1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifndef __FSL_QMAN_H
32 #define __FSL_QMAN_H
33 
34 #include <linux/bitops.h>
35 #include <linux/device.h>
36 
37 /* Hardware constants */
38 #define QM_CHANNEL_SWPORTAL0 0
39 #define QMAN_CHANNEL_POOL1 0x21
40 #define QMAN_CHANNEL_CAAM 0x80
41 #define QMAN_CHANNEL_POOL1_REV3 0x401
42 #define QMAN_CHANNEL_CAAM_REV3 0x840
43 extern u16 qm_channel_pool1;
44 extern u16 qm_channel_caam;
45 
46 /* Portal processing (interrupt) sources */
47 #define QM_PIRQ_CSCI	0x00100000	/* Congestion State Change */
48 #define QM_PIRQ_EQCI	0x00080000	/* Enqueue Command Committed */
49 #define QM_PIRQ_EQRI	0x00040000	/* EQCR Ring (below threshold) */
50 #define QM_PIRQ_DQRI	0x00020000	/* DQRR Ring (non-empty) */
51 #define QM_PIRQ_MRI	0x00010000	/* MR Ring (non-empty) */
52 /*
53  * This mask contains all the interrupt sources that need handling except DQRI,
54  * ie. that if present should trigger slow-path processing.
55  */
56 #define QM_PIRQ_SLOW	(QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
57 			 QM_PIRQ_MRI)
58 
59 /* For qman_static_dequeue_*** APIs */
60 #define QM_SDQCR_CHANNELS_POOL_MASK	0x00007fff
61 /* for n in [1,15] */
62 #define QM_SDQCR_CHANNELS_POOL(n)	(0x00008000 >> (n))
63 /* for conversion from n of qm_channel */
QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)64 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
65 {
66 	return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
67 }
68 
69 /* --- QMan data structures (and associated constants) --- */
70 
71 /* "Frame Descriptor (FD)" */
72 struct qm_fd {
73 	union {
74 		struct {
75 			u8 cfg8b_w1;
76 			u8 bpid;	/* Buffer Pool ID */
77 			u8 cfg8b_w3;
78 			u8 addr_hi;	/* high 8-bits of 40-bit address */
79 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
80 		} __packed;
81 		__be64 data;
82 	};
83 	__be32 cfg;	/* format, offset, length / congestion */
84 	union {
85 		__be32 cmd;
86 		__be32 status;
87 	};
88 } __aligned(8);
89 
90 #define QM_FD_FORMAT_SG		BIT(31)
91 #define QM_FD_FORMAT_LONG	BIT(30)
92 #define QM_FD_FORMAT_COMPOUND	BIT(29)
93 #define QM_FD_FORMAT_MASK	GENMASK(31, 29)
94 #define QM_FD_OFF_SHIFT		20
95 #define QM_FD_OFF_MASK		GENMASK(28, 20)
96 #define QM_FD_LEN_MASK		GENMASK(19, 0)
97 #define QM_FD_LEN_BIG_MASK	GENMASK(28, 0)
98 
99 enum qm_fd_format {
100 	/*
101 	 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
102 	 * scatter-gather table. 'big' implies a 29-bit length with no offset
103 	 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
104 	 * implies a s/g-like table, where each entry itself represents a frame
105 	 * (contiguous or scatter-gather) and the 29-bit "length" is
106 	 * interpreted purely for congestion calculations, ie. a "congestion
107 	 * weight".
108 	 */
109 	qm_fd_contig = 0,
110 	qm_fd_contig_big = QM_FD_FORMAT_LONG,
111 	qm_fd_sg = QM_FD_FORMAT_SG,
112 	qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
113 	qm_fd_compound = QM_FD_FORMAT_COMPOUND
114 };
115 
qm_fd_addr(const struct qm_fd * fd)116 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
117 {
118 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
119 }
120 
qm_fd_addr_get64(const struct qm_fd * fd)121 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
122 {
123 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
124 }
125 
qm_fd_addr_set64(struct qm_fd * fd,u64 addr)126 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
127 {
128 	fd->addr_hi = upper_32_bits(addr);
129 	fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
130 }
131 
132 /*
133  * The 'format' field indicates the interpretation of the remaining
134  * 29 bits of the 32-bit word.
135  * If 'format' is _contig or _sg, 20b length and 9b offset.
136  * If 'format' is _contig_big or _sg_big, 29b length.
137  * If 'format' is _compound, 29b "congestion weight".
138  */
qm_fd_get_format(const struct qm_fd * fd)139 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
140 {
141 	return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
142 }
143 
qm_fd_get_offset(const struct qm_fd * fd)144 static inline int qm_fd_get_offset(const struct qm_fd *fd)
145 {
146 	return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
147 }
148 
qm_fd_get_length(const struct qm_fd * fd)149 static inline int qm_fd_get_length(const struct qm_fd *fd)
150 {
151 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
152 }
153 
qm_fd_get_len_big(const struct qm_fd * fd)154 static inline int qm_fd_get_len_big(const struct qm_fd *fd)
155 {
156 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
157 }
158 
qm_fd_set_param(struct qm_fd * fd,enum qm_fd_format fmt,int off,int len)159 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
160 				   int off, int len)
161 {
162 	fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
163 			      ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
164 }
165 
166 #define qm_fd_set_contig(fd, off, len) \
167 	qm_fd_set_param(fd, qm_fd_contig, off, len)
168 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
169 #define qm_fd_set_contig_big(fd, len) \
170 	qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
171 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
172 #define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
173 
qm_fd_clear_fd(struct qm_fd * fd)174 static inline void qm_fd_clear_fd(struct qm_fd *fd)
175 {
176 	fd->data = 0;
177 	fd->cfg = 0;
178 	fd->cmd = 0;
179 }
180 
181 /* Scatter/Gather table entry */
182 struct qm_sg_entry {
183 	union {
184 		struct {
185 			u8 __reserved1[3];
186 			u8 addr_hi;	/* high 8-bits of 40-bit address */
187 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
188 		};
189 		__be64 data;
190 	};
191 	__be32 cfg;	/* E bit, F bit, length */
192 	u8 __reserved2;
193 	u8 bpid;
194 	__be16 offset; /* 13-bit, _res[13-15]*/
195 } __packed;
196 
197 #define QM_SG_LEN_MASK	GENMASK(29, 0)
198 #define QM_SG_OFF_MASK	GENMASK(12, 0)
199 #define QM_SG_FIN	BIT(30)
200 #define QM_SG_EXT	BIT(31)
201 
qm_sg_addr(const struct qm_sg_entry * sg)202 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
203 {
204 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
205 }
206 
qm_sg_entry_get64(const struct qm_sg_entry * sg)207 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
208 {
209 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
210 }
211 
qm_sg_entry_set64(struct qm_sg_entry * sg,u64 addr)212 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
213 {
214 	sg->addr_hi = upper_32_bits(addr);
215 	sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
216 }
217 
qm_sg_entry_is_final(const struct qm_sg_entry * sg)218 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
219 {
220 	return be32_to_cpu(sg->cfg) & QM_SG_FIN;
221 }
222 
qm_sg_entry_is_ext(const struct qm_sg_entry * sg)223 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
224 {
225 	return be32_to_cpu(sg->cfg) & QM_SG_EXT;
226 }
227 
qm_sg_entry_get_len(const struct qm_sg_entry * sg)228 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
229 {
230 	return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
231 }
232 
qm_sg_entry_set_len(struct qm_sg_entry * sg,int len)233 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
234 {
235 	sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
236 }
237 
qm_sg_entry_set_f(struct qm_sg_entry * sg,int len)238 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
239 {
240 	sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
241 }
242 
qm_sg_entry_get_off(const struct qm_sg_entry * sg)243 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
244 {
245 	return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
246 }
247 
248 /* "Frame Dequeue Response" */
249 struct qm_dqrr_entry {
250 	u8 verb;
251 	u8 stat;
252 	__be16 seqnum;	/* 15-bit */
253 	u8 tok;
254 	u8 __reserved2[3];
255 	__be32 fqid;	/* 24-bit */
256 	__be32 context_b;
257 	struct qm_fd fd;
258 	u8 __reserved4[32];
259 } __packed __aligned(64);
260 #define QM_DQRR_VERB_VBIT		0x80
261 #define QM_DQRR_VERB_MASK		0x7f	/* where the verb contains; */
262 #define QM_DQRR_VERB_FRAME_DEQUEUE	0x60	/* "this format" */
263 #define QM_DQRR_STAT_FQ_EMPTY		0x80	/* FQ empty */
264 #define QM_DQRR_STAT_FQ_HELDACTIVE	0x40	/* FQ held active */
265 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE	0x20	/* FQ was force-eligible'd */
266 #define QM_DQRR_STAT_FD_VALID		0x10	/* has a non-NULL FD */
267 #define QM_DQRR_STAT_UNSCHEDULED	0x02	/* Unscheduled dequeue */
268 #define QM_DQRR_STAT_DQCR_EXPIRED	0x01	/* VDQCR or PDQCR expired*/
269 
270 /* 'fqid' is a 24-bit field in every h/w descriptor */
271 #define QM_FQID_MASK	GENMASK(23, 0)
272 #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
273 #define qm_fqid_get(p)    (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
274 
275 /* "ERN Message Response" */
276 /* "FQ State Change Notification" */
277 union qm_mr_entry {
278 	struct {
279 		u8 verb;
280 		u8 __reserved[63];
281 	};
282 	struct {
283 		u8 verb;
284 		u8 dca;
285 		__be16 seqnum;
286 		u8 rc;		/* Rej Code: 8-bit */
287 		u8 __reserved[3];
288 		__be32 fqid;	/* 24-bit */
289 		__be32 tag;
290 		struct qm_fd fd;
291 		u8 __reserved1[32];
292 	} __packed __aligned(64) ern;
293 	struct {
294 		u8 verb;
295 		u8 fqs;		/* Frame Queue Status */
296 		u8 __reserved1[6];
297 		__be32 fqid;	/* 24-bit */
298 		__be32 context_b;
299 		u8 __reserved2[48];
300 	} __packed fq;		/* FQRN/FQRNI/FQRL/FQPN */
301 };
302 #define QM_MR_VERB_VBIT			0x80
303 /*
304  * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
305  * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
306  * from the other MR types by noting if the 0x20 bit is unset.
307  */
308 #define QM_MR_VERB_TYPE_MASK		0x27
309 #define QM_MR_VERB_DC_ERN		0x20
310 #define QM_MR_VERB_FQRN			0x21
311 #define QM_MR_VERB_FQRNI		0x22
312 #define QM_MR_VERB_FQRL			0x23
313 #define QM_MR_VERB_FQPN			0x24
314 #define QM_MR_RC_MASK			0xf0	/* contains one of; */
315 #define QM_MR_RC_CGR_TAILDROP		0x00
316 #define QM_MR_RC_WRED			0x10
317 #define QM_MR_RC_ERROR			0x20
318 #define QM_MR_RC_ORPWINDOW_EARLY	0x30
319 #define QM_MR_RC_ORPWINDOW_LATE		0x40
320 #define QM_MR_RC_FQ_TAILDROP		0x50
321 #define QM_MR_RC_ORPWINDOW_RETIRED	0x60
322 #define QM_MR_RC_ORP_ZERO		0x70
323 #define QM_MR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
324 #define QM_MR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
325 
326 /*
327  * An identical structure of FQD fields is present in the "Init FQ" command and
328  * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
329  * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
330  * latter has two inlines to assist with converting to/from the mant+exp
331  * representation.
332  */
333 struct qm_fqd_stashing {
334 	/* See QM_STASHING_EXCL_<...> */
335 	u8 exclusive;
336 	/* Numbers of cachelines */
337 	u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
338 };
339 
340 struct qm_fqd_oac {
341 	/* "Overhead Accounting Control", see QM_OAC_<...> */
342 	u8 oac; /* oac[6-7], _res[0-5] */
343 	/* Two's-complement value (-128 to +127) */
344 	s8 oal; /* "Overhead Accounting Length" */
345 };
346 
347 struct qm_fqd {
348 	/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
349 	u8 orpc;
350 	u8 cgid;
351 	__be16 fq_ctrl;	/* See QM_FQCTRL_<...> */
352 	__be16 dest_wq;	/* channel[3-15], wq[0-2] */
353 	__be16 ics_cred; /* 15-bit */
354 	/*
355 	 * For "Initialize Frame Queue" commands, the write-enable mask
356 	 * determines whether 'td' or 'oac_init' is observed. For query
357 	 * commands, this field is always 'td', and 'oac_query' (below) reflects
358 	 * the Overhead ACcounting values.
359 	 */
360 	union {
361 		__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
362 		struct qm_fqd_oac oac_init;
363 	};
364 	__be32 context_b;
365 	union {
366 		/* Treat it as 64-bit opaque */
367 		__be64 opaque;
368 		struct {
369 			__be32 hi;
370 			__be32 lo;
371 		};
372 		/* Treat it as s/w portal stashing config */
373 		/* see "FQD Context_A field used for [...]" */
374 		struct {
375 			struct qm_fqd_stashing stashing;
376 			/*
377 			 * 48-bit address of FQ context to
378 			 * stash, must be cacheline-aligned
379 			 */
380 			__be16 context_hi;
381 			__be32 context_lo;
382 		} __packed;
383 	} context_a;
384 	struct qm_fqd_oac oac_query;
385 } __packed;
386 
387 #define QM_FQD_CHAN_OFF		3
388 #define QM_FQD_WQ_MASK		GENMASK(2, 0)
389 #define QM_FQD_TD_EXP_MASK	GENMASK(4, 0)
390 #define QM_FQD_TD_MANT_OFF	5
391 #define QM_FQD_TD_MANT_MASK	GENMASK(12, 5)
392 #define QM_FQD_TD_MAX		0xe0000000
393 #define QM_FQD_TD_MANT_MAX	0xff
394 #define QM_FQD_OAC_OFF		6
395 #define QM_FQD_AS_OFF		4
396 #define QM_FQD_DS_OFF		2
397 #define QM_FQD_XS_MASK		0x3
398 
399 /* 64-bit converters for context_hi/lo */
qm_fqd_stashing_get64(const struct qm_fqd * fqd)400 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
401 {
402 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
403 }
404 
qm_fqd_stashing_addr(const struct qm_fqd * fqd)405 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
406 {
407 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
408 }
409 
qm_fqd_context_a_get64(const struct qm_fqd * fqd)410 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
411 {
412 	return qm_fqd_stashing_get64(fqd);
413 }
414 
qm_fqd_stashing_set64(struct qm_fqd * fqd,u64 addr)415 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
416 {
417 	fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
418 	fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
419 }
420 
qm_fqd_context_a_set64(struct qm_fqd * fqd,u64 addr)421 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
422 {
423 	fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
424 	fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
425 }
426 
427 /* convert a threshold value into mant+exp representation */
qm_fqd_set_taildrop(struct qm_fqd * fqd,u32 val,int roundup)428 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
429 				      int roundup)
430 {
431 	u32 e = 0;
432 	int td, oddbit = 0;
433 
434 	if (val > QM_FQD_TD_MAX)
435 		return -ERANGE;
436 
437 	while (val > QM_FQD_TD_MANT_MAX) {
438 		oddbit = val & 1;
439 		val >>= 1;
440 		e++;
441 		if (roundup && oddbit)
442 			val++;
443 	}
444 
445 	td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
446 	td |= (e & QM_FQD_TD_EXP_MASK);
447 	fqd->td = cpu_to_be16(td);
448 	return 0;
449 }
450 /* and the other direction */
qm_fqd_get_taildrop(const struct qm_fqd * fqd)451 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
452 {
453 	int td = be16_to_cpu(fqd->td);
454 
455 	return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
456 		<< (td & QM_FQD_TD_EXP_MASK);
457 }
458 
qm_fqd_set_stashing(struct qm_fqd * fqd,u8 as,u8 ds,u8 cs)459 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
460 {
461 	struct qm_fqd_stashing *st = &fqd->context_a.stashing;
462 
463 	st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
464 		 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
465 		 (cs & QM_FQD_XS_MASK);
466 }
467 
qm_fqd_get_stashing(const struct qm_fqd * fqd)468 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
469 {
470 	return fqd->context_a.stashing.cl;
471 }
472 
qm_fqd_set_oac(struct qm_fqd * fqd,u8 val)473 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
474 {
475 	fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
476 }
477 
qm_fqd_set_oal(struct qm_fqd * fqd,s8 val)478 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
479 {
480 	fqd->oac_init.oal = val;
481 }
482 
qm_fqd_set_destwq(struct qm_fqd * fqd,int ch,int wq)483 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
484 {
485 	fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
486 				   (wq & QM_FQD_WQ_MASK));
487 }
488 
qm_fqd_get_chan(const struct qm_fqd * fqd)489 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
490 {
491 	return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
492 }
493 
qm_fqd_get_wq(const struct qm_fqd * fqd)494 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
495 {
496 	return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
497 }
498 
499 /* See "Frame Queue Descriptor (FQD)" */
500 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
501 #define QM_FQCTRL_MASK		0x07ff	/* 'fq_ctrl' flags; */
502 #define QM_FQCTRL_CGE		0x0400	/* Congestion Group Enable */
503 #define QM_FQCTRL_TDE		0x0200	/* Tail-Drop Enable */
504 #define QM_FQCTRL_CTXASTASHING	0x0080	/* Context-A stashing */
505 #define QM_FQCTRL_CPCSTASH	0x0040	/* CPC Stash Enable */
506 #define QM_FQCTRL_FORCESFDR	0x0008	/* High-priority SFDRs */
507 #define QM_FQCTRL_AVOIDBLOCK	0x0004	/* Don't block active */
508 #define QM_FQCTRL_HOLDACTIVE	0x0002	/* Hold active in portal */
509 #define QM_FQCTRL_PREFERINCACHE	0x0001	/* Aggressively cache FQD */
510 #define QM_FQCTRL_LOCKINCACHE	QM_FQCTRL_PREFERINCACHE /* older naming */
511 
512 /* See "FQD Context_A field used for [...] */
513 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
514 #define QM_STASHING_EXCL_ANNOTATION	0x04
515 #define QM_STASHING_EXCL_DATA		0x02
516 #define QM_STASHING_EXCL_CTX		0x01
517 
518 /* See "Intra Class Scheduling" */
519 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
520 #define QM_OAC_ICS		0x2 /* Accounting for Intra-Class Scheduling */
521 #define QM_OAC_CG		0x1 /* Accounting for Congestion Groups */
522 
523 /*
524  * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
525  * and associated commands/responses. The WRED parameters are calculated from
526  * these fields as follows;
527  *   MaxTH = MA * (2 ^ Mn)
528  *   Slope = SA / (2 ^ Sn)
529  *    MaxP = 4 * (Pn + 1)
530  */
531 struct qm_cgr_wr_parm {
532 	/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
533 	__be32 word;
534 };
535 /*
536  * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
537  * management commands, this is padded to a 16-bit structure field, so that's
538  * how we represent it here. The congestion state threshold is calculated from
539  * these fields as follows;
540  *   CS threshold = TA * (2 ^ Tn)
541  */
542 struct qm_cgr_cs_thres {
543 	/* _res[13-15], TA[5-12], Tn[0-4] */
544 	__be16 word;
545 };
546 /*
547  * This identical structure of CGR fields is present in the "Init/Modify CGR"
548  * commands and the "Query CGR" result. It's suctioned out here into its own
549  * struct.
550  */
551 struct __qm_mc_cgr {
552 	struct qm_cgr_wr_parm wr_parm_g;
553 	struct qm_cgr_wr_parm wr_parm_y;
554 	struct qm_cgr_wr_parm wr_parm_r;
555 	u8 wr_en_g;	/* boolean, use QM_CGR_EN */
556 	u8 wr_en_y;	/* boolean, use QM_CGR_EN */
557 	u8 wr_en_r;	/* boolean, use QM_CGR_EN */
558 	u8 cscn_en;	/* boolean, use QM_CGR_EN */
559 	union {
560 		struct {
561 			__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
562 			__be16 cscn_targ_dcp_low;
563 		};
564 		__be32 cscn_targ;	/* use QM_CGR_TARG_* */
565 	};
566 	u8 cstd_en;	/* boolean, use QM_CGR_EN */
567 	u8 cs;		/* boolean, only used in query response */
568 	struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
569 	u8 mode;	/* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
570 } __packed;
571 #define QM_CGR_EN		0x01 /* For wr_en_*, cscn_en, cstd_en */
572 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT	0x8000 /* value written to portal bit*/
573 #define QM_CGR_TARG_UDP_CTRL_DCP	0x4000 /* 0: SWP, 1: DCP */
574 #define QM_CGR_TARG_PORTAL(n)	(0x80000000 >> (n)) /* s/w portal, 0-9 */
575 #define QM_CGR_TARG_FMAN0	0x00200000 /* direct-connect portal: fman0 */
576 #define QM_CGR_TARG_FMAN1	0x00100000 /*			   : fman1 */
577 /* Convert CGR thresholds to/from "cs_thres" format */
qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres * th)578 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
579 {
580 	int thres = be16_to_cpu(th->word);
581 
582 	return ((thres >> 5) & 0xff) << (thres & 0x1f);
583 }
584 
qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres * th,u64 val,int roundup)585 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
586 					int roundup)
587 {
588 	u32 e = 0;
589 	int oddbit = 0;
590 
591 	while (val > 0xff) {
592 		oddbit = val & 1;
593 		val >>= 1;
594 		e++;
595 		if (roundup && oddbit)
596 			val++;
597 	}
598 	th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
599 	return 0;
600 }
601 
602 /* "Initialize FQ" */
603 struct qm_mcc_initfq {
604 	u8 __reserved1[2];
605 	__be16 we_mask;	/* Write Enable Mask */
606 	__be32 fqid;	/* 24-bit */
607 	__be16 count;	/* Initialises 'count+1' FQDs */
608 	struct qm_fqd fqd; /* the FQD fields go here */
609 	u8 __reserved2[30];
610 } __packed;
611 /* "Initialize/Modify CGR" */
612 struct qm_mcc_initcgr {
613 	u8 __reserve1[2];
614 	__be16 we_mask;	/* Write Enable Mask */
615 	struct __qm_mc_cgr cgr;	/* CGR fields */
616 	u8 __reserved2[2];
617 	u8 cgid;
618 	u8 __reserved3[32];
619 } __packed;
620 
621 /* INITFQ-specific flags */
622 #define QM_INITFQ_WE_MASK		0x01ff	/* 'Write Enable' flags; */
623 #define QM_INITFQ_WE_OAC		0x0100
624 #define QM_INITFQ_WE_ORPC		0x0080
625 #define QM_INITFQ_WE_CGID		0x0040
626 #define QM_INITFQ_WE_FQCTRL		0x0020
627 #define QM_INITFQ_WE_DESTWQ		0x0010
628 #define QM_INITFQ_WE_ICSCRED		0x0008
629 #define QM_INITFQ_WE_TDTHRESH		0x0004
630 #define QM_INITFQ_WE_CONTEXTB		0x0002
631 #define QM_INITFQ_WE_CONTEXTA		0x0001
632 /* INITCGR/MODIFYCGR-specific flags */
633 #define QM_CGR_WE_MASK			0x07ff	/* 'Write Enable Mask'; */
634 #define QM_CGR_WE_WR_PARM_G		0x0400
635 #define QM_CGR_WE_WR_PARM_Y		0x0200
636 #define QM_CGR_WE_WR_PARM_R		0x0100
637 #define QM_CGR_WE_WR_EN_G		0x0080
638 #define QM_CGR_WE_WR_EN_Y		0x0040
639 #define QM_CGR_WE_WR_EN_R		0x0020
640 #define QM_CGR_WE_CSCN_EN		0x0010
641 #define QM_CGR_WE_CSCN_TARG		0x0008
642 #define QM_CGR_WE_CSTD_EN		0x0004
643 #define QM_CGR_WE_CS_THRES		0x0002
644 #define QM_CGR_WE_MODE			0x0001
645 
646 #define QMAN_CGR_FLAG_USE_INIT	     0x00000001
647 #define QMAN_CGR_MODE_FRAME          0x00000001
648 
649 	/* Portal and Frame Queues */
650 /* Represents a managed portal */
651 struct qman_portal;
652 
653 /*
654  * This object type represents QMan frame queue descriptors (FQD), it is
655  * cacheline-aligned, and initialised by qman_create_fq(). The structure is
656  * defined further down.
657  */
658 struct qman_fq;
659 
660 /*
661  * This object type represents a QMan congestion group, it is defined further
662  * down.
663  */
664 struct qman_cgr;
665 
666 /*
667  * This enum, and the callback type that returns it, are used when handling
668  * dequeued frames via DQRR. Note that for "null" callbacks registered with the
669  * portal object (for handling dequeues that do not demux because context_b is
670  * NULL), the return value *MUST* be qman_cb_dqrr_consume.
671  */
672 enum qman_cb_dqrr_result {
673 	/* DQRR entry can be consumed */
674 	qman_cb_dqrr_consume,
675 	/* Like _consume, but requests parking - FQ must be held-active */
676 	qman_cb_dqrr_park,
677 	/* Does not consume, for DCA mode only. */
678 	qman_cb_dqrr_defer,
679 	/*
680 	 * Stop processing without consuming this ring entry. Exits the current
681 	 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
682 	 * an interrupt handler, the callback would typically call
683 	 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
684 	 * otherwise the interrupt will reassert immediately.
685 	 */
686 	qman_cb_dqrr_stop,
687 	/* Like qman_cb_dqrr_stop, but consumes the current entry. */
688 	qman_cb_dqrr_consume_stop
689 };
690 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
691 					struct qman_fq *fq,
692 					const struct qm_dqrr_entry *dqrr);
693 
694 /*
695  * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
696  * are always consumed after the callback returns.
697  */
698 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
699 			   const union qm_mr_entry *msg);
700 
701 /*
702  * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
703  * held-active + held-suspended are just "sched". Things like "retired" will not
704  * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
705  * then, to indicate it's completing and to gate attempts to retry the retire
706  * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
707  * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
708  * index rather than the FQ that ring entry corresponds to), so repeated park
709  * commands are allowed (if you're silly enough to try) but won't change FQ
710  * state, and the resulting park notifications move FQs from "sched" to
711  * "parked".
712  */
713 enum qman_fq_state {
714 	qman_fq_state_oos,
715 	qman_fq_state_parked,
716 	qman_fq_state_sched,
717 	qman_fq_state_retired
718 };
719 
720 #define QMAN_FQ_STATE_CHANGING	     0x80000000 /* 'state' is changing */
721 #define QMAN_FQ_STATE_NE	     0x40000000 /* retired FQ isn't empty */
722 #define QMAN_FQ_STATE_ORL	     0x20000000 /* retired FQ has ORL */
723 #define QMAN_FQ_STATE_BLOCKOOS	     0xe0000000 /* if any are set, no OOS */
724 #define QMAN_FQ_STATE_CGR_EN	     0x10000000 /* CGR enabled */
725 #define QMAN_FQ_STATE_VDQCR	     0x08000000 /* being volatile dequeued */
726 
727 /*
728  * Frame queue objects (struct qman_fq) are stored within memory passed to
729  * qman_create_fq(), as this allows stashing of caller-provided demux callback
730  * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
731  * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
732  * they should;
733  *
734  * (a) extend the qman_fq structure with their state; eg.
735  *
736  *     // myfq is allocated and driver_fq callbacks filled in;
737  *     struct my_fq {
738  *	   struct qman_fq base;
739  *	   int an_extra_field;
740  *	   [ ... add other fields to be associated with each FQ ...]
741  *     } *myfq = some_my_fq_allocator();
742  *     struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
743  *
744  *     // in a dequeue callback, access extra fields from 'fq' via a cast;
745  *     struct my_fq *myfq = (struct my_fq *)fq;
746  *     do_something_with(myfq->an_extra_field);
747  *     [...]
748  *
749  * (b) when and if configuring the FQ for context stashing, specify how ever
750  *     many cachelines are required to stash 'struct my_fq', to accelerate not
751  *     only the QMan driver but the callback as well.
752  */
753 
754 struct qman_fq_cb {
755 	qman_cb_dqrr dqrr;	/* for dequeued frames */
756 	qman_cb_mr ern;		/* for s/w ERNs */
757 	qman_cb_mr fqs;		/* frame-queue state changes*/
758 };
759 
760 struct qman_fq {
761 	/* Caller of qman_create_fq() provides these demux callbacks */
762 	struct qman_fq_cb cb;
763 	/*
764 	 * These are internal to the driver, don't touch. In particular, they
765 	 * may change, be removed, or extended (so you shouldn't rely on
766 	 * sizeof(qman_fq) being a constant).
767 	 */
768 	u32 fqid, idx;
769 	unsigned long flags;
770 	enum qman_fq_state state;
771 	int cgr_groupid;
772 };
773 
774 /*
775  * This callback type is used when handling congestion group entry/exit.
776  * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
777  */
778 typedef void (*qman_cb_cgr)(struct qman_portal *qm,
779 			    struct qman_cgr *cgr, int congested);
780 
781 struct qman_cgr {
782 	/* Set these prior to qman_create_cgr() */
783 	u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
784 	qman_cb_cgr cb;
785 	/* These are private to the driver */
786 	u16 chan; /* portal channel this object is created on */
787 	struct list_head node;
788 };
789 
790 /* Flags to qman_create_fq() */
791 #define QMAN_FQ_FLAG_NO_ENQUEUE	     0x00000001 /* can't enqueue */
792 #define QMAN_FQ_FLAG_NO_MODIFY	     0x00000002 /* can only enqueue */
793 #define QMAN_FQ_FLAG_TO_DCPORTAL     0x00000004 /* consumed by CAAM/PME/Fman */
794 #define QMAN_FQ_FLAG_DYNAMIC_FQID    0x00000020 /* (de)allocate fqid */
795 
796 /* Flags to qman_init_fq() */
797 #define QMAN_INITFQ_FLAG_SCHED	     0x00000001 /* schedule rather than park */
798 #define QMAN_INITFQ_FLAG_LOCAL	     0x00000004 /* set dest portal */
799 
800 /*
801  * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
802  * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
803  * FQID(n) to fill in the frame queue ID.
804  */
805 #define QM_VDQCR_PRECEDENCE_VDQCR	0x0
806 #define QM_VDQCR_PRECEDENCE_SDQCR	0x80000000
807 #define QM_VDQCR_EXACT			0x40000000
808 #define QM_VDQCR_NUMFRAMES_MASK		0x3f000000
809 #define QM_VDQCR_NUMFRAMES_SET(n)	(((n) & 0x3f) << 24)
810 #define QM_VDQCR_NUMFRAMES_GET(n)	(((n) >> 24) & 0x3f)
811 #define QM_VDQCR_NUMFRAMES_TILLEMPTY	QM_VDQCR_NUMFRAMES_SET(0)
812 
813 #define QMAN_VOLATILE_FLAG_WAIT	     0x00000001 /* wait if VDQCR is in use */
814 #define QMAN_VOLATILE_FLAG_WAIT_INT  0x00000002 /* if wait, interruptible? */
815 #define QMAN_VOLATILE_FLAG_FINISH    0x00000004 /* wait till VDQCR completes */
816 
817 /* "Query FQ Non-Programmable Fields" */
818 struct qm_mcr_queryfq_np {
819 	u8 verb;
820 	u8 result;
821 	u8 __reserved1;
822 	u8 state;		/* QM_MCR_NP_STATE_*** */
823 	u32 fqd_link;		/* 24-bit, _res2[24-31] */
824 	u16 odp_seq;		/* 14-bit, _res3[14-15] */
825 	u16 orp_nesn;		/* 14-bit, _res4[14-15] */
826 	u16 orp_ea_hseq;	/* 15-bit, _res5[15] */
827 	u16 orp_ea_tseq;	/* 15-bit, _res6[15] */
828 	u32 orp_ea_hptr;	/* 24-bit, _res7[24-31] */
829 	u32 orp_ea_tptr;	/* 24-bit, _res8[24-31] */
830 	u32 pfdr_hptr;		/* 24-bit, _res9[24-31] */
831 	u32 pfdr_tptr;		/* 24-bit, _res10[24-31] */
832 	u8 __reserved2[5];
833 	u8 is;			/* 1-bit, _res12[1-7] */
834 	u16 ics_surp;
835 	u32 byte_cnt;
836 	u32 frm_cnt;		/* 24-bit, _res13[24-31] */
837 	u32 __reserved3;
838 	u16 ra1_sfdr;		/* QM_MCR_NP_RA1_*** */
839 	u16 ra2_sfdr;		/* QM_MCR_NP_RA2_*** */
840 	u16 __reserved4;
841 	u16 od1_sfdr;		/* QM_MCR_NP_OD1_*** */
842 	u16 od2_sfdr;		/* QM_MCR_NP_OD2_*** */
843 	u16 od3_sfdr;		/* QM_MCR_NP_OD3_*** */
844 } __packed;
845 
846 #define QM_MCR_NP_STATE_FE		0x10
847 #define QM_MCR_NP_STATE_R		0x08
848 #define QM_MCR_NP_STATE_MASK		0x07	/* Reads FQD::STATE; */
849 #define QM_MCR_NP_STATE_OOS		0x00
850 #define QM_MCR_NP_STATE_RETIRED		0x01
851 #define QM_MCR_NP_STATE_TEN_SCHED	0x02
852 #define QM_MCR_NP_STATE_TRU_SCHED	0x03
853 #define QM_MCR_NP_STATE_PARKED		0x04
854 #define QM_MCR_NP_STATE_ACTIVE		0x05
855 #define QM_MCR_NP_PTR_MASK		0x07ff	/* for RA[12] & OD[123] */
856 #define QM_MCR_NP_RA1_NRA(v)		(((v) >> 14) & 0x3)	/* FQD::NRA */
857 #define QM_MCR_NP_RA2_IT(v)		(((v) >> 14) & 0x1)	/* FQD::IT */
858 #define QM_MCR_NP_OD1_NOD(v)		(((v) >> 14) & 0x3)	/* FQD::NOD */
859 #define QM_MCR_NP_OD3_NPC(v)		(((v) >> 14) & 0x3)	/* FQD::NPC */
860 
861 enum qm_mcr_queryfq_np_masks {
862 	qm_mcr_fqd_link_mask = BIT(24) - 1,
863 	qm_mcr_odp_seq_mask = BIT(14) - 1,
864 	qm_mcr_orp_nesn_mask = BIT(14) - 1,
865 	qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
866 	qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
867 	qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
868 	qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
869 	qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
870 	qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
871 	qm_mcr_is_mask = BIT(1) - 1,
872 	qm_mcr_frm_cnt_mask = BIT(24) - 1,
873 };
874 
875 #define qm_mcr_np_get(np, field) \
876 	((np)->field & (qm_mcr_##field##_mask))
877 
878 	/* Portal Management */
879 /**
880  * qman_p_irqsource_add - add processing sources to be interrupt-driven
881  * @bits: bitmask of QM_PIRQ_**I processing sources
882  *
883  * Adds processing sources that should be interrupt-driven (rather than
884  * processed via qman_poll_***() functions).
885  */
886 void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
887 
888 /**
889  * qman_p_irqsource_remove - remove processing sources from being int-driven
890  * @bits: bitmask of QM_PIRQ_**I processing sources
891  *
892  * Removes processing sources from being interrupt-driven, so that they will
893  * instead be processed via qman_poll_***() functions.
894  */
895 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
896 
897 /**
898  * qman_affine_cpus - return a mask of cpus that have affine portals
899  */
900 const cpumask_t *qman_affine_cpus(void);
901 
902 /**
903  * qman_affine_channel - return the channel ID of an portal
904  * @cpu: the cpu whose affine portal is the subject of the query
905  *
906  * If @cpu is -1, the affine portal for the current CPU will be used. It is a
907  * bug to call this function for any value of @cpu (other than -1) that is not a
908  * member of the mask returned from qman_affine_cpus().
909  */
910 u16 qman_affine_channel(int cpu);
911 
912 /**
913  * qman_get_affine_portal - return the portal pointer affine to cpu
914  * @cpu: the cpu whose affine portal is the subject of the query
915  */
916 struct qman_portal *qman_get_affine_portal(int cpu);
917 
918 /**
919  * qman_start_using_portal - register a device link for the portal user
920  * @p: the portal that will be in use
921  * @dev: the device that will use the portal
922  *
923  * Makes sure that the devices that use the portal are unbound when the
924  * portal is unbound
925  */
926 int qman_start_using_portal(struct qman_portal *p, struct device *dev);
927 
928 /**
929  * qman_p_poll_dqrr - process DQRR (fast-path) entries
930  * @limit: the maximum number of DQRR entries to process
931  *
932  * Use of this function requires that DQRR processing not be interrupt-driven.
933  * The return value represents the number of DQRR entries processed.
934  */
935 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
936 
937 /**
938  * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
939  * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
940  *
941  * Adds a set of pool channels to the portal's static dequeue command register
942  * (SDQCR). The requested pools are limited to those the portal has dequeue
943  * access to.
944  */
945 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
946 
947 	/* FQ management */
948 /**
949  * qman_create_fq - Allocates a FQ
950  * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
951  * @flags: bit-mask of QMAN_FQ_FLAG_*** options
952  * @fq: memory for storing the 'fq', with callbacks filled in
953  *
954  * Creates a frame queue object for the given @fqid, unless the
955  * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
956  * dynamically allocated (or the function fails if none are available). Once
957  * created, the caller should not touch the memory at 'fq' except as extended to
958  * adjacent memory for user-defined fields (see the definition of "struct
959  * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
960  * pre-existing frame-queues that aren't to be otherwise interfered with, it
961  * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
962  * causes the driver to honour any context_b modifications requested in the
963  * qm_init_fq() API, as this indicates the frame queue will be consumed by a
964  * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
965  * software portals, the context_b field is controlled by the driver and can't
966  * be modified by the caller.
967  */
968 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
969 
970 /**
971  * qman_destroy_fq - Deallocates a FQ
972  * @fq: the frame queue object to release
973  *
974  * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
975  * not deallocated but the caller regains ownership, to do with as desired. The
976  * FQ must be in the 'out-of-service' or in the 'parked' state.
977  */
978 void qman_destroy_fq(struct qman_fq *fq);
979 
980 /**
981  * qman_fq_fqid - Queries the frame queue ID of a FQ object
982  * @fq: the frame queue object to query
983  */
984 u32 qman_fq_fqid(struct qman_fq *fq);
985 
986 /**
987  * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
988  * @fq: the frame queue object to modify, must be 'parked' or new.
989  * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
990  * @opts: the FQ-modification settings, as defined in the low-level API
991  *
992  * The @opts parameter comes from the low-level portal API. Select
993  * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
994  * rather than parked. NB, @opts can be NULL.
995  *
996  * Note that some fields and options within @opts may be ignored or overwritten
997  * by the driver;
998  * 1. the 'count' and 'fqid' fields are always ignored (this operation only
999  * affects one frame queue: @fq).
1000  * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
1001  * 'fqd' structure's 'context_b' field are sometimes overwritten;
1002  *   - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
1003  *     initialised to a value used by the driver for demux.
1004  *   - if context_b is initialised for demux, so is context_a in case stashing
1005  *     is requested (see item 4).
1006  * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
1007  * objects.)
1008  * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
1009  * 'dest::channel' field will be overwritten to match the portal used to issue
1010  * the command. If the WE_DESTWQ write-enable bit had already been set by the
1011  * caller, the channel workqueue will be left as-is, otherwise the write-enable
1012  * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
1013  * isn't set, the destination channel/workqueue fields and the write-enable bit
1014  * are left as-is.
1015  * 4. if the driver overwrites context_a/b for demux, then if
1016  * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
1017  * context_a.address fields and will leave the stashing fields provided by the
1018  * user alone, otherwise it will zero out the context_a.stashing fields.
1019  */
1020 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
1021 
1022 /**
1023  * qman_schedule_fq - Schedules a FQ
1024  * @fq: the frame queue object to schedule, must be 'parked'
1025  *
1026  * Schedules the frame queue, which must be Parked, which takes it to
1027  * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
1028  */
1029 int qman_schedule_fq(struct qman_fq *fq);
1030 
1031 /**
1032  * qman_retire_fq - Retires a FQ
1033  * @fq: the frame queue object to retire
1034  * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
1035  *
1036  * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
1037  * the retirement was started asynchronously, otherwise it returns negative for
1038  * failure. When this function returns zero, @flags is set to indicate whether
1039  * the retired FQ is empty and/or whether it has any ORL fragments (to show up
1040  * as ERNs). Otherwise the corresponding flags will be known when a subsequent
1041  * FQRN message shows up on the portal's message ring.
1042  *
1043  * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
1044  * Active state), the completion will be via the message ring as a FQRN - but
1045  * the corresponding callback may occur before this function returns!! Ie. the
1046  * caller should be prepared to accept the callback as the function is called,
1047  * not only once it has returned.
1048  */
1049 int qman_retire_fq(struct qman_fq *fq, u32 *flags);
1050 
1051 /**
1052  * qman_oos_fq - Puts a FQ "out of service"
1053  * @fq: the frame queue object to be put out-of-service, must be 'retired'
1054  *
1055  * The frame queue must be retired and empty, and if any order restoration list
1056  * was released as ERNs at the time of retirement, they must all be consumed.
1057  */
1058 int qman_oos_fq(struct qman_fq *fq);
1059 
1060 /*
1061  * qman_volatile_dequeue - Issue a volatile dequeue command
1062  * @fq: the frame queue object to dequeue from
1063  * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
1064  * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
1065  *
1066  * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
1067  * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
1068  * the VDQCR is already in use, otherwise returns non-zero for failure. If
1069  * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
1070  * the VDQCR command has finished executing (ie. once the callback for the last
1071  * DQRR entry resulting from the VDQCR command has been called). If not using
1072  * the FINISH flag, completion can be determined either by detecting the
1073  * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
1074  * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
1075  * for the QMAN_FQ_STATE_VDQCR bit to disappear.
1076  */
1077 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
1078 
1079 /**
1080  * qman_enqueue - Enqueue a frame to a frame queue
1081  * @fq: the frame queue object to enqueue to
1082  * @fd: a descriptor of the frame to be enqueued
1083  *
1084  * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
1085  * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
1086  * field is ignored. The return value is non-zero on error, such as ring full.
1087  */
1088 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
1089 
1090 /**
1091  * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
1092  * @result: is set by the API to the base FQID of the allocated range
1093  * @count: the number of FQIDs required
1094  *
1095  * Returns 0 on success, or a negative error code.
1096  */
1097 int qman_alloc_fqid_range(u32 *result, u32 count);
1098 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
1099 
1100 /**
1101  * qman_release_fqid - Release the specified frame queue ID
1102  * @fqid: the FQID to be released back to the resource pool
1103  *
1104  * This function can also be used to seed the allocator with
1105  * FQID ranges that it can subsequently allocate from.
1106  * Returns 0 on success, or a negative error code.
1107  */
1108 int qman_release_fqid(u32 fqid);
1109 
1110 /**
1111  * qman_query_fq_np - Queries non-programmable FQD fields
1112  * @fq: the frame queue object to be queried
1113  * @np: storage for the queried FQD fields
1114  */
1115 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
1116 
1117 	/* Pool-channel management */
1118 /**
1119  * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1120  * @result: is set by the API to the base pool-channel ID of the allocated range
1121  * @count: the number of pool-channel IDs required
1122  *
1123  * Returns 0 on success, or a negative error code.
1124  */
1125 int qman_alloc_pool_range(u32 *result, u32 count);
1126 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1127 
1128 /**
1129  * qman_release_pool - Release the specified pool-channel ID
1130  * @id: the pool-chan ID to be released back to the resource pool
1131  *
1132  * This function can also be used to seed the allocator with
1133  * pool-channel ID ranges that it can subsequently allocate from.
1134  * Returns 0 on success, or a negative error code.
1135  */
1136 int qman_release_pool(u32 id);
1137 
1138 	/* CGR management */
1139 /**
1140  * qman_create_cgr - Register a congestion group object
1141  * @cgr: the 'cgr' object, with fields filled in
1142  * @flags: QMAN_CGR_FLAG_* values
1143  * @opts: optional state of CGR settings
1144  *
1145  * Registers this object to receiving congestion entry/exit callbacks on the
1146  * portal affine to the cpu portal on which this API is executed. If opts is
1147  * NULL then only the callback (cgr->cb) function is registered. If @flags
1148  * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1149  * any unspecified parameters) will be used rather than a modify hw hardware
1150  * (which only modifies the specified parameters).
1151  */
1152 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1153 		    struct qm_mcc_initcgr *opts);
1154 
1155 /**
1156  * qman_delete_cgr - Deregisters a congestion group object
1157  * @cgr: the 'cgr' object to deregister
1158  *
1159  * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1160  * is executed. This must be excuted on the same affine portal on which it was
1161  * created.
1162  */
1163 int qman_delete_cgr(struct qman_cgr *cgr);
1164 
1165 /**
1166  * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1167  * @cgr: the 'cgr' object to deregister
1168  *
1169  * This will select the proper CPU and run there qman_delete_cgr().
1170  */
1171 void qman_delete_cgr_safe(struct qman_cgr *cgr);
1172 
1173 /**
1174  * qman_query_cgr_congested - Queries CGR's congestion status
1175  * @cgr: the 'cgr' object to query
1176  * @result: returns 'cgr's congestion status, 1 (true) if congested
1177  */
1178 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1179 
1180 /**
1181  * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1182  * @result: is set by the API to the base CGR ID of the allocated range
1183  * @count: the number of CGR IDs required
1184  *
1185  * Returns 0 on success, or a negative error code.
1186  */
1187 int qman_alloc_cgrid_range(u32 *result, u32 count);
1188 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1189 
1190 /**
1191  * qman_release_cgrid - Release the specified CGR ID
1192  * @id: the CGR ID to be released back to the resource pool
1193  *
1194  * This function can also be used to seed the allocator with
1195  * CGR ID ranges that it can subsequently allocate from.
1196  * Returns 0 on success, or a negative error code.
1197  */
1198 int qman_release_cgrid(u32 id);
1199 
1200 /**
1201  * qman_is_probed - Check if qman is probed
1202  *
1203  * Returns 1 if the qman driver successfully probed, -1 if the qman driver
1204  * failed to probe or 0 if the qman driver did not probed yet.
1205  */
1206 int qman_is_probed(void);
1207 
1208 /**
1209  * qman_portals_probed - Check if all cpu bound qman portals are probed
1210  *
1211  * Returns 1 if all the required cpu bound qman portals successfully probed,
1212  * -1 if probe errors appeared or 0 if the qman portals did not yet finished
1213  * probing.
1214  */
1215 int qman_portals_probed(void);
1216 
1217 /**
1218  * qman_dqrr_get_ithresh - Get coalesce interrupt threshold
1219  * @portal: portal to get the value for
1220  * @ithresh: threshold pointer
1221  */
1222 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
1223 
1224 /**
1225  * qman_dqrr_set_ithresh - Set coalesce interrupt threshold
1226  * @portal: portal to set the new value on
1227  * @ithresh: new threshold value
1228  *
1229  * Returns 0 on success, or a negative error code.
1230  */
1231 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
1232 
1233 /**
1234  * qman_dqrr_get_iperiod - Get coalesce interrupt period
1235  * @portal: portal to get the value for
1236  * @iperiod: period pointer
1237  */
1238 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
1239 
1240 /**
1241  * qman_dqrr_set_iperiod - Set coalesce interrupt period
1242  * @portal: portal to set the new value on
1243  * @ithresh: new period value
1244  *
1245  * Returns 0 on success, or a negative error code.
1246  */
1247 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
1248 
1249 #endif	/* __FSL_QMAN_H */
1250