1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/include/asm/kvm_host.h:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/bitmap.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <linux/kvm_types.h>
18 #include <linux/percpu.h>
19 #include <asm/arch_gicv3.h>
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_mmio.h>
28 #include <asm/thread_info.h>
29
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31
32 #define KVM_USER_MEM_SLOTS 512
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42
43 #define KVM_REQ_SLEEP \
44 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
46 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
47
48 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
49
50 extern unsigned int kvm_sve_max_vl;
51 int kvm_arm_init_sve(void);
52
53 int __attribute_const__ kvm_target_cpu(void);
54 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
55 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
56 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
57 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
58
59 struct kvm_vmid {
60 /* The VMID generation used for the virt. memory system */
61 u64 vmid_gen;
62 u32 vmid;
63 };
64
65 struct kvm_arch {
66 struct kvm_vmid vmid;
67
68 /* stage2 entry level table */
69 pgd_t *pgd;
70 phys_addr_t pgd_phys;
71
72 /* VTCR_EL2 value for this VM */
73 u64 vtcr;
74
75 /* The last vcpu id that ran on each physical CPU */
76 int __percpu *last_vcpu_ran;
77
78 /* The maximum number of vCPUs depends on the used GIC model */
79 int max_vcpus;
80
81 /* Interrupt controller */
82 struct vgic_dist vgic;
83
84 /* Mandated version of PSCI */
85 u32 psci_version;
86 };
87
88 #define KVM_NR_MEM_OBJS 40
89
90 /*
91 * We don't want allocation failures within the mmu code, so we preallocate
92 * enough memory for a single page fault in a cache.
93 */
94 struct kvm_mmu_memory_cache {
95 int nobjs;
96 void *objects[KVM_NR_MEM_OBJS];
97 };
98
99 struct kvm_vcpu_fault_info {
100 u32 esr_el2; /* Hyp Syndrom Register */
101 u64 far_el2; /* Hyp Fault Address Register */
102 u64 hpfar_el2; /* Hyp IPA Fault Address Register */
103 u64 disr_el1; /* Deferred [SError] Status Register */
104 };
105
106 /*
107 * 0 is reserved as an invalid value.
108 * Order should be kept in sync with the save/restore code.
109 */
110 enum vcpu_sysreg {
111 __INVALID_SYSREG__,
112 MPIDR_EL1, /* MultiProcessor Affinity Register */
113 CSSELR_EL1, /* Cache Size Selection Register */
114 SCTLR_EL1, /* System Control Register */
115 ACTLR_EL1, /* Auxiliary Control Register */
116 CPACR_EL1, /* Coprocessor Access Control */
117 ZCR_EL1, /* SVE Control */
118 TTBR0_EL1, /* Translation Table Base Register 0 */
119 TTBR1_EL1, /* Translation Table Base Register 1 */
120 TCR_EL1, /* Translation Control Register */
121 ESR_EL1, /* Exception Syndrome Register */
122 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */
123 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */
124 FAR_EL1, /* Fault Address Register */
125 MAIR_EL1, /* Memory Attribute Indirection Register */
126 VBAR_EL1, /* Vector Base Address Register */
127 CONTEXTIDR_EL1, /* Context ID Register */
128 TPIDR_EL0, /* Thread ID, User R/W */
129 TPIDRRO_EL0, /* Thread ID, User R/O */
130 TPIDR_EL1, /* Thread ID, Privileged */
131 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */
132 CNTKCTL_EL1, /* Timer Control Register (EL1) */
133 PAR_EL1, /* Physical Address Register */
134 MDSCR_EL1, /* Monitor Debug System Control Register */
135 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
136 DISR_EL1, /* Deferred Interrupt Status Register */
137
138 /* Performance Monitors Registers */
139 PMCR_EL0, /* Control Register */
140 PMSELR_EL0, /* Event Counter Selection Register */
141 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
142 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
143 PMCCNTR_EL0, /* Cycle Counter Register */
144 PMEVTYPER0_EL0, /* Event Type Register (0-30) */
145 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
146 PMCCFILTR_EL0, /* Cycle Count Filter Register */
147 PMCNTENSET_EL0, /* Count Enable Set Register */
148 PMINTENSET_EL1, /* Interrupt Enable Set Register */
149 PMOVSSET_EL0, /* Overflow Flag Status Set Register */
150 PMSWINC_EL0, /* Software Increment Register */
151 PMUSERENR_EL0, /* User Enable Register */
152
153 /* Pointer Authentication Registers in a strict increasing order. */
154 APIAKEYLO_EL1,
155 APIAKEYHI_EL1,
156 APIBKEYLO_EL1,
157 APIBKEYHI_EL1,
158 APDAKEYLO_EL1,
159 APDAKEYHI_EL1,
160 APDBKEYLO_EL1,
161 APDBKEYHI_EL1,
162 APGAKEYLO_EL1,
163 APGAKEYHI_EL1,
164
165 /* 32bit specific registers. Keep them at the end of the range */
166 DACR32_EL2, /* Domain Access Control Register */
167 IFSR32_EL2, /* Instruction Fault Status Register */
168 FPEXC32_EL2, /* Floating-Point Exception Control Register */
169 DBGVCR32_EL2, /* Debug Vector Catch Register */
170
171 NR_SYS_REGS /* Nothing after this line! */
172 };
173
174 /* 32bit mapping */
175 #define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */
176 #define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */
177 #define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */
178 #define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */
179 #define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */
180 #define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */
181 #define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */
182 #define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */
183 #define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */
184 #define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */
185 #define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */
186 #define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */
187 #define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */
188 #define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */
189 #define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */
190 #define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */
191 #define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */
192 #define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */
193 #define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */
194 #define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */
195 #define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */
196 #define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */
197 #define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */
198 #define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */
199 #define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
200 #define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */
201 #define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */
202 #define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
203 #define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
204
205 #define cp14_DBGDSCRext (MDSCR_EL1 * 2)
206 #define cp14_DBGBCR0 (DBGBCR0_EL1 * 2)
207 #define cp14_DBGBVR0 (DBGBVR0_EL1 * 2)
208 #define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1)
209 #define cp14_DBGWCR0 (DBGWCR0_EL1 * 2)
210 #define cp14_DBGWVR0 (DBGWVR0_EL1 * 2)
211 #define cp14_DBGDCCINT (MDCCINT_EL1 * 2)
212
213 #define NR_COPRO_REGS (NR_SYS_REGS * 2)
214
215 struct kvm_cpu_context {
216 struct kvm_regs gp_regs;
217 union {
218 u64 sys_regs[NR_SYS_REGS];
219 u32 copro[NR_COPRO_REGS];
220 };
221
222 struct kvm_vcpu *__hyp_running_vcpu;
223 };
224
225 struct kvm_pmu_events {
226 u32 events_host;
227 u32 events_guest;
228 };
229
230 struct kvm_host_data {
231 struct kvm_cpu_context host_ctxt;
232 struct kvm_pmu_events pmu_events;
233 };
234
235 typedef struct kvm_host_data kvm_host_data_t;
236
237 struct vcpu_reset_state {
238 unsigned long pc;
239 unsigned long r0;
240 bool be;
241 bool reset;
242 };
243
244 struct kvm_vcpu_arch {
245 struct kvm_cpu_context ctxt;
246 void *sve_state;
247 unsigned int sve_max_vl;
248
249 /* HYP configuration */
250 u64 hcr_el2;
251 u32 mdcr_el2;
252
253 /* Exception Information */
254 struct kvm_vcpu_fault_info fault;
255
256 /* State of various workarounds, see kvm_asm.h for bit assignment */
257 u64 workaround_flags;
258
259 /* Miscellaneous vcpu state flags */
260 u64 flags;
261
262 /*
263 * We maintain more than a single set of debug registers to support
264 * debugging the guest from the host and to maintain separate host and
265 * guest state during world switches. vcpu_debug_state are the debug
266 * registers of the vcpu as the guest sees them. host_debug_state are
267 * the host registers which are saved and restored during
268 * world switches. external_debug_state contains the debug
269 * values we want to debug the guest. This is set via the
270 * KVM_SET_GUEST_DEBUG ioctl.
271 *
272 * debug_ptr points to the set of debug registers that should be loaded
273 * onto the hardware when running the guest.
274 */
275 struct kvm_guest_debug_arch *debug_ptr;
276 struct kvm_guest_debug_arch vcpu_debug_state;
277 struct kvm_guest_debug_arch external_debug_state;
278
279 /* Pointer to host CPU context */
280 struct kvm_cpu_context *host_cpu_context;
281
282 struct thread_info *host_thread_info; /* hyp VA */
283 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
284
285 struct {
286 /* {Break,watch}point registers */
287 struct kvm_guest_debug_arch regs;
288 /* Statistical profiling extension */
289 u64 pmscr_el1;
290 } host_debug_state;
291
292 /* VGIC state */
293 struct vgic_cpu vgic_cpu;
294 struct arch_timer_cpu timer_cpu;
295 struct kvm_pmu pmu;
296
297 /*
298 * Anything that is not used directly from assembly code goes
299 * here.
300 */
301
302 /*
303 * Guest registers we preserve during guest debugging.
304 *
305 * These shadow registers are updated by the kvm_handle_sys_reg
306 * trap handler if the guest accesses or updates them while we
307 * are using guest debug.
308 */
309 struct {
310 u32 mdscr_el1;
311 } guest_debug_preserved;
312
313 /* vcpu power-off state */
314 bool power_off;
315
316 /* Don't run the guest (internal implementation need) */
317 bool pause;
318
319 /* IO related fields */
320 struct kvm_decode mmio_decode;
321
322 /* Cache some mmu pages needed inside spinlock regions */
323 struct kvm_mmu_memory_cache mmu_page_cache;
324
325 /* Target CPU and feature flags */
326 int target;
327 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
328
329 /* Detect first run of a vcpu */
330 bool has_run_once;
331
332 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
333 u64 vsesr_el2;
334
335 /* Additional reset state */
336 struct vcpu_reset_state reset_state;
337
338 /* True when deferrable sysregs are loaded on the physical CPU,
339 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
340 bool sysregs_loaded_on_cpu;
341 };
342
343 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
344 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
345 sve_ffr_offset((vcpu)->arch.sve_max_vl)))
346
347 #define vcpu_sve_state_size(vcpu) ({ \
348 size_t __size_ret; \
349 unsigned int __vcpu_vq; \
350 \
351 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
352 __size_ret = 0; \
353 } else { \
354 __vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \
355 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
356 } \
357 \
358 __size_ret; \
359 })
360
361 /* vcpu_arch flags field values: */
362 #define KVM_ARM64_DEBUG_DIRTY (1 << 0)
363 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */
364 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */
365 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */
366 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */
367 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */
368 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */
369 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */
370
371 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
372 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
373
374 #define vcpu_has_ptrauth(vcpu) ((system_supports_address_auth() || \
375 system_supports_generic_auth()) && \
376 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))
377
378 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs)
379
380 /*
381 * Only use __vcpu_sys_reg if you know you want the memory backed version of a
382 * register, and not the one most recently accessed by a running VCPU. For
383 * example, for userspace access or for system registers that are never context
384 * switched, but only emulated.
385 */
386 #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)])
387
388 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
389 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
390
391 /*
392 * CP14 and CP15 live in the same array, as they are backed by the
393 * same system registers.
394 */
395 #define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)])
396 #define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)])
397
398 struct kvm_vm_stat {
399 ulong remote_tlb_flush;
400 };
401
402 struct kvm_vcpu_stat {
403 u64 halt_successful_poll;
404 u64 halt_attempted_poll;
405 u64 halt_poll_invalid;
406 u64 halt_wakeup;
407 u64 hvc_exit_stat;
408 u64 wfe_exit_stat;
409 u64 wfi_exit_stat;
410 u64 mmio_exit_user;
411 u64 mmio_exit_kernel;
412 u64 exits;
413 };
414
415 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
416 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
417 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
418 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
419 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
420 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
421 struct kvm_vcpu_events *events);
422
423 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
424 struct kvm_vcpu_events *events);
425
426 #define KVM_ARCH_WANT_MMU_NOTIFIER
427 int kvm_unmap_hva_range(struct kvm *kvm,
428 unsigned long start, unsigned long end);
429 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
430 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
431 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
432
433 struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
434 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
435 void kvm_arm_halt_guest(struct kvm *kvm);
436 void kvm_arm_resume_guest(struct kvm *kvm);
437
438 u64 __kvm_call_hyp(void *hypfn, ...);
439
440 /*
441 * The couple of isb() below are there to guarantee the same behaviour
442 * on VHE as on !VHE, where the eret to EL1 acts as a context
443 * synchronization event.
444 */
445 #define kvm_call_hyp(f, ...) \
446 do { \
447 if (has_vhe()) { \
448 f(__VA_ARGS__); \
449 isb(); \
450 } else { \
451 __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
452 } \
453 } while(0)
454
455 #define kvm_call_hyp_ret(f, ...) \
456 ({ \
457 typeof(f(__VA_ARGS__)) ret; \
458 \
459 if (has_vhe()) { \
460 ret = f(__VA_ARGS__); \
461 isb(); \
462 } else { \
463 ret = __kvm_call_hyp(kvm_ksym_ref(f), \
464 ##__VA_ARGS__); \
465 } \
466 \
467 ret; \
468 })
469
470 void force_vm_exit(const cpumask_t *mask);
471 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
472
473 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
474 int exception_index);
475 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
476 int exception_index);
477
478 int kvm_perf_init(void);
479 int kvm_perf_teardown(void);
480
481 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
482
483 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
484
485 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
486
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)487 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
488 {
489 /* The host's MPIDR is immutable, so let's set it up at boot time */
490 cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
491 }
492
493 void __kvm_enable_ssbs(void);
494
__cpu_init_hyp_mode(phys_addr_t pgd_ptr,unsigned long hyp_stack_ptr,unsigned long vector_ptr)495 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
496 unsigned long hyp_stack_ptr,
497 unsigned long vector_ptr)
498 {
499 /*
500 * Calculate the raw per-cpu offset without a translation from the
501 * kernel's mapping to the linear mapping, and store it in tpidr_el2
502 * so that we can use adr_l to access per-cpu variables in EL2.
503 */
504 u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) -
505 (u64)kvm_ksym_ref(kvm_host_data));
506
507 /*
508 * Call initialization code, and switch to the full blown HYP code.
509 * If the cpucaps haven't been finalized yet, something has gone very
510 * wrong, and hyp will crash and burn when it uses any
511 * cpus_have_const_cap() wrapper.
512 */
513 BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
514 __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
515
516 /*
517 * Disabling SSBD on a non-VHE system requires us to enable SSBS
518 * at EL2.
519 */
520 if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
521 arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
522 kvm_call_hyp(__kvm_enable_ssbs);
523 }
524 }
525
kvm_arch_requires_vhe(void)526 static inline bool kvm_arch_requires_vhe(void)
527 {
528 /*
529 * The Arm architecture specifies that implementation of SVE
530 * requires VHE also to be implemented. The KVM code for arm64
531 * relies on this when SVE is present:
532 */
533 if (system_supports_sve())
534 return true;
535
536 /* Some implementations have defects that confine them to VHE */
537 if (cpus_have_cap(ARM64_WORKAROUND_1165522))
538 return true;
539
540 return false;
541 }
542
543 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
544
kvm_arch_hardware_unsetup(void)545 static inline void kvm_arch_hardware_unsetup(void) {}
kvm_arch_sync_events(struct kvm * kvm)546 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)547 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
kvm_arch_vcpu_block_finish(struct kvm_vcpu * vcpu)548 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
549
550 void kvm_arm_init_debug(void);
551 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
552 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
553 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
554 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
555 struct kvm_device_attr *attr);
556 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
557 struct kvm_device_attr *attr);
558 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
559 struct kvm_device_attr *attr);
560
__cpu_init_stage2(void)561 static inline void __cpu_init_stage2(void) {}
562
563 /* Guest/host FPSIMD coordination helpers */
564 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
565 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
566 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
567 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
568
kvm_pmu_counter_deferred(struct perf_event_attr * attr)569 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
570 {
571 return (!has_vhe() && attr->exclude_host);
572 }
573
574 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)575 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
576 {
577 return kvm_arch_vcpu_run_map_fp(vcpu);
578 }
579
580 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
581 void kvm_clr_pmu_events(u32 clr);
582
583 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
584 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
585 #else
kvm_set_pmu_events(u32 set,struct perf_event_attr * attr)586 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u32 clr)587 static inline void kvm_clr_pmu_events(u32 clr) {}
588 #endif
589
kvm_arm_vhe_guest_enter(void)590 static inline void kvm_arm_vhe_guest_enter(void)
591 {
592 local_daif_mask();
593
594 /*
595 * Having IRQs masked via PMR when entering the guest means the GIC
596 * will not signal the CPU of interrupts of lower priority, and the
597 * only way to get out will be via guest exceptions.
598 * Naturally, we want to avoid this.
599 *
600 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
601 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
602 */
603 if (system_uses_irq_prio_masking())
604 dsb(sy);
605 }
606
kvm_arm_vhe_guest_exit(void)607 static inline void kvm_arm_vhe_guest_exit(void)
608 {
609 /*
610 * local_daif_restore() takes care to properly restore PSTATE.DAIF
611 * and the GIC PMR if the host is using IRQ priorities.
612 */
613 local_daif_restore(DAIF_PROCCTX_NOIRQ);
614
615 /*
616 * When we exit from the guest we change a number of CPU configuration
617 * parameters, such as traps. Make sure these changes take effect
618 * before running the host or additional guests.
619 */
620 isb();
621 }
622
623 #define KVM_BP_HARDEN_UNKNOWN -1
624 #define KVM_BP_HARDEN_WA_NEEDED 0
625 #define KVM_BP_HARDEN_NOT_REQUIRED 1
626
kvm_arm_harden_branch_predictor(void)627 static inline int kvm_arm_harden_branch_predictor(void)
628 {
629 switch (get_spectre_v2_workaround_state()) {
630 case ARM64_BP_HARDEN_WA_NEEDED:
631 return KVM_BP_HARDEN_WA_NEEDED;
632 case ARM64_BP_HARDEN_NOT_REQUIRED:
633 return KVM_BP_HARDEN_NOT_REQUIRED;
634 case ARM64_BP_HARDEN_UNKNOWN:
635 default:
636 return KVM_BP_HARDEN_UNKNOWN;
637 }
638 }
639
640 #define KVM_SSBD_UNKNOWN -1
641 #define KVM_SSBD_FORCE_DISABLE 0
642 #define KVM_SSBD_KERNEL 1
643 #define KVM_SSBD_FORCE_ENABLE 2
644 #define KVM_SSBD_MITIGATED 3
645
kvm_arm_have_ssbd(void)646 static inline int kvm_arm_have_ssbd(void)
647 {
648 switch (arm64_get_ssbd_state()) {
649 case ARM64_SSBD_FORCE_DISABLE:
650 return KVM_SSBD_FORCE_DISABLE;
651 case ARM64_SSBD_KERNEL:
652 return KVM_SSBD_KERNEL;
653 case ARM64_SSBD_FORCE_ENABLE:
654 return KVM_SSBD_FORCE_ENABLE;
655 case ARM64_SSBD_MITIGATED:
656 return KVM_SSBD_MITIGATED;
657 case ARM64_SSBD_UNKNOWN:
658 default:
659 return KVM_SSBD_UNKNOWN;
660 }
661 }
662
663 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
664 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
665
666 void kvm_set_ipa_limit(void);
667
668 #define __KVM_HAVE_ARCH_VM_ALLOC
669 struct kvm *kvm_arch_alloc_vm(void);
670 void kvm_arch_free_vm(struct kvm *kvm);
671
672 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
673
674 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
675 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
676
677 #define kvm_arm_vcpu_sve_finalized(vcpu) \
678 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
679
680 #endif /* __ARM64_KVM_HOST_H__ */
681