1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11
12 #include <asm/pgtable-bits.h>
13
14 #ifndef __ASSEMBLY__
15
16 /* Page Upper Directory not used in RISC-V */
17 #include <asm-generic/pgtable-nopud.h>
18 #include <asm/page.h>
19 #include <asm/tlbflush.h>
20 #include <linux/mm_types.h>
21
22 #ifdef CONFIG_64BIT
23 #include <asm/pgtable-64.h>
24 #else
25 #include <asm/pgtable-32.h>
26 #endif /* CONFIG_64BIT */
27
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33 /* Number of PGD entries that a user-mode program can use */
34 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
35 #define FIRST_USER_ADDRESS 0
36
37 /* Page protection bits */
38 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
39
40 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
41 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
42 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
43 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
44 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
45 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
46 _PAGE_EXEC | _PAGE_WRITE)
47
48 #define PAGE_COPY PAGE_READ
49 #define PAGE_COPY_EXEC PAGE_EXEC
50 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
51 #define PAGE_SHARED PAGE_WRITE
52 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
53
54 #define _PAGE_KERNEL (_PAGE_READ \
55 | _PAGE_WRITE \
56 | _PAGE_PRESENT \
57 | _PAGE_ACCESSED \
58 | _PAGE_DIRTY)
59
60 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
61 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
62
63 #define PAGE_TABLE __pgprot(_PAGE_TABLE)
64
65 extern pgd_t swapper_pg_dir[];
66
67 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
68 #define __P000 PAGE_NONE
69 #define __P001 PAGE_READ
70 #define __P010 PAGE_COPY
71 #define __P011 PAGE_COPY
72 #define __P100 PAGE_EXEC
73 #define __P101 PAGE_READ_EXEC
74 #define __P110 PAGE_COPY_EXEC
75 #define __P111 PAGE_COPY_READ_EXEC
76
77 /* MAP_SHARED permissions: xwr */
78 #define __S000 PAGE_NONE
79 #define __S001 PAGE_READ
80 #define __S010 PAGE_SHARED
81 #define __S011 PAGE_SHARED
82 #define __S100 PAGE_EXEC
83 #define __S101 PAGE_READ_EXEC
84 #define __S110 PAGE_SHARED_EXEC
85 #define __S111 PAGE_SHARED_EXEC
86
87 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
88 #define VMALLOC_END (PAGE_OFFSET - 1)
89 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
90 #define PCI_IO_SIZE SZ_16M
91
92 /*
93 * Roughly size the vmemmap space to be large enough to fit enough
94 * struct pages to map half the virtual address space. Then
95 * position vmemmap directly below the VMALLOC region.
96 */
97 #define VMEMMAP_SHIFT \
98 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
99 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
100 #define VMEMMAP_END (VMALLOC_START - 1)
101 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
102
103 #define vmemmap ((struct page *)VMEMMAP_START)
104
105 #define PCI_IO_END VMEMMAP_START
106 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
107 #define FIXADDR_TOP PCI_IO_START
108
109 #ifdef CONFIG_64BIT
110 #define FIXADDR_SIZE PMD_SIZE
111 #else
112 #define FIXADDR_SIZE PGDIR_SIZE
113 #endif
114 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
115
116 /*
117 * ZERO_PAGE is a global shared page that is always zero,
118 * used for zero-mapped memory areas, etc.
119 */
120 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
121 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
122
pmd_present(pmd_t pmd)123 static inline int pmd_present(pmd_t pmd)
124 {
125 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
126 }
127
pmd_none(pmd_t pmd)128 static inline int pmd_none(pmd_t pmd)
129 {
130 return (pmd_val(pmd) == 0);
131 }
132
pmd_bad(pmd_t pmd)133 static inline int pmd_bad(pmd_t pmd)
134 {
135 return !pmd_present(pmd);
136 }
137
set_pmd(pmd_t * pmdp,pmd_t pmd)138 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
139 {
140 *pmdp = pmd;
141 }
142
pmd_clear(pmd_t * pmdp)143 static inline void pmd_clear(pmd_t *pmdp)
144 {
145 set_pmd(pmdp, __pmd(0));
146 }
147
pfn_pgd(unsigned long pfn,pgprot_t prot)148 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
149 {
150 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
151 }
152
_pgd_pfn(pgd_t pgd)153 static inline unsigned long _pgd_pfn(pgd_t pgd)
154 {
155 return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
156 }
157
158 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
159
160 /* Locate an entry in the page global directory */
pgd_offset(const struct mm_struct * mm,unsigned long addr)161 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
162 {
163 return mm->pgd + pgd_index(addr);
164 }
165 /* Locate an entry in the kernel page global directory */
166 #define pgd_offset_k(addr) pgd_offset(&init_mm, (addr))
167
pmd_page(pmd_t pmd)168 static inline struct page *pmd_page(pmd_t pmd)
169 {
170 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
171 }
172
pmd_page_vaddr(pmd_t pmd)173 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
174 {
175 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
176 }
177
178 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)179 static inline unsigned long pte_pfn(pte_t pte)
180 {
181 return (pte_val(pte) >> _PAGE_PFN_SHIFT);
182 }
183
184 #define pte_page(x) pfn_to_page(pte_pfn(x))
185
186 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)187 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
188 {
189 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
190 }
191
192 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
193
194 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
195
pte_offset_kernel(pmd_t * pmd,unsigned long addr)196 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
197 {
198 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
199 }
200
201 #define pte_offset_map(dir, addr) pte_offset_kernel((dir), (addr))
202 #define pte_unmap(pte) ((void)(pte))
203
pte_present(pte_t pte)204 static inline int pte_present(pte_t pte)
205 {
206 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
207 }
208
pte_none(pte_t pte)209 static inline int pte_none(pte_t pte)
210 {
211 return (pte_val(pte) == 0);
212 }
213
pte_write(pte_t pte)214 static inline int pte_write(pte_t pte)
215 {
216 return pte_val(pte) & _PAGE_WRITE;
217 }
218
pte_exec(pte_t pte)219 static inline int pte_exec(pte_t pte)
220 {
221 return pte_val(pte) & _PAGE_EXEC;
222 }
223
pte_huge(pte_t pte)224 static inline int pte_huge(pte_t pte)
225 {
226 return pte_present(pte)
227 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
228 }
229
pte_dirty(pte_t pte)230 static inline int pte_dirty(pte_t pte)
231 {
232 return pte_val(pte) & _PAGE_DIRTY;
233 }
234
pte_young(pte_t pte)235 static inline int pte_young(pte_t pte)
236 {
237 return pte_val(pte) & _PAGE_ACCESSED;
238 }
239
pte_special(pte_t pte)240 static inline int pte_special(pte_t pte)
241 {
242 return pte_val(pte) & _PAGE_SPECIAL;
243 }
244
245 /* static inline pte_t pte_rdprotect(pte_t pte) */
246
pte_wrprotect(pte_t pte)247 static inline pte_t pte_wrprotect(pte_t pte)
248 {
249 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
250 }
251
252 /* static inline pte_t pte_mkread(pte_t pte) */
253
pte_mkwrite(pte_t pte)254 static inline pte_t pte_mkwrite(pte_t pte)
255 {
256 return __pte(pte_val(pte) | _PAGE_WRITE);
257 }
258
259 /* static inline pte_t pte_mkexec(pte_t pte) */
260
pte_mkdirty(pte_t pte)261 static inline pte_t pte_mkdirty(pte_t pte)
262 {
263 return __pte(pte_val(pte) | _PAGE_DIRTY);
264 }
265
pte_mkclean(pte_t pte)266 static inline pte_t pte_mkclean(pte_t pte)
267 {
268 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
269 }
270
pte_mkyoung(pte_t pte)271 static inline pte_t pte_mkyoung(pte_t pte)
272 {
273 return __pte(pte_val(pte) | _PAGE_ACCESSED);
274 }
275
pte_mkold(pte_t pte)276 static inline pte_t pte_mkold(pte_t pte)
277 {
278 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
279 }
280
pte_mkspecial(pte_t pte)281 static inline pte_t pte_mkspecial(pte_t pte)
282 {
283 return __pte(pte_val(pte) | _PAGE_SPECIAL);
284 }
285
pte_mkhuge(pte_t pte)286 static inline pte_t pte_mkhuge(pte_t pte)
287 {
288 return pte;
289 }
290
291 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)292 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293 {
294 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
295 }
296
297 #define pgd_ERROR(e) \
298 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
299
300
301 /* Commit new configuration to MMU hardware */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)302 static inline void update_mmu_cache(struct vm_area_struct *vma,
303 unsigned long address, pte_t *ptep)
304 {
305 /*
306 * The kernel assumes that TLBs don't cache invalid entries, but
307 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
308 * cache flush; it is necessary even after writing invalid entries.
309 * Relying on flush_tlb_fix_spurious_fault would suffice, but
310 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
311 */
312 local_flush_tlb_page(address);
313 }
314
315 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)316 static inline int pte_same(pte_t pte_a, pte_t pte_b)
317 {
318 return pte_val(pte_a) == pte_val(pte_b);
319 }
320
321 /*
322 * Certain architectures need to do special things when PTEs within
323 * a page table are directly modified. Thus, the following hook is
324 * made available.
325 */
set_pte(pte_t * ptep,pte_t pteval)326 static inline void set_pte(pte_t *ptep, pte_t pteval)
327 {
328 *ptep = pteval;
329 }
330
331 void flush_icache_pte(pte_t pte);
332
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)333 static inline void set_pte_at(struct mm_struct *mm,
334 unsigned long addr, pte_t *ptep, pte_t pteval)
335 {
336 if (pte_present(pteval) && pte_exec(pteval))
337 flush_icache_pte(pteval);
338
339 set_pte(ptep, pteval);
340 }
341
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)342 static inline void pte_clear(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
344 {
345 set_pte_at(mm, addr, ptep, __pte(0));
346 }
347
348 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)349 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
350 unsigned long address, pte_t *ptep,
351 pte_t entry, int dirty)
352 {
353 if (!pte_same(*ptep, entry))
354 set_pte_at(vma->vm_mm, address, ptep, entry);
355 /*
356 * update_mmu_cache will unconditionally execute, handling both
357 * the case that the PTE changed and the spurious fault case.
358 */
359 return true;
360 }
361
362 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)363 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
364 unsigned long address, pte_t *ptep)
365 {
366 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
367 }
368
369 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)370 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
371 unsigned long address,
372 pte_t *ptep)
373 {
374 if (!pte_young(*ptep))
375 return 0;
376 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
377 }
378
379 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)380 static inline void ptep_set_wrprotect(struct mm_struct *mm,
381 unsigned long address, pte_t *ptep)
382 {
383 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
384 }
385
386 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)387 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
388 unsigned long address, pte_t *ptep)
389 {
390 /*
391 * This comment is borrowed from x86, but applies equally to RISC-V:
392 *
393 * Clearing the accessed bit without a TLB flush
394 * doesn't cause data corruption. [ It could cause incorrect
395 * page aging and the (mistaken) reclaim of hot pages, but the
396 * chance of that should be relatively low. ]
397 *
398 * So as a performance optimization don't flush the TLB when
399 * clearing the accessed bit, it will eventually be flushed by
400 * a context switch or a VM operation anyway. [ In the rare
401 * event of it not getting flushed for a long time the delay
402 * shouldn't really matter because there's no real memory
403 * pressure for swapout to react to. ]
404 */
405 return ptep_test_and_clear_young(vma, address, ptep);
406 }
407
408 /*
409 * Encode and decode a swap entry
410 *
411 * Format of swap PTE:
412 * bit 0: _PAGE_PRESENT (zero)
413 * bit 1: _PAGE_PROT_NONE (zero)
414 * bits 2 to 6: swap type
415 * bits 7 to XLEN-1: swap offset
416 */
417 #define __SWP_TYPE_SHIFT 2
418 #define __SWP_TYPE_BITS 5
419 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
420 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
421
422 #define MAX_SWAPFILES_CHECK() \
423 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
424
425 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
426 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
427 #define __swp_entry(type, offset) ((swp_entry_t) \
428 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
429
430 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
431 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
432
433 #define kern_addr_valid(addr) (1) /* FIXME */
434
435 extern void *dtb_early_va;
436 extern void setup_bootmem(void);
437 extern void paging_init(void);
438
439 /*
440 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
441 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
442 */
443 #ifdef CONFIG_64BIT
444 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
445 #else
446 #define TASK_SIZE FIXADDR_START
447 #endif
448
449 #include <asm-generic/pgtable.h>
450
451 #endif /* !__ASSEMBLY__ */
452
453 #endif /* _ASM_RISCV_PGTABLE_H */
454