1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83    "quiesce" state must be ignored. */
84 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error.  Ignored by the block layer */
88 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM			((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS		((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104    bio chain. */
105 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
112 
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116 
117 /*
118  * Request state for blk-mq.
119  */
120 enum mq_rq_state {
121 	MQ_RQ_IDLE		= 0,
122 	MQ_RQ_IN_FLIGHT		= 1,
123 	MQ_RQ_COMPLETE		= 2,
124 };
125 
126 /*
127  * Try to put the fields that are referenced together in the same cacheline.
128  *
129  * If you modify this structure, make sure to update blk_rq_init() and
130  * especially blk_mq_rq_ctx_init() to take care of the added fields.
131  */
132 struct request {
133 	struct request_queue *q;
134 	struct blk_mq_ctx *mq_ctx;
135 	struct blk_mq_hw_ctx *mq_hctx;
136 
137 	unsigned int cmd_flags;		/* op and common flags */
138 	req_flags_t rq_flags;
139 
140 	int tag;
141 	int internal_tag;
142 
143 	/* the following two fields are internal, NEVER access directly */
144 	unsigned int __data_len;	/* total data len */
145 	sector_t __sector;		/* sector cursor */
146 
147 	struct bio *bio;
148 	struct bio *biotail;
149 
150 	struct list_head queuelist;
151 
152 	/*
153 	 * The hash is used inside the scheduler, and killed once the
154 	 * request reaches the dispatch list. The ipi_list is only used
155 	 * to queue the request for softirq completion, which is long
156 	 * after the request has been unhashed (and even removed from
157 	 * the dispatch list).
158 	 */
159 	union {
160 		struct hlist_node hash;	/* merge hash */
161 		struct list_head ipi_list;
162 	};
163 
164 	/*
165 	 * The rb_node is only used inside the io scheduler, requests
166 	 * are pruned when moved to the dispatch queue. So let the
167 	 * completion_data share space with the rb_node.
168 	 */
169 	union {
170 		struct rb_node rb_node;	/* sort/lookup */
171 		struct bio_vec special_vec;
172 		void *completion_data;
173 		int error_count; /* for legacy drivers, don't use */
174 	};
175 
176 	/*
177 	 * Three pointers are available for the IO schedulers, if they need
178 	 * more they have to dynamically allocate it.  Flush requests are
179 	 * never put on the IO scheduler. So let the flush fields share
180 	 * space with the elevator data.
181 	 */
182 	union {
183 		struct {
184 			struct io_cq		*icq;
185 			void			*priv[2];
186 		} elv;
187 
188 		struct {
189 			unsigned int		seq;
190 			struct list_head	list;
191 			rq_end_io_fn		*saved_end_io;
192 		} flush;
193 	};
194 
195 	struct gendisk *rq_disk;
196 	struct hd_struct *part;
197 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
198 	/* Time that the first bio started allocating this request. */
199 	u64 alloc_time_ns;
200 #endif
201 	/* Time that this request was allocated for this IO. */
202 	u64 start_time_ns;
203 	/* Time that I/O was submitted to the device. */
204 	u64 io_start_time_ns;
205 
206 #ifdef CONFIG_BLK_WBT
207 	unsigned short wbt_flags;
208 #endif
209 	/*
210 	 * rq sectors used for blk stats. It has the same value
211 	 * with blk_rq_sectors(rq), except that it never be zeroed
212 	 * by completion.
213 	 */
214 	unsigned short stats_sectors;
215 
216 	/*
217 	 * Number of scatter-gather DMA addr+len pairs after
218 	 * physical address coalescing is performed.
219 	 */
220 	unsigned short nr_phys_segments;
221 
222 #if defined(CONFIG_BLK_DEV_INTEGRITY)
223 	unsigned short nr_integrity_segments;
224 #endif
225 
226 	unsigned short write_hint;
227 	unsigned short ioprio;
228 
229 	unsigned int extra_len;	/* length of alignment and padding */
230 
231 	enum mq_rq_state state;
232 	refcount_t ref;
233 
234 	unsigned int timeout;
235 	unsigned long deadline;
236 
237 	union {
238 		struct __call_single_data csd;
239 		u64 fifo_time;
240 	};
241 
242 	/*
243 	 * completion callback.
244 	 */
245 	rq_end_io_fn *end_io;
246 	void *end_io_data;
247 };
248 
blk_op_is_scsi(unsigned int op)249 static inline bool blk_op_is_scsi(unsigned int op)
250 {
251 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
252 }
253 
blk_op_is_private(unsigned int op)254 static inline bool blk_op_is_private(unsigned int op)
255 {
256 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
257 }
258 
blk_rq_is_scsi(struct request * rq)259 static inline bool blk_rq_is_scsi(struct request *rq)
260 {
261 	return blk_op_is_scsi(req_op(rq));
262 }
263 
blk_rq_is_private(struct request * rq)264 static inline bool blk_rq_is_private(struct request *rq)
265 {
266 	return blk_op_is_private(req_op(rq));
267 }
268 
blk_rq_is_passthrough(struct request * rq)269 static inline bool blk_rq_is_passthrough(struct request *rq)
270 {
271 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
272 }
273 
bio_is_passthrough(struct bio * bio)274 static inline bool bio_is_passthrough(struct bio *bio)
275 {
276 	unsigned op = bio_op(bio);
277 
278 	return blk_op_is_scsi(op) || blk_op_is_private(op);
279 }
280 
req_get_ioprio(struct request * req)281 static inline unsigned short req_get_ioprio(struct request *req)
282 {
283 	return req->ioprio;
284 }
285 
286 #include <linux/elevator.h>
287 
288 struct blk_queue_ctx;
289 
290 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
291 
292 struct bio_vec;
293 typedef int (dma_drain_needed_fn)(struct request *);
294 
295 enum blk_eh_timer_return {
296 	BLK_EH_DONE,		/* drivers has completed the command */
297 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
298 };
299 
300 enum blk_queue_state {
301 	Queue_down,
302 	Queue_up,
303 };
304 
305 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
306 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
307 
308 #define BLK_SCSI_MAX_CMDS	(256)
309 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
310 
311 /*
312  * Zoned block device models (zoned limit).
313  */
314 enum blk_zoned_model {
315 	BLK_ZONED_NONE,	/* Regular block device */
316 	BLK_ZONED_HA,	/* Host-aware zoned block device */
317 	BLK_ZONED_HM,	/* Host-managed zoned block device */
318 };
319 
320 struct queue_limits {
321 	unsigned long		bounce_pfn;
322 	unsigned long		seg_boundary_mask;
323 	unsigned long		virt_boundary_mask;
324 
325 	unsigned int		max_hw_sectors;
326 	unsigned int		max_dev_sectors;
327 	unsigned int		chunk_sectors;
328 	unsigned int		max_sectors;
329 	unsigned int		max_segment_size;
330 	unsigned int		physical_block_size;
331 	unsigned int		alignment_offset;
332 	unsigned int		io_min;
333 	unsigned int		io_opt;
334 	unsigned int		max_discard_sectors;
335 	unsigned int		max_hw_discard_sectors;
336 	unsigned int		max_write_same_sectors;
337 	unsigned int		max_write_zeroes_sectors;
338 	unsigned int		discard_granularity;
339 	unsigned int		discard_alignment;
340 
341 	unsigned short		logical_block_size;
342 	unsigned short		max_segments;
343 	unsigned short		max_integrity_segments;
344 	unsigned short		max_discard_segments;
345 
346 	unsigned char		misaligned;
347 	unsigned char		discard_misaligned;
348 	unsigned char		raid_partial_stripes_expensive;
349 	enum blk_zoned_model	zoned;
350 };
351 
352 #ifdef CONFIG_BLK_DEV_ZONED
353 
354 /*
355  * Maximum number of zones to report with a single report zones command.
356  */
357 #define BLK_ZONED_REPORT_MAX_ZONES	8192U
358 
359 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
360 extern int blkdev_report_zones(struct block_device *bdev,
361 			       sector_t sector, struct blk_zone *zones,
362 			       unsigned int *nr_zones);
363 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
364 			      sector_t nr_sectors, gfp_t gfp_mask);
365 extern int blk_revalidate_disk_zones(struct gendisk *disk);
366 
367 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
368 				     unsigned int cmd, unsigned long arg);
369 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
370 				    unsigned int cmd, unsigned long arg);
371 
372 #else /* CONFIG_BLK_DEV_ZONED */
373 
blkdev_nr_zones(struct block_device * bdev)374 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
375 {
376 	return 0;
377 }
378 
blk_revalidate_disk_zones(struct gendisk * disk)379 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
380 {
381 	return 0;
382 }
383 
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)384 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
385 					    fmode_t mode, unsigned int cmd,
386 					    unsigned long arg)
387 {
388 	return -ENOTTY;
389 }
390 
blkdev_reset_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)391 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
392 					   fmode_t mode, unsigned int cmd,
393 					   unsigned long arg)
394 {
395 	return -ENOTTY;
396 }
397 
398 #endif /* CONFIG_BLK_DEV_ZONED */
399 
400 struct request_queue {
401 	struct request		*last_merge;
402 	struct elevator_queue	*elevator;
403 
404 	struct blk_queue_stats	*stats;
405 	struct rq_qos		*rq_qos;
406 
407 	make_request_fn		*make_request_fn;
408 	dma_drain_needed_fn	*dma_drain_needed;
409 
410 	const struct blk_mq_ops	*mq_ops;
411 
412 	/* sw queues */
413 	struct blk_mq_ctx __percpu	*queue_ctx;
414 	unsigned int		nr_queues;
415 
416 	unsigned int		queue_depth;
417 
418 	/* hw dispatch queues */
419 	struct blk_mq_hw_ctx	**queue_hw_ctx;
420 	unsigned int		nr_hw_queues;
421 
422 	struct backing_dev_info	*backing_dev_info;
423 
424 	/*
425 	 * The queue owner gets to use this for whatever they like.
426 	 * ll_rw_blk doesn't touch it.
427 	 */
428 	void			*queuedata;
429 
430 	/*
431 	 * various queue flags, see QUEUE_* below
432 	 */
433 	unsigned long		queue_flags;
434 	/*
435 	 * Number of contexts that have called blk_set_pm_only(). If this
436 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
437 	 * processed.
438 	 */
439 	atomic_t		pm_only;
440 
441 	/*
442 	 * ida allocated id for this queue.  Used to index queues from
443 	 * ioctx.
444 	 */
445 	int			id;
446 
447 	/*
448 	 * queue needs bounce pages for pages above this limit
449 	 */
450 	gfp_t			bounce_gfp;
451 
452 	spinlock_t		queue_lock;
453 
454 	/*
455 	 * queue kobject
456 	 */
457 	struct kobject kobj;
458 
459 	/*
460 	 * mq queue kobject
461 	 */
462 	struct kobject *mq_kobj;
463 
464 #ifdef  CONFIG_BLK_DEV_INTEGRITY
465 	struct blk_integrity integrity;
466 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
467 
468 #ifdef CONFIG_PM
469 	struct device		*dev;
470 	int			rpm_status;
471 	unsigned int		nr_pending;
472 #endif
473 
474 	/*
475 	 * queue settings
476 	 */
477 	unsigned long		nr_requests;	/* Max # of requests */
478 
479 	unsigned int		dma_drain_size;
480 	void			*dma_drain_buffer;
481 	unsigned int		dma_pad_mask;
482 	unsigned int		dma_alignment;
483 
484 	unsigned int		rq_timeout;
485 	int			poll_nsec;
486 
487 	struct blk_stat_callback	*poll_cb;
488 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
489 
490 	struct timer_list	timeout;
491 	struct work_struct	timeout_work;
492 
493 	struct list_head	icq_list;
494 #ifdef CONFIG_BLK_CGROUP
495 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
496 	struct blkcg_gq		*root_blkg;
497 	struct list_head	blkg_list;
498 #endif
499 
500 	struct queue_limits	limits;
501 
502 	unsigned int		required_elevator_features;
503 
504 #ifdef CONFIG_BLK_DEV_ZONED
505 	/*
506 	 * Zoned block device information for request dispatch control.
507 	 * nr_zones is the total number of zones of the device. This is always
508 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
509 	 * bits which indicates if a zone is conventional (bit clear) or
510 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
511 	 * bits which indicates if a zone is write locked, that is, if a write
512 	 * request targeting the zone was dispatched. All three fields are
513 	 * initialized by the low level device driver (e.g. scsi/sd.c).
514 	 * Stacking drivers (device mappers) may or may not initialize
515 	 * these fields.
516 	 *
517 	 * Reads of this information must be protected with blk_queue_enter() /
518 	 * blk_queue_exit(). Modifying this information is only allowed while
519 	 * no requests are being processed. See also blk_mq_freeze_queue() and
520 	 * blk_mq_unfreeze_queue().
521 	 */
522 	unsigned int		nr_zones;
523 	unsigned long		*seq_zones_bitmap;
524 	unsigned long		*seq_zones_wlock;
525 #endif /* CONFIG_BLK_DEV_ZONED */
526 
527 	/*
528 	 * sg stuff
529 	 */
530 	unsigned int		sg_timeout;
531 	unsigned int		sg_reserved_size;
532 	int			node;
533 #ifdef CONFIG_BLK_DEV_IO_TRACE
534 	struct blk_trace	*blk_trace;
535 	struct mutex		blk_trace_mutex;
536 #endif
537 	/*
538 	 * for flush operations
539 	 */
540 	struct blk_flush_queue	*fq;
541 
542 	struct list_head	requeue_list;
543 	spinlock_t		requeue_lock;
544 	struct delayed_work	requeue_work;
545 
546 	struct mutex		sysfs_lock;
547 	struct mutex		sysfs_dir_lock;
548 
549 	/*
550 	 * for reusing dead hctx instance in case of updating
551 	 * nr_hw_queues
552 	 */
553 	struct list_head	unused_hctx_list;
554 	spinlock_t		unused_hctx_lock;
555 
556 	int			mq_freeze_depth;
557 
558 #if defined(CONFIG_BLK_DEV_BSG)
559 	struct bsg_class_device bsg_dev;
560 #endif
561 
562 #ifdef CONFIG_BLK_DEV_THROTTLING
563 	/* Throttle data */
564 	struct throtl_data *td;
565 #endif
566 	struct rcu_head		rcu_head;
567 	wait_queue_head_t	mq_freeze_wq;
568 	/*
569 	 * Protect concurrent access to q_usage_counter by
570 	 * percpu_ref_kill() and percpu_ref_reinit().
571 	 */
572 	struct mutex		mq_freeze_lock;
573 	struct percpu_ref	q_usage_counter;
574 
575 	struct blk_mq_tag_set	*tag_set;
576 	struct list_head	tag_set_list;
577 	struct bio_set		bio_split;
578 
579 #ifdef CONFIG_BLK_DEBUG_FS
580 	struct dentry		*debugfs_dir;
581 	struct dentry		*sched_debugfs_dir;
582 	struct dentry		*rqos_debugfs_dir;
583 #endif
584 
585 	bool			mq_sysfs_init_done;
586 
587 	size_t			cmd_size;
588 
589 	struct work_struct	release_work;
590 
591 #define BLK_MAX_WRITE_HINTS	5
592 	u64			write_hints[BLK_MAX_WRITE_HINTS];
593 };
594 
595 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
596 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
597 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
598 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
599 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
600 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
601 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
602 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
603 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
604 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
605 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
606 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
607 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
608 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
609 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
610 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
611 #define QUEUE_FLAG_WC		17	/* Write back caching */
612 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
613 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
614 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
615 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
616 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
617 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
618 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
619 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
620 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
621 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
622 
623 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
624 				 (1 << QUEUE_FLAG_SAME_COMP))
625 
626 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
627 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
628 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
629 
630 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
631 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
632 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
633 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
634 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
635 #define blk_queue_noxmerges(q)	\
636 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
637 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
638 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
639 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
640 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
641 #define blk_queue_zone_resetall(q)	\
642 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
643 #define blk_queue_secure_erase(q) \
644 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
645 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
646 #define blk_queue_scsi_passthrough(q)	\
647 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
648 #define blk_queue_pci_p2pdma(q)	\
649 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
650 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
651 #define blk_queue_rq_alloc_time(q)	\
652 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
653 #else
654 #define blk_queue_rq_alloc_time(q)	false
655 #endif
656 
657 #define blk_noretry_request(rq) \
658 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
659 			     REQ_FAILFAST_DRIVER))
660 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
661 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
662 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
663 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
664 
665 extern void blk_set_pm_only(struct request_queue *q);
666 extern void blk_clear_pm_only(struct request_queue *q);
667 
blk_account_rq(struct request * rq)668 static inline bool blk_account_rq(struct request *rq)
669 {
670 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
671 }
672 
673 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
674 
675 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
676 
677 #define rq_dma_dir(rq) \
678 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
679 
680 #define dma_map_bvec(dev, bv, dir, attrs) \
681 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
682 	(dir), (attrs))
683 
queue_is_mq(struct request_queue * q)684 static inline bool queue_is_mq(struct request_queue *q)
685 {
686 	return q->mq_ops;
687 }
688 
689 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)690 blk_queue_zoned_model(struct request_queue *q)
691 {
692 	return q->limits.zoned;
693 }
694 
blk_queue_is_zoned(struct request_queue * q)695 static inline bool blk_queue_is_zoned(struct request_queue *q)
696 {
697 	switch (blk_queue_zoned_model(q)) {
698 	case BLK_ZONED_HA:
699 	case BLK_ZONED_HM:
700 		return true;
701 	default:
702 		return false;
703 	}
704 }
705 
blk_queue_zone_sectors(struct request_queue * q)706 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
707 {
708 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
709 }
710 
711 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)712 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
713 {
714 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
715 }
716 
blk_queue_zone_no(struct request_queue * q,sector_t sector)717 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
718 					     sector_t sector)
719 {
720 	if (!blk_queue_is_zoned(q))
721 		return 0;
722 	return sector >> ilog2(q->limits.chunk_sectors);
723 }
724 
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)725 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
726 					 sector_t sector)
727 {
728 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
729 		return false;
730 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
731 }
732 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)733 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
734 {
735 	return 0;
736 }
737 #endif /* CONFIG_BLK_DEV_ZONED */
738 
rq_is_sync(struct request * rq)739 static inline bool rq_is_sync(struct request *rq)
740 {
741 	return op_is_sync(rq->cmd_flags);
742 }
743 
rq_mergeable(struct request * rq)744 static inline bool rq_mergeable(struct request *rq)
745 {
746 	if (blk_rq_is_passthrough(rq))
747 		return false;
748 
749 	if (req_op(rq) == REQ_OP_FLUSH)
750 		return false;
751 
752 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
753 		return false;
754 
755 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
756 		return false;
757 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
758 		return false;
759 
760 	return true;
761 }
762 
blk_write_same_mergeable(struct bio * a,struct bio * b)763 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
764 {
765 	if (bio_page(a) == bio_page(b) &&
766 	    bio_offset(a) == bio_offset(b))
767 		return true;
768 
769 	return false;
770 }
771 
blk_queue_depth(struct request_queue * q)772 static inline unsigned int blk_queue_depth(struct request_queue *q)
773 {
774 	if (q->queue_depth)
775 		return q->queue_depth;
776 
777 	return q->nr_requests;
778 }
779 
780 extern unsigned long blk_max_low_pfn, blk_max_pfn;
781 
782 /*
783  * standard bounce addresses:
784  *
785  * BLK_BOUNCE_HIGH	: bounce all highmem pages
786  * BLK_BOUNCE_ANY	: don't bounce anything
787  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
788  */
789 
790 #if BITS_PER_LONG == 32
791 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
792 #else
793 #define BLK_BOUNCE_HIGH		-1ULL
794 #endif
795 #define BLK_BOUNCE_ANY		(-1ULL)
796 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
797 
798 /*
799  * default timeout for SG_IO if none specified
800  */
801 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
802 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
803 
804 struct rq_map_data {
805 	struct page **pages;
806 	int page_order;
807 	int nr_entries;
808 	unsigned long offset;
809 	int null_mapped;
810 	int from_user;
811 };
812 
813 struct req_iterator {
814 	struct bvec_iter iter;
815 	struct bio *bio;
816 };
817 
818 /* This should not be used directly - use rq_for_each_segment */
819 #define for_each_bio(_bio)		\
820 	for (; _bio; _bio = _bio->bi_next)
821 #define __rq_for_each_bio(_bio, rq)	\
822 	if ((rq->bio))			\
823 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
824 
825 #define rq_for_each_segment(bvl, _rq, _iter)			\
826 	__rq_for_each_bio(_iter.bio, _rq)			\
827 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
828 
829 #define rq_for_each_bvec(bvl, _rq, _iter)			\
830 	__rq_for_each_bio(_iter.bio, _rq)			\
831 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
832 
833 #define rq_iter_last(bvec, _iter)				\
834 		(_iter.bio->bi_next == NULL &&			\
835 		 bio_iter_last(bvec, _iter.iter))
836 
837 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
838 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
839 #endif
840 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
841 extern void rq_flush_dcache_pages(struct request *rq);
842 #else
rq_flush_dcache_pages(struct request * rq)843 static inline void rq_flush_dcache_pages(struct request *rq)
844 {
845 }
846 #endif
847 
848 extern int blk_register_queue(struct gendisk *disk);
849 extern void blk_unregister_queue(struct gendisk *disk);
850 extern blk_qc_t generic_make_request(struct bio *bio);
851 extern blk_qc_t direct_make_request(struct bio *bio);
852 extern void blk_rq_init(struct request_queue *q, struct request *rq);
853 extern void blk_put_request(struct request *);
854 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
855 				       blk_mq_req_flags_t flags);
856 extern int blk_lld_busy(struct request_queue *q);
857 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
858 			     struct bio_set *bs, gfp_t gfp_mask,
859 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
860 			     void *data);
861 extern void blk_rq_unprep_clone(struct request *rq);
862 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
863 				     struct request *rq);
864 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
865 extern void blk_queue_split(struct request_queue *, struct bio **);
866 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
867 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
868 			      unsigned int, void __user *);
869 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
870 			  unsigned int, void __user *);
871 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
872 			 struct scsi_ioctl_command __user *);
873 
874 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
875 extern void blk_queue_exit(struct request_queue *q);
876 extern void blk_sync_queue(struct request_queue *q);
877 extern int blk_rq_map_user(struct request_queue *, struct request *,
878 			   struct rq_map_data *, void __user *, unsigned long,
879 			   gfp_t);
880 extern int blk_rq_unmap_user(struct bio *);
881 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
882 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
883 			       struct rq_map_data *, const struct iov_iter *,
884 			       gfp_t);
885 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
886 			  struct request *, int);
887 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
888 				  struct request *, int, rq_end_io_fn *);
889 
890 /* Helper to convert REQ_OP_XXX to its string format XXX */
891 extern const char *blk_op_str(unsigned int op);
892 
893 int blk_status_to_errno(blk_status_t status);
894 blk_status_t errno_to_blk_status(int errno);
895 
896 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
897 
bdev_get_queue(struct block_device * bdev)898 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
899 {
900 	return bdev->bd_disk->queue;	/* this is never NULL */
901 }
902 
903 /*
904  * The basic unit of block I/O is a sector. It is used in a number of contexts
905  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
906  * bytes. Variables of type sector_t represent an offset or size that is a
907  * multiple of 512 bytes. Hence these two constants.
908  */
909 #ifndef SECTOR_SHIFT
910 #define SECTOR_SHIFT 9
911 #endif
912 #ifndef SECTOR_SIZE
913 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
914 #endif
915 
916 /*
917  * blk_rq_pos()			: the current sector
918  * blk_rq_bytes()		: bytes left in the entire request
919  * blk_rq_cur_bytes()		: bytes left in the current segment
920  * blk_rq_err_bytes()		: bytes left till the next error boundary
921  * blk_rq_sectors()		: sectors left in the entire request
922  * blk_rq_cur_sectors()		: sectors left in the current segment
923  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
924  */
blk_rq_pos(const struct request * rq)925 static inline sector_t blk_rq_pos(const struct request *rq)
926 {
927 	return rq->__sector;
928 }
929 
blk_rq_bytes(const struct request * rq)930 static inline unsigned int blk_rq_bytes(const struct request *rq)
931 {
932 	return rq->__data_len;
933 }
934 
blk_rq_cur_bytes(const struct request * rq)935 static inline int blk_rq_cur_bytes(const struct request *rq)
936 {
937 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
938 }
939 
940 extern unsigned int blk_rq_err_bytes(const struct request *rq);
941 
blk_rq_sectors(const struct request * rq)942 static inline unsigned int blk_rq_sectors(const struct request *rq)
943 {
944 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
945 }
946 
blk_rq_cur_sectors(const struct request * rq)947 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
948 {
949 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
950 }
951 
blk_rq_stats_sectors(const struct request * rq)952 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
953 {
954 	return rq->stats_sectors;
955 }
956 
957 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)958 static inline unsigned int blk_rq_zone_no(struct request *rq)
959 {
960 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
961 }
962 
blk_rq_zone_is_seq(struct request * rq)963 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
964 {
965 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
966 }
967 #endif /* CONFIG_BLK_DEV_ZONED */
968 
969 /*
970  * Some commands like WRITE SAME have a payload or data transfer size which
971  * is different from the size of the request.  Any driver that supports such
972  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
973  * calculate the data transfer size.
974  */
blk_rq_payload_bytes(struct request * rq)975 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
976 {
977 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
978 		return rq->special_vec.bv_len;
979 	return blk_rq_bytes(rq);
980 }
981 
982 /*
983  * Return the first full biovec in the request.  The caller needs to check that
984  * there are any bvecs before calling this helper.
985  */
req_bvec(struct request * rq)986 static inline struct bio_vec req_bvec(struct request *rq)
987 {
988 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
989 		return rq->special_vec;
990 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
991 }
992 
blk_queue_get_max_sectors(struct request_queue * q,int op)993 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
994 						     int op)
995 {
996 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
997 		return min(q->limits.max_discard_sectors,
998 			   UINT_MAX >> SECTOR_SHIFT);
999 
1000 	if (unlikely(op == REQ_OP_WRITE_SAME))
1001 		return q->limits.max_write_same_sectors;
1002 
1003 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1004 		return q->limits.max_write_zeroes_sectors;
1005 
1006 	return q->limits.max_sectors;
1007 }
1008 
1009 /*
1010  * Return maximum size of a request at given offset. Only valid for
1011  * file system requests.
1012  */
blk_max_size_offset(struct request_queue * q,sector_t offset)1013 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1014 					       sector_t offset)
1015 {
1016 	if (!q->limits.chunk_sectors)
1017 		return q->limits.max_sectors;
1018 
1019 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1020 			(offset & (q->limits.chunk_sectors - 1))));
1021 }
1022 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1023 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1024 						  sector_t offset)
1025 {
1026 	struct request_queue *q = rq->q;
1027 
1028 	if (blk_rq_is_passthrough(rq))
1029 		return q->limits.max_hw_sectors;
1030 
1031 	if (!q->limits.chunk_sectors ||
1032 	    req_op(rq) == REQ_OP_DISCARD ||
1033 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1034 		return blk_queue_get_max_sectors(q, req_op(rq));
1035 
1036 	return min(blk_max_size_offset(q, offset),
1037 			blk_queue_get_max_sectors(q, req_op(rq)));
1038 }
1039 
blk_rq_count_bios(struct request * rq)1040 static inline unsigned int blk_rq_count_bios(struct request *rq)
1041 {
1042 	unsigned int nr_bios = 0;
1043 	struct bio *bio;
1044 
1045 	__rq_for_each_bio(bio, rq)
1046 		nr_bios++;
1047 
1048 	return nr_bios;
1049 }
1050 
1051 void blk_steal_bios(struct bio_list *list, struct request *rq);
1052 
1053 /*
1054  * Request completion related functions.
1055  *
1056  * blk_update_request() completes given number of bytes and updates
1057  * the request without completing it.
1058  */
1059 extern bool blk_update_request(struct request *rq, blk_status_t error,
1060 			       unsigned int nr_bytes);
1061 
1062 extern void __blk_complete_request(struct request *);
1063 extern void blk_abort_request(struct request *);
1064 
1065 /*
1066  * Access functions for manipulating queue properties
1067  */
1068 extern void blk_cleanup_queue(struct request_queue *);
1069 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1070 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1071 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1072 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1073 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1074 extern void blk_queue_max_discard_segments(struct request_queue *,
1075 		unsigned short);
1076 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1077 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1078 		unsigned int max_discard_sectors);
1079 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1080 		unsigned int max_write_same_sectors);
1081 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1082 		unsigned int max_write_same_sectors);
1083 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1084 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1085 extern void blk_queue_alignment_offset(struct request_queue *q,
1086 				       unsigned int alignment);
1087 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1088 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1089 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1090 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1091 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1092 extern void blk_set_default_limits(struct queue_limits *lim);
1093 extern void blk_set_stacking_limits(struct queue_limits *lim);
1094 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1095 			    sector_t offset);
1096 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1097 			    sector_t offset);
1098 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1099 			      sector_t offset);
1100 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1101 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1102 extern int blk_queue_dma_drain(struct request_queue *q,
1103 			       dma_drain_needed_fn *dma_drain_needed,
1104 			       void *buf, unsigned int size);
1105 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1106 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1107 extern void blk_queue_dma_alignment(struct request_queue *, int);
1108 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1109 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1110 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1111 extern void blk_queue_required_elevator_features(struct request_queue *q,
1112 						 unsigned int features);
1113 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1114 					      struct device *dev);
1115 
1116 /*
1117  * Number of physical segments as sent to the device.
1118  *
1119  * Normally this is the number of discontiguous data segments sent by the
1120  * submitter.  But for data-less command like discard we might have no
1121  * actual data segments submitted, but the driver might have to add it's
1122  * own special payload.  In that case we still return 1 here so that this
1123  * special payload will be mapped.
1124  */
blk_rq_nr_phys_segments(struct request * rq)1125 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1126 {
1127 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1128 		return 1;
1129 	return rq->nr_phys_segments;
1130 }
1131 
1132 /*
1133  * Number of discard segments (or ranges) the driver needs to fill in.
1134  * Each discard bio merged into a request is counted as one segment.
1135  */
blk_rq_nr_discard_segments(struct request * rq)1136 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1137 {
1138 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1139 }
1140 
1141 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1142 extern void blk_dump_rq_flags(struct request *, char *);
1143 extern long nr_blockdev_pages(void);
1144 
1145 bool __must_check blk_get_queue(struct request_queue *);
1146 struct request_queue *blk_alloc_queue(gfp_t);
1147 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1148 extern void blk_put_queue(struct request_queue *);
1149 extern void blk_set_queue_dying(struct request_queue *);
1150 
1151 /*
1152  * blk_plug permits building a queue of related requests by holding the I/O
1153  * fragments for a short period. This allows merging of sequential requests
1154  * into single larger request. As the requests are moved from a per-task list to
1155  * the device's request_queue in a batch, this results in improved scalability
1156  * as the lock contention for request_queue lock is reduced.
1157  *
1158  * It is ok not to disable preemption when adding the request to the plug list
1159  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1160  * the plug list when the task sleeps by itself. For details, please see
1161  * schedule() where blk_schedule_flush_plug() is called.
1162  */
1163 struct blk_plug {
1164 	struct list_head mq_list; /* blk-mq requests */
1165 	struct list_head cb_list; /* md requires an unplug callback */
1166 	unsigned short rq_count;
1167 	bool multiple_queues;
1168 };
1169 #define BLK_MAX_REQUEST_COUNT 16
1170 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1171 
1172 struct blk_plug_cb;
1173 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1174 struct blk_plug_cb {
1175 	struct list_head list;
1176 	blk_plug_cb_fn callback;
1177 	void *data;
1178 };
1179 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1180 					     void *data, int size);
1181 extern void blk_start_plug(struct blk_plug *);
1182 extern void blk_finish_plug(struct blk_plug *);
1183 extern void blk_flush_plug_list(struct blk_plug *, bool);
1184 
blk_flush_plug(struct task_struct * tsk)1185 static inline void blk_flush_plug(struct task_struct *tsk)
1186 {
1187 	struct blk_plug *plug = tsk->plug;
1188 
1189 	if (plug)
1190 		blk_flush_plug_list(plug, false);
1191 }
1192 
blk_schedule_flush_plug(struct task_struct * tsk)1193 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1194 {
1195 	struct blk_plug *plug = tsk->plug;
1196 
1197 	if (plug)
1198 		blk_flush_plug_list(plug, true);
1199 }
1200 
blk_needs_flush_plug(struct task_struct * tsk)1201 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1202 {
1203 	struct blk_plug *plug = tsk->plug;
1204 
1205 	return plug &&
1206 		 (!list_empty(&plug->mq_list) ||
1207 		 !list_empty(&plug->cb_list));
1208 }
1209 
1210 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1211 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1212 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1213 
1214 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1215 
1216 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1217 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1218 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1219 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1220 		struct bio **biop);
1221 
1222 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1223 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1224 
1225 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1226 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1227 		unsigned flags);
1228 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1229 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1230 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1231 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1232 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1233 {
1234 	return blkdev_issue_discard(sb->s_bdev,
1235 				    block << (sb->s_blocksize_bits -
1236 					      SECTOR_SHIFT),
1237 				    nr_blocks << (sb->s_blocksize_bits -
1238 						  SECTOR_SHIFT),
1239 				    gfp_mask, flags);
1240 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1241 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1242 		sector_t nr_blocks, gfp_t gfp_mask)
1243 {
1244 	return blkdev_issue_zeroout(sb->s_bdev,
1245 				    block << (sb->s_blocksize_bits -
1246 					      SECTOR_SHIFT),
1247 				    nr_blocks << (sb->s_blocksize_bits -
1248 						  SECTOR_SHIFT),
1249 				    gfp_mask, 0);
1250 }
1251 
1252 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1253 
1254 enum blk_default_limits {
1255 	BLK_MAX_SEGMENTS	= 128,
1256 	BLK_SAFE_MAX_SECTORS	= 255,
1257 	BLK_DEF_MAX_SECTORS	= 2560,
1258 	BLK_MAX_SEGMENT_SIZE	= 65536,
1259 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1260 };
1261 
queue_segment_boundary(const struct request_queue * q)1262 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1263 {
1264 	return q->limits.seg_boundary_mask;
1265 }
1266 
queue_virt_boundary(const struct request_queue * q)1267 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1268 {
1269 	return q->limits.virt_boundary_mask;
1270 }
1271 
queue_max_sectors(const struct request_queue * q)1272 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1273 {
1274 	return q->limits.max_sectors;
1275 }
1276 
queue_max_hw_sectors(const struct request_queue * q)1277 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1278 {
1279 	return q->limits.max_hw_sectors;
1280 }
1281 
queue_max_segments(const struct request_queue * q)1282 static inline unsigned short queue_max_segments(const struct request_queue *q)
1283 {
1284 	return q->limits.max_segments;
1285 }
1286 
queue_max_discard_segments(const struct request_queue * q)1287 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1288 {
1289 	return q->limits.max_discard_segments;
1290 }
1291 
queue_max_segment_size(const struct request_queue * q)1292 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1293 {
1294 	return q->limits.max_segment_size;
1295 }
1296 
queue_logical_block_size(const struct request_queue * q)1297 static inline unsigned short queue_logical_block_size(const struct request_queue *q)
1298 {
1299 	int retval = 512;
1300 
1301 	if (q && q->limits.logical_block_size)
1302 		retval = q->limits.logical_block_size;
1303 
1304 	return retval;
1305 }
1306 
bdev_logical_block_size(struct block_device * bdev)1307 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1308 {
1309 	return queue_logical_block_size(bdev_get_queue(bdev));
1310 }
1311 
queue_physical_block_size(const struct request_queue * q)1312 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1313 {
1314 	return q->limits.physical_block_size;
1315 }
1316 
bdev_physical_block_size(struct block_device * bdev)1317 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1318 {
1319 	return queue_physical_block_size(bdev_get_queue(bdev));
1320 }
1321 
queue_io_min(const struct request_queue * q)1322 static inline unsigned int queue_io_min(const struct request_queue *q)
1323 {
1324 	return q->limits.io_min;
1325 }
1326 
bdev_io_min(struct block_device * bdev)1327 static inline int bdev_io_min(struct block_device *bdev)
1328 {
1329 	return queue_io_min(bdev_get_queue(bdev));
1330 }
1331 
queue_io_opt(const struct request_queue * q)1332 static inline unsigned int queue_io_opt(const struct request_queue *q)
1333 {
1334 	return q->limits.io_opt;
1335 }
1336 
bdev_io_opt(struct block_device * bdev)1337 static inline int bdev_io_opt(struct block_device *bdev)
1338 {
1339 	return queue_io_opt(bdev_get_queue(bdev));
1340 }
1341 
queue_alignment_offset(const struct request_queue * q)1342 static inline int queue_alignment_offset(const struct request_queue *q)
1343 {
1344 	if (q->limits.misaligned)
1345 		return -1;
1346 
1347 	return q->limits.alignment_offset;
1348 }
1349 
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1350 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1351 {
1352 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1353 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1354 		<< SECTOR_SHIFT;
1355 
1356 	return (granularity + lim->alignment_offset - alignment) % granularity;
1357 }
1358 
bdev_alignment_offset(struct block_device * bdev)1359 static inline int bdev_alignment_offset(struct block_device *bdev)
1360 {
1361 	struct request_queue *q = bdev_get_queue(bdev);
1362 
1363 	if (q->limits.misaligned)
1364 		return -1;
1365 
1366 	if (bdev != bdev->bd_contains)
1367 		return bdev->bd_part->alignment_offset;
1368 
1369 	return q->limits.alignment_offset;
1370 }
1371 
queue_discard_alignment(const struct request_queue * q)1372 static inline int queue_discard_alignment(const struct request_queue *q)
1373 {
1374 	if (q->limits.discard_misaligned)
1375 		return -1;
1376 
1377 	return q->limits.discard_alignment;
1378 }
1379 
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1380 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1381 {
1382 	unsigned int alignment, granularity, offset;
1383 
1384 	if (!lim->max_discard_sectors)
1385 		return 0;
1386 
1387 	/* Why are these in bytes, not sectors? */
1388 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1389 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1390 	if (!granularity)
1391 		return 0;
1392 
1393 	/* Offset of the partition start in 'granularity' sectors */
1394 	offset = sector_div(sector, granularity);
1395 
1396 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1397 	offset = (granularity + alignment - offset) % granularity;
1398 
1399 	/* Turn it back into bytes, gaah */
1400 	return offset << SECTOR_SHIFT;
1401 }
1402 
bdev_discard_alignment(struct block_device * bdev)1403 static inline int bdev_discard_alignment(struct block_device *bdev)
1404 {
1405 	struct request_queue *q = bdev_get_queue(bdev);
1406 
1407 	if (bdev != bdev->bd_contains)
1408 		return bdev->bd_part->discard_alignment;
1409 
1410 	return q->limits.discard_alignment;
1411 }
1412 
bdev_write_same(struct block_device * bdev)1413 static inline unsigned int bdev_write_same(struct block_device *bdev)
1414 {
1415 	struct request_queue *q = bdev_get_queue(bdev);
1416 
1417 	if (q)
1418 		return q->limits.max_write_same_sectors;
1419 
1420 	return 0;
1421 }
1422 
bdev_write_zeroes_sectors(struct block_device * bdev)1423 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1424 {
1425 	struct request_queue *q = bdev_get_queue(bdev);
1426 
1427 	if (q)
1428 		return q->limits.max_write_zeroes_sectors;
1429 
1430 	return 0;
1431 }
1432 
bdev_zoned_model(struct block_device * bdev)1433 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1434 {
1435 	struct request_queue *q = bdev_get_queue(bdev);
1436 
1437 	if (q)
1438 		return blk_queue_zoned_model(q);
1439 
1440 	return BLK_ZONED_NONE;
1441 }
1442 
bdev_is_zoned(struct block_device * bdev)1443 static inline bool bdev_is_zoned(struct block_device *bdev)
1444 {
1445 	struct request_queue *q = bdev_get_queue(bdev);
1446 
1447 	if (q)
1448 		return blk_queue_is_zoned(q);
1449 
1450 	return false;
1451 }
1452 
bdev_zone_sectors(struct block_device * bdev)1453 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1454 {
1455 	struct request_queue *q = bdev_get_queue(bdev);
1456 
1457 	if (q)
1458 		return blk_queue_zone_sectors(q);
1459 	return 0;
1460 }
1461 
queue_dma_alignment(const struct request_queue * q)1462 static inline int queue_dma_alignment(const struct request_queue *q)
1463 {
1464 	return q ? q->dma_alignment : 511;
1465 }
1466 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1467 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1468 				 unsigned int len)
1469 {
1470 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1471 	return !(addr & alignment) && !(len & alignment);
1472 }
1473 
1474 /* assumes size > 256 */
blksize_bits(unsigned int size)1475 static inline unsigned int blksize_bits(unsigned int size)
1476 {
1477 	unsigned int bits = 8;
1478 	do {
1479 		bits++;
1480 		size >>= 1;
1481 	} while (size > 256);
1482 	return bits;
1483 }
1484 
block_size(struct block_device * bdev)1485 static inline unsigned int block_size(struct block_device *bdev)
1486 {
1487 	return bdev->bd_block_size;
1488 }
1489 
1490 typedef struct {struct page *v;} Sector;
1491 
1492 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1493 
put_dev_sector(Sector p)1494 static inline void put_dev_sector(Sector p)
1495 {
1496 	put_page(p.v);
1497 }
1498 
1499 int kblockd_schedule_work(struct work_struct *work);
1500 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1501 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1502 
1503 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1504 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1505 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1506 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1507 
1508 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1509 
1510 enum blk_integrity_flags {
1511 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1512 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1513 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1514 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1515 };
1516 
1517 struct blk_integrity_iter {
1518 	void			*prot_buf;
1519 	void			*data_buf;
1520 	sector_t		seed;
1521 	unsigned int		data_size;
1522 	unsigned short		interval;
1523 	const char		*disk_name;
1524 };
1525 
1526 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1527 typedef void (integrity_prepare_fn) (struct request *);
1528 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1529 
1530 struct blk_integrity_profile {
1531 	integrity_processing_fn		*generate_fn;
1532 	integrity_processing_fn		*verify_fn;
1533 	integrity_prepare_fn		*prepare_fn;
1534 	integrity_complete_fn		*complete_fn;
1535 	const char			*name;
1536 };
1537 
1538 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1539 extern void blk_integrity_unregister(struct gendisk *);
1540 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1541 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1542 				   struct scatterlist *);
1543 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1544 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1545 				   struct request *);
1546 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1547 				    struct bio *);
1548 
blk_get_integrity(struct gendisk * disk)1549 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1550 {
1551 	struct blk_integrity *bi = &disk->queue->integrity;
1552 
1553 	if (!bi->profile)
1554 		return NULL;
1555 
1556 	return bi;
1557 }
1558 
1559 static inline
bdev_get_integrity(struct block_device * bdev)1560 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1561 {
1562 	return blk_get_integrity(bdev->bd_disk);
1563 }
1564 
blk_integrity_rq(struct request * rq)1565 static inline bool blk_integrity_rq(struct request *rq)
1566 {
1567 	return rq->cmd_flags & REQ_INTEGRITY;
1568 }
1569 
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1570 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1571 						    unsigned int segs)
1572 {
1573 	q->limits.max_integrity_segments = segs;
1574 }
1575 
1576 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1577 queue_max_integrity_segments(const struct request_queue *q)
1578 {
1579 	return q->limits.max_integrity_segments;
1580 }
1581 
1582 /**
1583  * bio_integrity_intervals - Return number of integrity intervals for a bio
1584  * @bi:		blk_integrity profile for device
1585  * @sectors:	Size of the bio in 512-byte sectors
1586  *
1587  * Description: The block layer calculates everything in 512 byte
1588  * sectors but integrity metadata is done in terms of the data integrity
1589  * interval size of the storage device.  Convert the block layer sectors
1590  * to the appropriate number of integrity intervals.
1591  */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1592 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1593 						   unsigned int sectors)
1594 {
1595 	return sectors >> (bi->interval_exp - 9);
1596 }
1597 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1598 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1599 					       unsigned int sectors)
1600 {
1601 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1602 }
1603 
1604 /*
1605  * Return the first bvec that contains integrity data.  Only drivers that are
1606  * limited to a single integrity segment should use this helper.
1607  */
rq_integrity_vec(struct request * rq)1608 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1609 {
1610 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1611 		return NULL;
1612 	return rq->bio->bi_integrity->bip_vec;
1613 }
1614 
1615 #else /* CONFIG_BLK_DEV_INTEGRITY */
1616 
1617 struct bio;
1618 struct block_device;
1619 struct gendisk;
1620 struct blk_integrity;
1621 
blk_integrity_rq(struct request * rq)1622 static inline int blk_integrity_rq(struct request *rq)
1623 {
1624 	return 0;
1625 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1626 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1627 					    struct bio *b)
1628 {
1629 	return 0;
1630 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1631 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1632 					  struct bio *b,
1633 					  struct scatterlist *s)
1634 {
1635 	return 0;
1636 }
bdev_get_integrity(struct block_device * b)1637 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1638 {
1639 	return NULL;
1640 }
blk_get_integrity(struct gendisk * disk)1641 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1642 {
1643 	return NULL;
1644 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1645 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1646 {
1647 	return 0;
1648 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1649 static inline void blk_integrity_register(struct gendisk *d,
1650 					 struct blk_integrity *b)
1651 {
1652 }
blk_integrity_unregister(struct gendisk * d)1653 static inline void blk_integrity_unregister(struct gendisk *d)
1654 {
1655 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1656 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1657 						    unsigned int segs)
1658 {
1659 }
queue_max_integrity_segments(const struct request_queue * q)1660 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1661 {
1662 	return 0;
1663 }
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)1664 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1665 					  struct request *r1,
1666 					  struct request *r2)
1667 {
1668 	return true;
1669 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)1670 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1671 					   struct request *r,
1672 					   struct bio *b)
1673 {
1674 	return true;
1675 }
1676 
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1677 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1678 						   unsigned int sectors)
1679 {
1680 	return 0;
1681 }
1682 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1683 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1684 					       unsigned int sectors)
1685 {
1686 	return 0;
1687 }
1688 
rq_integrity_vec(struct request * rq)1689 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1690 {
1691 	return NULL;
1692 }
1693 
1694 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1695 
1696 struct block_device_operations {
1697 	int (*open) (struct block_device *, fmode_t);
1698 	void (*release) (struct gendisk *, fmode_t);
1699 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1700 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1701 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1702 	unsigned int (*check_events) (struct gendisk *disk,
1703 				      unsigned int clearing);
1704 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1705 	int (*media_changed) (struct gendisk *);
1706 	void (*unlock_native_capacity) (struct gendisk *);
1707 	int (*revalidate_disk) (struct gendisk *);
1708 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1709 	/* this callback is with swap_lock and sometimes page table lock held */
1710 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1711 	int (*report_zones)(struct gendisk *, sector_t sector,
1712 			    struct blk_zone *zones, unsigned int *nr_zones);
1713 	struct module *owner;
1714 	const struct pr_ops *pr_ops;
1715 };
1716 
1717 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1718 				 unsigned long);
1719 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1720 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1721 						struct writeback_control *);
1722 
1723 #ifdef CONFIG_BLK_DEV_ZONED
1724 bool blk_req_needs_zone_write_lock(struct request *rq);
1725 void __blk_req_zone_write_lock(struct request *rq);
1726 void __blk_req_zone_write_unlock(struct request *rq);
1727 
blk_req_zone_write_lock(struct request * rq)1728 static inline void blk_req_zone_write_lock(struct request *rq)
1729 {
1730 	if (blk_req_needs_zone_write_lock(rq))
1731 		__blk_req_zone_write_lock(rq);
1732 }
1733 
blk_req_zone_write_unlock(struct request * rq)1734 static inline void blk_req_zone_write_unlock(struct request *rq)
1735 {
1736 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1737 		__blk_req_zone_write_unlock(rq);
1738 }
1739 
blk_req_zone_is_write_locked(struct request * rq)1740 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1741 {
1742 	return rq->q->seq_zones_wlock &&
1743 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1744 }
1745 
blk_req_can_dispatch_to_zone(struct request * rq)1746 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1747 {
1748 	if (!blk_req_needs_zone_write_lock(rq))
1749 		return true;
1750 	return !blk_req_zone_is_write_locked(rq);
1751 }
1752 #else
blk_req_needs_zone_write_lock(struct request * rq)1753 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1754 {
1755 	return false;
1756 }
1757 
blk_req_zone_write_lock(struct request * rq)1758 static inline void blk_req_zone_write_lock(struct request *rq)
1759 {
1760 }
1761 
blk_req_zone_write_unlock(struct request * rq)1762 static inline void blk_req_zone_write_unlock(struct request *rq)
1763 {
1764 }
blk_req_zone_is_write_locked(struct request * rq)1765 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1766 {
1767 	return false;
1768 }
1769 
blk_req_can_dispatch_to_zone(struct request * rq)1770 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1771 {
1772 	return true;
1773 }
1774 #endif /* CONFIG_BLK_DEV_ZONED */
1775 
1776 #else /* CONFIG_BLOCK */
1777 
1778 struct block_device;
1779 
1780 /*
1781  * stubs for when the block layer is configured out
1782  */
1783 #define buffer_heads_over_limit 0
1784 
nr_blockdev_pages(void)1785 static inline long nr_blockdev_pages(void)
1786 {
1787 	return 0;
1788 }
1789 
1790 struct blk_plug {
1791 };
1792 
blk_start_plug(struct blk_plug * plug)1793 static inline void blk_start_plug(struct blk_plug *plug)
1794 {
1795 }
1796 
blk_finish_plug(struct blk_plug * plug)1797 static inline void blk_finish_plug(struct blk_plug *plug)
1798 {
1799 }
1800 
blk_flush_plug(struct task_struct * task)1801 static inline void blk_flush_plug(struct task_struct *task)
1802 {
1803 }
1804 
blk_schedule_flush_plug(struct task_struct * task)1805 static inline void blk_schedule_flush_plug(struct task_struct *task)
1806 {
1807 }
1808 
1809 
blk_needs_flush_plug(struct task_struct * tsk)1810 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1811 {
1812 	return false;
1813 }
1814 
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)1815 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1816 				     sector_t *error_sector)
1817 {
1818 	return 0;
1819 }
1820 
1821 #endif /* CONFIG_BLOCK */
1822 
blk_wake_io_task(struct task_struct * waiter)1823 static inline void blk_wake_io_task(struct task_struct *waiter)
1824 {
1825 	/*
1826 	 * If we're polling, the task itself is doing the completions. For
1827 	 * that case, we don't need to signal a wakeup, it's enough to just
1828 	 * mark us as RUNNING.
1829 	 */
1830 	if (waiter == current)
1831 		__set_current_state(TASK_RUNNING);
1832 	else
1833 		wake_up_process(waiter);
1834 }
1835 
1836 #endif
1837