1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113 struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117 };
118
119 struct task_struct;
120
121 /*
122 * extra PMU register associated with an event
123 */
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129 };
130
131 /**
132 * struct hw_perf_event - performance event hardware details:
133 */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171 #endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195 /*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249 #endif
250 };
251
252 struct perf_event;
253
254 /*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260 /**
261 * pmu::capabilities flags
262 */
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
264 #define PERF_PMU_CAP_NO_NMI 0x02
265 #define PERF_PMU_CAP_AUX_NO_SG 0x04
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x08
267 #define PERF_PMU_CAP_EXCLUSIVE 0x10
268 #define PERF_PMU_CAP_ITRACE 0x20
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x80
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x100
272
273 struct perf_output_handle;
274
275 /**
276 * struct pmu - generic performance monitoring unit
277 */
278 struct pmu {
279 struct list_head entry;
280
281 struct module *module;
282 struct device *dev;
283 const struct attribute_group **attr_groups;
284 const struct attribute_group **attr_update;
285 const char *name;
286 int type;
287
288 /*
289 * various common per-pmu feature flags
290 */
291 int capabilities;
292
293 int __percpu *pmu_disable_count;
294 struct perf_cpu_context __percpu *pmu_cpu_context;
295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
296 int task_ctx_nr;
297 int hrtimer_interval_ms;
298
299 /* number of address filters this PMU can do */
300 unsigned int nr_addr_filters;
301
302 /*
303 * Fully disable/enable this PMU, can be used to protect from the PMI
304 * as well as for lazy/batch writing of the MSRs.
305 */
306 void (*pmu_enable) (struct pmu *pmu); /* optional */
307 void (*pmu_disable) (struct pmu *pmu); /* optional */
308
309 /*
310 * Try and initialize the event for this PMU.
311 *
312 * Returns:
313 * -ENOENT -- @event is not for this PMU
314 *
315 * -ENODEV -- @event is for this PMU but PMU not present
316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
317 * -EINVAL -- @event is for this PMU but @event is not valid
318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
320 *
321 * 0 -- @event is for this PMU and valid
322 *
323 * Other error return values are allowed.
324 */
325 int (*event_init) (struct perf_event *event);
326
327 /*
328 * Notification that the event was mapped or unmapped. Called
329 * in the context of the mapping task.
330 */
331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333
334 /*
335 * Flags for ->add()/->del()/ ->start()/->stop(). There are
336 * matching hw_perf_event::state flags.
337 */
338 #define PERF_EF_START 0x01 /* start the counter when adding */
339 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
340 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
341
342 /*
343 * Adds/Removes a counter to/from the PMU, can be done inside a
344 * transaction, see the ->*_txn() methods.
345 *
346 * The add/del callbacks will reserve all hardware resources required
347 * to service the event, this includes any counter constraint
348 * scheduling etc.
349 *
350 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 * is on.
352 *
353 * ->add() called without PERF_EF_START should result in the same state
354 * as ->add() followed by ->stop().
355 *
356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
357 * ->stop() that must deal with already being stopped without
358 * PERF_EF_UPDATE.
359 */
360 int (*add) (struct perf_event *event, int flags);
361 void (*del) (struct perf_event *event, int flags);
362
363 /*
364 * Starts/Stops a counter present on the PMU.
365 *
366 * The PMI handler should stop the counter when perf_event_overflow()
367 * returns !0. ->start() will be used to continue.
368 *
369 * Also used to change the sample period.
370 *
371 * Called with IRQs disabled and the PMU disabled on the CPU the event
372 * is on -- will be called from NMI context with the PMU generates
373 * NMIs.
374 *
375 * ->stop() with PERF_EF_UPDATE will read the counter and update
376 * period/count values like ->read() would.
377 *
378 * ->start() with PERF_EF_RELOAD will reprogram the counter
379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
380 */
381 void (*start) (struct perf_event *event, int flags);
382 void (*stop) (struct perf_event *event, int flags);
383
384 /*
385 * Updates the counter value of the event.
386 *
387 * For sampling capable PMUs this will also update the software period
388 * hw_perf_event::period_left field.
389 */
390 void (*read) (struct perf_event *event);
391
392 /*
393 * Group events scheduling is treated as a transaction, add
394 * group events as a whole and perform one schedulability test.
395 * If the test fails, roll back the whole group
396 *
397 * Start the transaction, after this ->add() doesn't need to
398 * do schedulability tests.
399 *
400 * Optional.
401 */
402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
403 /*
404 * If ->start_txn() disabled the ->add() schedulability test
405 * then ->commit_txn() is required to perform one. On success
406 * the transaction is closed. On error the transaction is kept
407 * open until ->cancel_txn() is called.
408 *
409 * Optional.
410 */
411 int (*commit_txn) (struct pmu *pmu);
412 /*
413 * Will cancel the transaction, assumes ->del() is called
414 * for each successful ->add() during the transaction.
415 *
416 * Optional.
417 */
418 void (*cancel_txn) (struct pmu *pmu);
419
420 /*
421 * Will return the value for perf_event_mmap_page::index for this event,
422 * if no implementation is provided it will default to: event->hw.idx + 1.
423 */
424 int (*event_idx) (struct perf_event *event); /*optional */
425
426 /*
427 * context-switches callback
428 */
429 void (*sched_task) (struct perf_event_context *ctx,
430 bool sched_in);
431
432 /*
433 * Kmem cache of PMU specific data
434 */
435 struct kmem_cache *task_ctx_cache;
436
437 /*
438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
439 * can be synchronized using this function. See Intel LBR callstack support
440 * implementation and Perf core context switch handling callbacks for usage
441 * examples.
442 */
443 void (*swap_task_ctx) (struct perf_event_context *prev,
444 struct perf_event_context *next);
445 /* optional */
446
447 /*
448 * Set up pmu-private data structures for an AUX area
449 */
450 void *(*setup_aux) (struct perf_event *event, void **pages,
451 int nr_pages, bool overwrite);
452 /* optional */
453
454 /*
455 * Free pmu-private AUX data structures
456 */
457 void (*free_aux) (void *aux); /* optional */
458
459 /*
460 * Take a snapshot of the AUX buffer without touching the event
461 * state, so that preempting ->start()/->stop() callbacks does
462 * not interfere with their logic. Called in PMI context.
463 *
464 * Returns the size of AUX data copied to the output handle.
465 *
466 * Optional.
467 */
468 long (*snapshot_aux) (struct perf_event *event,
469 struct perf_output_handle *handle,
470 unsigned long size);
471
472 /*
473 * Validate address range filters: make sure the HW supports the
474 * requested configuration and number of filters; return 0 if the
475 * supplied filters are valid, -errno otherwise.
476 *
477 * Runs in the context of the ioctl()ing process and is not serialized
478 * with the rest of the PMU callbacks.
479 */
480 int (*addr_filters_validate) (struct list_head *filters);
481 /* optional */
482
483 /*
484 * Synchronize address range filter configuration:
485 * translate hw-agnostic filters into hardware configuration in
486 * event::hw::addr_filters.
487 *
488 * Runs as a part of filter sync sequence that is done in ->start()
489 * callback by calling perf_event_addr_filters_sync().
490 *
491 * May (and should) traverse event::addr_filters::list, for which its
492 * caller provides necessary serialization.
493 */
494 void (*addr_filters_sync) (struct perf_event *event);
495 /* optional */
496
497 /*
498 * Check if event can be used for aux_output purposes for
499 * events of this PMU.
500 *
501 * Runs from perf_event_open(). Should return 0 for "no match"
502 * or non-zero for "match".
503 */
504 int (*aux_output_match) (struct perf_event *event);
505 /* optional */
506
507 /*
508 * Filter events for PMU-specific reasons.
509 */
510 int (*filter_match) (struct perf_event *event); /* optional */
511
512 /*
513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
514 */
515 int (*check_period) (struct perf_event *event, u64 value); /* optional */
516 };
517
518 enum perf_addr_filter_action_t {
519 PERF_ADDR_FILTER_ACTION_STOP = 0,
520 PERF_ADDR_FILTER_ACTION_START,
521 PERF_ADDR_FILTER_ACTION_FILTER,
522 };
523
524 /**
525 * struct perf_addr_filter - address range filter definition
526 * @entry: event's filter list linkage
527 * @path: object file's path for file-based filters
528 * @offset: filter range offset
529 * @size: filter range size (size==0 means single address trigger)
530 * @action: filter/start/stop
531 *
532 * This is a hardware-agnostic filter configuration as specified by the user.
533 */
534 struct perf_addr_filter {
535 struct list_head entry;
536 struct path path;
537 unsigned long offset;
538 unsigned long size;
539 enum perf_addr_filter_action_t action;
540 };
541
542 /**
543 * struct perf_addr_filters_head - container for address range filters
544 * @list: list of filters for this event
545 * @lock: spinlock that serializes accesses to the @list and event's
546 * (and its children's) filter generations.
547 * @nr_file_filters: number of file-based filters
548 *
549 * A child event will use parent's @list (and therefore @lock), so they are
550 * bundled together; see perf_event_addr_filters().
551 */
552 struct perf_addr_filters_head {
553 struct list_head list;
554 raw_spinlock_t lock;
555 unsigned int nr_file_filters;
556 };
557
558 struct perf_addr_filter_range {
559 unsigned long start;
560 unsigned long size;
561 };
562
563 /**
564 * enum perf_event_state - the states of an event:
565 */
566 enum perf_event_state {
567 PERF_EVENT_STATE_DEAD = -4,
568 PERF_EVENT_STATE_EXIT = -3,
569 PERF_EVENT_STATE_ERROR = -2,
570 PERF_EVENT_STATE_OFF = -1,
571 PERF_EVENT_STATE_INACTIVE = 0,
572 PERF_EVENT_STATE_ACTIVE = 1,
573 };
574
575 struct file;
576 struct perf_sample_data;
577
578 typedef void (*perf_overflow_handler_t)(struct perf_event *,
579 struct perf_sample_data *,
580 struct pt_regs *regs);
581
582 /*
583 * Event capabilities. For event_caps and groups caps.
584 *
585 * PERF_EV_CAP_SOFTWARE: Is a software event.
586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
587 * from any CPU in the package where it is active.
588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
589 * cannot be a group leader. If an event with this flag is detached from the
590 * group it is scheduled out and moved into an unrecoverable ERROR state.
591 */
592 #define PERF_EV_CAP_SOFTWARE BIT(0)
593 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
594 #define PERF_EV_CAP_SIBLING BIT(2)
595
596 #define SWEVENT_HLIST_BITS 8
597 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
598
599 struct swevent_hlist {
600 struct hlist_head heads[SWEVENT_HLIST_SIZE];
601 struct rcu_head rcu_head;
602 };
603
604 #define PERF_ATTACH_CONTEXT 0x01
605 #define PERF_ATTACH_GROUP 0x02
606 #define PERF_ATTACH_TASK 0x04
607 #define PERF_ATTACH_TASK_DATA 0x08
608 #define PERF_ATTACH_ITRACE 0x10
609
610 struct perf_cgroup;
611 struct perf_buffer;
612
613 struct pmu_event_list {
614 raw_spinlock_t lock;
615 struct list_head list;
616 };
617
618 #define for_each_sibling_event(sibling, event) \
619 if ((event)->group_leader == (event)) \
620 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
621
622 /**
623 * struct perf_event - performance event kernel representation:
624 */
625 struct perf_event {
626 #ifdef CONFIG_PERF_EVENTS
627 /*
628 * entry onto perf_event_context::event_list;
629 * modifications require ctx->lock
630 * RCU safe iterations.
631 */
632 struct list_head event_entry;
633
634 /*
635 * Locked for modification by both ctx->mutex and ctx->lock; holding
636 * either sufficies for read.
637 */
638 struct list_head sibling_list;
639 struct list_head active_list;
640 /*
641 * Node on the pinned or flexible tree located at the event context;
642 */
643 struct rb_node group_node;
644 u64 group_index;
645 /*
646 * We need storage to track the entries in perf_pmu_migrate_context; we
647 * cannot use the event_entry because of RCU and we want to keep the
648 * group in tact which avoids us using the other two entries.
649 */
650 struct list_head migrate_entry;
651
652 struct hlist_node hlist_entry;
653 struct list_head active_entry;
654 int nr_siblings;
655
656 /* Not serialized. Only written during event initialization. */
657 int event_caps;
658 /* The cumulative AND of all event_caps for events in this group. */
659 int group_caps;
660
661 struct perf_event *group_leader;
662 struct pmu *pmu;
663 void *pmu_private;
664
665 enum perf_event_state state;
666 unsigned int attach_state;
667 local64_t count;
668 atomic64_t child_count;
669
670 /*
671 * These are the total time in nanoseconds that the event
672 * has been enabled (i.e. eligible to run, and the task has
673 * been scheduled in, if this is a per-task event)
674 * and running (scheduled onto the CPU), respectively.
675 */
676 u64 total_time_enabled;
677 u64 total_time_running;
678 u64 tstamp;
679
680 /*
681 * timestamp shadows the actual context timing but it can
682 * be safely used in NMI interrupt context. It reflects the
683 * context time as it was when the event was last scheduled in.
684 *
685 * ctx_time already accounts for ctx->timestamp. Therefore to
686 * compute ctx_time for a sample, simply add perf_clock().
687 */
688 u64 shadow_ctx_time;
689
690 struct perf_event_attr attr;
691 u16 header_size;
692 u16 id_header_size;
693 u16 read_size;
694 struct hw_perf_event hw;
695
696 struct perf_event_context *ctx;
697 atomic_long_t refcount;
698
699 /*
700 * These accumulate total time (in nanoseconds) that children
701 * events have been enabled and running, respectively.
702 */
703 atomic64_t child_total_time_enabled;
704 atomic64_t child_total_time_running;
705
706 /*
707 * Protect attach/detach and child_list:
708 */
709 struct mutex child_mutex;
710 struct list_head child_list;
711 struct perf_event *parent;
712
713 int oncpu;
714 int cpu;
715
716 struct list_head owner_entry;
717 struct task_struct *owner;
718
719 /* mmap bits */
720 struct mutex mmap_mutex;
721 atomic_t mmap_count;
722
723 struct perf_buffer *rb;
724 struct list_head rb_entry;
725 unsigned long rcu_batches;
726 int rcu_pending;
727
728 /* poll related */
729 wait_queue_head_t waitq;
730 struct fasync_struct *fasync;
731
732 /* delayed work for NMIs and such */
733 int pending_wakeup;
734 int pending_kill;
735 int pending_disable;
736 struct irq_work pending;
737
738 atomic_t event_limit;
739
740 /* address range filters */
741 struct perf_addr_filters_head addr_filters;
742 /* vma address array for file-based filders */
743 struct perf_addr_filter_range *addr_filter_ranges;
744 unsigned long addr_filters_gen;
745
746 /* for aux_output events */
747 struct perf_event *aux_event;
748
749 void (*destroy)(struct perf_event *);
750 struct rcu_head rcu_head;
751
752 struct pid_namespace *ns;
753 u64 id;
754
755 u64 (*clock)(void);
756 perf_overflow_handler_t overflow_handler;
757 void *overflow_handler_context;
758 #ifdef CONFIG_BPF_SYSCALL
759 perf_overflow_handler_t orig_overflow_handler;
760 struct bpf_prog *prog;
761 #endif
762
763 #ifdef CONFIG_EVENT_TRACING
764 struct trace_event_call *tp_event;
765 struct event_filter *filter;
766 #ifdef CONFIG_FUNCTION_TRACER
767 struct ftrace_ops ftrace_ops;
768 #endif
769 #endif
770
771 #ifdef CONFIG_CGROUP_PERF
772 struct perf_cgroup *cgrp; /* cgroup event is attach to */
773 #endif
774
775 #ifdef CONFIG_SECURITY
776 void *security;
777 #endif
778 struct list_head sb_list;
779 #endif /* CONFIG_PERF_EVENTS */
780 };
781
782
783 struct perf_event_groups {
784 struct rb_root tree;
785 u64 index;
786 };
787
788 /**
789 * struct perf_event_context - event context structure
790 *
791 * Used as a container for task events and CPU events as well:
792 */
793 struct perf_event_context {
794 struct pmu *pmu;
795 /*
796 * Protect the states of the events in the list,
797 * nr_active, and the list:
798 */
799 raw_spinlock_t lock;
800 /*
801 * Protect the list of events. Locking either mutex or lock
802 * is sufficient to ensure the list doesn't change; to change
803 * the list you need to lock both the mutex and the spinlock.
804 */
805 struct mutex mutex;
806
807 struct list_head active_ctx_list;
808 struct perf_event_groups pinned_groups;
809 struct perf_event_groups flexible_groups;
810 struct list_head event_list;
811
812 struct list_head pinned_active;
813 struct list_head flexible_active;
814
815 int nr_events;
816 int nr_active;
817 int is_active;
818 int nr_stat;
819 int nr_freq;
820 int rotate_disable;
821 /*
822 * Set when nr_events != nr_active, except tolerant to events not
823 * necessary to be active due to scheduling constraints, such as cgroups.
824 */
825 int rotate_necessary;
826 refcount_t refcount;
827 struct task_struct *task;
828
829 /*
830 * Context clock, runs when context enabled.
831 */
832 u64 time;
833 u64 timestamp;
834
835 /*
836 * These fields let us detect when two contexts have both
837 * been cloned (inherited) from a common ancestor.
838 */
839 struct perf_event_context *parent_ctx;
840 u64 parent_gen;
841 u64 generation;
842 int pin_count;
843 #ifdef CONFIG_CGROUP_PERF
844 int nr_cgroups; /* cgroup evts */
845 #endif
846 void *task_ctx_data; /* pmu specific data */
847 struct rcu_head rcu_head;
848 };
849
850 /*
851 * Number of contexts where an event can trigger:
852 * task, softirq, hardirq, nmi.
853 */
854 #define PERF_NR_CONTEXTS 4
855
856 /**
857 * struct perf_event_cpu_context - per cpu event context structure
858 */
859 struct perf_cpu_context {
860 struct perf_event_context ctx;
861 struct perf_event_context *task_ctx;
862 int active_oncpu;
863 int exclusive;
864
865 raw_spinlock_t hrtimer_lock;
866 struct hrtimer hrtimer;
867 ktime_t hrtimer_interval;
868 unsigned int hrtimer_active;
869
870 #ifdef CONFIG_CGROUP_PERF
871 struct perf_cgroup *cgrp;
872 struct list_head cgrp_cpuctx_entry;
873 #endif
874
875 int sched_cb_usage;
876
877 int online;
878 /*
879 * Per-CPU storage for iterators used in visit_groups_merge. The default
880 * storage is of size 2 to hold the CPU and any CPU event iterators.
881 */
882 int heap_size;
883 struct perf_event **heap;
884 struct perf_event *heap_default[2];
885 };
886
887 struct perf_output_handle {
888 struct perf_event *event;
889 struct perf_buffer *rb;
890 unsigned long wakeup;
891 unsigned long size;
892 u64 aux_flags;
893 union {
894 void *addr;
895 unsigned long head;
896 };
897 int page;
898 };
899
900 struct bpf_perf_event_data_kern {
901 bpf_user_pt_regs_t *regs;
902 struct perf_sample_data *data;
903 struct perf_event *event;
904 };
905
906 #ifdef CONFIG_CGROUP_PERF
907
908 /*
909 * perf_cgroup_info keeps track of time_enabled for a cgroup.
910 * This is a per-cpu dynamically allocated data structure.
911 */
912 struct perf_cgroup_info {
913 u64 time;
914 u64 timestamp;
915 };
916
917 struct perf_cgroup {
918 struct cgroup_subsys_state css;
919 struct perf_cgroup_info __percpu *info;
920 };
921
922 /*
923 * Must ensure cgroup is pinned (css_get) before calling
924 * this function. In other words, we cannot call this function
925 * if there is no cgroup event for the current CPU context.
926 */
927 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)928 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
929 {
930 return container_of(task_css_check(task, perf_event_cgrp_id,
931 ctx ? lockdep_is_held(&ctx->lock)
932 : true),
933 struct perf_cgroup, css);
934 }
935 #endif /* CONFIG_CGROUP_PERF */
936
937 #ifdef CONFIG_PERF_EVENTS
938
939 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
940 struct perf_event *event);
941 extern void perf_aux_output_end(struct perf_output_handle *handle,
942 unsigned long size);
943 extern int perf_aux_output_skip(struct perf_output_handle *handle,
944 unsigned long size);
945 extern void *perf_get_aux(struct perf_output_handle *handle);
946 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
947 extern void perf_event_itrace_started(struct perf_event *event);
948
949 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
950 extern void perf_pmu_unregister(struct pmu *pmu);
951
952 extern int perf_num_counters(void);
953 extern const char *perf_pmu_name(void);
954 extern void __perf_event_task_sched_in(struct task_struct *prev,
955 struct task_struct *task);
956 extern void __perf_event_task_sched_out(struct task_struct *prev,
957 struct task_struct *next);
958 extern int perf_event_init_task(struct task_struct *child);
959 extern void perf_event_exit_task(struct task_struct *child);
960 extern void perf_event_free_task(struct task_struct *task);
961 extern void perf_event_delayed_put(struct task_struct *task);
962 extern struct file *perf_event_get(unsigned int fd);
963 extern const struct perf_event *perf_get_event(struct file *file);
964 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
965 extern void perf_event_print_debug(void);
966 extern void perf_pmu_disable(struct pmu *pmu);
967 extern void perf_pmu_enable(struct pmu *pmu);
968 extern void perf_sched_cb_dec(struct pmu *pmu);
969 extern void perf_sched_cb_inc(struct pmu *pmu);
970 extern int perf_event_task_disable(void);
971 extern int perf_event_task_enable(void);
972
973 extern void perf_pmu_resched(struct pmu *pmu);
974
975 extern int perf_event_refresh(struct perf_event *event, int refresh);
976 extern void perf_event_update_userpage(struct perf_event *event);
977 extern int perf_event_release_kernel(struct perf_event *event);
978 extern struct perf_event *
979 perf_event_create_kernel_counter(struct perf_event_attr *attr,
980 int cpu,
981 struct task_struct *task,
982 perf_overflow_handler_t callback,
983 void *context);
984 extern void perf_pmu_migrate_context(struct pmu *pmu,
985 int src_cpu, int dst_cpu);
986 int perf_event_read_local(struct perf_event *event, u64 *value,
987 u64 *enabled, u64 *running);
988 extern u64 perf_event_read_value(struct perf_event *event,
989 u64 *enabled, u64 *running);
990
991
992 struct perf_sample_data {
993 /*
994 * Fields set by perf_sample_data_init(), group so as to
995 * minimize the cachelines touched.
996 */
997 u64 addr;
998 struct perf_raw_record *raw;
999 struct perf_branch_stack *br_stack;
1000 u64 period;
1001 u64 weight;
1002 u64 txn;
1003 union perf_mem_data_src data_src;
1004
1005 /*
1006 * The other fields, optionally {set,used} by
1007 * perf_{prepare,output}_sample().
1008 */
1009 u64 type;
1010 u64 ip;
1011 struct {
1012 u32 pid;
1013 u32 tid;
1014 } tid_entry;
1015 u64 time;
1016 u64 id;
1017 u64 stream_id;
1018 struct {
1019 u32 cpu;
1020 u32 reserved;
1021 } cpu_entry;
1022 struct perf_callchain_entry *callchain;
1023 u64 aux_size;
1024
1025 struct perf_regs regs_user;
1026 struct perf_regs regs_intr;
1027 u64 stack_user_size;
1028
1029 u64 phys_addr;
1030 u64 cgroup;
1031 } ____cacheline_aligned;
1032
1033 /* default value for data source */
1034 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1035 PERF_MEM_S(LVL, NA) |\
1036 PERF_MEM_S(SNOOP, NA) |\
1037 PERF_MEM_S(LOCK, NA) |\
1038 PERF_MEM_S(TLB, NA))
1039
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1040 static inline void perf_sample_data_init(struct perf_sample_data *data,
1041 u64 addr, u64 period)
1042 {
1043 /* remaining struct members initialized in perf_prepare_sample() */
1044 data->addr = addr;
1045 data->raw = NULL;
1046 data->br_stack = NULL;
1047 data->period = period;
1048 data->weight = 0;
1049 data->data_src.val = PERF_MEM_NA;
1050 data->txn = 0;
1051 }
1052
1053 extern void perf_output_sample(struct perf_output_handle *handle,
1054 struct perf_event_header *header,
1055 struct perf_sample_data *data,
1056 struct perf_event *event);
1057 extern void perf_prepare_sample(struct perf_event_header *header,
1058 struct perf_sample_data *data,
1059 struct perf_event *event,
1060 struct pt_regs *regs);
1061
1062 extern int perf_event_overflow(struct perf_event *event,
1063 struct perf_sample_data *data,
1064 struct pt_regs *regs);
1065
1066 extern void perf_event_output_forward(struct perf_event *event,
1067 struct perf_sample_data *data,
1068 struct pt_regs *regs);
1069 extern void perf_event_output_backward(struct perf_event *event,
1070 struct perf_sample_data *data,
1071 struct pt_regs *regs);
1072 extern int perf_event_output(struct perf_event *event,
1073 struct perf_sample_data *data,
1074 struct pt_regs *regs);
1075
1076 static inline bool
is_default_overflow_handler(struct perf_event * event)1077 is_default_overflow_handler(struct perf_event *event)
1078 {
1079 if (likely(event->overflow_handler == perf_event_output_forward))
1080 return true;
1081 if (unlikely(event->overflow_handler == perf_event_output_backward))
1082 return true;
1083 return false;
1084 }
1085
1086 extern void
1087 perf_event_header__init_id(struct perf_event_header *header,
1088 struct perf_sample_data *data,
1089 struct perf_event *event);
1090 extern void
1091 perf_event__output_id_sample(struct perf_event *event,
1092 struct perf_output_handle *handle,
1093 struct perf_sample_data *sample);
1094
1095 extern void
1096 perf_log_lost_samples(struct perf_event *event, u64 lost);
1097
event_has_any_exclude_flag(struct perf_event * event)1098 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1099 {
1100 struct perf_event_attr *attr = &event->attr;
1101
1102 return attr->exclude_idle || attr->exclude_user ||
1103 attr->exclude_kernel || attr->exclude_hv ||
1104 attr->exclude_guest || attr->exclude_host;
1105 }
1106
is_sampling_event(struct perf_event * event)1107 static inline bool is_sampling_event(struct perf_event *event)
1108 {
1109 return event->attr.sample_period != 0;
1110 }
1111
1112 /*
1113 * Return 1 for a software event, 0 for a hardware event
1114 */
is_software_event(struct perf_event * event)1115 static inline int is_software_event(struct perf_event *event)
1116 {
1117 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1118 }
1119
1120 /*
1121 * Return 1 for event in sw context, 0 for event in hw context
1122 */
in_software_context(struct perf_event * event)1123 static inline int in_software_context(struct perf_event *event)
1124 {
1125 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1126 }
1127
is_exclusive_pmu(struct pmu * pmu)1128 static inline int is_exclusive_pmu(struct pmu *pmu)
1129 {
1130 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1131 }
1132
1133 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1134
1135 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1136 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1137
1138 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1139 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1140 #endif
1141
1142 /*
1143 * When generating a perf sample in-line, instead of from an interrupt /
1144 * exception, we lack a pt_regs. This is typically used from software events
1145 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1146 *
1147 * We typically don't need a full set, but (for x86) do require:
1148 * - ip for PERF_SAMPLE_IP
1149 * - cs for user_mode() tests
1150 * - sp for PERF_SAMPLE_CALLCHAIN
1151 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1152 *
1153 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1154 * things like PERF_SAMPLE_REGS_INTR.
1155 */
perf_fetch_caller_regs(struct pt_regs * regs)1156 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1157 {
1158 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1159 }
1160
1161 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1162 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1163 {
1164 if (static_key_false(&perf_swevent_enabled[event_id]))
1165 __perf_sw_event(event_id, nr, regs, addr);
1166 }
1167
1168 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1169
1170 /*
1171 * 'Special' version for the scheduler, it hard assumes no recursion,
1172 * which is guaranteed by us not actually scheduling inside other swevents
1173 * because those disable preemption.
1174 */
1175 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1176 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1177 {
1178 if (static_key_false(&perf_swevent_enabled[event_id])) {
1179 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1180
1181 perf_fetch_caller_regs(regs);
1182 ___perf_sw_event(event_id, nr, regs, addr);
1183 }
1184 }
1185
1186 extern struct static_key_false perf_sched_events;
1187
1188 static __always_inline bool
perf_sw_migrate_enabled(void)1189 perf_sw_migrate_enabled(void)
1190 {
1191 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1192 return true;
1193 return false;
1194 }
1195
perf_event_task_migrate(struct task_struct * task)1196 static inline void perf_event_task_migrate(struct task_struct *task)
1197 {
1198 if (perf_sw_migrate_enabled())
1199 task->sched_migrated = 1;
1200 }
1201
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1202 static inline void perf_event_task_sched_in(struct task_struct *prev,
1203 struct task_struct *task)
1204 {
1205 if (static_branch_unlikely(&perf_sched_events))
1206 __perf_event_task_sched_in(prev, task);
1207
1208 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1209 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1210
1211 perf_fetch_caller_regs(regs);
1212 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1213 task->sched_migrated = 0;
1214 }
1215 }
1216
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1217 static inline void perf_event_task_sched_out(struct task_struct *prev,
1218 struct task_struct *next)
1219 {
1220 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1221
1222 if (static_branch_unlikely(&perf_sched_events))
1223 __perf_event_task_sched_out(prev, next);
1224 }
1225
1226 extern void perf_event_mmap(struct vm_area_struct *vma);
1227
1228 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1229 bool unregister, const char *sym);
1230 extern void perf_event_bpf_event(struct bpf_prog *prog,
1231 enum perf_bpf_event_type type,
1232 u16 flags);
1233
1234 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1235 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1236 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1237
1238 extern void perf_event_exec(void);
1239 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1240 extern void perf_event_namespaces(struct task_struct *tsk);
1241 extern void perf_event_fork(struct task_struct *tsk);
1242 extern void perf_event_text_poke(const void *addr,
1243 const void *old_bytes, size_t old_len,
1244 const void *new_bytes, size_t new_len);
1245
1246 /* Callchains */
1247 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1248
1249 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1250 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1251 extern struct perf_callchain_entry *
1252 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1253 u32 max_stack, bool crosstask, bool add_mark);
1254 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1255 extern int get_callchain_buffers(int max_stack);
1256 extern void put_callchain_buffers(void);
1257 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1258 extern void put_callchain_entry(int rctx);
1259
1260 extern int sysctl_perf_event_max_stack;
1261 extern int sysctl_perf_event_max_contexts_per_stack;
1262
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1263 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1264 {
1265 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1266 struct perf_callchain_entry *entry = ctx->entry;
1267 entry->ip[entry->nr++] = ip;
1268 ++ctx->contexts;
1269 return 0;
1270 } else {
1271 ctx->contexts_maxed = true;
1272 return -1; /* no more room, stop walking the stack */
1273 }
1274 }
1275
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1276 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1277 {
1278 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1279 struct perf_callchain_entry *entry = ctx->entry;
1280 entry->ip[entry->nr++] = ip;
1281 ++ctx->nr;
1282 return 0;
1283 } else {
1284 return -1; /* no more room, stop walking the stack */
1285 }
1286 }
1287
1288 extern int sysctl_perf_event_paranoid;
1289 extern int sysctl_perf_event_mlock;
1290 extern int sysctl_perf_event_sample_rate;
1291 extern int sysctl_perf_cpu_time_max_percent;
1292
1293 extern void perf_sample_event_took(u64 sample_len_ns);
1294
1295 int perf_proc_update_handler(struct ctl_table *table, int write,
1296 void *buffer, size_t *lenp, loff_t *ppos);
1297 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1298 void *buffer, size_t *lenp, loff_t *ppos);
1299 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1300 void *buffer, size_t *lenp, loff_t *ppos);
1301
1302 /* Access to perf_event_open(2) syscall. */
1303 #define PERF_SECURITY_OPEN 0
1304
1305 /* Finer grained perf_event_open(2) access control. */
1306 #define PERF_SECURITY_CPU 1
1307 #define PERF_SECURITY_KERNEL 2
1308 #define PERF_SECURITY_TRACEPOINT 3
1309
perf_is_paranoid(void)1310 static inline int perf_is_paranoid(void)
1311 {
1312 return sysctl_perf_event_paranoid > -1;
1313 }
1314
perf_allow_kernel(struct perf_event_attr * attr)1315 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1316 {
1317 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1318 return -EACCES;
1319
1320 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1321 }
1322
perf_allow_cpu(struct perf_event_attr * attr)1323 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1324 {
1325 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1326 return -EACCES;
1327
1328 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1329 }
1330
perf_allow_tracepoint(struct perf_event_attr * attr)1331 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1332 {
1333 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1334 return -EPERM;
1335
1336 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1337 }
1338
1339 extern void perf_event_init(void);
1340 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1341 int entry_size, struct pt_regs *regs,
1342 struct hlist_head *head, int rctx,
1343 struct task_struct *task);
1344 extern void perf_bp_event(struct perf_event *event, void *data);
1345
1346 #ifndef perf_misc_flags
1347 # define perf_misc_flags(regs) \
1348 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1349 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1350 #endif
1351 #ifndef perf_arch_bpf_user_pt_regs
1352 # define perf_arch_bpf_user_pt_regs(regs) regs
1353 #endif
1354
has_branch_stack(struct perf_event * event)1355 static inline bool has_branch_stack(struct perf_event *event)
1356 {
1357 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1358 }
1359
needs_branch_stack(struct perf_event * event)1360 static inline bool needs_branch_stack(struct perf_event *event)
1361 {
1362 return event->attr.branch_sample_type != 0;
1363 }
1364
has_aux(struct perf_event * event)1365 static inline bool has_aux(struct perf_event *event)
1366 {
1367 return event->pmu->setup_aux;
1368 }
1369
is_write_backward(struct perf_event * event)1370 static inline bool is_write_backward(struct perf_event *event)
1371 {
1372 return !!event->attr.write_backward;
1373 }
1374
has_addr_filter(struct perf_event * event)1375 static inline bool has_addr_filter(struct perf_event *event)
1376 {
1377 return event->pmu->nr_addr_filters;
1378 }
1379
1380 /*
1381 * An inherited event uses parent's filters
1382 */
1383 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1384 perf_event_addr_filters(struct perf_event *event)
1385 {
1386 struct perf_addr_filters_head *ifh = &event->addr_filters;
1387
1388 if (event->parent)
1389 ifh = &event->parent->addr_filters;
1390
1391 return ifh;
1392 }
1393
1394 extern void perf_event_addr_filters_sync(struct perf_event *event);
1395
1396 extern int perf_output_begin(struct perf_output_handle *handle,
1397 struct perf_sample_data *data,
1398 struct perf_event *event, unsigned int size);
1399 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1400 struct perf_sample_data *data,
1401 struct perf_event *event,
1402 unsigned int size);
1403 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1404 struct perf_sample_data *data,
1405 struct perf_event *event,
1406 unsigned int size);
1407
1408 extern void perf_output_end(struct perf_output_handle *handle);
1409 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1410 const void *buf, unsigned int len);
1411 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1412 unsigned int len);
1413 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1414 struct perf_output_handle *handle,
1415 unsigned long from, unsigned long to);
1416 extern int perf_swevent_get_recursion_context(void);
1417 extern void perf_swevent_put_recursion_context(int rctx);
1418 extern u64 perf_swevent_set_period(struct perf_event *event);
1419 extern void perf_event_enable(struct perf_event *event);
1420 extern void perf_event_disable(struct perf_event *event);
1421 extern void perf_event_disable_local(struct perf_event *event);
1422 extern void perf_event_disable_inatomic(struct perf_event *event);
1423 extern void perf_event_task_tick(void);
1424 extern int perf_event_account_interrupt(struct perf_event *event);
1425 extern int perf_event_period(struct perf_event *event, u64 value);
1426 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1427 #else /* !CONFIG_PERF_EVENTS: */
1428 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1429 perf_aux_output_begin(struct perf_output_handle *handle,
1430 struct perf_event *event) { return NULL; }
1431 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1432 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1433 { }
1434 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1435 perf_aux_output_skip(struct perf_output_handle *handle,
1436 unsigned long size) { return -EINVAL; }
1437 static inline void *
perf_get_aux(struct perf_output_handle * handle)1438 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1439 static inline void
perf_event_task_migrate(struct task_struct * task)1440 perf_event_task_migrate(struct task_struct *task) { }
1441 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1442 perf_event_task_sched_in(struct task_struct *prev,
1443 struct task_struct *task) { }
1444 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1445 perf_event_task_sched_out(struct task_struct *prev,
1446 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1447 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1448 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1449 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1450 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1451 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1452 static inline const struct perf_event *perf_get_event(struct file *file)
1453 {
1454 return ERR_PTR(-EINVAL);
1455 }
perf_event_attrs(struct perf_event * event)1456 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1457 {
1458 return ERR_PTR(-EINVAL);
1459 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1460 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1461 u64 *enabled, u64 *running)
1462 {
1463 return -EINVAL;
1464 }
perf_event_print_debug(void)1465 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1466 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1467 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1468 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1469 {
1470 return -EINVAL;
1471 }
1472
1473 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1474 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1475 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1476 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1477 static inline void
perf_bp_event(struct perf_event * event,void * data)1478 perf_bp_event(struct perf_event *event, void *data) { }
1479
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1480 static inline int perf_register_guest_info_callbacks
1481 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1482 static inline int perf_unregister_guest_info_callbacks
1483 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1484
perf_event_mmap(struct vm_area_struct * vma)1485 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1486
1487 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1488 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1489 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1490 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1491 enum perf_bpf_event_type type,
1492 u16 flags) { }
perf_event_exec(void)1493 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1494 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1495 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1496 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1497 static inline void perf_event_text_poke(const void *addr,
1498 const void *old_bytes,
1499 size_t old_len,
1500 const void *new_bytes,
1501 size_t new_len) { }
perf_event_init(void)1502 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1503 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1504 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1505 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1506 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1507 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1508 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1509 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1510 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1511 static inline int perf_event_period(struct perf_event *event, u64 value)
1512 {
1513 return -EINVAL;
1514 }
perf_event_pause(struct perf_event * event,bool reset)1515 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1516 {
1517 return 0;
1518 }
1519 #endif
1520
1521 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1522 extern void perf_restore_debug_store(void);
1523 #else
perf_restore_debug_store(void)1524 static inline void perf_restore_debug_store(void) { }
1525 #endif
1526
perf_raw_frag_last(const struct perf_raw_frag * frag)1527 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1528 {
1529 return frag->pad < sizeof(u64);
1530 }
1531
1532 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1533
1534 struct perf_pmu_events_attr {
1535 struct device_attribute attr;
1536 u64 id;
1537 const char *event_str;
1538 };
1539
1540 struct perf_pmu_events_ht_attr {
1541 struct device_attribute attr;
1542 u64 id;
1543 const char *event_str_ht;
1544 const char *event_str_noht;
1545 };
1546
1547 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1548 char *page);
1549
1550 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1551 static struct perf_pmu_events_attr _var = { \
1552 .attr = __ATTR(_name, 0444, _show, NULL), \
1553 .id = _id, \
1554 };
1555
1556 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1557 static struct perf_pmu_events_attr _var = { \
1558 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1559 .id = 0, \
1560 .event_str = _str, \
1561 };
1562
1563 #define PMU_FORMAT_ATTR(_name, _format) \
1564 static ssize_t \
1565 _name##_show(struct device *dev, \
1566 struct device_attribute *attr, \
1567 char *page) \
1568 { \
1569 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1570 return sprintf(page, _format "\n"); \
1571 } \
1572 \
1573 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1574
1575 /* Performance counter hotplug functions */
1576 #ifdef CONFIG_PERF_EVENTS
1577 int perf_event_init_cpu(unsigned int cpu);
1578 int perf_event_exit_cpu(unsigned int cpu);
1579 #else
1580 #define perf_event_init_cpu NULL
1581 #define perf_event_exit_cpu NULL
1582 #endif
1583
1584 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1585 struct perf_event_mmap_page *userpg,
1586 u64 now);
1587
1588 #endif /* _LINUX_PERF_EVENT_H */
1589