1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _SPARC_PGTABLE_H
3 #define _SPARC_PGTABLE_H
4
5 /* asm/pgtable.h: Defines and functions used to work
6 * with Sparc page tables.
7 *
8 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
10 */
11
12 #include <linux/const.h>
13
14 #define PMD_SHIFT 18
15 #define PMD_SIZE (1UL << PMD_SHIFT)
16 #define PMD_MASK (~(PMD_SIZE-1))
17 #define PMD_ALIGN(__addr) (((__addr) + ~PMD_MASK) & PMD_MASK)
18
19 #define PGDIR_SHIFT 24
20 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
21 #define PGDIR_MASK (~(PGDIR_SIZE-1))
22 #define PGDIR_ALIGN(__addr) (((__addr) + ~PGDIR_MASK) & PGDIR_MASK)
23
24 #ifndef __ASSEMBLY__
25 #include <asm-generic/pgtable-nopud.h>
26
27 #include <linux/spinlock.h>
28 #include <linux/mm_types.h>
29 #include <asm/types.h>
30 #include <asm/pgtsrmmu.h>
31 #include <asm/vaddrs.h>
32 #include <asm/oplib.h>
33 #include <asm/cpu_type.h>
34
35
36 struct vm_area_struct;
37 struct page;
38
39 void load_mmu(void);
40 unsigned long calc_highpages(void);
41 unsigned long __init bootmem_init(unsigned long *pages_avail);
42
43 #define pte_ERROR(e) __builtin_trap()
44 #define pmd_ERROR(e) __builtin_trap()
45 #define pgd_ERROR(e) __builtin_trap()
46
47 #define PTRS_PER_PTE 64
48 #define PTRS_PER_PMD 64
49 #define PTRS_PER_PGD 256
50 #define USER_PTRS_PER_PGD PAGE_OFFSET / PGDIR_SIZE
51 #define PTE_SIZE (PTRS_PER_PTE*4)
52
53 #define PAGE_NONE SRMMU_PAGE_NONE
54 #define PAGE_SHARED SRMMU_PAGE_SHARED
55 #define PAGE_COPY SRMMU_PAGE_COPY
56 #define PAGE_READONLY SRMMU_PAGE_RDONLY
57 #define PAGE_KERNEL SRMMU_PAGE_KERNEL
58
59 /* Top-level page directory - dummy used by init-mm.
60 * srmmu.c will assign the real one (which is dynamically sized) */
61 #define swapper_pg_dir NULL
62
63 void paging_init(void);
64
65 extern unsigned long ptr_in_current_pgd;
66
67 /* First physical page can be anywhere, the following is needed so that
68 * va-->pa and vice versa conversions work properly without performance
69 * hit for all __pa()/__va() operations.
70 */
71 extern unsigned long phys_base;
72 extern unsigned long pfn_base;
73
74 /*
75 * ZERO_PAGE is a global shared page that is always zero: used
76 * for zero-mapped memory areas etc..
77 */
78 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
79
80 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
81
82 /*
83 * In general all page table modifications should use the V8 atomic
84 * swap instruction. This insures the mmu and the cpu are in sync
85 * with respect to ref/mod bits in the page tables.
86 */
srmmu_swap(unsigned long * addr,unsigned long value)87 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
88 {
89 __asm__ __volatile__("swap [%2], %0" :
90 "=&r" (value) : "0" (value), "r" (addr) : "memory");
91 return value;
92 }
93
94 /* Certain architectures need to do special things when pte's
95 * within a page table are directly modified. Thus, the following
96 * hook is made available.
97 */
98
set_pte(pte_t * ptep,pte_t pteval)99 static inline void set_pte(pte_t *ptep, pte_t pteval)
100 {
101 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
102 }
103
srmmu_device_memory(unsigned long x)104 static inline int srmmu_device_memory(unsigned long x)
105 {
106 return ((x & 0xF0000000) != 0);
107 }
108
pmd_pfn(pmd_t pmd)109 static inline unsigned long pmd_pfn(pmd_t pmd)
110 {
111 return (pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4);
112 }
113
pmd_page(pmd_t pmd)114 static inline struct page *pmd_page(pmd_t pmd)
115 {
116 if (srmmu_device_memory(pmd_val(pmd)))
117 BUG();
118 return pfn_to_page(pmd_pfn(pmd));
119 }
120
__pmd_page(pmd_t pmd)121 static inline unsigned long __pmd_page(pmd_t pmd)
122 {
123 unsigned long v;
124
125 if (srmmu_device_memory(pmd_val(pmd)))
126 BUG();
127
128 v = pmd_val(pmd) & SRMMU_PTD_PMASK;
129 return (unsigned long)__nocache_va(v << 4);
130 }
131
pmd_page_vaddr(pmd_t pmd)132 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
133 {
134 unsigned long v = pmd_val(pmd) & SRMMU_PTD_PMASK;
135 return (unsigned long)__nocache_va(v << 4);
136 }
137
pud_pgtable(pud_t pud)138 static inline pmd_t *pud_pgtable(pud_t pud)
139 {
140 if (srmmu_device_memory(pud_val(pud))) {
141 return (pmd_t *)~0;
142 } else {
143 unsigned long v = pud_val(pud) & SRMMU_PTD_PMASK;
144 return (pmd_t *)__nocache_va(v << 4);
145 }
146 }
147
pte_present(pte_t pte)148 static inline int pte_present(pte_t pte)
149 {
150 return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE);
151 }
152
pte_none(pte_t pte)153 static inline int pte_none(pte_t pte)
154 {
155 return !pte_val(pte);
156 }
157
__pte_clear(pte_t * ptep)158 static inline void __pte_clear(pte_t *ptep)
159 {
160 set_pte(ptep, __pte(0));
161 }
162
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)163 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
164 {
165 __pte_clear(ptep);
166 }
167
pmd_bad(pmd_t pmd)168 static inline int pmd_bad(pmd_t pmd)
169 {
170 return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD;
171 }
172
pmd_present(pmd_t pmd)173 static inline int pmd_present(pmd_t pmd)
174 {
175 return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD);
176 }
177
pmd_none(pmd_t pmd)178 static inline int pmd_none(pmd_t pmd)
179 {
180 return !pmd_val(pmd);
181 }
182
pmd_clear(pmd_t * pmdp)183 static inline void pmd_clear(pmd_t *pmdp)
184 {
185 set_pte((pte_t *)&pmd_val(*pmdp), __pte(0));
186 }
187
pud_none(pud_t pud)188 static inline int pud_none(pud_t pud)
189 {
190 return !(pud_val(pud) & 0xFFFFFFF);
191 }
192
pud_bad(pud_t pud)193 static inline int pud_bad(pud_t pud)
194 {
195 return (pud_val(pud) & SRMMU_ET_MASK) != SRMMU_ET_PTD;
196 }
197
pud_present(pud_t pud)198 static inline int pud_present(pud_t pud)
199 {
200 return ((pud_val(pud) & SRMMU_ET_MASK) == SRMMU_ET_PTD);
201 }
202
pud_clear(pud_t * pudp)203 static inline void pud_clear(pud_t *pudp)
204 {
205 set_pte((pte_t *)pudp, __pte(0));
206 }
207
208 /*
209 * The following only work if pte_present() is true.
210 * Undefined behaviour if not..
211 */
pte_write(pte_t pte)212 static inline int pte_write(pte_t pte)
213 {
214 return pte_val(pte) & SRMMU_WRITE;
215 }
216
pte_dirty(pte_t pte)217 static inline int pte_dirty(pte_t pte)
218 {
219 return pte_val(pte) & SRMMU_DIRTY;
220 }
221
pte_young(pte_t pte)222 static inline int pte_young(pte_t pte)
223 {
224 return pte_val(pte) & SRMMU_REF;
225 }
226
pte_wrprotect(pte_t pte)227 static inline pte_t pte_wrprotect(pte_t pte)
228 {
229 return __pte(pte_val(pte) & ~SRMMU_WRITE);
230 }
231
pte_mkclean(pte_t pte)232 static inline pte_t pte_mkclean(pte_t pte)
233 {
234 return __pte(pte_val(pte) & ~SRMMU_DIRTY);
235 }
236
pte_mkold(pte_t pte)237 static inline pte_t pte_mkold(pte_t pte)
238 {
239 return __pte(pte_val(pte) & ~SRMMU_REF);
240 }
241
pte_mkwrite_novma(pte_t pte)242 static inline pte_t pte_mkwrite_novma(pte_t pte)
243 {
244 return __pte(pte_val(pte) | SRMMU_WRITE);
245 }
246
pte_mkdirty(pte_t pte)247 static inline pte_t pte_mkdirty(pte_t pte)
248 {
249 return __pte(pte_val(pte) | SRMMU_DIRTY);
250 }
251
pte_mkyoung(pte_t pte)252 static inline pte_t pte_mkyoung(pte_t pte)
253 {
254 return __pte(pte_val(pte) | SRMMU_REF);
255 }
256
257 #define PFN_PTE_SHIFT (PAGE_SHIFT - 4)
258 #define pfn_pte(pfn, prot) mk_pte(pfn_to_page(pfn), prot)
259
pte_pfn(pte_t pte)260 static inline unsigned long pte_pfn(pte_t pte)
261 {
262 if (srmmu_device_memory(pte_val(pte))) {
263 /* Just return something that will cause
264 * pfn_valid() to return false. This makes
265 * copy_one_pte() to just directly copy to
266 * PTE over.
267 */
268 return ~0UL;
269 }
270 return (pte_val(pte) & SRMMU_PTE_PMASK) >> PFN_PTE_SHIFT;
271 }
272
273 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
274
275 /*
276 * Conversion functions: convert a page and protection to a page entry,
277 * and a page entry and page directory to the page they refer to.
278 */
mk_pte(struct page * page,pgprot_t pgprot)279 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
280 {
281 return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot));
282 }
283
mk_pte_phys(unsigned long page,pgprot_t pgprot)284 static inline pte_t mk_pte_phys(unsigned long page, pgprot_t pgprot)
285 {
286 return __pte(((page) >> 4) | pgprot_val(pgprot));
287 }
288
mk_pte_io(unsigned long page,pgprot_t pgprot,int space)289 static inline pte_t mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
290 {
291 return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot));
292 }
293
294 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)295 static inline pgprot_t pgprot_noncached(pgprot_t prot)
296 {
297 pgprot_val(prot) &= ~pgprot_val(__pgprot(SRMMU_CACHE));
298 return prot;
299 }
300
301 static pte_t pte_modify(pte_t pte, pgprot_t newprot) __attribute_const__;
pte_modify(pte_t pte,pgprot_t newprot)302 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
303 {
304 return __pte((pte_val(pte) & SRMMU_CHG_MASK) |
305 pgprot_val(newprot));
306 }
307
308 /* only used by the huge vmap code, should never be called */
309 #define pud_page(pud) NULL
310
311 struct seq_file;
312 void mmu_info(struct seq_file *m);
313
314 /* Fault handler stuff... */
315 #define FAULT_CODE_PROT 0x1
316 #define FAULT_CODE_WRITE 0x2
317 #define FAULT_CODE_USER 0x4
318
319 #define update_mmu_cache(vma, address, ptep) do { } while (0)
320 #define update_mmu_cache_range(vmf, vma, address, ptep, nr) do { } while (0)
321
322 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
323 unsigned long xva, unsigned int len);
324 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len);
325
326 /*
327 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
328 * are !pte_none() && !pte_present().
329 *
330 * Format of swap PTEs:
331 *
332 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
333 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
334 * <-------------- offset ---------------> < type -> E 0 0 0 0 0 0
335 */
__swp_type(swp_entry_t entry)336 static inline unsigned long __swp_type(swp_entry_t entry)
337 {
338 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
339 }
340
__swp_offset(swp_entry_t entry)341 static inline unsigned long __swp_offset(swp_entry_t entry)
342 {
343 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
344 }
345
__swp_entry(unsigned long type,unsigned long offset)346 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
347 {
348 return (swp_entry_t) {
349 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
350 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
351 }
352
353 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
354 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
355
pte_swp_exclusive(pte_t pte)356 static inline int pte_swp_exclusive(pte_t pte)
357 {
358 return pte_val(pte) & SRMMU_SWP_EXCLUSIVE;
359 }
360
pte_swp_mkexclusive(pte_t pte)361 static inline pte_t pte_swp_mkexclusive(pte_t pte)
362 {
363 return __pte(pte_val(pte) | SRMMU_SWP_EXCLUSIVE);
364 }
365
pte_swp_clear_exclusive(pte_t pte)366 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
367 {
368 return __pte(pte_val(pte) & ~SRMMU_SWP_EXCLUSIVE);
369 }
370
371 static inline unsigned long
__get_phys(unsigned long addr)372 __get_phys (unsigned long addr)
373 {
374 switch (sparc_cpu_model){
375 case sun4m:
376 case sun4d:
377 return ((srmmu_get_pte (addr) & 0xffffff00) << 4);
378 default:
379 return 0;
380 }
381 }
382
383 static inline int
__get_iospace(unsigned long addr)384 __get_iospace (unsigned long addr)
385 {
386 switch (sparc_cpu_model){
387 case sun4m:
388 case sun4d:
389 return (srmmu_get_pte (addr) >> 28);
390 default:
391 return -1;
392 }
393 }
394
395 /*
396 * For sparc32&64, the pfn in io_remap_pfn_range() carries <iospace> in
397 * its high 4 bits. These macros/functions put it there or get it from there.
398 */
399 #define MK_IOSPACE_PFN(space, pfn) (pfn | (space << (BITS_PER_LONG - 4)))
400 #define GET_IOSPACE(pfn) (pfn >> (BITS_PER_LONG - 4))
401 #define GET_PFN(pfn) (pfn & 0x0fffffffUL)
402
403 int remap_pfn_range(struct vm_area_struct *, unsigned long, unsigned long,
404 unsigned long, pgprot_t);
405
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)406 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
407 unsigned long from, unsigned long pfn,
408 unsigned long size, pgprot_t prot)
409 {
410 unsigned long long offset, space, phys_base;
411
412 offset = ((unsigned long long) GET_PFN(pfn)) << PAGE_SHIFT;
413 space = GET_IOSPACE(pfn);
414 phys_base = offset | (space << 32ULL);
415
416 return remap_pfn_range(vma, from, phys_base >> PAGE_SHIFT, size, prot);
417 }
418 #define io_remap_pfn_range io_remap_pfn_range
419
420 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
421 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
422 ({ \
423 int __changed = !pte_same(*(__ptep), __entry); \
424 if (__changed) { \
425 set_pte(__ptep, __entry); \
426 flush_tlb_page(__vma, __address); \
427 } \
428 __changed; \
429 })
430
431 #endif /* !(__ASSEMBLY__) */
432
433 #define VMALLOC_START _AC(0xfe600000,UL)
434 #define VMALLOC_END _AC(0xffc00000,UL)
435
436 /* We provide our own get_unmapped_area to cope with VA holes for userland */
437 #define HAVE_ARCH_UNMAPPED_AREA
438
439 #define pmd_pgtable(pmd) ((pgtable_t)__pmd_page(pmd))
440
441 #endif /* !(_SPARC_PGTABLE_H) */
442