1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #ifndef __FSL_QMAN_H
32 #define __FSL_QMAN_H
33
34 #include <linux/bitops.h>
35
36 /* Hardware constants */
37 #define QM_CHANNEL_SWPORTAL0 0
38 #define QMAN_CHANNEL_POOL1 0x21
39 #define QMAN_CHANNEL_CAAM 0x80
40 #define QMAN_CHANNEL_POOL1_REV3 0x401
41 #define QMAN_CHANNEL_CAAM_REV3 0x840
42 extern u16 qm_channel_pool1;
43 extern u16 qm_channel_caam;
44
45 /* Portal processing (interrupt) sources */
46 #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
47 #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
48 #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
49 #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
50 #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
51 /*
52 * This mask contains all the interrupt sources that need handling except DQRI,
53 * ie. that if present should trigger slow-path processing.
54 */
55 #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
56 QM_PIRQ_MRI)
57
58 /* For qman_static_dequeue_*** APIs */
59 #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
60 /* for n in [1,15] */
61 #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
62 /* for conversion from n of qm_channel */
QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)63 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
64 {
65 return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
66 }
67
68 /* --- QMan data structures (and associated constants) --- */
69
70 /* "Frame Descriptor (FD)" */
71 struct qm_fd {
72 union {
73 struct {
74 u8 cfg8b_w1;
75 u8 bpid; /* Buffer Pool ID */
76 u8 cfg8b_w3;
77 u8 addr_hi; /* high 8-bits of 40-bit address */
78 __be32 addr_lo; /* low 32-bits of 40-bit address */
79 } __packed;
80 __be64 data;
81 };
82 __be32 cfg; /* format, offset, length / congestion */
83 union {
84 __be32 cmd;
85 __be32 status;
86 };
87 } __aligned(8);
88
89 #define QM_FD_FORMAT_SG BIT(31)
90 #define QM_FD_FORMAT_LONG BIT(30)
91 #define QM_FD_FORMAT_COMPOUND BIT(29)
92 #define QM_FD_FORMAT_MASK GENMASK(31, 29)
93 #define QM_FD_OFF_SHIFT 20
94 #define QM_FD_OFF_MASK GENMASK(28, 20)
95 #define QM_FD_LEN_MASK GENMASK(19, 0)
96 #define QM_FD_LEN_BIG_MASK GENMASK(28, 0)
97
98 enum qm_fd_format {
99 /*
100 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
101 * scatter-gather table. 'big' implies a 29-bit length with no offset
102 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
103 * implies a s/g-like table, where each entry itself represents a frame
104 * (contiguous or scatter-gather) and the 29-bit "length" is
105 * interpreted purely for congestion calculations, ie. a "congestion
106 * weight".
107 */
108 qm_fd_contig = 0,
109 qm_fd_contig_big = QM_FD_FORMAT_LONG,
110 qm_fd_sg = QM_FD_FORMAT_SG,
111 qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
112 qm_fd_compound = QM_FD_FORMAT_COMPOUND
113 };
114
qm_fd_addr(const struct qm_fd * fd)115 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
116 {
117 return be64_to_cpu(fd->data) & 0xffffffffffLLU;
118 }
119
qm_fd_addr_get64(const struct qm_fd * fd)120 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
121 {
122 return be64_to_cpu(fd->data) & 0xffffffffffLLU;
123 }
124
qm_fd_addr_set64(struct qm_fd * fd,u64 addr)125 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
126 {
127 fd->addr_hi = upper_32_bits(addr);
128 fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
129 }
130
131 /*
132 * The 'format' field indicates the interpretation of the remaining
133 * 29 bits of the 32-bit word.
134 * If 'format' is _contig or _sg, 20b length and 9b offset.
135 * If 'format' is _contig_big or _sg_big, 29b length.
136 * If 'format' is _compound, 29b "congestion weight".
137 */
qm_fd_get_format(const struct qm_fd * fd)138 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
139 {
140 return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
141 }
142
qm_fd_get_offset(const struct qm_fd * fd)143 static inline int qm_fd_get_offset(const struct qm_fd *fd)
144 {
145 return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
146 }
147
qm_fd_get_length(const struct qm_fd * fd)148 static inline int qm_fd_get_length(const struct qm_fd *fd)
149 {
150 return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
151 }
152
qm_fd_get_len_big(const struct qm_fd * fd)153 static inline int qm_fd_get_len_big(const struct qm_fd *fd)
154 {
155 return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
156 }
157
qm_fd_set_param(struct qm_fd * fd,enum qm_fd_format fmt,int off,int len)158 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
159 int off, int len)
160 {
161 fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
162 ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
163 }
164
165 #define qm_fd_set_contig(fd, off, len) \
166 qm_fd_set_param(fd, qm_fd_contig, off, len)
167 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
168 #define qm_fd_set_contig_big(fd, len) \
169 qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
170 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
171 #define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
172
qm_fd_clear_fd(struct qm_fd * fd)173 static inline void qm_fd_clear_fd(struct qm_fd *fd)
174 {
175 fd->data = 0;
176 fd->cfg = 0;
177 fd->cmd = 0;
178 }
179
180 /* Scatter/Gather table entry */
181 struct qm_sg_entry {
182 union {
183 struct {
184 u8 __reserved1[3];
185 u8 addr_hi; /* high 8-bits of 40-bit address */
186 __be32 addr_lo; /* low 32-bits of 40-bit address */
187 };
188 __be64 data;
189 };
190 __be32 cfg; /* E bit, F bit, length */
191 u8 __reserved2;
192 u8 bpid;
193 __be16 offset; /* 13-bit, _res[13-15]*/
194 } __packed;
195
196 #define QM_SG_LEN_MASK GENMASK(29, 0)
197 #define QM_SG_OFF_MASK GENMASK(12, 0)
198 #define QM_SG_FIN BIT(30)
199 #define QM_SG_EXT BIT(31)
200
qm_sg_addr(const struct qm_sg_entry * sg)201 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
202 {
203 return be64_to_cpu(sg->data) & 0xffffffffffLLU;
204 }
205
qm_sg_entry_get64(const struct qm_sg_entry * sg)206 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
207 {
208 return be64_to_cpu(sg->data) & 0xffffffffffLLU;
209 }
210
qm_sg_entry_set64(struct qm_sg_entry * sg,u64 addr)211 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
212 {
213 sg->addr_hi = upper_32_bits(addr);
214 sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
215 }
216
qm_sg_entry_is_final(const struct qm_sg_entry * sg)217 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
218 {
219 return be32_to_cpu(sg->cfg) & QM_SG_FIN;
220 }
221
qm_sg_entry_is_ext(const struct qm_sg_entry * sg)222 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
223 {
224 return be32_to_cpu(sg->cfg) & QM_SG_EXT;
225 }
226
qm_sg_entry_get_len(const struct qm_sg_entry * sg)227 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
228 {
229 return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
230 }
231
qm_sg_entry_set_len(struct qm_sg_entry * sg,int len)232 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
233 {
234 sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
235 }
236
qm_sg_entry_set_f(struct qm_sg_entry * sg,int len)237 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
238 {
239 sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
240 }
241
qm_sg_entry_get_off(const struct qm_sg_entry * sg)242 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
243 {
244 return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
245 }
246
247 /* "Frame Dequeue Response" */
248 struct qm_dqrr_entry {
249 u8 verb;
250 u8 stat;
251 __be16 seqnum; /* 15-bit */
252 u8 tok;
253 u8 __reserved2[3];
254 __be32 fqid; /* 24-bit */
255 __be32 context_b;
256 struct qm_fd fd;
257 u8 __reserved4[32];
258 } __packed;
259 #define QM_DQRR_VERB_VBIT 0x80
260 #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
261 #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
262 #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
263 #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
264 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
265 #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
266 #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
267 #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
268
269 /* 'fqid' is a 24-bit field in every h/w descriptor */
270 #define QM_FQID_MASK GENMASK(23, 0)
271 #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
272 #define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
273
274 /* "ERN Message Response" */
275 /* "FQ State Change Notification" */
276 union qm_mr_entry {
277 struct {
278 u8 verb;
279 u8 __reserved[63];
280 };
281 struct {
282 u8 verb;
283 u8 dca;
284 __be16 seqnum;
285 u8 rc; /* Rej Code: 8-bit */
286 u8 __reserved[3];
287 __be32 fqid; /* 24-bit */
288 __be32 tag;
289 struct qm_fd fd;
290 u8 __reserved1[32];
291 } __packed ern;
292 struct {
293 u8 verb;
294 u8 fqs; /* Frame Queue Status */
295 u8 __reserved1[6];
296 __be32 fqid; /* 24-bit */
297 __be32 context_b;
298 u8 __reserved2[48];
299 } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
300 };
301 #define QM_MR_VERB_VBIT 0x80
302 /*
303 * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
304 * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
305 * from the other MR types by noting if the 0x20 bit is unset.
306 */
307 #define QM_MR_VERB_TYPE_MASK 0x27
308 #define QM_MR_VERB_DC_ERN 0x20
309 #define QM_MR_VERB_FQRN 0x21
310 #define QM_MR_VERB_FQRNI 0x22
311 #define QM_MR_VERB_FQRL 0x23
312 #define QM_MR_VERB_FQPN 0x24
313 #define QM_MR_RC_MASK 0xf0 /* contains one of; */
314 #define QM_MR_RC_CGR_TAILDROP 0x00
315 #define QM_MR_RC_WRED 0x10
316 #define QM_MR_RC_ERROR 0x20
317 #define QM_MR_RC_ORPWINDOW_EARLY 0x30
318 #define QM_MR_RC_ORPWINDOW_LATE 0x40
319 #define QM_MR_RC_FQ_TAILDROP 0x50
320 #define QM_MR_RC_ORPWINDOW_RETIRED 0x60
321 #define QM_MR_RC_ORP_ZERO 0x70
322 #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
323 #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
324
325 /*
326 * An identical structure of FQD fields is present in the "Init FQ" command and
327 * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
328 * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
329 * latter has two inlines to assist with converting to/from the mant+exp
330 * representation.
331 */
332 struct qm_fqd_stashing {
333 /* See QM_STASHING_EXCL_<...> */
334 u8 exclusive;
335 /* Numbers of cachelines */
336 u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
337 };
338
339 struct qm_fqd_oac {
340 /* "Overhead Accounting Control", see QM_OAC_<...> */
341 u8 oac; /* oac[6-7], _res[0-5] */
342 /* Two's-complement value (-128 to +127) */
343 s8 oal; /* "Overhead Accounting Length" */
344 };
345
346 struct qm_fqd {
347 /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
348 u8 orpc;
349 u8 cgid;
350 __be16 fq_ctrl; /* See QM_FQCTRL_<...> */
351 __be16 dest_wq; /* channel[3-15], wq[0-2] */
352 __be16 ics_cred; /* 15-bit */
353 /*
354 * For "Initialize Frame Queue" commands, the write-enable mask
355 * determines whether 'td' or 'oac_init' is observed. For query
356 * commands, this field is always 'td', and 'oac_query' (below) reflects
357 * the Overhead ACcounting values.
358 */
359 union {
360 __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
361 struct qm_fqd_oac oac_init;
362 };
363 __be32 context_b;
364 union {
365 /* Treat it as 64-bit opaque */
366 __be64 opaque;
367 struct {
368 __be32 hi;
369 __be32 lo;
370 };
371 /* Treat it as s/w portal stashing config */
372 /* see "FQD Context_A field used for [...]" */
373 struct {
374 struct qm_fqd_stashing stashing;
375 /*
376 * 48-bit address of FQ context to
377 * stash, must be cacheline-aligned
378 */
379 __be16 context_hi;
380 __be32 context_lo;
381 } __packed;
382 } context_a;
383 struct qm_fqd_oac oac_query;
384 } __packed;
385
386 #define QM_FQD_CHAN_OFF 3
387 #define QM_FQD_WQ_MASK GENMASK(2, 0)
388 #define QM_FQD_TD_EXP_MASK GENMASK(4, 0)
389 #define QM_FQD_TD_MANT_OFF 5
390 #define QM_FQD_TD_MANT_MASK GENMASK(12, 5)
391 #define QM_FQD_TD_MAX 0xe0000000
392 #define QM_FQD_TD_MANT_MAX 0xff
393 #define QM_FQD_OAC_OFF 6
394 #define QM_FQD_AS_OFF 4
395 #define QM_FQD_DS_OFF 2
396 #define QM_FQD_XS_MASK 0x3
397
398 /* 64-bit converters for context_hi/lo */
qm_fqd_stashing_get64(const struct qm_fqd * fqd)399 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
400 {
401 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
402 }
403
qm_fqd_stashing_addr(const struct qm_fqd * fqd)404 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
405 {
406 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
407 }
408
qm_fqd_context_a_get64(const struct qm_fqd * fqd)409 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
410 {
411 return qm_fqd_stashing_get64(fqd);
412 }
413
qm_fqd_stashing_set64(struct qm_fqd * fqd,u64 addr)414 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
415 {
416 fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
417 fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
418 }
419
qm_fqd_context_a_set64(struct qm_fqd * fqd,u64 addr)420 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
421 {
422 fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
423 fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
424 }
425
426 /* convert a threshold value into mant+exp representation */
qm_fqd_set_taildrop(struct qm_fqd * fqd,u32 val,int roundup)427 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
428 int roundup)
429 {
430 u32 e = 0;
431 int td, oddbit = 0;
432
433 if (val > QM_FQD_TD_MAX)
434 return -ERANGE;
435
436 while (val > QM_FQD_TD_MANT_MAX) {
437 oddbit = val & 1;
438 val >>= 1;
439 e++;
440 if (roundup && oddbit)
441 val++;
442 }
443
444 td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
445 td |= (e & QM_FQD_TD_EXP_MASK);
446 fqd->td = cpu_to_be16(td);
447 return 0;
448 }
449 /* and the other direction */
qm_fqd_get_taildrop(const struct qm_fqd * fqd)450 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
451 {
452 int td = be16_to_cpu(fqd->td);
453
454 return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
455 << (td & QM_FQD_TD_EXP_MASK);
456 }
457
qm_fqd_set_stashing(struct qm_fqd * fqd,u8 as,u8 ds,u8 cs)458 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
459 {
460 struct qm_fqd_stashing *st = &fqd->context_a.stashing;
461
462 st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
463 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
464 (cs & QM_FQD_XS_MASK);
465 }
466
qm_fqd_get_stashing(const struct qm_fqd * fqd)467 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
468 {
469 return fqd->context_a.stashing.cl;
470 }
471
qm_fqd_set_oac(struct qm_fqd * fqd,u8 val)472 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
473 {
474 fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
475 }
476
qm_fqd_set_oal(struct qm_fqd * fqd,s8 val)477 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
478 {
479 fqd->oac_init.oal = val;
480 }
481
qm_fqd_set_destwq(struct qm_fqd * fqd,int ch,int wq)482 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
483 {
484 fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
485 (wq & QM_FQD_WQ_MASK));
486 }
487
qm_fqd_get_chan(const struct qm_fqd * fqd)488 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
489 {
490 return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
491 }
492
qm_fqd_get_wq(const struct qm_fqd * fqd)493 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
494 {
495 return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
496 }
497
498 /* See "Frame Queue Descriptor (FQD)" */
499 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
500 #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
501 #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
502 #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
503 #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
504 #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
505 #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
506 #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
507 #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
508 #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
509 #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
510
511 /* See "FQD Context_A field used for [...] */
512 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
513 #define QM_STASHING_EXCL_ANNOTATION 0x04
514 #define QM_STASHING_EXCL_DATA 0x02
515 #define QM_STASHING_EXCL_CTX 0x01
516
517 /* See "Intra Class Scheduling" */
518 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
519 #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
520 #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
521
522 /*
523 * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
524 * and associated commands/responses. The WRED parameters are calculated from
525 * these fields as follows;
526 * MaxTH = MA * (2 ^ Mn)
527 * Slope = SA / (2 ^ Sn)
528 * MaxP = 4 * (Pn + 1)
529 */
530 struct qm_cgr_wr_parm {
531 /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
532 __be32 word;
533 };
534 /*
535 * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
536 * management commands, this is padded to a 16-bit structure field, so that's
537 * how we represent it here. The congestion state threshold is calculated from
538 * these fields as follows;
539 * CS threshold = TA * (2 ^ Tn)
540 */
541 struct qm_cgr_cs_thres {
542 /* _res[13-15], TA[5-12], Tn[0-4] */
543 __be16 word;
544 };
545 /*
546 * This identical structure of CGR fields is present in the "Init/Modify CGR"
547 * commands and the "Query CGR" result. It's suctioned out here into its own
548 * struct.
549 */
550 struct __qm_mc_cgr {
551 struct qm_cgr_wr_parm wr_parm_g;
552 struct qm_cgr_wr_parm wr_parm_y;
553 struct qm_cgr_wr_parm wr_parm_r;
554 u8 wr_en_g; /* boolean, use QM_CGR_EN */
555 u8 wr_en_y; /* boolean, use QM_CGR_EN */
556 u8 wr_en_r; /* boolean, use QM_CGR_EN */
557 u8 cscn_en; /* boolean, use QM_CGR_EN */
558 union {
559 struct {
560 __be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
561 __be16 cscn_targ_dcp_low;
562 };
563 __be32 cscn_targ; /* use QM_CGR_TARG_* */
564 };
565 u8 cstd_en; /* boolean, use QM_CGR_EN */
566 u8 cs; /* boolean, only used in query response */
567 struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
568 u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
569 } __packed;
570 #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
571 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
572 #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
573 #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
574 #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
575 #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
576 /* Convert CGR thresholds to/from "cs_thres" format */
qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres * th)577 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
578 {
579 int thres = be16_to_cpu(th->word);
580
581 return ((thres >> 5) & 0xff) << (thres & 0x1f);
582 }
583
qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres * th,u64 val,int roundup)584 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
585 int roundup)
586 {
587 u32 e = 0;
588 int oddbit = 0;
589
590 while (val > 0xff) {
591 oddbit = val & 1;
592 val >>= 1;
593 e++;
594 if (roundup && oddbit)
595 val++;
596 }
597 th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
598 return 0;
599 }
600
601 /* "Initialize FQ" */
602 struct qm_mcc_initfq {
603 u8 __reserved1[2];
604 __be16 we_mask; /* Write Enable Mask */
605 __be32 fqid; /* 24-bit */
606 __be16 count; /* Initialises 'count+1' FQDs */
607 struct qm_fqd fqd; /* the FQD fields go here */
608 u8 __reserved2[30];
609 } __packed;
610 /* "Initialize/Modify CGR" */
611 struct qm_mcc_initcgr {
612 u8 __reserve1[2];
613 __be16 we_mask; /* Write Enable Mask */
614 struct __qm_mc_cgr cgr; /* CGR fields */
615 u8 __reserved2[2];
616 u8 cgid;
617 u8 __reserved3[32];
618 } __packed;
619
620 /* INITFQ-specific flags */
621 #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
622 #define QM_INITFQ_WE_OAC 0x0100
623 #define QM_INITFQ_WE_ORPC 0x0080
624 #define QM_INITFQ_WE_CGID 0x0040
625 #define QM_INITFQ_WE_FQCTRL 0x0020
626 #define QM_INITFQ_WE_DESTWQ 0x0010
627 #define QM_INITFQ_WE_ICSCRED 0x0008
628 #define QM_INITFQ_WE_TDTHRESH 0x0004
629 #define QM_INITFQ_WE_CONTEXTB 0x0002
630 #define QM_INITFQ_WE_CONTEXTA 0x0001
631 /* INITCGR/MODIFYCGR-specific flags */
632 #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
633 #define QM_CGR_WE_WR_PARM_G 0x0400
634 #define QM_CGR_WE_WR_PARM_Y 0x0200
635 #define QM_CGR_WE_WR_PARM_R 0x0100
636 #define QM_CGR_WE_WR_EN_G 0x0080
637 #define QM_CGR_WE_WR_EN_Y 0x0040
638 #define QM_CGR_WE_WR_EN_R 0x0020
639 #define QM_CGR_WE_CSCN_EN 0x0010
640 #define QM_CGR_WE_CSCN_TARG 0x0008
641 #define QM_CGR_WE_CSTD_EN 0x0004
642 #define QM_CGR_WE_CS_THRES 0x0002
643 #define QM_CGR_WE_MODE 0x0001
644
645 #define QMAN_CGR_FLAG_USE_INIT 0x00000001
646 #define QMAN_CGR_MODE_FRAME 0x00000001
647
648 /* Portal and Frame Queues */
649 /* Represents a managed portal */
650 struct qman_portal;
651
652 /*
653 * This object type represents QMan frame queue descriptors (FQD), it is
654 * cacheline-aligned, and initialised by qman_create_fq(). The structure is
655 * defined further down.
656 */
657 struct qman_fq;
658
659 /*
660 * This object type represents a QMan congestion group, it is defined further
661 * down.
662 */
663 struct qman_cgr;
664
665 /*
666 * This enum, and the callback type that returns it, are used when handling
667 * dequeued frames via DQRR. Note that for "null" callbacks registered with the
668 * portal object (for handling dequeues that do not demux because context_b is
669 * NULL), the return value *MUST* be qman_cb_dqrr_consume.
670 */
671 enum qman_cb_dqrr_result {
672 /* DQRR entry can be consumed */
673 qman_cb_dqrr_consume,
674 /* Like _consume, but requests parking - FQ must be held-active */
675 qman_cb_dqrr_park,
676 /* Does not consume, for DCA mode only. */
677 qman_cb_dqrr_defer,
678 /*
679 * Stop processing without consuming this ring entry. Exits the current
680 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
681 * an interrupt handler, the callback would typically call
682 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
683 * otherwise the interrupt will reassert immediately.
684 */
685 qman_cb_dqrr_stop,
686 /* Like qman_cb_dqrr_stop, but consumes the current entry. */
687 qman_cb_dqrr_consume_stop
688 };
689 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
690 struct qman_fq *fq,
691 const struct qm_dqrr_entry *dqrr);
692
693 /*
694 * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
695 * are always consumed after the callback returns.
696 */
697 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
698 const union qm_mr_entry *msg);
699
700 /*
701 * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
702 * held-active + held-suspended are just "sched". Things like "retired" will not
703 * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
704 * then, to indicate it's completing and to gate attempts to retry the retire
705 * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
706 * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
707 * index rather than the FQ that ring entry corresponds to), so repeated park
708 * commands are allowed (if you're silly enough to try) but won't change FQ
709 * state, and the resulting park notifications move FQs from "sched" to
710 * "parked".
711 */
712 enum qman_fq_state {
713 qman_fq_state_oos,
714 qman_fq_state_parked,
715 qman_fq_state_sched,
716 qman_fq_state_retired
717 };
718
719 #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
720 #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
721 #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
722 #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
723 #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
724 #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
725
726 /*
727 * Frame queue objects (struct qman_fq) are stored within memory passed to
728 * qman_create_fq(), as this allows stashing of caller-provided demux callback
729 * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
730 * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
731 * they should;
732 *
733 * (a) extend the qman_fq structure with their state; eg.
734 *
735 * // myfq is allocated and driver_fq callbacks filled in;
736 * struct my_fq {
737 * struct qman_fq base;
738 * int an_extra_field;
739 * [ ... add other fields to be associated with each FQ ...]
740 * } *myfq = some_my_fq_allocator();
741 * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
742 *
743 * // in a dequeue callback, access extra fields from 'fq' via a cast;
744 * struct my_fq *myfq = (struct my_fq *)fq;
745 * do_something_with(myfq->an_extra_field);
746 * [...]
747 *
748 * (b) when and if configuring the FQ for context stashing, specify how ever
749 * many cachelines are required to stash 'struct my_fq', to accelerate not
750 * only the QMan driver but the callback as well.
751 */
752
753 struct qman_fq_cb {
754 qman_cb_dqrr dqrr; /* for dequeued frames */
755 qman_cb_mr ern; /* for s/w ERNs */
756 qman_cb_mr fqs; /* frame-queue state changes*/
757 };
758
759 struct qman_fq {
760 /* Caller of qman_create_fq() provides these demux callbacks */
761 struct qman_fq_cb cb;
762 /*
763 * These are internal to the driver, don't touch. In particular, they
764 * may change, be removed, or extended (so you shouldn't rely on
765 * sizeof(qman_fq) being a constant).
766 */
767 u32 fqid, idx;
768 unsigned long flags;
769 enum qman_fq_state state;
770 int cgr_groupid;
771 };
772
773 /*
774 * This callback type is used when handling congestion group entry/exit.
775 * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
776 */
777 typedef void (*qman_cb_cgr)(struct qman_portal *qm,
778 struct qman_cgr *cgr, int congested);
779
780 struct qman_cgr {
781 /* Set these prior to qman_create_cgr() */
782 u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
783 qman_cb_cgr cb;
784 /* These are private to the driver */
785 u16 chan; /* portal channel this object is created on */
786 struct list_head node;
787 };
788
789 /* Flags to qman_create_fq() */
790 #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
791 #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
792 #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
793 #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
794
795 /* Flags to qman_init_fq() */
796 #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
797 #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
798
799 /*
800 * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
801 * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
802 * FQID(n) to fill in the frame queue ID.
803 */
804 #define QM_VDQCR_PRECEDENCE_VDQCR 0x0
805 #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
806 #define QM_VDQCR_EXACT 0x40000000
807 #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
808 #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
809 #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
810 #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
811
812 #define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
813 #define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
814 #define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
815
816 /* "Query FQ Non-Programmable Fields" */
817 struct qm_mcr_queryfq_np {
818 u8 verb;
819 u8 result;
820 u8 __reserved1;
821 u8 state; /* QM_MCR_NP_STATE_*** */
822 u32 fqd_link; /* 24-bit, _res2[24-31] */
823 u16 odp_seq; /* 14-bit, _res3[14-15] */
824 u16 orp_nesn; /* 14-bit, _res4[14-15] */
825 u16 orp_ea_hseq; /* 15-bit, _res5[15] */
826 u16 orp_ea_tseq; /* 15-bit, _res6[15] */
827 u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */
828 u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */
829 u32 pfdr_hptr; /* 24-bit, _res9[24-31] */
830 u32 pfdr_tptr; /* 24-bit, _res10[24-31] */
831 u8 __reserved2[5];
832 u8 is; /* 1-bit, _res12[1-7] */
833 u16 ics_surp;
834 u32 byte_cnt;
835 u32 frm_cnt; /* 24-bit, _res13[24-31] */
836 u32 __reserved3;
837 u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
838 u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
839 u16 __reserved4;
840 u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
841 u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
842 u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
843 } __packed;
844
845 #define QM_MCR_NP_STATE_FE 0x10
846 #define QM_MCR_NP_STATE_R 0x08
847 #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
848 #define QM_MCR_NP_STATE_OOS 0x00
849 #define QM_MCR_NP_STATE_RETIRED 0x01
850 #define QM_MCR_NP_STATE_TEN_SCHED 0x02
851 #define QM_MCR_NP_STATE_TRU_SCHED 0x03
852 #define QM_MCR_NP_STATE_PARKED 0x04
853 #define QM_MCR_NP_STATE_ACTIVE 0x05
854 #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
855 #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
856 #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
857 #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
858 #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
859
860 enum qm_mcr_queryfq_np_masks {
861 qm_mcr_fqd_link_mask = BIT(24) - 1,
862 qm_mcr_odp_seq_mask = BIT(14) - 1,
863 qm_mcr_orp_nesn_mask = BIT(14) - 1,
864 qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
865 qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
866 qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
867 qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
868 qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
869 qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
870 qm_mcr_is_mask = BIT(1) - 1,
871 qm_mcr_frm_cnt_mask = BIT(24) - 1,
872 };
873
874 #define qm_mcr_np_get(np, field) \
875 ((np)->field & (qm_mcr_##field##_mask))
876
877 /* Portal Management */
878 /**
879 * qman_p_irqsource_add - add processing sources to be interrupt-driven
880 * @bits: bitmask of QM_PIRQ_**I processing sources
881 *
882 * Adds processing sources that should be interrupt-driven (rather than
883 * processed via qman_poll_***() functions).
884 */
885 void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
886
887 /**
888 * qman_p_irqsource_remove - remove processing sources from being int-driven
889 * @bits: bitmask of QM_PIRQ_**I processing sources
890 *
891 * Removes processing sources from being interrupt-driven, so that they will
892 * instead be processed via qman_poll_***() functions.
893 */
894 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
895
896 /**
897 * qman_affine_cpus - return a mask of cpus that have affine portals
898 */
899 const cpumask_t *qman_affine_cpus(void);
900
901 /**
902 * qman_affine_channel - return the channel ID of an portal
903 * @cpu: the cpu whose affine portal is the subject of the query
904 *
905 * If @cpu is -1, the affine portal for the current CPU will be used. It is a
906 * bug to call this function for any value of @cpu (other than -1) that is not a
907 * member of the mask returned from qman_affine_cpus().
908 */
909 u16 qman_affine_channel(int cpu);
910
911 /**
912 * qman_get_affine_portal - return the portal pointer affine to cpu
913 * @cpu: the cpu whose affine portal is the subject of the query
914 */
915 struct qman_portal *qman_get_affine_portal(int cpu);
916
917 /**
918 * qman_p_poll_dqrr - process DQRR (fast-path) entries
919 * @limit: the maximum number of DQRR entries to process
920 *
921 * Use of this function requires that DQRR processing not be interrupt-driven.
922 * The return value represents the number of DQRR entries processed.
923 */
924 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
925
926 /**
927 * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
928 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
929 *
930 * Adds a set of pool channels to the portal's static dequeue command register
931 * (SDQCR). The requested pools are limited to those the portal has dequeue
932 * access to.
933 */
934 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
935
936 /* FQ management */
937 /**
938 * qman_create_fq - Allocates a FQ
939 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
940 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
941 * @fq: memory for storing the 'fq', with callbacks filled in
942 *
943 * Creates a frame queue object for the given @fqid, unless the
944 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
945 * dynamically allocated (or the function fails if none are available). Once
946 * created, the caller should not touch the memory at 'fq' except as extended to
947 * adjacent memory for user-defined fields (see the definition of "struct
948 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
949 * pre-existing frame-queues that aren't to be otherwise interfered with, it
950 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
951 * causes the driver to honour any context_b modifications requested in the
952 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
953 * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
954 * software portals, the context_b field is controlled by the driver and can't
955 * be modified by the caller.
956 */
957 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
958
959 /**
960 * qman_destroy_fq - Deallocates a FQ
961 * @fq: the frame queue object to release
962 *
963 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
964 * not deallocated but the caller regains ownership, to do with as desired. The
965 * FQ must be in the 'out-of-service' or in the 'parked' state.
966 */
967 void qman_destroy_fq(struct qman_fq *fq);
968
969 /**
970 * qman_fq_fqid - Queries the frame queue ID of a FQ object
971 * @fq: the frame queue object to query
972 */
973 u32 qman_fq_fqid(struct qman_fq *fq);
974
975 /**
976 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
977 * @fq: the frame queue object to modify, must be 'parked' or new.
978 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
979 * @opts: the FQ-modification settings, as defined in the low-level API
980 *
981 * The @opts parameter comes from the low-level portal API. Select
982 * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
983 * rather than parked. NB, @opts can be NULL.
984 *
985 * Note that some fields and options within @opts may be ignored or overwritten
986 * by the driver;
987 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
988 * affects one frame queue: @fq).
989 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
990 * 'fqd' structure's 'context_b' field are sometimes overwritten;
991 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
992 * initialised to a value used by the driver for demux.
993 * - if context_b is initialised for demux, so is context_a in case stashing
994 * is requested (see item 4).
995 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
996 * objects.)
997 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
998 * 'dest::channel' field will be overwritten to match the portal used to issue
999 * the command. If the WE_DESTWQ write-enable bit had already been set by the
1000 * caller, the channel workqueue will be left as-is, otherwise the write-enable
1001 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
1002 * isn't set, the destination channel/workqueue fields and the write-enable bit
1003 * are left as-is.
1004 * 4. if the driver overwrites context_a/b for demux, then if
1005 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
1006 * context_a.address fields and will leave the stashing fields provided by the
1007 * user alone, otherwise it will zero out the context_a.stashing fields.
1008 */
1009 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
1010
1011 /**
1012 * qman_schedule_fq - Schedules a FQ
1013 * @fq: the frame queue object to schedule, must be 'parked'
1014 *
1015 * Schedules the frame queue, which must be Parked, which takes it to
1016 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
1017 */
1018 int qman_schedule_fq(struct qman_fq *fq);
1019
1020 /**
1021 * qman_retire_fq - Retires a FQ
1022 * @fq: the frame queue object to retire
1023 * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
1024 *
1025 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
1026 * the retirement was started asynchronously, otherwise it returns negative for
1027 * failure. When this function returns zero, @flags is set to indicate whether
1028 * the retired FQ is empty and/or whether it has any ORL fragments (to show up
1029 * as ERNs). Otherwise the corresponding flags will be known when a subsequent
1030 * FQRN message shows up on the portal's message ring.
1031 *
1032 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
1033 * Active state), the completion will be via the message ring as a FQRN - but
1034 * the corresponding callback may occur before this function returns!! Ie. the
1035 * caller should be prepared to accept the callback as the function is called,
1036 * not only once it has returned.
1037 */
1038 int qman_retire_fq(struct qman_fq *fq, u32 *flags);
1039
1040 /**
1041 * qman_oos_fq - Puts a FQ "out of service"
1042 * @fq: the frame queue object to be put out-of-service, must be 'retired'
1043 *
1044 * The frame queue must be retired and empty, and if any order restoration list
1045 * was released as ERNs at the time of retirement, they must all be consumed.
1046 */
1047 int qman_oos_fq(struct qman_fq *fq);
1048
1049 /*
1050 * qman_volatile_dequeue - Issue a volatile dequeue command
1051 * @fq: the frame queue object to dequeue from
1052 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
1053 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
1054 *
1055 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
1056 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
1057 * the VDQCR is already in use, otherwise returns non-zero for failure. If
1058 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
1059 * the VDQCR command has finished executing (ie. once the callback for the last
1060 * DQRR entry resulting from the VDQCR command has been called). If not using
1061 * the FINISH flag, completion can be determined either by detecting the
1062 * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
1063 * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
1064 * for the QMAN_FQ_STATE_VDQCR bit to disappear.
1065 */
1066 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
1067
1068 /**
1069 * qman_enqueue - Enqueue a frame to a frame queue
1070 * @fq: the frame queue object to enqueue to
1071 * @fd: a descriptor of the frame to be enqueued
1072 *
1073 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
1074 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
1075 * field is ignored. The return value is non-zero on error, such as ring full.
1076 */
1077 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
1078
1079 /**
1080 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
1081 * @result: is set by the API to the base FQID of the allocated range
1082 * @count: the number of FQIDs required
1083 *
1084 * Returns 0 on success, or a negative error code.
1085 */
1086 int qman_alloc_fqid_range(u32 *result, u32 count);
1087 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
1088
1089 /**
1090 * qman_release_fqid - Release the specified frame queue ID
1091 * @fqid: the FQID to be released back to the resource pool
1092 *
1093 * This function can also be used to seed the allocator with
1094 * FQID ranges that it can subsequently allocate from.
1095 * Returns 0 on success, or a negative error code.
1096 */
1097 int qman_release_fqid(u32 fqid);
1098
1099 /**
1100 * qman_query_fq_np - Queries non-programmable FQD fields
1101 * @fq: the frame queue object to be queried
1102 * @np: storage for the queried FQD fields
1103 */
1104 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
1105
1106 /* Pool-channel management */
1107 /**
1108 * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1109 * @result: is set by the API to the base pool-channel ID of the allocated range
1110 * @count: the number of pool-channel IDs required
1111 *
1112 * Returns 0 on success, or a negative error code.
1113 */
1114 int qman_alloc_pool_range(u32 *result, u32 count);
1115 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1116
1117 /**
1118 * qman_release_pool - Release the specified pool-channel ID
1119 * @id: the pool-chan ID to be released back to the resource pool
1120 *
1121 * This function can also be used to seed the allocator with
1122 * pool-channel ID ranges that it can subsequently allocate from.
1123 * Returns 0 on success, or a negative error code.
1124 */
1125 int qman_release_pool(u32 id);
1126
1127 /* CGR management */
1128 /**
1129 * qman_create_cgr - Register a congestion group object
1130 * @cgr: the 'cgr' object, with fields filled in
1131 * @flags: QMAN_CGR_FLAG_* values
1132 * @opts: optional state of CGR settings
1133 *
1134 * Registers this object to receiving congestion entry/exit callbacks on the
1135 * portal affine to the cpu portal on which this API is executed. If opts is
1136 * NULL then only the callback (cgr->cb) function is registered. If @flags
1137 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1138 * any unspecified parameters) will be used rather than a modify hw hardware
1139 * (which only modifies the specified parameters).
1140 */
1141 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1142 struct qm_mcc_initcgr *opts);
1143
1144 /**
1145 * qman_delete_cgr - Deregisters a congestion group object
1146 * @cgr: the 'cgr' object to deregister
1147 *
1148 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1149 * is executed. This must be excuted on the same affine portal on which it was
1150 * created.
1151 */
1152 int qman_delete_cgr(struct qman_cgr *cgr);
1153
1154 /**
1155 * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1156 * @cgr: the 'cgr' object to deregister
1157 *
1158 * This will select the proper CPU and run there qman_delete_cgr().
1159 */
1160 void qman_delete_cgr_safe(struct qman_cgr *cgr);
1161
1162 /**
1163 * qman_query_cgr_congested - Queries CGR's congestion status
1164 * @cgr: the 'cgr' object to query
1165 * @result: returns 'cgr's congestion status, 1 (true) if congested
1166 */
1167 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1168
1169 /**
1170 * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1171 * @result: is set by the API to the base CGR ID of the allocated range
1172 * @count: the number of CGR IDs required
1173 *
1174 * Returns 0 on success, or a negative error code.
1175 */
1176 int qman_alloc_cgrid_range(u32 *result, u32 count);
1177 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1178
1179 /**
1180 * qman_release_cgrid - Release the specified CGR ID
1181 * @id: the CGR ID to be released back to the resource pool
1182 *
1183 * This function can also be used to seed the allocator with
1184 * CGR ID ranges that it can subsequently allocate from.
1185 * Returns 0 on success, or a negative error code.
1186 */
1187 int qman_release_cgrid(u32 id);
1188
1189 /**
1190 * qman_is_probed - Check if qman is probed
1191 *
1192 * Returns 1 if the qman driver successfully probed, -1 if the qman driver
1193 * failed to probe or 0 if the qman driver did not probed yet.
1194 */
1195 int qman_is_probed(void);
1196
1197 /**
1198 * qman_portals_probed - Check if all cpu bound qman portals are probed
1199 *
1200 * Returns 1 if all the required cpu bound qman portals successfully probed,
1201 * -1 if probe errors appeared or 0 if the qman portals did not yet finished
1202 * probing.
1203 */
1204 int qman_portals_probed(void);
1205
1206 /**
1207 * qman_dqrr_get_ithresh - Get coalesce interrupt threshold
1208 * @portal: portal to get the value for
1209 * @ithresh: threshold pointer
1210 */
1211 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
1212
1213 /**
1214 * qman_dqrr_set_ithresh - Set coalesce interrupt threshold
1215 * @portal: portal to set the new value on
1216 * @ithresh: new threshold value
1217 *
1218 * Returns 0 on success, or a negative error code.
1219 */
1220 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
1221
1222 /**
1223 * qman_dqrr_get_iperiod - Get coalesce interrupt period
1224 * @portal: portal to get the value for
1225 * @iperiod: period pointer
1226 */
1227 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
1228
1229 /**
1230 * qman_dqrr_set_iperiod - Set coalesce interrupt period
1231 * @portal: portal to set the new value on
1232 * @ithresh: new period value
1233 *
1234 * Returns 0 on success, or a negative error code.
1235 */
1236 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
1237
1238 #endif /* __FSL_QMAN_H */
1239