1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PTRACE_H
3 #define _LINUX_PTRACE_H
4 
5 #include <linux/compiler.h>		/* For unlikely.  */
6 #include <linux/sched.h>		/* For struct task_struct.  */
7 #include <linux/sched/signal.h>		/* For send_sig(), same_thread_group(), etc. */
8 #include <linux/err.h>			/* for IS_ERR_VALUE */
9 #include <linux/bug.h>			/* For BUG_ON.  */
10 #include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
11 #include <uapi/linux/ptrace.h>
12 
13 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
14 			    void *buf, int len, unsigned int gup_flags);
15 
16 /*
17  * Ptrace flags
18  *
19  * The owner ship rules for task->ptrace which holds the ptrace
20  * flags is simple.  When a task is running it owns it's task->ptrace
21  * flags.  When the a task is stopped the ptracer owns task->ptrace.
22  */
23 
24 #define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
25 #define PT_PTRACED	0x00000001
26 #define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
27 
28 #define PT_OPT_FLAG_SHIFT	3
29 /* PT_TRACE_* event enable flags */
30 #define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
31 #define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
32 #define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
33 #define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
34 #define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
35 #define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
36 #define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
37 #define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
38 #define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
39 
40 #define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
41 #define PT_SUSPEND_SECCOMP	(PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
42 
43 /* single stepping state bits (used on ARM and PA-RISC) */
44 #define PT_SINGLESTEP_BIT	31
45 #define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
46 #define PT_BLOCKSTEP_BIT	30
47 #define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
48 
49 extern long arch_ptrace(struct task_struct *child, long request,
50 			unsigned long addr, unsigned long data);
51 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
52 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
53 extern void ptrace_disable(struct task_struct *);
54 extern int ptrace_request(struct task_struct *child, long request,
55 			  unsigned long addr, unsigned long data);
56 extern void ptrace_notify(int exit_code);
57 extern void __ptrace_link(struct task_struct *child,
58 			  struct task_struct *new_parent,
59 			  const struct cred *ptracer_cred);
60 extern void __ptrace_unlink(struct task_struct *child);
61 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
62 #define PTRACE_MODE_READ	0x01
63 #define PTRACE_MODE_ATTACH	0x02
64 #define PTRACE_MODE_NOAUDIT	0x04
65 #define PTRACE_MODE_FSCREDS 0x08
66 #define PTRACE_MODE_REALCREDS 0x10
67 
68 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
69 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
70 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
71 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
72 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
73 
74 /**
75  * ptrace_may_access - check whether the caller is permitted to access
76  * a target task.
77  * @task: target task
78  * @mode: selects type of access and caller credentials
79  *
80  * Returns true on success, false on denial.
81  *
82  * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
83  * be set in @mode to specify whether the access was requested through
84  * a filesystem syscall (should use effective capabilities and fsuid
85  * of the caller) or through an explicit syscall such as
86  * process_vm_writev or ptrace (and should use the real credentials).
87  */
88 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
89 
ptrace_reparented(struct task_struct * child)90 static inline int ptrace_reparented(struct task_struct *child)
91 {
92 	return !same_thread_group(child->real_parent, child->parent);
93 }
94 
ptrace_unlink(struct task_struct * child)95 static inline void ptrace_unlink(struct task_struct *child)
96 {
97 	if (unlikely(child->ptrace))
98 		__ptrace_unlink(child);
99 }
100 
101 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
102 			    unsigned long data);
103 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
104 			    unsigned long data);
105 
106 /**
107  * ptrace_parent - return the task that is tracing the given task
108  * @task: task to consider
109  *
110  * Returns %NULL if no one is tracing @task, or the &struct task_struct
111  * pointer to its tracer.
112  *
113  * Must called under rcu_read_lock().  The pointer returned might be kept
114  * live only by RCU.  During exec, this may be called with task_lock() held
115  * on @task, still held from when check_unsafe_exec() was called.
116  */
ptrace_parent(struct task_struct * task)117 static inline struct task_struct *ptrace_parent(struct task_struct *task)
118 {
119 	if (unlikely(task->ptrace))
120 		return rcu_dereference(task->parent);
121 	return NULL;
122 }
123 
124 /**
125  * ptrace_event_enabled - test whether a ptrace event is enabled
126  * @task: ptracee of interest
127  * @event: %PTRACE_EVENT_* to test
128  *
129  * Test whether @event is enabled for ptracee @task.
130  *
131  * Returns %true if @event is enabled, %false otherwise.
132  */
ptrace_event_enabled(struct task_struct * task,int event)133 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
134 {
135 	return task->ptrace & PT_EVENT_FLAG(event);
136 }
137 
138 /**
139  * ptrace_event - possibly stop for a ptrace event notification
140  * @event:	%PTRACE_EVENT_* value to report
141  * @message:	value for %PTRACE_GETEVENTMSG to return
142  *
143  * Check whether @event is enabled and, if so, report @event and @message
144  * to the ptrace parent.
145  *
146  * Called without locks.
147  */
ptrace_event(int event,unsigned long message)148 static inline void ptrace_event(int event, unsigned long message)
149 {
150 	if (unlikely(ptrace_event_enabled(current, event))) {
151 		current->ptrace_message = message;
152 		ptrace_notify((event << 8) | SIGTRAP);
153 	} else if (event == PTRACE_EVENT_EXEC) {
154 		/* legacy EXEC report via SIGTRAP */
155 		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
156 			send_sig(SIGTRAP, current, 0);
157 	}
158 }
159 
160 /**
161  * ptrace_event_pid - possibly stop for a ptrace event notification
162  * @event:	%PTRACE_EVENT_* value to report
163  * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
164  *
165  * Check whether @event is enabled and, if so, report @event and @pid
166  * to the ptrace parent.  @pid is reported as the pid_t seen from the
167  * the ptrace parent's pid namespace.
168  *
169  * Called without locks.
170  */
ptrace_event_pid(int event,struct pid * pid)171 static inline void ptrace_event_pid(int event, struct pid *pid)
172 {
173 	/*
174 	 * FIXME: There's a potential race if a ptracer in a different pid
175 	 * namespace than parent attaches between computing message below and
176 	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
177 	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
178 	 */
179 	unsigned long message = 0;
180 	struct pid_namespace *ns;
181 
182 	rcu_read_lock();
183 	ns = task_active_pid_ns(rcu_dereference(current->parent));
184 	if (ns)
185 		message = pid_nr_ns(pid, ns);
186 	rcu_read_unlock();
187 
188 	ptrace_event(event, message);
189 }
190 
191 /**
192  * ptrace_init_task - initialize ptrace state for a new child
193  * @child:		new child task
194  * @ptrace:		true if child should be ptrace'd by parent's tracer
195  *
196  * This is called immediately after adding @child to its parent's children
197  * list.  @ptrace is false in the normal case, and true to ptrace @child.
198  *
199  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
200  */
ptrace_init_task(struct task_struct * child,bool ptrace)201 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
202 {
203 	INIT_LIST_HEAD(&child->ptrace_entry);
204 	INIT_LIST_HEAD(&child->ptraced);
205 	child->jobctl = 0;
206 	child->ptrace = 0;
207 	child->parent = child->real_parent;
208 
209 	if (unlikely(ptrace) && current->ptrace) {
210 		child->ptrace = current->ptrace;
211 		__ptrace_link(child, current->parent, current->ptracer_cred);
212 
213 		if (child->ptrace & PT_SEIZED)
214 			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
215 		else
216 			sigaddset(&child->pending.signal, SIGSTOP);
217 	}
218 	else
219 		child->ptracer_cred = NULL;
220 }
221 
222 /**
223  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
224  * @task:	task in %EXIT_DEAD state
225  *
226  * Called with write_lock(&tasklist_lock) held.
227  */
ptrace_release_task(struct task_struct * task)228 static inline void ptrace_release_task(struct task_struct *task)
229 {
230 	BUG_ON(!list_empty(&task->ptraced));
231 	ptrace_unlink(task);
232 	BUG_ON(!list_empty(&task->ptrace_entry));
233 }
234 
235 #ifndef force_successful_syscall_return
236 /*
237  * System call handlers that, upon successful completion, need to return a
238  * negative value should call force_successful_syscall_return() right before
239  * returning.  On architectures where the syscall convention provides for a
240  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
241  * others), this macro can be used to ensure that the error flag will not get
242  * set.  On architectures which do not support a separate error flag, the macro
243  * is a no-op and the spurious error condition needs to be filtered out by some
244  * other means (e.g., in user-level, by passing an extra argument to the
245  * syscall handler, or something along those lines).
246  */
247 #define force_successful_syscall_return() do { } while (0)
248 #endif
249 
250 #ifndef is_syscall_success
251 /*
252  * On most systems we can tell if a syscall is a success based on if the retval
253  * is an error value.  On some systems like ia64 and powerpc they have different
254  * indicators of success/failure and must define their own.
255  */
256 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
257 #endif
258 
259 /*
260  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
261  *
262  * These do-nothing inlines are used when the arch does not
263  * implement single-step.  The kerneldoc comments are here
264  * to document the interface for all arch definitions.
265  */
266 
267 #ifndef arch_has_single_step
268 /**
269  * arch_has_single_step - does this CPU support user-mode single-step?
270  *
271  * If this is defined, then there must be function declarations or
272  * inlines for user_enable_single_step() and user_disable_single_step().
273  * arch_has_single_step() should evaluate to nonzero iff the machine
274  * supports instruction single-step for user mode.
275  * It can be a constant or it can test a CPU feature bit.
276  */
277 #define arch_has_single_step()		(0)
278 
279 /**
280  * user_enable_single_step - single-step in user-mode task
281  * @task: either current or a task stopped in %TASK_TRACED
282  *
283  * This can only be called when arch_has_single_step() has returned nonzero.
284  * Set @task so that when it returns to user mode, it will trap after the
285  * next single instruction executes.  If arch_has_block_step() is defined,
286  * this must clear the effects of user_enable_block_step() too.
287  */
user_enable_single_step(struct task_struct * task)288 static inline void user_enable_single_step(struct task_struct *task)
289 {
290 	BUG();			/* This can never be called.  */
291 }
292 
293 /**
294  * user_disable_single_step - cancel user-mode single-step
295  * @task: either current or a task stopped in %TASK_TRACED
296  *
297  * Clear @task of the effects of user_enable_single_step() and
298  * user_enable_block_step().  This can be called whether or not either
299  * of those was ever called on @task, and even if arch_has_single_step()
300  * returned zero.
301  */
user_disable_single_step(struct task_struct * task)302 static inline void user_disable_single_step(struct task_struct *task)
303 {
304 }
305 #else
306 extern void user_enable_single_step(struct task_struct *);
307 extern void user_disable_single_step(struct task_struct *);
308 #endif	/* arch_has_single_step */
309 
310 #ifndef arch_has_block_step
311 /**
312  * arch_has_block_step - does this CPU support user-mode block-step?
313  *
314  * If this is defined, then there must be a function declaration or inline
315  * for user_enable_block_step(), and arch_has_single_step() must be defined
316  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
317  * supports step-until-branch for user mode.  It can be a constant or it
318  * can test a CPU feature bit.
319  */
320 #define arch_has_block_step()		(0)
321 
322 /**
323  * user_enable_block_step - step until branch in user-mode task
324  * @task: either current or a task stopped in %TASK_TRACED
325  *
326  * This can only be called when arch_has_block_step() has returned nonzero,
327  * and will never be called when single-instruction stepping is being used.
328  * Set @task so that when it returns to user mode, it will trap after the
329  * next branch or trap taken.
330  */
user_enable_block_step(struct task_struct * task)331 static inline void user_enable_block_step(struct task_struct *task)
332 {
333 	BUG();			/* This can never be called.  */
334 }
335 #else
336 extern void user_enable_block_step(struct task_struct *);
337 #endif	/* arch_has_block_step */
338 
339 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
340 extern void user_single_step_siginfo(struct task_struct *tsk,
341 				struct pt_regs *regs, siginfo_t *info);
342 #else
user_single_step_siginfo(struct task_struct * tsk,struct pt_regs * regs,siginfo_t * info)343 static inline void user_single_step_siginfo(struct task_struct *tsk,
344 				struct pt_regs *regs, siginfo_t *info)
345 {
346 	info->si_signo = SIGTRAP;
347 }
348 #endif
349 
350 #ifndef arch_ptrace_stop_needed
351 /**
352  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
353  * @code:	current->exit_code value ptrace will stop with
354  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
355  *
356  * This is called with the siglock held, to decide whether or not it's
357  * necessary to release the siglock and call arch_ptrace_stop() with the
358  * same @code and @info arguments.  It can be defined to a constant if
359  * arch_ptrace_stop() is never required, or always is.  On machines where
360  * this makes sense, it should be defined to a quick test to optimize out
361  * calling arch_ptrace_stop() when it would be superfluous.  For example,
362  * if the thread has not been back to user mode since the last stop, the
363  * thread state might indicate that nothing needs to be done.
364  *
365  * This is guaranteed to be invoked once before a task stops for ptrace and
366  * may include arch-specific operations necessary prior to a ptrace stop.
367  */
368 #define arch_ptrace_stop_needed(code, info)	(0)
369 #endif
370 
371 #ifndef arch_ptrace_stop
372 /**
373  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
374  * @code:	current->exit_code value ptrace will stop with
375  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
376  *
377  * This is called with no locks held when arch_ptrace_stop_needed() has
378  * just returned nonzero.  It is allowed to block, e.g. for user memory
379  * access.  The arch can have machine-specific work to be done before
380  * ptrace stops.  On ia64, register backing store gets written back to user
381  * memory here.  Since this can be costly (requires dropping the siglock),
382  * we only do it when the arch requires it for this particular stop, as
383  * indicated by arch_ptrace_stop_needed().
384  */
385 #define arch_ptrace_stop(code, info)		do { } while (0)
386 #endif
387 
388 #ifndef current_pt_regs
389 #define current_pt_regs() task_pt_regs(current)
390 #endif
391 
392 /*
393  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
394  * on *all* architectures; the only reason to have a per-arch definition
395  * is optimisation.
396  */
397 #ifndef signal_pt_regs
398 #define signal_pt_regs() task_pt_regs(current)
399 #endif
400 
401 #ifndef current_user_stack_pointer
402 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
403 #endif
404 
405 extern int task_current_syscall(struct task_struct *target, long *callno,
406 				unsigned long args[6], unsigned int maxargs,
407 				unsigned long *sp, unsigned long *pc);
408 
409 #endif
410