1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26
27 /* Free memory management - zoned buddy allocator. */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36
37 /*
38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39 * costly to service. That is between allocation orders which should
40 * coalesce naturally under reasonable reclaim pressure and those which
41 * will not.
42 */
43 #define PAGE_ALLOC_COSTLY_ORDER 3
44
45 enum migratetype {
46 MIGRATE_UNMOVABLE,
47 MIGRATE_MOVABLE,
48 MIGRATE_RECLAIMABLE,
49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
51 #ifdef CONFIG_CMA
52 /*
53 * MIGRATE_CMA migration type is designed to mimic the way
54 * ZONE_MOVABLE works. Only movable pages can be allocated
55 * from MIGRATE_CMA pageblocks and page allocator never
56 * implicitly change migration type of MIGRATE_CMA pageblock.
57 *
58 * The way to use it is to change migratetype of a range of
59 * pageblocks to MIGRATE_CMA which can be done by
60 * __free_pageblock_cma() function.
61 */
62 MIGRATE_CMA,
63 #endif
64 #ifdef CONFIG_MEMORY_ISOLATION
65 MIGRATE_ISOLATE, /* can't allocate from here */
66 #endif
67 MIGRATE_TYPES
68 };
69
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72
73 #ifdef CONFIG_CMA
74 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #else
77 # define is_migrate_cma(migratetype) false
78 # define is_migrate_cma_page(_page) false
79 #endif
80
is_migrate_movable(int mt)81 static inline bool is_migrate_movable(int mt)
82 {
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84 }
85
86 /*
87 * Check whether a migratetype can be merged with another migratetype.
88 *
89 * It is only mergeable when it can fall back to other migratetypes for
90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91 */
migratetype_is_mergeable(int mt)92 static inline bool migratetype_is_mergeable(int mt)
93 {
94 return mt < MIGRATE_PCPTYPES;
95 }
96
97 #define for_each_migratetype_order(order, type) \
98 for (order = 0; order <= MAX_ORDER; order++) \
99 for (type = 0; type < MIGRATE_TYPES; type++)
100
101 extern int page_group_by_mobility_disabled;
102
103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
104
105 #define get_pageblock_migratetype(page) \
106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
107
108 #define folio_migratetype(folio) \
109 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
110 MIGRATETYPE_MASK)
111 struct free_area {
112 struct list_head free_list[MIGRATE_TYPES];
113 unsigned long nr_free;
114 };
115
116 struct pglist_data;
117
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
126 NR_VM_NUMA_EVENT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_EVENT_ITEMS 0
130 #endif
131
132 enum zone_stat_item {
133 /* First 128 byte cacheline (assuming 64 bit words) */
134 NR_FREE_PAGES,
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
143 /* Second 128 byte cacheline */
144 NR_BOUNCE,
145 #if IS_ENABLED(CONFIG_ZSMALLOC)
146 NR_ZSPAGES, /* allocated in zsmalloc */
147 #endif
148 NR_FREE_CMA_PAGES,
149 #ifdef CONFIG_UNACCEPTED_MEMORY
150 NR_UNACCEPTED,
151 #endif
152 NR_VM_ZONE_STAT_ITEMS };
153
154 enum node_stat_item {
155 NR_LRU_BASE,
156 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
157 NR_ACTIVE_ANON, /* " " " " " */
158 NR_INACTIVE_FILE, /* " " " " " */
159 NR_ACTIVE_FILE, /* " " " " " */
160 NR_UNEVICTABLE, /* " " " " " */
161 NR_SLAB_RECLAIMABLE_B,
162 NR_SLAB_UNRECLAIMABLE_B,
163 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
164 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
165 WORKINGSET_NODES,
166 WORKINGSET_REFAULT_BASE,
167 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
168 WORKINGSET_REFAULT_FILE,
169 WORKINGSET_ACTIVATE_BASE,
170 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
171 WORKINGSET_ACTIVATE_FILE,
172 WORKINGSET_RESTORE_BASE,
173 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
174 WORKINGSET_RESTORE_FILE,
175 WORKINGSET_NODERECLAIM,
176 NR_ANON_MAPPED, /* Mapped anonymous pages */
177 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
178 only modified from process context */
179 NR_FILE_PAGES,
180 NR_FILE_DIRTY,
181 NR_WRITEBACK,
182 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
183 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
184 NR_SHMEM_THPS,
185 NR_SHMEM_PMDMAPPED,
186 NR_FILE_THPS,
187 NR_FILE_PMDMAPPED,
188 NR_ANON_THPS,
189 NR_VMSCAN_WRITE,
190 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
191 NR_DIRTIED, /* page dirtyings since bootup */
192 NR_WRITTEN, /* page writings since bootup */
193 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
194 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
195 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
196 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
197 NR_KERNEL_STACK_KB, /* measured in KiB */
198 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
199 NR_KERNEL_SCS_KB, /* measured in KiB */
200 #endif
201 NR_PAGETABLE, /* used for pagetables */
202 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
203 #ifdef CONFIG_SWAP
204 NR_SWAPCACHE,
205 #endif
206 #ifdef CONFIG_NUMA_BALANCING
207 PGPROMOTE_SUCCESS, /* promote successfully */
208 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
209 #endif
210 NR_VM_NODE_STAT_ITEMS
211 };
212
213 /*
214 * Returns true if the item should be printed in THPs (/proc/vmstat
215 * currently prints number of anon, file and shmem THPs. But the item
216 * is charged in pages).
217 */
vmstat_item_print_in_thp(enum node_stat_item item)218 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
219 {
220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
221 return false;
222
223 return item == NR_ANON_THPS ||
224 item == NR_FILE_THPS ||
225 item == NR_SHMEM_THPS ||
226 item == NR_SHMEM_PMDMAPPED ||
227 item == NR_FILE_PMDMAPPED;
228 }
229
230 /*
231 * Returns true if the value is measured in bytes (most vmstat values are
232 * measured in pages). This defines the API part, the internal representation
233 * might be different.
234 */
vmstat_item_in_bytes(int idx)235 static __always_inline bool vmstat_item_in_bytes(int idx)
236 {
237 /*
238 * Global and per-node slab counters track slab pages.
239 * It's expected that changes are multiples of PAGE_SIZE.
240 * Internally values are stored in pages.
241 *
242 * Per-memcg and per-lruvec counters track memory, consumed
243 * by individual slab objects. These counters are actually
244 * byte-precise.
245 */
246 return (idx == NR_SLAB_RECLAIMABLE_B ||
247 idx == NR_SLAB_UNRECLAIMABLE_B);
248 }
249
250 /*
251 * We do arithmetic on the LRU lists in various places in the code,
252 * so it is important to keep the active lists LRU_ACTIVE higher in
253 * the array than the corresponding inactive lists, and to keep
254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255 *
256 * This has to be kept in sync with the statistics in zone_stat_item
257 * above and the descriptions in vmstat_text in mm/vmstat.c
258 */
259 #define LRU_BASE 0
260 #define LRU_ACTIVE 1
261 #define LRU_FILE 2
262
263 enum lru_list {
264 LRU_INACTIVE_ANON = LRU_BASE,
265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
268 LRU_UNEVICTABLE,
269 NR_LRU_LISTS
270 };
271
272 enum vmscan_throttle_state {
273 VMSCAN_THROTTLE_WRITEBACK,
274 VMSCAN_THROTTLE_ISOLATED,
275 VMSCAN_THROTTLE_NOPROGRESS,
276 VMSCAN_THROTTLE_CONGESTED,
277 NR_VMSCAN_THROTTLE,
278 };
279
280 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
281
282 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
283
is_file_lru(enum lru_list lru)284 static inline bool is_file_lru(enum lru_list lru)
285 {
286 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
287 }
288
is_active_lru(enum lru_list lru)289 static inline bool is_active_lru(enum lru_list lru)
290 {
291 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
292 }
293
294 #define WORKINGSET_ANON 0
295 #define WORKINGSET_FILE 1
296 #define ANON_AND_FILE 2
297
298 enum lruvec_flags {
299 /*
300 * An lruvec has many dirty pages backed by a congested BDI:
301 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
302 * It can be cleared by cgroup reclaim or kswapd.
303 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
304 * It can only be cleared by kswapd.
305 *
306 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
307 * reclaim, but not vice versa. This only applies to the root cgroup.
308 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
309 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
310 * by kswapd).
311 */
312 LRUVEC_CGROUP_CONGESTED,
313 LRUVEC_NODE_CONGESTED,
314 };
315
316 #endif /* !__GENERATING_BOUNDS_H */
317
318 /*
319 * Evictable pages are divided into multiple generations. The youngest and the
320 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
321 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
322 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
323 * corresponding generation. The gen counter in folio->flags stores gen+1 while
324 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
325 *
326 * A page is added to the youngest generation on faulting. The aging needs to
327 * check the accessed bit at least twice before handing this page over to the
328 * eviction. The first check takes care of the accessed bit set on the initial
329 * fault; the second check makes sure this page hasn't been used since then.
330 * This process, AKA second chance, requires a minimum of two generations,
331 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
332 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
333 * rest of generations, if they exist, are considered inactive. See
334 * lru_gen_is_active().
335 *
336 * PG_active is always cleared while a page is on one of lrugen->folios[] so
337 * that the aging needs not to worry about it. And it's set again when a page
338 * considered active is isolated for non-reclaiming purposes, e.g., migration.
339 * See lru_gen_add_folio() and lru_gen_del_folio().
340 *
341 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
342 * number of categories of the active/inactive LRU when keeping track of
343 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
344 * in folio->flags.
345 */
346 #define MIN_NR_GENS 2U
347 #define MAX_NR_GENS 4U
348
349 /*
350 * Each generation is divided into multiple tiers. A page accessed N times
351 * through file descriptors is in tier order_base_2(N). A page in the first tier
352 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
353 * tables or read ahead. A page in any other tier (N>1) is marked by
354 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
355 * supported without using additional bits in folio->flags.
356 *
357 * In contrast to moving across generations which requires the LRU lock, moving
358 * across tiers only involves atomic operations on folio->flags and therefore
359 * has a negligible cost in the buffered access path. In the eviction path,
360 * comparisons of refaulted/(evicted+protected) from the first tier and the
361 * rest infer whether pages accessed multiple times through file descriptors
362 * are statistically hot and thus worth protecting.
363 *
364 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
365 * number of categories of the active/inactive LRU when keeping track of
366 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
367 * folio->flags.
368 */
369 #define MAX_NR_TIERS 4U
370
371 #ifndef __GENERATING_BOUNDS_H
372
373 struct lruvec;
374 struct page_vma_mapped_walk;
375
376 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
377 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
378
379 #ifdef CONFIG_LRU_GEN
380
381 enum {
382 LRU_GEN_ANON,
383 LRU_GEN_FILE,
384 };
385
386 enum {
387 LRU_GEN_CORE,
388 LRU_GEN_MM_WALK,
389 LRU_GEN_NONLEAF_YOUNG,
390 NR_LRU_GEN_CAPS
391 };
392
393 #define MIN_LRU_BATCH BITS_PER_LONG
394 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
395
396 /* whether to keep historical stats from evicted generations */
397 #ifdef CONFIG_LRU_GEN_STATS
398 #define NR_HIST_GENS MAX_NR_GENS
399 #else
400 #define NR_HIST_GENS 1U
401 #endif
402
403 /*
404 * The youngest generation number is stored in max_seq for both anon and file
405 * types as they are aged on an equal footing. The oldest generation numbers are
406 * stored in min_seq[] separately for anon and file types as clean file pages
407 * can be evicted regardless of swap constraints.
408 *
409 * Normally anon and file min_seq are in sync. But if swapping is constrained,
410 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
411 * min_seq behind.
412 *
413 * The number of pages in each generation is eventually consistent and therefore
414 * can be transiently negative when reset_batch_size() is pending.
415 */
416 struct lru_gen_folio {
417 /* the aging increments the youngest generation number */
418 unsigned long max_seq;
419 /* the eviction increments the oldest generation numbers */
420 unsigned long min_seq[ANON_AND_FILE];
421 /* the birth time of each generation in jiffies */
422 unsigned long timestamps[MAX_NR_GENS];
423 /* the multi-gen LRU lists, lazily sorted on eviction */
424 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
425 /* the multi-gen LRU sizes, eventually consistent */
426 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
427 /* the exponential moving average of refaulted */
428 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
429 /* the exponential moving average of evicted+protected */
430 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
431 /* the first tier doesn't need protection, hence the minus one */
432 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
433 /* can be modified without holding the LRU lock */
434 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
435 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
436 /* whether the multi-gen LRU is enabled */
437 bool enabled;
438 #ifdef CONFIG_MEMCG
439 /* the memcg generation this lru_gen_folio belongs to */
440 u8 gen;
441 /* the list segment this lru_gen_folio belongs to */
442 u8 seg;
443 /* per-node lru_gen_folio list for global reclaim */
444 struct hlist_nulls_node list;
445 #endif
446 };
447
448 enum {
449 MM_LEAF_TOTAL, /* total leaf entries */
450 MM_LEAF_OLD, /* old leaf entries */
451 MM_LEAF_YOUNG, /* young leaf entries */
452 MM_NONLEAF_TOTAL, /* total non-leaf entries */
453 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
454 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
455 NR_MM_STATS
456 };
457
458 /* double-buffering Bloom filters */
459 #define NR_BLOOM_FILTERS 2
460
461 struct lru_gen_mm_state {
462 /* set to max_seq after each iteration */
463 unsigned long seq;
464 /* where the current iteration continues after */
465 struct list_head *head;
466 /* where the last iteration ended before */
467 struct list_head *tail;
468 /* Bloom filters flip after each iteration */
469 unsigned long *filters[NR_BLOOM_FILTERS];
470 /* the mm stats for debugging */
471 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
472 };
473
474 struct lru_gen_mm_walk {
475 /* the lruvec under reclaim */
476 struct lruvec *lruvec;
477 /* unstable max_seq from lru_gen_folio */
478 unsigned long max_seq;
479 /* the next address within an mm to scan */
480 unsigned long next_addr;
481 /* to batch promoted pages */
482 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
483 /* to batch the mm stats */
484 int mm_stats[NR_MM_STATS];
485 /* total batched items */
486 int batched;
487 bool can_swap;
488 bool force_scan;
489 };
490
491 void lru_gen_init_lruvec(struct lruvec *lruvec);
492 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
493
494 #ifdef CONFIG_MEMCG
495
496 /*
497 * For each node, memcgs are divided into two generations: the old and the
498 * young. For each generation, memcgs are randomly sharded into multiple bins
499 * to improve scalability. For each bin, the hlist_nulls is virtually divided
500 * into three segments: the head, the tail and the default.
501 *
502 * An onlining memcg is added to the tail of a random bin in the old generation.
503 * The eviction starts at the head of a random bin in the old generation. The
504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
505 * the old generation, is incremented when all its bins become empty.
506 *
507 * There are four operations:
508 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
509 * current generation (old or young) and updates its "seg" to "head";
510 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
511 * current generation (old or young) and updates its "seg" to "tail";
512 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
513 * generation, updates its "gen" to "old" and resets its "seg" to "default";
514 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
515 * young generation, updates its "gen" to "young" and resets its "seg" to
516 * "default".
517 *
518 * The events that trigger the above operations are:
519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
520 * 2. The first attempt to reclaim an memcg below low, which triggers
521 * MEMCG_LRU_TAIL;
522 * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
523 * which triggers MEMCG_LRU_TAIL;
524 * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
525 * which triggers MEMCG_LRU_YOUNG;
526 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
528 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
529 *
530 * Note that memcg LRU only applies to global reclaim, and the round-robin
531 * incrementing of their max_seq counters ensures the eventual fairness to all
532 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
533 */
534 #define MEMCG_NR_GENS 2
535 #define MEMCG_NR_BINS 8
536
537 struct lru_gen_memcg {
538 /* the per-node memcg generation counter */
539 unsigned long seq;
540 /* each memcg has one lru_gen_folio per node */
541 unsigned long nr_memcgs[MEMCG_NR_GENS];
542 /* per-node lru_gen_folio list for global reclaim */
543 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
544 /* protects the above */
545 spinlock_t lock;
546 };
547
548 void lru_gen_init_pgdat(struct pglist_data *pgdat);
549
550 void lru_gen_init_memcg(struct mem_cgroup *memcg);
551 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
552 void lru_gen_online_memcg(struct mem_cgroup *memcg);
553 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
554 void lru_gen_release_memcg(struct mem_cgroup *memcg);
555 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
556
557 #else /* !CONFIG_MEMCG */
558
559 #define MEMCG_NR_GENS 1
560
561 struct lru_gen_memcg {
562 };
563
lru_gen_init_pgdat(struct pglist_data * pgdat)564 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
565 {
566 }
567
568 #endif /* CONFIG_MEMCG */
569
570 #else /* !CONFIG_LRU_GEN */
571
lru_gen_init_pgdat(struct pglist_data * pgdat)572 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
573 {
574 }
575
lru_gen_init_lruvec(struct lruvec * lruvec)576 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
577 {
578 }
579
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)580 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
581 {
582 }
583
584 #ifdef CONFIG_MEMCG
585
lru_gen_init_memcg(struct mem_cgroup * memcg)586 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
587 {
588 }
589
lru_gen_exit_memcg(struct mem_cgroup * memcg)590 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
591 {
592 }
593
lru_gen_online_memcg(struct mem_cgroup * memcg)594 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
595 {
596 }
597
lru_gen_offline_memcg(struct mem_cgroup * memcg)598 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
599 {
600 }
601
lru_gen_release_memcg(struct mem_cgroup * memcg)602 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
603 {
604 }
605
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)606 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
607 {
608 }
609
610 #endif /* CONFIG_MEMCG */
611
612 #endif /* CONFIG_LRU_GEN */
613
614 struct lruvec {
615 struct list_head lists[NR_LRU_LISTS];
616 /* per lruvec lru_lock for memcg */
617 spinlock_t lru_lock;
618 /*
619 * These track the cost of reclaiming one LRU - file or anon -
620 * over the other. As the observed cost of reclaiming one LRU
621 * increases, the reclaim scan balance tips toward the other.
622 */
623 unsigned long anon_cost;
624 unsigned long file_cost;
625 /* Non-resident age, driven by LRU movement */
626 atomic_long_t nonresident_age;
627 /* Refaults at the time of last reclaim cycle */
628 unsigned long refaults[ANON_AND_FILE];
629 /* Various lruvec state flags (enum lruvec_flags) */
630 unsigned long flags;
631 #ifdef CONFIG_LRU_GEN
632 /* evictable pages divided into generations */
633 struct lru_gen_folio lrugen;
634 /* to concurrently iterate lru_gen_mm_list */
635 struct lru_gen_mm_state mm_state;
636 #endif
637 #ifdef CONFIG_MEMCG
638 struct pglist_data *pgdat;
639 #endif
640 };
641
642 /* Isolate unmapped pages */
643 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
644 /* Isolate for asynchronous migration */
645 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
646 /* Isolate unevictable pages */
647 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
648
649 /* LRU Isolation modes. */
650 typedef unsigned __bitwise isolate_mode_t;
651
652 enum zone_watermarks {
653 WMARK_MIN,
654 WMARK_LOW,
655 WMARK_HIGH,
656 WMARK_PROMO,
657 NR_WMARK
658 };
659
660 /*
661 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
662 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
663 * it should not contribute to serious fragmentation causing THP allocation
664 * failures.
665 */
666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 #define NR_PCP_THP 1
668 #else
669 #define NR_PCP_THP 0
670 #endif
671 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
672 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
673
674 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
675 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
676 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
677 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
678
679 struct per_cpu_pages {
680 spinlock_t lock; /* Protects lists field */
681 int count; /* number of pages in the list */
682 int high; /* high watermark, emptying needed */
683 int batch; /* chunk size for buddy add/remove */
684 short free_factor; /* batch scaling factor during free */
685 #ifdef CONFIG_NUMA
686 short expire; /* When 0, remote pagesets are drained */
687 #endif
688
689 /* Lists of pages, one per migrate type stored on the pcp-lists */
690 struct list_head lists[NR_PCP_LISTS];
691 } ____cacheline_aligned_in_smp;
692
693 struct per_cpu_zonestat {
694 #ifdef CONFIG_SMP
695 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
696 s8 stat_threshold;
697 #endif
698 #ifdef CONFIG_NUMA
699 /*
700 * Low priority inaccurate counters that are only folded
701 * on demand. Use a large type to avoid the overhead of
702 * folding during refresh_cpu_vm_stats.
703 */
704 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
705 #endif
706 };
707
708 struct per_cpu_nodestat {
709 s8 stat_threshold;
710 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
711 };
712
713 #endif /* !__GENERATING_BOUNDS.H */
714
715 enum zone_type {
716 /*
717 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
718 * to DMA to all of the addressable memory (ZONE_NORMAL).
719 * On architectures where this area covers the whole 32 bit address
720 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
721 * DMA addressing constraints. This distinction is important as a 32bit
722 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
723 * platforms may need both zones as they support peripherals with
724 * different DMA addressing limitations.
725 */
726 #ifdef CONFIG_ZONE_DMA
727 ZONE_DMA,
728 #endif
729 #ifdef CONFIG_ZONE_DMA32
730 ZONE_DMA32,
731 #endif
732 /*
733 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
734 * performed on pages in ZONE_NORMAL if the DMA devices support
735 * transfers to all addressable memory.
736 */
737 ZONE_NORMAL,
738 #ifdef CONFIG_HIGHMEM
739 /*
740 * A memory area that is only addressable by the kernel through
741 * mapping portions into its own address space. This is for example
742 * used by i386 to allow the kernel to address the memory beyond
743 * 900MB. The kernel will set up special mappings (page
744 * table entries on i386) for each page that the kernel needs to
745 * access.
746 */
747 ZONE_HIGHMEM,
748 #endif
749 /*
750 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
751 * movable pages with few exceptional cases described below. Main use
752 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
753 * likely to succeed, and to locally limit unmovable allocations - e.g.,
754 * to increase the number of THP/huge pages. Notable special cases are:
755 *
756 * 1. Pinned pages: (long-term) pinning of movable pages might
757 * essentially turn such pages unmovable. Therefore, we do not allow
758 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
759 * faulted, they come from the right zone right away. However, it is
760 * still possible that address space already has pages in
761 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
762 * touches that memory before pinning). In such case we migrate them
763 * to a different zone. When migration fails - pinning fails.
764 * 2. memblock allocations: kernelcore/movablecore setups might create
765 * situations where ZONE_MOVABLE contains unmovable allocations
766 * after boot. Memory offlining and allocations fail early.
767 * 3. Memory holes: kernelcore/movablecore setups might create very rare
768 * situations where ZONE_MOVABLE contains memory holes after boot,
769 * for example, if we have sections that are only partially
770 * populated. Memory offlining and allocations fail early.
771 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
772 * memory offlining, such pages cannot be allocated.
773 * 5. Unmovable PG_offline pages: in paravirtualized environments,
774 * hotplugged memory blocks might only partially be managed by the
775 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
776 * parts not manged by the buddy are unmovable PG_offline pages. In
777 * some cases (virtio-mem), such pages can be skipped during
778 * memory offlining, however, cannot be moved/allocated. These
779 * techniques might use alloc_contig_range() to hide previously
780 * exposed pages from the buddy again (e.g., to implement some sort
781 * of memory unplug in virtio-mem).
782 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
783 * situations where ZERO_PAGE(0) which is allocated differently
784 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
785 * cannot be migrated.
786 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
787 * memory to the MOVABLE zone, the vmemmap pages are also placed in
788 * such zone. Such pages cannot be really moved around as they are
789 * self-stored in the range, but they are treated as movable when
790 * the range they describe is about to be offlined.
791 *
792 * In general, no unmovable allocations that degrade memory offlining
793 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
794 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
795 * if has_unmovable_pages() states that there are no unmovable pages,
796 * there can be false negatives).
797 */
798 ZONE_MOVABLE,
799 #ifdef CONFIG_ZONE_DEVICE
800 ZONE_DEVICE,
801 #endif
802 __MAX_NR_ZONES
803
804 };
805
806 #ifndef __GENERATING_BOUNDS_H
807
808 #define ASYNC_AND_SYNC 2
809
810 struct zone {
811 /* Read-mostly fields */
812
813 /* zone watermarks, access with *_wmark_pages(zone) macros */
814 unsigned long _watermark[NR_WMARK];
815 unsigned long watermark_boost;
816
817 unsigned long nr_reserved_highatomic;
818
819 /*
820 * We don't know if the memory that we're going to allocate will be
821 * freeable or/and it will be released eventually, so to avoid totally
822 * wasting several GB of ram we must reserve some of the lower zone
823 * memory (otherwise we risk to run OOM on the lower zones despite
824 * there being tons of freeable ram on the higher zones). This array is
825 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
826 * changes.
827 */
828 long lowmem_reserve[MAX_NR_ZONES];
829
830 #ifdef CONFIG_NUMA
831 int node;
832 #endif
833 struct pglist_data *zone_pgdat;
834 struct per_cpu_pages __percpu *per_cpu_pageset;
835 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
836 /*
837 * the high and batch values are copied to individual pagesets for
838 * faster access
839 */
840 int pageset_high;
841 int pageset_batch;
842
843 #ifndef CONFIG_SPARSEMEM
844 /*
845 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
846 * In SPARSEMEM, this map is stored in struct mem_section
847 */
848 unsigned long *pageblock_flags;
849 #endif /* CONFIG_SPARSEMEM */
850
851 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
852 unsigned long zone_start_pfn;
853
854 /*
855 * spanned_pages is the total pages spanned by the zone, including
856 * holes, which is calculated as:
857 * spanned_pages = zone_end_pfn - zone_start_pfn;
858 *
859 * present_pages is physical pages existing within the zone, which
860 * is calculated as:
861 * present_pages = spanned_pages - absent_pages(pages in holes);
862 *
863 * present_early_pages is present pages existing within the zone
864 * located on memory available since early boot, excluding hotplugged
865 * memory.
866 *
867 * managed_pages is present pages managed by the buddy system, which
868 * is calculated as (reserved_pages includes pages allocated by the
869 * bootmem allocator):
870 * managed_pages = present_pages - reserved_pages;
871 *
872 * cma pages is present pages that are assigned for CMA use
873 * (MIGRATE_CMA).
874 *
875 * So present_pages may be used by memory hotplug or memory power
876 * management logic to figure out unmanaged pages by checking
877 * (present_pages - managed_pages). And managed_pages should be used
878 * by page allocator and vm scanner to calculate all kinds of watermarks
879 * and thresholds.
880 *
881 * Locking rules:
882 *
883 * zone_start_pfn and spanned_pages are protected by span_seqlock.
884 * It is a seqlock because it has to be read outside of zone->lock,
885 * and it is done in the main allocator path. But, it is written
886 * quite infrequently.
887 *
888 * The span_seq lock is declared along with zone->lock because it is
889 * frequently read in proximity to zone->lock. It's good to
890 * give them a chance of being in the same cacheline.
891 *
892 * Write access to present_pages at runtime should be protected by
893 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
894 * present_pages should use get_online_mems() to get a stable value.
895 */
896 atomic_long_t managed_pages;
897 unsigned long spanned_pages;
898 unsigned long present_pages;
899 #if defined(CONFIG_MEMORY_HOTPLUG)
900 unsigned long present_early_pages;
901 #endif
902 #ifdef CONFIG_CMA
903 unsigned long cma_pages;
904 #endif
905
906 const char *name;
907
908 #ifdef CONFIG_MEMORY_ISOLATION
909 /*
910 * Number of isolated pageblock. It is used to solve incorrect
911 * freepage counting problem due to racy retrieving migratetype
912 * of pageblock. Protected by zone->lock.
913 */
914 unsigned long nr_isolate_pageblock;
915 #endif
916
917 #ifdef CONFIG_MEMORY_HOTPLUG
918 /* see spanned/present_pages for more description */
919 seqlock_t span_seqlock;
920 #endif
921
922 int initialized;
923
924 /* Write-intensive fields used from the page allocator */
925 CACHELINE_PADDING(_pad1_);
926
927 /* free areas of different sizes */
928 struct free_area free_area[MAX_ORDER + 1];
929
930 #ifdef CONFIG_UNACCEPTED_MEMORY
931 /* Pages to be accepted. All pages on the list are MAX_ORDER */
932 struct list_head unaccepted_pages;
933 #endif
934
935 /* zone flags, see below */
936 unsigned long flags;
937
938 /* Primarily protects free_area */
939 spinlock_t lock;
940
941 /* Write-intensive fields used by compaction and vmstats. */
942 CACHELINE_PADDING(_pad2_);
943
944 /*
945 * When free pages are below this point, additional steps are taken
946 * when reading the number of free pages to avoid per-cpu counter
947 * drift allowing watermarks to be breached
948 */
949 unsigned long percpu_drift_mark;
950
951 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
952 /* pfn where compaction free scanner should start */
953 unsigned long compact_cached_free_pfn;
954 /* pfn where compaction migration scanner should start */
955 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
956 unsigned long compact_init_migrate_pfn;
957 unsigned long compact_init_free_pfn;
958 #endif
959
960 #ifdef CONFIG_COMPACTION
961 /*
962 * On compaction failure, 1<<compact_defer_shift compactions
963 * are skipped before trying again. The number attempted since
964 * last failure is tracked with compact_considered.
965 * compact_order_failed is the minimum compaction failed order.
966 */
967 unsigned int compact_considered;
968 unsigned int compact_defer_shift;
969 int compact_order_failed;
970 #endif
971
972 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
973 /* Set to true when the PG_migrate_skip bits should be cleared */
974 bool compact_blockskip_flush;
975 #endif
976
977 bool contiguous;
978
979 CACHELINE_PADDING(_pad3_);
980 /* Zone statistics */
981 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
982 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
983 } ____cacheline_internodealigned_in_smp;
984
985 enum pgdat_flags {
986 PGDAT_DIRTY, /* reclaim scanning has recently found
987 * many dirty file pages at the tail
988 * of the LRU.
989 */
990 PGDAT_WRITEBACK, /* reclaim scanning has recently found
991 * many pages under writeback
992 */
993 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
994 };
995
996 enum zone_flags {
997 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
998 * Cleared when kswapd is woken.
999 */
1000 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1001 };
1002
zone_managed_pages(struct zone * zone)1003 static inline unsigned long zone_managed_pages(struct zone *zone)
1004 {
1005 return (unsigned long)atomic_long_read(&zone->managed_pages);
1006 }
1007
zone_cma_pages(struct zone * zone)1008 static inline unsigned long zone_cma_pages(struct zone *zone)
1009 {
1010 #ifdef CONFIG_CMA
1011 return zone->cma_pages;
1012 #else
1013 return 0;
1014 #endif
1015 }
1016
zone_end_pfn(const struct zone * zone)1017 static inline unsigned long zone_end_pfn(const struct zone *zone)
1018 {
1019 return zone->zone_start_pfn + zone->spanned_pages;
1020 }
1021
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1022 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1023 {
1024 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1025 }
1026
zone_is_initialized(struct zone * zone)1027 static inline bool zone_is_initialized(struct zone *zone)
1028 {
1029 return zone->initialized;
1030 }
1031
zone_is_empty(struct zone * zone)1032 static inline bool zone_is_empty(struct zone *zone)
1033 {
1034 return zone->spanned_pages == 0;
1035 }
1036
1037 #ifndef BUILD_VDSO32_64
1038 /*
1039 * The zone field is never updated after free_area_init_core()
1040 * sets it, so none of the operations on it need to be atomic.
1041 */
1042
1043 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1044 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1045 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1046 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1047 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1048 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1049 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1050 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1051
1052 /*
1053 * Define the bit shifts to access each section. For non-existent
1054 * sections we define the shift as 0; that plus a 0 mask ensures
1055 * the compiler will optimise away reference to them.
1056 */
1057 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1059 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1060 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1061 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1062
1063 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064 #ifdef NODE_NOT_IN_PAGE_FLAGS
1065 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1066 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1067 SECTIONS_PGOFF : ZONES_PGOFF)
1068 #else
1069 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1070 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1071 NODES_PGOFF : ZONES_PGOFF)
1072 #endif
1073
1074 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1075
1076 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1077 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1078 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1079 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1080 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1081 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1082
page_zonenum(const struct page * page)1083 static inline enum zone_type page_zonenum(const struct page *page)
1084 {
1085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1087 }
1088
folio_zonenum(const struct folio * folio)1089 static inline enum zone_type folio_zonenum(const struct folio *folio)
1090 {
1091 return page_zonenum(&folio->page);
1092 }
1093
1094 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1095 static inline bool is_zone_device_page(const struct page *page)
1096 {
1097 return page_zonenum(page) == ZONE_DEVICE;
1098 }
1099
1100 /*
1101 * Consecutive zone device pages should not be merged into the same sgl
1102 * or bvec segment with other types of pages or if they belong to different
1103 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1104 * without scanning the entire segment. This helper returns true either if
1105 * both pages are not zone device pages or both pages are zone device pages
1106 * with the same pgmap.
1107 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1108 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1109 const struct page *b)
1110 {
1111 if (is_zone_device_page(a) != is_zone_device_page(b))
1112 return false;
1113 if (!is_zone_device_page(a))
1114 return true;
1115 return a->pgmap == b->pgmap;
1116 }
1117
1118 extern void memmap_init_zone_device(struct zone *, unsigned long,
1119 unsigned long, struct dev_pagemap *);
1120 #else
is_zone_device_page(const struct page * page)1121 static inline bool is_zone_device_page(const struct page *page)
1122 {
1123 return false;
1124 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1125 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1126 const struct page *b)
1127 {
1128 return true;
1129 }
1130 #endif
1131
folio_is_zone_device(const struct folio * folio)1132 static inline bool folio_is_zone_device(const struct folio *folio)
1133 {
1134 return is_zone_device_page(&folio->page);
1135 }
1136
is_zone_movable_page(const struct page * page)1137 static inline bool is_zone_movable_page(const struct page *page)
1138 {
1139 return page_zonenum(page) == ZONE_MOVABLE;
1140 }
1141
folio_is_zone_movable(const struct folio * folio)1142 static inline bool folio_is_zone_movable(const struct folio *folio)
1143 {
1144 return folio_zonenum(folio) == ZONE_MOVABLE;
1145 }
1146 #endif
1147
1148 /*
1149 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1150 * intersection with the given zone
1151 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1152 static inline bool zone_intersects(struct zone *zone,
1153 unsigned long start_pfn, unsigned long nr_pages)
1154 {
1155 if (zone_is_empty(zone))
1156 return false;
1157 if (start_pfn >= zone_end_pfn(zone) ||
1158 start_pfn + nr_pages <= zone->zone_start_pfn)
1159 return false;
1160
1161 return true;
1162 }
1163
1164 /*
1165 * The "priority" of VM scanning is how much of the queues we will scan in one
1166 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1167 * queues ("queue_length >> 12") during an aging round.
1168 */
1169 #define DEF_PRIORITY 12
1170
1171 /* Maximum number of zones on a zonelist */
1172 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1173
1174 enum {
1175 ZONELIST_FALLBACK, /* zonelist with fallback */
1176 #ifdef CONFIG_NUMA
1177 /*
1178 * The NUMA zonelists are doubled because we need zonelists that
1179 * restrict the allocations to a single node for __GFP_THISNODE.
1180 */
1181 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1182 #endif
1183 MAX_ZONELISTS
1184 };
1185
1186 /*
1187 * This struct contains information about a zone in a zonelist. It is stored
1188 * here to avoid dereferences into large structures and lookups of tables
1189 */
1190 struct zoneref {
1191 struct zone *zone; /* Pointer to actual zone */
1192 int zone_idx; /* zone_idx(zoneref->zone) */
1193 };
1194
1195 /*
1196 * One allocation request operates on a zonelist. A zonelist
1197 * is a list of zones, the first one is the 'goal' of the
1198 * allocation, the other zones are fallback zones, in decreasing
1199 * priority.
1200 *
1201 * To speed the reading of the zonelist, the zonerefs contain the zone index
1202 * of the entry being read. Helper functions to access information given
1203 * a struct zoneref are
1204 *
1205 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1206 * zonelist_zone_idx() - Return the index of the zone for an entry
1207 * zonelist_node_idx() - Return the index of the node for an entry
1208 */
1209 struct zonelist {
1210 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1211 };
1212
1213 /*
1214 * The array of struct pages for flatmem.
1215 * It must be declared for SPARSEMEM as well because there are configurations
1216 * that rely on that.
1217 */
1218 extern struct page *mem_map;
1219
1220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1221 struct deferred_split {
1222 spinlock_t split_queue_lock;
1223 struct list_head split_queue;
1224 unsigned long split_queue_len;
1225 };
1226 #endif
1227
1228 #ifdef CONFIG_MEMORY_FAILURE
1229 /*
1230 * Per NUMA node memory failure handling statistics.
1231 */
1232 struct memory_failure_stats {
1233 /*
1234 * Number of raw pages poisoned.
1235 * Cases not accounted: memory outside kernel control, offline page,
1236 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1237 * error events, and unpoison actions from hwpoison_unpoison.
1238 */
1239 unsigned long total;
1240 /*
1241 * Recovery results of poisoned raw pages handled by memory_failure,
1242 * in sync with mf_result.
1243 * total = ignored + failed + delayed + recovered.
1244 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1245 */
1246 unsigned long ignored;
1247 unsigned long failed;
1248 unsigned long delayed;
1249 unsigned long recovered;
1250 };
1251 #endif
1252
1253 /*
1254 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1255 * it's memory layout. On UMA machines there is a single pglist_data which
1256 * describes the whole memory.
1257 *
1258 * Memory statistics and page replacement data structures are maintained on a
1259 * per-zone basis.
1260 */
1261 typedef struct pglist_data {
1262 /*
1263 * node_zones contains just the zones for THIS node. Not all of the
1264 * zones may be populated, but it is the full list. It is referenced by
1265 * this node's node_zonelists as well as other node's node_zonelists.
1266 */
1267 struct zone node_zones[MAX_NR_ZONES];
1268
1269 /*
1270 * node_zonelists contains references to all zones in all nodes.
1271 * Generally the first zones will be references to this node's
1272 * node_zones.
1273 */
1274 struct zonelist node_zonelists[MAX_ZONELISTS];
1275
1276 int nr_zones; /* number of populated zones in this node */
1277 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1278 struct page *node_mem_map;
1279 #ifdef CONFIG_PAGE_EXTENSION
1280 struct page_ext *node_page_ext;
1281 #endif
1282 #endif
1283 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1284 /*
1285 * Must be held any time you expect node_start_pfn,
1286 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1287 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1288 * init.
1289 *
1290 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1291 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1292 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1293 *
1294 * Nests above zone->lock and zone->span_seqlock
1295 */
1296 spinlock_t node_size_lock;
1297 #endif
1298 unsigned long node_start_pfn;
1299 unsigned long node_present_pages; /* total number of physical pages */
1300 unsigned long node_spanned_pages; /* total size of physical page
1301 range, including holes */
1302 int node_id;
1303 wait_queue_head_t kswapd_wait;
1304 wait_queue_head_t pfmemalloc_wait;
1305
1306 /* workqueues for throttling reclaim for different reasons. */
1307 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1308
1309 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1310 unsigned long nr_reclaim_start; /* nr pages written while throttled
1311 * when throttling started. */
1312 #ifdef CONFIG_MEMORY_HOTPLUG
1313 struct mutex kswapd_lock;
1314 #endif
1315 struct task_struct *kswapd; /* Protected by kswapd_lock */
1316 int kswapd_order;
1317 enum zone_type kswapd_highest_zoneidx;
1318
1319 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1320
1321 #ifdef CONFIG_COMPACTION
1322 int kcompactd_max_order;
1323 enum zone_type kcompactd_highest_zoneidx;
1324 wait_queue_head_t kcompactd_wait;
1325 struct task_struct *kcompactd;
1326 bool proactive_compact_trigger;
1327 #endif
1328 /*
1329 * This is a per-node reserve of pages that are not available
1330 * to userspace allocations.
1331 */
1332 unsigned long totalreserve_pages;
1333
1334 #ifdef CONFIG_NUMA
1335 /*
1336 * node reclaim becomes active if more unmapped pages exist.
1337 */
1338 unsigned long min_unmapped_pages;
1339 unsigned long min_slab_pages;
1340 #endif /* CONFIG_NUMA */
1341
1342 /* Write-intensive fields used by page reclaim */
1343 CACHELINE_PADDING(_pad1_);
1344
1345 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346 /*
1347 * If memory initialisation on large machines is deferred then this
1348 * is the first PFN that needs to be initialised.
1349 */
1350 unsigned long first_deferred_pfn;
1351 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1352
1353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1354 struct deferred_split deferred_split_queue;
1355 #endif
1356
1357 #ifdef CONFIG_NUMA_BALANCING
1358 /* start time in ms of current promote rate limit period */
1359 unsigned int nbp_rl_start;
1360 /* number of promote candidate pages at start time of current rate limit period */
1361 unsigned long nbp_rl_nr_cand;
1362 /* promote threshold in ms */
1363 unsigned int nbp_threshold;
1364 /* start time in ms of current promote threshold adjustment period */
1365 unsigned int nbp_th_start;
1366 /*
1367 * number of promote candidate pages at start time of current promote
1368 * threshold adjustment period
1369 */
1370 unsigned long nbp_th_nr_cand;
1371 #endif
1372 /* Fields commonly accessed by the page reclaim scanner */
1373
1374 /*
1375 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1376 *
1377 * Use mem_cgroup_lruvec() to look up lruvecs.
1378 */
1379 struct lruvec __lruvec;
1380
1381 unsigned long flags;
1382
1383 #ifdef CONFIG_LRU_GEN
1384 /* kswap mm walk data */
1385 struct lru_gen_mm_walk mm_walk;
1386 /* lru_gen_folio list */
1387 struct lru_gen_memcg memcg_lru;
1388 #endif
1389
1390 CACHELINE_PADDING(_pad2_);
1391
1392 /* Per-node vmstats */
1393 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1394 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1395 #ifdef CONFIG_NUMA
1396 struct memory_tier __rcu *memtier;
1397 #endif
1398 #ifdef CONFIG_MEMORY_FAILURE
1399 struct memory_failure_stats mf_stats;
1400 #endif
1401 } pg_data_t;
1402
1403 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1404 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1405
1406 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1407 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1408
pgdat_end_pfn(pg_data_t * pgdat)1409 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1410 {
1411 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1412 }
1413
1414 #include <linux/memory_hotplug.h>
1415
1416 void build_all_zonelists(pg_data_t *pgdat);
1417 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1418 enum zone_type highest_zoneidx);
1419 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1420 int highest_zoneidx, unsigned int alloc_flags,
1421 long free_pages);
1422 bool zone_watermark_ok(struct zone *z, unsigned int order,
1423 unsigned long mark, int highest_zoneidx,
1424 unsigned int alloc_flags);
1425 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1426 unsigned long mark, int highest_zoneidx);
1427 /*
1428 * Memory initialization context, use to differentiate memory added by
1429 * the platform statically or via memory hotplug interface.
1430 */
1431 enum meminit_context {
1432 MEMINIT_EARLY,
1433 MEMINIT_HOTPLUG,
1434 };
1435
1436 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1437 unsigned long size);
1438
1439 extern void lruvec_init(struct lruvec *lruvec);
1440
lruvec_pgdat(struct lruvec * lruvec)1441 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1442 {
1443 #ifdef CONFIG_MEMCG
1444 return lruvec->pgdat;
1445 #else
1446 return container_of(lruvec, struct pglist_data, __lruvec);
1447 #endif
1448 }
1449
1450 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1451 int local_memory_node(int node_id);
1452 #else
local_memory_node(int node_id)1453 static inline int local_memory_node(int node_id) { return node_id; };
1454 #endif
1455
1456 /*
1457 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1458 */
1459 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1460
1461 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1462 static inline bool zone_is_zone_device(struct zone *zone)
1463 {
1464 return zone_idx(zone) == ZONE_DEVICE;
1465 }
1466 #else
zone_is_zone_device(struct zone * zone)1467 static inline bool zone_is_zone_device(struct zone *zone)
1468 {
1469 return false;
1470 }
1471 #endif
1472
1473 /*
1474 * Returns true if a zone has pages managed by the buddy allocator.
1475 * All the reclaim decisions have to use this function rather than
1476 * populated_zone(). If the whole zone is reserved then we can easily
1477 * end up with populated_zone() && !managed_zone().
1478 */
managed_zone(struct zone * zone)1479 static inline bool managed_zone(struct zone *zone)
1480 {
1481 return zone_managed_pages(zone);
1482 }
1483
1484 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1485 static inline bool populated_zone(struct zone *zone)
1486 {
1487 return zone->present_pages;
1488 }
1489
1490 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1491 static inline int zone_to_nid(struct zone *zone)
1492 {
1493 return zone->node;
1494 }
1495
zone_set_nid(struct zone * zone,int nid)1496 static inline void zone_set_nid(struct zone *zone, int nid)
1497 {
1498 zone->node = nid;
1499 }
1500 #else
zone_to_nid(struct zone * zone)1501 static inline int zone_to_nid(struct zone *zone)
1502 {
1503 return 0;
1504 }
1505
zone_set_nid(struct zone * zone,int nid)1506 static inline void zone_set_nid(struct zone *zone, int nid) {}
1507 #endif
1508
1509 extern int movable_zone;
1510
is_highmem_idx(enum zone_type idx)1511 static inline int is_highmem_idx(enum zone_type idx)
1512 {
1513 #ifdef CONFIG_HIGHMEM
1514 return (idx == ZONE_HIGHMEM ||
1515 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1516 #else
1517 return 0;
1518 #endif
1519 }
1520
1521 /**
1522 * is_highmem - helper function to quickly check if a struct zone is a
1523 * highmem zone or not. This is an attempt to keep references
1524 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1525 * @zone: pointer to struct zone variable
1526 * Return: 1 for a highmem zone, 0 otherwise
1527 */
is_highmem(struct zone * zone)1528 static inline int is_highmem(struct zone *zone)
1529 {
1530 return is_highmem_idx(zone_idx(zone));
1531 }
1532
1533 #ifdef CONFIG_ZONE_DMA
1534 bool has_managed_dma(void);
1535 #else
has_managed_dma(void)1536 static inline bool has_managed_dma(void)
1537 {
1538 return false;
1539 }
1540 #endif
1541
1542
1543 #ifndef CONFIG_NUMA
1544
1545 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1546 static inline struct pglist_data *NODE_DATA(int nid)
1547 {
1548 return &contig_page_data;
1549 }
1550
1551 #else /* CONFIG_NUMA */
1552
1553 #include <asm/mmzone.h>
1554
1555 #endif /* !CONFIG_NUMA */
1556
1557 extern struct pglist_data *first_online_pgdat(void);
1558 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1559 extern struct zone *next_zone(struct zone *zone);
1560
1561 /**
1562 * for_each_online_pgdat - helper macro to iterate over all online nodes
1563 * @pgdat: pointer to a pg_data_t variable
1564 */
1565 #define for_each_online_pgdat(pgdat) \
1566 for (pgdat = first_online_pgdat(); \
1567 pgdat; \
1568 pgdat = next_online_pgdat(pgdat))
1569 /**
1570 * for_each_zone - helper macro to iterate over all memory zones
1571 * @zone: pointer to struct zone variable
1572 *
1573 * The user only needs to declare the zone variable, for_each_zone
1574 * fills it in.
1575 */
1576 #define for_each_zone(zone) \
1577 for (zone = (first_online_pgdat())->node_zones; \
1578 zone; \
1579 zone = next_zone(zone))
1580
1581 #define for_each_populated_zone(zone) \
1582 for (zone = (first_online_pgdat())->node_zones; \
1583 zone; \
1584 zone = next_zone(zone)) \
1585 if (!populated_zone(zone)) \
1586 ; /* do nothing */ \
1587 else
1588
zonelist_zone(struct zoneref * zoneref)1589 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1590 {
1591 return zoneref->zone;
1592 }
1593
zonelist_zone_idx(struct zoneref * zoneref)1594 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1595 {
1596 return zoneref->zone_idx;
1597 }
1598
zonelist_node_idx(struct zoneref * zoneref)1599 static inline int zonelist_node_idx(struct zoneref *zoneref)
1600 {
1601 return zone_to_nid(zoneref->zone);
1602 }
1603
1604 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1605 enum zone_type highest_zoneidx,
1606 nodemask_t *nodes);
1607
1608 /**
1609 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1610 * @z: The cursor used as a starting point for the search
1611 * @highest_zoneidx: The zone index of the highest zone to return
1612 * @nodes: An optional nodemask to filter the zonelist with
1613 *
1614 * This function returns the next zone at or below a given zone index that is
1615 * within the allowed nodemask using a cursor as the starting point for the
1616 * search. The zoneref returned is a cursor that represents the current zone
1617 * being examined. It should be advanced by one before calling
1618 * next_zones_zonelist again.
1619 *
1620 * Return: the next zone at or below highest_zoneidx within the allowed
1621 * nodemask using a cursor within a zonelist as a starting point
1622 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1623 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1624 enum zone_type highest_zoneidx,
1625 nodemask_t *nodes)
1626 {
1627 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1628 return z;
1629 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1630 }
1631
1632 /**
1633 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1634 * @zonelist: The zonelist to search for a suitable zone
1635 * @highest_zoneidx: The zone index of the highest zone to return
1636 * @nodes: An optional nodemask to filter the zonelist with
1637 *
1638 * This function returns the first zone at or below a given zone index that is
1639 * within the allowed nodemask. The zoneref returned is a cursor that can be
1640 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1641 * one before calling.
1642 *
1643 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1644 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1645 * update due to cpuset modification.
1646 *
1647 * Return: Zoneref pointer for the first suitable zone found
1648 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1649 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1650 enum zone_type highest_zoneidx,
1651 nodemask_t *nodes)
1652 {
1653 return next_zones_zonelist(zonelist->_zonerefs,
1654 highest_zoneidx, nodes);
1655 }
1656
1657 /**
1658 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1659 * @zone: The current zone in the iterator
1660 * @z: The current pointer within zonelist->_zonerefs being iterated
1661 * @zlist: The zonelist being iterated
1662 * @highidx: The zone index of the highest zone to return
1663 * @nodemask: Nodemask allowed by the allocator
1664 *
1665 * This iterator iterates though all zones at or below a given zone index and
1666 * within a given nodemask
1667 */
1668 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1669 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1670 zone; \
1671 z = next_zones_zonelist(++z, highidx, nodemask), \
1672 zone = zonelist_zone(z))
1673
1674 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1675 for (zone = z->zone; \
1676 zone; \
1677 z = next_zones_zonelist(++z, highidx, nodemask), \
1678 zone = zonelist_zone(z))
1679
1680
1681 /**
1682 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1683 * @zone: The current zone in the iterator
1684 * @z: The current pointer within zonelist->zones being iterated
1685 * @zlist: The zonelist being iterated
1686 * @highidx: The zone index of the highest zone to return
1687 *
1688 * This iterator iterates though all zones at or below a given zone index.
1689 */
1690 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1691 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1692
1693 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1694 static inline bool movable_only_nodes(nodemask_t *nodes)
1695 {
1696 struct zonelist *zonelist;
1697 struct zoneref *z;
1698 int nid;
1699
1700 if (nodes_empty(*nodes))
1701 return false;
1702
1703 /*
1704 * We can chose arbitrary node from the nodemask to get a
1705 * zonelist as they are interlinked. We just need to find
1706 * at least one zone that can satisfy kernel allocations.
1707 */
1708 nid = first_node(*nodes);
1709 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1710 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1711 return (!z->zone) ? true : false;
1712 }
1713
1714
1715 #ifdef CONFIG_SPARSEMEM
1716 #include <asm/sparsemem.h>
1717 #endif
1718
1719 #ifdef CONFIG_FLATMEM
1720 #define pfn_to_nid(pfn) (0)
1721 #endif
1722
1723 #ifdef CONFIG_SPARSEMEM
1724
1725 /*
1726 * PA_SECTION_SHIFT physical address to/from section number
1727 * PFN_SECTION_SHIFT pfn to/from section number
1728 */
1729 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1730 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1731
1732 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1733
1734 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1735 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1736
1737 #define SECTION_BLOCKFLAGS_BITS \
1738 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1739
1740 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1741 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1742 #endif
1743
pfn_to_section_nr(unsigned long pfn)1744 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1745 {
1746 return pfn >> PFN_SECTION_SHIFT;
1747 }
section_nr_to_pfn(unsigned long sec)1748 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1749 {
1750 return sec << PFN_SECTION_SHIFT;
1751 }
1752
1753 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1754 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1755
1756 #define SUBSECTION_SHIFT 21
1757 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1758
1759 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1760 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1761 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1762
1763 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1764 #error Subsection size exceeds section size
1765 #else
1766 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1767 #endif
1768
1769 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1770 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1771
1772 struct mem_section_usage {
1773 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1774 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1775 #endif
1776 /* See declaration of similar field in struct zone */
1777 unsigned long pageblock_flags[0];
1778 };
1779
1780 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1781
1782 struct page;
1783 struct page_ext;
1784 struct mem_section {
1785 /*
1786 * This is, logically, a pointer to an array of struct
1787 * pages. However, it is stored with some other magic.
1788 * (see sparse.c::sparse_init_one_section())
1789 *
1790 * Additionally during early boot we encode node id of
1791 * the location of the section here to guide allocation.
1792 * (see sparse.c::memory_present())
1793 *
1794 * Making it a UL at least makes someone do a cast
1795 * before using it wrong.
1796 */
1797 unsigned long section_mem_map;
1798
1799 struct mem_section_usage *usage;
1800 #ifdef CONFIG_PAGE_EXTENSION
1801 /*
1802 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1803 * section. (see page_ext.h about this.)
1804 */
1805 struct page_ext *page_ext;
1806 unsigned long pad;
1807 #endif
1808 /*
1809 * WARNING: mem_section must be a power-of-2 in size for the
1810 * calculation and use of SECTION_ROOT_MASK to make sense.
1811 */
1812 };
1813
1814 #ifdef CONFIG_SPARSEMEM_EXTREME
1815 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1816 #else
1817 #define SECTIONS_PER_ROOT 1
1818 #endif
1819
1820 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1821 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1822 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1823
1824 #ifdef CONFIG_SPARSEMEM_EXTREME
1825 extern struct mem_section **mem_section;
1826 #else
1827 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1828 #endif
1829
section_to_usemap(struct mem_section * ms)1830 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1831 {
1832 return ms->usage->pageblock_flags;
1833 }
1834
__nr_to_section(unsigned long nr)1835 static inline struct mem_section *__nr_to_section(unsigned long nr)
1836 {
1837 unsigned long root = SECTION_NR_TO_ROOT(nr);
1838
1839 if (unlikely(root >= NR_SECTION_ROOTS))
1840 return NULL;
1841
1842 #ifdef CONFIG_SPARSEMEM_EXTREME
1843 if (!mem_section || !mem_section[root])
1844 return NULL;
1845 #endif
1846 return &mem_section[root][nr & SECTION_ROOT_MASK];
1847 }
1848 extern size_t mem_section_usage_size(void);
1849
1850 /*
1851 * We use the lower bits of the mem_map pointer to store
1852 * a little bit of information. The pointer is calculated
1853 * as mem_map - section_nr_to_pfn(pnum). The result is
1854 * aligned to the minimum alignment of the two values:
1855 * 1. All mem_map arrays are page-aligned.
1856 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1857 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1858 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1859 * worst combination is powerpc with 256k pages,
1860 * which results in PFN_SECTION_SHIFT equal 6.
1861 * To sum it up, at least 6 bits are available on all architectures.
1862 * However, we can exceed 6 bits on some other architectures except
1863 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1864 * with the worst case of 64K pages on arm64) if we make sure the
1865 * exceeded bit is not applicable to powerpc.
1866 */
1867 enum {
1868 SECTION_MARKED_PRESENT_BIT,
1869 SECTION_HAS_MEM_MAP_BIT,
1870 SECTION_IS_ONLINE_BIT,
1871 SECTION_IS_EARLY_BIT,
1872 #ifdef CONFIG_ZONE_DEVICE
1873 SECTION_TAINT_ZONE_DEVICE_BIT,
1874 #endif
1875 SECTION_MAP_LAST_BIT,
1876 };
1877
1878 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1879 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1880 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1881 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1882 #ifdef CONFIG_ZONE_DEVICE
1883 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1884 #endif
1885 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1886 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1887
__section_mem_map_addr(struct mem_section * section)1888 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1889 {
1890 unsigned long map = section->section_mem_map;
1891 map &= SECTION_MAP_MASK;
1892 return (struct page *)map;
1893 }
1894
present_section(struct mem_section * section)1895 static inline int present_section(struct mem_section *section)
1896 {
1897 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1898 }
1899
present_section_nr(unsigned long nr)1900 static inline int present_section_nr(unsigned long nr)
1901 {
1902 return present_section(__nr_to_section(nr));
1903 }
1904
valid_section(struct mem_section * section)1905 static inline int valid_section(struct mem_section *section)
1906 {
1907 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1908 }
1909
early_section(struct mem_section * section)1910 static inline int early_section(struct mem_section *section)
1911 {
1912 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1913 }
1914
valid_section_nr(unsigned long nr)1915 static inline int valid_section_nr(unsigned long nr)
1916 {
1917 return valid_section(__nr_to_section(nr));
1918 }
1919
online_section(struct mem_section * section)1920 static inline int online_section(struct mem_section *section)
1921 {
1922 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1923 }
1924
1925 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1926 static inline int online_device_section(struct mem_section *section)
1927 {
1928 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1929
1930 return section && ((section->section_mem_map & flags) == flags);
1931 }
1932 #else
online_device_section(struct mem_section * section)1933 static inline int online_device_section(struct mem_section *section)
1934 {
1935 return 0;
1936 }
1937 #endif
1938
online_section_nr(unsigned long nr)1939 static inline int online_section_nr(unsigned long nr)
1940 {
1941 return online_section(__nr_to_section(nr));
1942 }
1943
1944 #ifdef CONFIG_MEMORY_HOTPLUG
1945 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1946 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1947 #endif
1948
__pfn_to_section(unsigned long pfn)1949 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1950 {
1951 return __nr_to_section(pfn_to_section_nr(pfn));
1952 }
1953
1954 extern unsigned long __highest_present_section_nr;
1955
subsection_map_index(unsigned long pfn)1956 static inline int subsection_map_index(unsigned long pfn)
1957 {
1958 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1959 }
1960
1961 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1962 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1963 {
1964 int idx = subsection_map_index(pfn);
1965
1966 return test_bit(idx, ms->usage->subsection_map);
1967 }
1968 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1969 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1970 {
1971 return 1;
1972 }
1973 #endif
1974
1975 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1976 /**
1977 * pfn_valid - check if there is a valid memory map entry for a PFN
1978 * @pfn: the page frame number to check
1979 *
1980 * Check if there is a valid memory map entry aka struct page for the @pfn.
1981 * Note, that availability of the memory map entry does not imply that
1982 * there is actual usable memory at that @pfn. The struct page may
1983 * represent a hole or an unusable page frame.
1984 *
1985 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1986 */
pfn_valid(unsigned long pfn)1987 static inline int pfn_valid(unsigned long pfn)
1988 {
1989 struct mem_section *ms;
1990
1991 /*
1992 * Ensure the upper PAGE_SHIFT bits are clear in the
1993 * pfn. Else it might lead to false positives when
1994 * some of the upper bits are set, but the lower bits
1995 * match a valid pfn.
1996 */
1997 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1998 return 0;
1999
2000 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2001 return 0;
2002 ms = __pfn_to_section(pfn);
2003 if (!valid_section(ms))
2004 return 0;
2005 /*
2006 * Traditionally early sections always returned pfn_valid() for
2007 * the entire section-sized span.
2008 */
2009 return early_section(ms) || pfn_section_valid(ms, pfn);
2010 }
2011 #endif
2012
pfn_in_present_section(unsigned long pfn)2013 static inline int pfn_in_present_section(unsigned long pfn)
2014 {
2015 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2016 return 0;
2017 return present_section(__pfn_to_section(pfn));
2018 }
2019
next_present_section_nr(unsigned long section_nr)2020 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2021 {
2022 while (++section_nr <= __highest_present_section_nr) {
2023 if (present_section_nr(section_nr))
2024 return section_nr;
2025 }
2026
2027 return -1;
2028 }
2029
2030 /*
2031 * These are _only_ used during initialisation, therefore they
2032 * can use __initdata ... They could have names to indicate
2033 * this restriction.
2034 */
2035 #ifdef CONFIG_NUMA
2036 #define pfn_to_nid(pfn) \
2037 ({ \
2038 unsigned long __pfn_to_nid_pfn = (pfn); \
2039 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2040 })
2041 #else
2042 #define pfn_to_nid(pfn) (0)
2043 #endif
2044
2045 void sparse_init(void);
2046 #else
2047 #define sparse_init() do {} while (0)
2048 #define sparse_index_init(_sec, _nid) do {} while (0)
2049 #define pfn_in_present_section pfn_valid
2050 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2051 #endif /* CONFIG_SPARSEMEM */
2052
2053 #endif /* !__GENERATING_BOUNDS.H */
2054 #endif /* !__ASSEMBLY__ */
2055 #endif /* _LINUX_MMZONE_H */
2056