = _bio->bi_next)
878 #define __rq_for_each_bio(_bio, rq) \
879 if ((rq->bio)) \
880 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
881
882 #define rq_for_each_segment(bvl, _rq, _iter) \
883 __rq_for_each_bio(_iter.bio, _rq) \
884 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
885
886 #define rq_for_each_bvec(bvl, _rq, _iter) \
887 __rq_for_each_bio(_iter.bio, _rq) \
888 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
889
890 #define rq_iter_last(bvec, _iter) \
891 (_iter.bio->bi_next == NULL && \
892 bio_iter_last(bvec, _iter.iter))
893
894 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
895 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
896 #endif
897 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
898 extern void rq_flush_dcache_pages(struct request *rq);
899 #else
rq_flush_dcache_pages(struct request * rq)900 static inline void rq_flush_dcache_pages(struct request *rq)
901 {
902 }
903 #endif
904
905 extern int blk_register_queue(struct gendisk *disk);
906 extern void blk_unregister_queue(struct gendisk *disk);
907 blk_qc_t submit_bio_noacct(struct bio *bio);
908 extern void blk_rq_init(struct request_queue *q, struct request *rq);
909 extern void blk_put_request(struct request *);
910 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
911 blk_mq_req_flags_t flags);
912 extern int blk_lld_busy(struct request_queue *q);
913 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
914 struct bio_set *bs, gfp_t gfp_mask,
915 int (*bio_ctr)(struct bio *, struct bio *, void *),
916 void *data);
917 extern void blk_rq_unprep_clone(struct request *rq);
918 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
919 struct request *rq);
920 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
921 extern void blk_queue_split(struct bio **);
922 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
923 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
924 unsigned int, void __user *);
925 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
926 unsigned int, void __user *);
927 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
928 struct scsi_ioctl_command __user *);
929 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
930 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
931
932 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
933 extern void blk_queue_exit(struct request_queue *q);
934 extern void blk_sync_queue(struct request_queue *q);
935 extern int blk_rq_map_user(struct request_queue *, struct request *,
936 struct rq_map_data *, void __user *, unsigned long,
937 gfp_t);
938 extern int blk_rq_unmap_user(struct bio *);
939 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
940 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
941 struct rq_map_data *, const struct iov_iter *,
942 gfp_t);
943 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
944 struct request *, int);
945 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
946 struct request *, int, rq_end_io_fn *);
947
948 /* Helper to convert REQ_OP_XXX to its string format XXX */
949 extern const char *blk_op_str(unsigned int op);
950
951 int blk_status_to_errno(blk_status_t status);
952 blk_status_t errno_to_blk_status(int errno);
953
954 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
955
bdev_get_queue(struct block_device * bdev)956 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
957 {
958 return bdev->bd_disk->queue; /* this is never NULL */
959 }
960
961 /*
962 * The basic unit of block I/O is a sector. It is used in a number of contexts
963 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
964 * bytes. Variables of type sector_t represent an offset or size that is a
965 * multiple of 512 bytes. Hence these two constants.
966 */
967 #ifndef SECTOR_SHIFT
968 #define SECTOR_SHIFT 9
969 #endif
970 #ifndef SECTOR_SIZE
971 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
972 #endif
973
974 /*
975 * blk_rq_pos() : the current sector
976 * blk_rq_bytes() : bytes left in the entire request
977 * blk_rq_cur_bytes() : bytes left in the current segment
978 * blk_rq_err_bytes() : bytes left till the next error boundary
979 * blk_rq_sectors() : sectors left in the entire request
980 * blk_rq_cur_sectors() : sectors left in the current segment
981 * blk_rq_stats_sectors() : sectors of the entire request used for stats
982 */
blk_rq_pos(const struct request * rq)983 static inline sector_t blk_rq_pos(const struct request *rq)
984 {
985 return rq->__sector;
986 }
987
blk_rq_bytes(const struct request * rq)988 static inline unsigned int blk_rq_bytes(const struct request *rq)
989 {
990 return rq->__data_len;
991 }
992
blk_rq_cur_bytes(const struct request * rq)993 static inline int blk_rq_cur_bytes(const struct request *rq)
994 {
995 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
996 }
997
998 extern unsigned int blk_rq_err_bytes(const struct request *rq);
999
blk_rq_sectors(const struct request * rq)1000 static inline unsigned int blk_rq_sectors(const struct request *rq)
1001 {
1002 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1003 }
1004
blk_rq_cur_sectors(const struct request * rq)1005 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1006 {
1007 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1008 }
1009
blk_rq_stats_sectors(const struct request * rq)1010 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1011 {
1012 return rq->stats_sectors;
1013 }
1014
1015 #ifdef CONFIG_BLK_DEV_ZONED
1016
1017 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1018 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1019
blk_rq_zone_no(struct request * rq)1020 static inline unsigned int blk_rq_zone_no(struct request *rq)
1021 {
1022 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1023 }
1024
blk_rq_zone_is_seq(struct request * rq)1025 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1026 {
1027 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1028 }
1029 #endif /* CONFIG_BLK_DEV_ZONED */
1030
1031 /*
1032 * Some commands like WRITE SAME have a payload or data transfer size which
1033 * is different from the size of the request. Any driver that supports such
1034 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1035 * calculate the data transfer size.
1036 */
blk_rq_payload_bytes(struct request * rq)1037 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1038 {
1039 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1040 return rq->special_vec.bv_len;
1041 return blk_rq_bytes(rq);
1042 }
1043
1044 /*
1045 * Return the first full biovec in the request. The caller needs to check that
1046 * there are any bvecs before calling this helper.
1047 */
req_bvec(struct request * rq)1048 static inline struct bio_vec req_bvec(struct request *rq)
1049 {
1050 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1051 return rq->special_vec;
1052 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1053 }
1054
blk_queue_get_max_sectors(struct request_queue * q,int op)1055 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1056 int op)
1057 {
1058 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1059 return min(q->limits.max_discard_sectors,
1060 UINT_MAX >> SECTOR_SHIFT);
1061
1062 if (unlikely(op == REQ_OP_WRITE_SAME))
1063 return q->limits.max_write_same_sectors;
1064
1065 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1066 return q->limits.max_write_zeroes_sectors;
1067
1068 return q->limits.max_sectors;
1069 }
1070
1071 /*
1072 * Return maximum size of a request at given offset. Only valid for
1073 * file system requests.
1074 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1075 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1076 sector_t offset,
1077 unsigned int chunk_sectors)
1078 {
1079 if (!chunk_sectors) {
1080 if (q->limits.chunk_sectors)
1081 chunk_sectors = q->limits.chunk_sectors;
1082 else
1083 return q->limits.max_sectors;
1084 }
1085
1086 if (likely(is_power_of_2(chunk_sectors)))
1087 chunk_sectors -= offset & (chunk_sectors - 1);
1088 else
1089 chunk_sectors -= sector_div(offset, chunk_sectors);
1090
1091 return min(q->limits.max_sectors, chunk_sectors);
1092 }
1093
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1094 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1095 sector_t offset)
1096 {
1097 struct request_queue *q = rq->q;
1098
1099 if (blk_rq_is_passthrough(rq))
1100 return q->limits.max_hw_sectors;
1101
1102 if (!q->limits.chunk_sectors ||
1103 req_op(rq) == REQ_OP_DISCARD ||
1104 req_op(rq) == REQ_OP_SECURE_ERASE)
1105 return blk_queue_get_max_sectors(q, req_op(rq));
1106
1107 return min(blk_max_size_offset(q, offset, 0),
1108 blk_queue_get_max_sectors(q, req_op(rq)));
1109 }
1110
blk_rq_count_bios(struct request * rq)1111 static inline unsigned int blk_rq_count_bios(struct request *rq)
1112 {
1113 unsigned int nr_bios = 0;
1114 struct bio *bio;
1115
1116 __rq_for_each_bio(bio, rq)
1117 nr_bios++;
1118
1119 return nr_bios;
1120 }
1121
1122 void blk_steal_bios(struct bio_list *list, struct request *rq);
1123
1124 /*
1125 * Request completion related functions.
1126 *
1127 * blk_update_request() completes given number of bytes and updates
1128 * the request without completing it.
1129 */
1130 extern bool blk_update_request(struct request *rq, blk_status_t error,
1131 unsigned int nr_bytes);
1132
1133 extern void blk_abort_request(struct request *);
1134
1135 /*
1136 * Access functions for manipulating queue properties
1137 */
1138 extern void blk_cleanup_queue(struct request_queue *);
1139 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1140 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1141 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1142 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1143 extern void blk_queue_max_discard_segments(struct request_queue *,
1144 unsigned short);
1145 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1146 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1147 unsigned int max_discard_sectors);
1148 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1149 unsigned int max_write_same_sectors);
1150 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1151 unsigned int max_write_same_sectors);
1152 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1153 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1154 unsigned int max_zone_append_sectors);
1155 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1156 extern void blk_queue_alignment_offset(struct request_queue *q,
1157 unsigned int alignment);
1158 void blk_queue_update_readahead(struct request_queue *q);
1159 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1160 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1161 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1162 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1163 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1164 extern void blk_set_default_limits(struct queue_limits *lim);
1165 extern void blk_set_stacking_limits(struct queue_limits *lim);
1166 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1167 sector_t offset);
1168 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1169 sector_t offset);
1170 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1171 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1172 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1173 extern void blk_queue_dma_alignment(struct request_queue *, int);
1174 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1175 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1176 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1177 extern void blk_queue_required_elevator_features(struct request_queue *q,
1178 unsigned int features);
1179 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1180 struct device *dev);
1181
1182 /*
1183 * Number of physical segments as sent to the device.
1184 *
1185 * Normally this is the number of discontiguous data segments sent by the
1186 * submitter. But for data-less command like discard we might have no
1187 * actual data segments submitted, but the driver might have to add it's
1188 * own special payload. In that case we still return 1 here so that this
1189 * special payload will be mapped.
1190 */
blk_rq_nr_phys_segments(struct request * rq)1191 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1192 {
1193 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1194 return 1;
1195 return rq->nr_phys_segments;
1196 }
1197
1198 /*
1199 * Number of discard segments (or ranges) the driver needs to fill in.
1200 * Each discard bio merged into a request is counted as one segment.
1201 */
blk_rq_nr_discard_segments(struct request * rq)1202 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1203 {
1204 return max_t(unsigned short, rq->nr_phys_segments, 1);
1205 }
1206
1207 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1208 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1209 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1210 struct scatterlist *sglist)
1211 {
1212 struct scatterlist *last_sg = NULL;
1213
1214 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1215 }
1216 extern void blk_dump_rq_flags(struct request *, char *);
1217
1218 bool __must_check blk_get_queue(struct request_queue *);
1219 struct request_queue *blk_alloc_queue(int node_id);
1220 extern void blk_put_queue(struct request_queue *);
1221 extern void blk_set_queue_dying(struct request_queue *);
1222
1223 #ifdef CONFIG_BLOCK
1224 /*
1225 * blk_plug permits building a queue of related requests by holding the I/O
1226 * fragments for a short period. This allows merging of sequential requests
1227 * into single larger request. As the requests are moved from a per-task list to
1228 * the device's request_queue in a batch, this results in improved scalability
1229 * as the lock contention for request_queue lock is reduced.
1230 *
1231 * It is ok not to disable preemption when adding the request to the plug list
1232 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1233 * the plug list when the task sleeps by itself. For details, please see
1234 * schedule() where blk_schedule_flush_plug() is called.
1235 */
1236 struct blk_plug {
1237 struct list_head mq_list; /* blk-mq requests */
1238 struct list_head cb_list; /* md requires an unplug callback */
1239 unsigned short rq_count;
1240 bool multiple_queues;
1241 bool nowait;
1242 };
1243 #define BLK_MAX_REQUEST_COUNT 16
1244 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1245
1246 struct blk_plug_cb;
1247 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1248 struct blk_plug_cb {
1249 struct list_head list;
1250 blk_plug_cb_fn callback;
1251 void *data;
1252 };
1253 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1254 void *data, int size);
1255 extern void blk_start_plug(struct blk_plug *);
1256 extern void blk_finish_plug(struct blk_plug *);
1257 extern void blk_flush_plug_list(struct blk_plug *, bool);
1258
blk_flush_plug(struct task_struct * tsk)1259 static inline void blk_flush_plug(struct task_struct *tsk)
1260 {
1261 struct blk_plug *plug = tsk->plug;
1262
1263 if (plug)
1264 blk_flush_plug_list(plug, false);
1265 }
1266
blk_schedule_flush_plug(struct task_struct * tsk)1267 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1268 {
1269 struct blk_plug *plug = tsk->plug;
1270
1271 if (plug)
1272 blk_flush_plug_list(plug, true);
1273 }
1274
blk_needs_flush_plug(struct task_struct * tsk)1275 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1276 {
1277 struct blk_plug *plug = tsk->plug;
1278
1279 return plug &&
1280 (!list_empty(&plug->mq_list) ||
1281 !list_empty(&plug->cb_list));
1282 }
1283
1284 int blkdev_issue_flush(struct block_device *, gfp_t);
1285 long nr_blockdev_pages(void);
1286 #else /* CONFIG_BLOCK */
1287 struct blk_plug {
1288 };
1289
blk_start_plug(struct blk_plug * plug)1290 static inline void blk_start_plug(struct blk_plug *plug)
1291 {
1292 }
1293
blk_finish_plug(struct blk_plug * plug)1294 static inline void blk_finish_plug(struct blk_plug *plug)
1295 {
1296 }
1297
blk_flush_plug(struct task_struct * task)1298 static inline void blk_flush_plug(struct task_struct *task)
1299 {
1300 }
1301
blk_schedule_flush_plug(struct task_struct * task)1302 static inline void blk_schedule_flush_plug(struct task_struct *task)
1303 {
1304 }
1305
1306
blk_needs_flush_plug(struct task_struct * tsk)1307 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1308 {
1309 return false;
1310 }
1311
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask)1312 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1313 {
1314 return 0;
1315 }
1316
nr_blockdev_pages(void)1317 static inline long nr_blockdev_pages(void)
1318 {
1319 return 0;
1320 }
1321 #endif /* CONFIG_BLOCK */
1322
1323 extern void blk_io_schedule(void);
1324
1325 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1326 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1327
1328 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1329
1330 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1331 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1332 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1333 sector_t nr_sects, gfp_t gfp_mask, int flags,
1334 struct bio **biop);
1335
1336 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1337 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1338
1339 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1340 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1341 unsigned flags);
1342 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1343 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1344
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1345 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1346 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1347 {
1348 return blkdev_issue_discard(sb->s_bdev,
1349 block << (sb->s_blocksize_bits -
1350 SECTOR_SHIFT),
1351 nr_blocks << (sb->s_blocksize_bits -
1352 SECTOR_SHIFT),
1353 gfp_mask, flags);
1354 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1355 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1356 sector_t nr_blocks, gfp_t gfp_mask)
1357 {
1358 return blkdev_issue_zeroout(sb->s_bdev,
1359 block << (sb->s_blocksize_bits -
1360 SECTOR_SHIFT),
1361 nr_blocks << (sb->s_blocksize_bits -
1362 SECTOR_SHIFT),
1363 gfp_mask, 0);
1364 }
1365
1366 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1367
bdev_is_partition(struct block_device * bdev)1368 static inline bool bdev_is_partition(struct block_device *bdev)
1369 {
1370 return bdev->bd_partno;
1371 }
1372
1373 enum blk_default_limits {
1374 BLK_MAX_SEGMENTS = 128,
1375 BLK_SAFE_MAX_SECTORS = 255,
1376 BLK_DEF_MAX_SECTORS = 2560,
1377 BLK_MAX_SEGMENT_SIZE = 65536,
1378 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1379 };
1380
queue_segment_boundary(const struct request_queue * q)1381 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1382 {
1383 return q->limits.seg_boundary_mask;
1384 }
1385
queue_virt_boundary(const struct request_queue * q)1386 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1387 {
1388 return q->limits.virt_boundary_mask;
1389 }
1390
queue_max_sectors(const struct request_queue * q)1391 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1392 {
1393 return q->limits.max_sectors;
1394 }
1395
queue_max_hw_sectors(const struct request_queue * q)1396 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1397 {
1398 return q->limits.max_hw_sectors;
1399 }
1400
queue_max_segments(const struct request_queue * q)1401 static inline unsigned short queue_max_segments(const struct request_queue *q)
1402 {
1403 return q->limits.max_segments;
1404 }
1405
queue_max_discard_segments(const struct request_queue * q)1406 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1407 {
1408 return q->limits.max_discard_segments;
1409 }
1410
queue_max_segment_size(const struct request_queue * q)1411 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1412 {
1413 return q->limits.max_segment_size;
1414 }
1415
queue_max_zone_append_sectors(const struct request_queue * q)1416 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1417 {
1418
1419 const struct queue_limits *l = &q->limits;
1420
1421 return min(l->max_zone_append_sectors, l->max_sectors);
1422 }
1423
queue_logical_block_size(const struct request_queue * q)1424 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1425 {
1426 int retval = 512;
1427
1428 if (q && q->limits.logical_block_size)
1429 retval = q->limits.logical_block_size;
1430
1431 return retval;
1432 }
1433
bdev_logical_block_size(struct block_device * bdev)1434 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1435 {
1436 return queue_logical_block_size(bdev_get_queue(bdev));
1437 }
1438
queue_physical_block_size(const struct request_queue * q)1439 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1440 {
1441 return q->limits.physical_block_size;
1442 }
1443
bdev_physical_block_size(struct block_device * bdev)1444 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1445 {
1446 return queue_physical_block_size(bdev_get_queue(bdev));
1447 }
1448
queue_io_min(const struct request_queue * q)1449 static inline unsigned int queue_io_min(const struct request_queue *q)
1450 {
1451 return q->limits.io_min;
1452 }
1453
bdev_io_min(struct block_device * bdev)1454 static inline int bdev_io_min(struct block_device *bdev)
1455 {
1456 return queue_io_min(bdev_get_queue(bdev));
1457 }
1458
queue_io_opt(const struct request_queue * q)1459 static inline unsigned int queue_io_opt(const struct request_queue *q)
1460 {
1461 return q->limits.io_opt;
1462 }
1463
bdev_io_opt(struct block_device * bdev)1464 static inline int bdev_io_opt(struct block_device *bdev)
1465 {
1466 return queue_io_opt(bdev_get_queue(bdev));
1467 }
1468
queue_alignment_offset(const struct request_queue * q)1469 static inline int queue_alignment_offset(const struct request_queue *q)
1470 {
1471 if (q->limits.misaligned)
1472 return -1;
1473
1474 return q->limits.alignment_offset;
1475 }
1476
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1477 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1478 {
1479 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1480 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1481 << SECTOR_SHIFT;
1482
1483 return (granularity + lim->alignment_offset - alignment) % granularity;
1484 }
1485
bdev_alignment_offset(struct block_device * bdev)1486 static inline int bdev_alignment_offset(struct block_device *bdev)
1487 {
1488 struct request_queue *q = bdev_get_queue(bdev);
1489
1490 if (q->limits.misaligned)
1491 return -1;
1492 if (bdev_is_partition(bdev))
1493 return queue_limit_alignment_offset(&q->limits,
1494 bdev->bd_part->start_sect);
1495 return q->limits.alignment_offset;
1496 }
1497
queue_discard_alignment(const struct request_queue * q)1498 static inline int queue_discard_alignment(const struct request_queue *q)
1499 {
1500 if (q->limits.discard_misaligned)
1501 return -1;
1502
1503 return q->limits.discard_alignment;
1504 }
1505
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1506 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1507 {
1508 unsigned int alignment, granularity, offset;
1509
1510 if (!lim->max_discard_sectors)
1511 return 0;
1512
1513 /* Why are these in bytes, not sectors? */
1514 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1515 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1516 if (!granularity)
1517 return 0;
1518
1519 /* Offset of the partition start in 'granularity' sectors */
1520 offset = sector_div(sector, granularity);
1521
1522 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1523 offset = (granularity + alignment - offset) % granularity;
1524
1525 /* Turn it back into bytes, gaah */
1526 return offset << SECTOR_SHIFT;
1527 }
1528
bdev_discard_alignment(struct block_device * bdev)1529 static inline int bdev_discard_alignment(struct block_device *bdev)
1530 {
1531 struct request_queue *q = bdev_get_queue(bdev);
1532
1533 if (bdev_is_partition(bdev))
1534 return queue_limit_discard_alignment(&q->limits,
1535 bdev->bd_part->start_sect);
1536 return q->limits.discard_alignment;
1537 }
1538
bdev_write_same(struct block_device * bdev)1539 static inline unsigned int bdev_write_same(struct block_device *bdev)
1540 {
1541 struct request_queue *q = bdev_get_queue(bdev);
1542
1543 if (q)
1544 return q->limits.max_write_same_sectors;
1545
1546 return 0;
1547 }
1548
bdev_write_zeroes_sectors(struct block_device * bdev)1549 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1550 {
1551 struct request_queue *q = bdev_get_queue(bdev);
1552
1553 if (q)
1554 return q->limits.max_write_zeroes_sectors;
1555
1556 return 0;
1557 }
1558
bdev_zoned_model(struct block_device * bdev)1559 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1560 {
1561 struct request_queue *q = bdev_get_queue(bdev);
1562
1563 if (q)
1564 return blk_queue_zoned_model(q);
1565
1566 return BLK_ZONED_NONE;
1567 }
1568
bdev_is_zoned(struct block_device * bdev)1569 static inline bool bdev_is_zoned(struct block_device *bdev)
1570 {
1571 struct request_queue *q = bdev_get_queue(bdev);
1572
1573 if (q)
1574 return blk_queue_is_zoned(q);
1575
1576 return false;
1577 }
1578
bdev_zone_sectors(struct block_device * bdev)1579 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1580 {
1581 struct request_queue *q = bdev_get_queue(bdev);
1582
1583 if (q)
1584 return blk_queue_zone_sectors(q);
1585 return 0;
1586 }
1587
bdev_max_open_zones(struct block_device * bdev)1588 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1589 {
1590 struct request_queue *q = bdev_get_queue(bdev);
1591
1592 if (q)
1593 return queue_max_open_zones(q);
1594 return 0;
1595 }
1596
bdev_max_active_zones(struct block_device * bdev)1597 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1598 {
1599 struct request_queue *q = bdev_get_queue(bdev);
1600
1601 if (q)
1602 return queue_max_active_zones(q);
1603 return 0;
1604 }
1605
queue_dma_alignment(const struct request_queue * q)1606 static inline int queue_dma_alignment(const struct request_queue *q)
1607 {
1608 return q ? q->dma_alignment : 511;
1609 }
1610
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1611 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1612 unsigned int len)
1613 {
1614 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1615 return !(addr & alignment) && !(len & alignment);
1616 }
1617
1618 /* assumes size > 256 */
blksize_bits(unsigned int size)1619 static inline unsigned int blksize_bits(unsigned int size)
1620 {
1621 unsigned int bits = 8;
1622 do {
1623 bits++;
1624 size >>= 1;
1625 } while (size > 256);
1626 return bits;
1627 }
1628
block_size(struct block_device * bdev)1629 static inline unsigned int block_size(struct block_device *bdev)
1630 {
1631 return 1 << bdev->bd_inode->i_blkbits;
1632 }
1633
1634 int kblockd_schedule_work(struct work_struct *work);
1635 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1636
1637 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1638 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1639 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1640 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1641
1642 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1643
1644 enum blk_integrity_flags {
1645 BLK_INTEGRITY_VERIFY = 1 << 0,
1646 BLK_INTEGRITY_GENERATE = 1 << 1,
1647 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1648 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1649 };
1650
1651 struct blk_integrity_iter {
1652 void *prot_buf;
1653 void *data_buf;
1654 sector_t seed;
1655 unsigned int data_size;
1656 unsigned short interval;
1657 const char *disk_name;
1658 };
1659
1660 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1661 typedef void (integrity_prepare_fn) (struct request *);
1662 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1663
1664 struct blk_integrity_profile {
1665 integrity_processing_fn *generate_fn;
1666 integrity_processing_fn *verify_fn;
1667 integrity_prepare_fn *prepare_fn;
1668 integrity_complete_fn *complete_fn;
1669 const char *name;
1670 };
1671
1672 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1673 extern void blk_integrity_unregister(struct gendisk *);
1674 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1675 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1676 struct scatterlist *);
1677 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1678
blk_get_integrity(struct gendisk * disk)1679 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1680 {
1681 struct blk_integrity *bi = &disk->queue->integrity;
1682
1683 if (!bi->profile)
1684 return NULL;
1685
1686 return bi;
1687 }
1688
1689 static inline
bdev_get_integrity(struct block_device * bdev)1690 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1691 {
1692 return blk_get_integrity(bdev->bd_disk);
1693 }
1694
1695 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1696 blk_integrity_queue_supports_integrity(struct request_queue *q)
1697 {
1698 return q->integrity.profile;
1699 }
1700
blk_integrity_rq(struct request * rq)1701 static inline bool blk_integrity_rq(struct request *rq)
1702 {
1703 return rq->cmd_flags & REQ_INTEGRITY;
1704 }
1705
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1706 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1707 unsigned int segs)
1708 {
1709 q->limits.max_integrity_segments = segs;
1710 }
1711
1712 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1713 queue_max_integrity_segments(const struct request_queue *q)
1714 {
1715 return q->limits.max_integrity_segments;
1716 }
1717
1718 /**
1719 * bio_integrity_intervals - Return number of integrity intervals for a bio
1720 * @bi: blk_integrity profile for device
1721 * @sectors: Size of the bio in 512-byte sectors
1722 *
1723 * Description: The block layer calculates everything in 512 byte
1724 * sectors but integrity metadata is done in terms of the data integrity
1725 * interval size of the storage device. Convert the block layer sectors
1726 * to the appropriate number of integrity intervals.
1727 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1728 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1729 unsigned int sectors)
1730 {
1731 return sectors >> (bi->interval_exp - 9);
1732 }
1733
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1734 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1735 unsigned int sectors)
1736 {
1737 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1738 }
1739
1740 /*
1741 * Return the first bvec that contains integrity data. Only drivers that are
1742 * limited to a single integrity segment should use this helper.
1743 */
rq_integrity_vec(struct request * rq)1744 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1745 {
1746 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1747 return NULL;
1748 return rq->bio->bi_integrity->bip_vec;
1749 }
1750
1751 #else /* CONFIG_BLK_DEV_INTEGRITY */
1752
1753 struct bio;
1754 struct block_device;
1755 struct gendisk;
1756 struct blk_integrity;
1757
blk_integrity_rq(struct request * rq)1758 static inline int blk_integrity_rq(struct request *rq)
1759 {
1760 return 0;
1761 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1762 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1763 struct bio *b)
1764 {
1765 return 0;
1766 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1767 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1768 struct bio *b,
1769 struct scatterlist *s)
1770 {
1771 return 0;
1772 }
bdev_get_integrity(struct block_device * b)1773 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1774 {
1775 return NULL;
1776 }
blk_get_integrity(struct gendisk * disk)1777 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1778 {
1779 return NULL;
1780 }
1781 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1782 blk_integrity_queue_supports_integrity(struct request_queue *q)
1783 {
1784 return false;
1785 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1786 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1787 {
1788 return 0;
1789 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1790 static inline void blk_integrity_register(struct gendisk *d,
1791 struct blk_integrity *b)
1792 {
1793 }
blk_integrity_unregister(struct gendisk * d)1794 static inline void blk_integrity_unregister(struct gendisk *d)
1795 {
1796 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1797 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1798 unsigned int segs)
1799 {
1800 }
queue_max_integrity_segments(const struct request_queue * q)1801 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1802 {
1803 return 0;
1804 }
1805
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1806 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1807 unsigned int sectors)
1808 {
1809 return 0;
1810 }
1811
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1812 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1813 unsigned int sectors)
1814 {
1815 return 0;
1816 }
1817
rq_integrity_vec(struct request * rq)1818 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1819 {
1820 return NULL;
1821 }
1822
1823 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1824
1825 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1826
1827 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1828
1829 void blk_ksm_unregister(struct request_queue *q);
1830
1831 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1832
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)1833 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1834 struct request_queue *q)
1835 {
1836 return true;
1837 }
1838
blk_ksm_unregister(struct request_queue * q)1839 static inline void blk_ksm_unregister(struct request_queue *q) { }
1840
1841 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1842
1843
1844 struct block_device_operations {
1845 blk_qc_t (*submit_bio) (struct bio *bio);
1846 int (*open) (struct block_device *, fmode_t);
1847 void (*release) (struct gendisk *, fmode_t);
1848 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1849 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1850 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1851 unsigned int (*check_events) (struct gendisk *disk,
1852 unsigned int clearing);
1853 void (*unlock_native_capacity) (struct gendisk *);
1854 int (*revalidate_disk) (struct gendisk *);
1855 int (*getgeo)(struct block_device *, struct hd_geometry *);
1856 /* this callback is with swap_lock and sometimes page table lock held */
1857 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1858 int (*report_zones)(struct gendisk *, sector_t sector,
1859 unsigned int nr_zones, report_zones_cb cb, void *data);
1860 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1861 struct module *owner;
1862 const struct pr_ops *pr_ops;
1863 };
1864
1865 #ifdef CONFIG_COMPAT
1866 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1867 unsigned int, unsigned long);
1868 #else
1869 #define blkdev_compat_ptr_ioctl NULL
1870 #endif
1871
1872 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1873 unsigned long);
1874 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1875 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1876 struct writeback_control *);
1877
1878 #ifdef CONFIG_BLK_DEV_ZONED
1879 bool blk_req_needs_zone_write_lock(struct request *rq);
1880 bool blk_req_zone_write_trylock(struct request *rq);
1881 void __blk_req_zone_write_lock(struct request *rq);
1882 void __blk_req_zone_write_unlock(struct request *rq);
1883
blk_req_zone_write_lock(struct request * rq)1884 static inline void blk_req_zone_write_lock(struct request *rq)
1885 {
1886 if (blk_req_needs_zone_write_lock(rq))
1887 __blk_req_zone_write_lock(rq);
1888 }
1889
blk_req_zone_write_unlock(struct request * rq)1890 static inline void blk_req_zone_write_unlock(struct request *rq)
1891 {
1892 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1893 __blk_req_zone_write_unlock(rq);
1894 }
1895
blk_req_zone_is_write_locked(struct request * rq)1896 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1897 {
1898 return rq->q->seq_zones_wlock &&
1899 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1900 }
1901
blk_req_can_dispatch_to_zone(struct request * rq)1902 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1903 {
1904 if (!blk_req_needs_zone_write_lock(rq))
1905 return true;
1906 return !blk_req_zone_is_write_locked(rq);
1907 }
1908 #else
blk_req_needs_zone_write_lock(struct request * rq)1909 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1910 {
1911 return false;
1912 }
1913
blk_req_zone_write_lock(struct request * rq)1914 static inline void blk_req_zone_write_lock(struct request *rq)
1915 {
1916 }
1917
blk_req_zone_write_unlock(struct request * rq)1918 static inline void blk_req_zone_write_unlock(struct request *rq)
1919 {
1920 }
blk_req_zone_is_write_locked(struct request * rq)1921 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1922 {
1923 return false;
1924 }
1925
blk_req_can_dispatch_to_zone(struct request * rq)1926 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1927 {
1928 return true;
1929 }
1930 #endif /* CONFIG_BLK_DEV_ZONED */
1931
blk_wake_io_task(struct task_struct * waiter)1932 static inline void blk_wake_io_task(struct task_struct *waiter)
1933 {
1934 /*
1935 * If we're polling, the task itself is doing the completions. For
1936 * that case, we don't need to signal a wakeup, it's enough to just
1937 * mark us as RUNNING.
1938 */
1939 if (waiter == current)
1940 __set_current_state(TASK_RUNNING);
1941 else
1942 wake_up_process(waiter);
1943 }
1944
1945 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1946 unsigned int op);
1947 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1948 unsigned long start_time);
1949
1950 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1951 struct bio *bio);
1952 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1953 unsigned long start_time);
1954
1955 /**
1956 * bio_start_io_acct - start I/O accounting for bio based drivers
1957 * @bio: bio to start account for
1958 *
1959 * Returns the start time that should be passed back to bio_end_io_acct().
1960 */
bio_start_io_acct(struct bio * bio)1961 static inline unsigned long bio_start_io_acct(struct bio *bio)
1962 {
1963 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1964 }
1965
1966 /**
1967 * bio_end_io_acct - end I/O accounting for bio based drivers
1968 * @bio: bio to end account for
1969 * @start: start time returned by bio_start_io_acct()
1970 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1971 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1972 {
1973 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
1974 }
1975
1976 int bdev_read_only(struct block_device *bdev);
1977 int set_blocksize(struct block_device *bdev, int size);
1978
1979 const char *bdevname(struct block_device *bdev, char *buffer);
1980 struct block_device *lookup_bdev(const char *);
1981
1982 void blkdev_show(struct seq_file *seqf, off_t offset);
1983
1984 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1985 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1986 #ifdef CONFIG_BLOCK
1987 #define BLKDEV_MAJOR_MAX 512
1988 #else
1989 #define BLKDEV_MAJOR_MAX 0
1990 #endif
1991
1992 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1993 void *holder);
1994 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1995 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1996 void *holder);
1997 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1998 void *holder);
1999 void blkdev_put(struct block_device *bdev, fmode_t mode);
2000
2001 struct block_device *I_BDEV(struct inode *inode);
2002 struct block_device *bdget_part(struct hd_struct *part);
2003 struct block_device *bdgrab(struct block_device *bdev);
2004 void bdput(struct block_device *);
2005
2006 #ifdef CONFIG_BLOCK
2007 void invalidate_bdev(struct block_device *bdev);
2008 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2009 loff_t lend);
2010 int sync_blockdev(struct block_device *bdev);
2011 #else
invalidate_bdev(struct block_device * bdev)2012 static inline void invalidate_bdev(struct block_device *bdev)
2013 {
2014 }
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)2015 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
2016 loff_t lstart, loff_t lend)
2017 {
2018 return 0;
2019 }
sync_blockdev(struct block_device * bdev)2020 static inline int sync_blockdev(struct block_device *bdev)
2021 {
2022 return 0;
2023 }
2024 #endif
2025 int fsync_bdev(struct block_device *bdev);
2026
2027 struct super_block *freeze_bdev(struct block_device *bdev);
2028 int thaw_bdev(struct block_device *bdev, struct super_block *sb);
2029
2030 #endif /* _LINUX_BLKDEV_H */
2031