1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct kernel_hwtstamp_config;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_frame;
80 struct xdp_metadata_ops;
81 struct xdp_md;
82
83 typedef u32 xdp_features_t;
84
85 void synchronize_net(void);
86 void netdev_set_default_ethtool_ops(struct net_device *dev,
87 const struct ethtool_ops *ops);
88 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
89
90 /* Backlog congestion levels */
91 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
92 #define NET_RX_DROP 1 /* packet dropped */
93
94 #define MAX_NEST_DEV 8
95
96 /*
97 * Transmit return codes: transmit return codes originate from three different
98 * namespaces:
99 *
100 * - qdisc return codes
101 * - driver transmit return codes
102 * - errno values
103 *
104 * Drivers are allowed to return any one of those in their hard_start_xmit()
105 * function. Real network devices commonly used with qdiscs should only return
106 * the driver transmit return codes though - when qdiscs are used, the actual
107 * transmission happens asynchronously, so the value is not propagated to
108 * higher layers. Virtual network devices transmit synchronously; in this case
109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
110 * others are propagated to higher layers.
111 */
112
113 /* qdisc ->enqueue() return codes. */
114 #define NET_XMIT_SUCCESS 0x00
115 #define NET_XMIT_DROP 0x01 /* skb dropped */
116 #define NET_XMIT_CN 0x02 /* congestion notification */
117 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
118
119 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
120 * indicates that the device will soon be dropping packets, or already drops
121 * some packets of the same priority; prompting us to send less aggressively. */
122 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
123 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
124
125 /* Driver transmit return codes */
126 #define NETDEV_TX_MASK 0xf0
127
128 enum netdev_tx {
129 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
130 NETDEV_TX_OK = 0x00, /* driver took care of packet */
131 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
132 };
133 typedef enum netdev_tx netdev_tx_t;
134
135 /*
136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
138 */
dev_xmit_complete(int rc)139 static inline bool dev_xmit_complete(int rc)
140 {
141 /*
142 * Positive cases with an skb consumed by a driver:
143 * - successful transmission (rc == NETDEV_TX_OK)
144 * - error while transmitting (rc < 0)
145 * - error while queueing to a different device (rc & NET_XMIT_MASK)
146 */
147 if (likely(rc < NET_XMIT_MASK))
148 return true;
149
150 return false;
151 }
152
153 /*
154 * Compute the worst-case header length according to the protocols
155 * used.
156 */
157
158 #if defined(CONFIG_HYPERV_NET)
159 # define LL_MAX_HEADER 128
160 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
161 # if defined(CONFIG_MAC80211_MESH)
162 # define LL_MAX_HEADER 128
163 # else
164 # define LL_MAX_HEADER 96
165 # endif
166 #else
167 # define LL_MAX_HEADER 32
168 #endif
169
170 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
171 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
172 #define MAX_HEADER LL_MAX_HEADER
173 #else
174 #define MAX_HEADER (LL_MAX_HEADER + 48)
175 #endif
176
177 /*
178 * Old network device statistics. Fields are native words
179 * (unsigned long) so they can be read and written atomically.
180 */
181
182 #define NET_DEV_STAT(FIELD) \
183 union { \
184 unsigned long FIELD; \
185 atomic_long_t __##FIELD; \
186 }
187
188 struct net_device_stats {
189 NET_DEV_STAT(rx_packets);
190 NET_DEV_STAT(tx_packets);
191 NET_DEV_STAT(rx_bytes);
192 NET_DEV_STAT(tx_bytes);
193 NET_DEV_STAT(rx_errors);
194 NET_DEV_STAT(tx_errors);
195 NET_DEV_STAT(rx_dropped);
196 NET_DEV_STAT(tx_dropped);
197 NET_DEV_STAT(multicast);
198 NET_DEV_STAT(collisions);
199 NET_DEV_STAT(rx_length_errors);
200 NET_DEV_STAT(rx_over_errors);
201 NET_DEV_STAT(rx_crc_errors);
202 NET_DEV_STAT(rx_frame_errors);
203 NET_DEV_STAT(rx_fifo_errors);
204 NET_DEV_STAT(rx_missed_errors);
205 NET_DEV_STAT(tx_aborted_errors);
206 NET_DEV_STAT(tx_carrier_errors);
207 NET_DEV_STAT(tx_fifo_errors);
208 NET_DEV_STAT(tx_heartbeat_errors);
209 NET_DEV_STAT(tx_window_errors);
210 NET_DEV_STAT(rx_compressed);
211 NET_DEV_STAT(tx_compressed);
212 };
213 #undef NET_DEV_STAT
214
215 /* per-cpu stats, allocated on demand.
216 * Try to fit them in a single cache line, for dev_get_stats() sake.
217 */
218 struct net_device_core_stats {
219 unsigned long rx_dropped;
220 unsigned long tx_dropped;
221 unsigned long rx_nohandler;
222 unsigned long rx_otherhost_dropped;
223 } __aligned(4 * sizeof(unsigned long));
224
225 #include <linux/cache.h>
226 #include <linux/skbuff.h>
227
228 #ifdef CONFIG_RPS
229 #include <linux/static_key.h>
230 extern struct static_key_false rps_needed;
231 extern struct static_key_false rfs_needed;
232 #endif
233
234 struct neighbour;
235 struct neigh_parms;
236 struct sk_buff;
237
238 struct netdev_hw_addr {
239 struct list_head list;
240 struct rb_node node;
241 unsigned char addr[MAX_ADDR_LEN];
242 unsigned char type;
243 #define NETDEV_HW_ADDR_T_LAN 1
244 #define NETDEV_HW_ADDR_T_SAN 2
245 #define NETDEV_HW_ADDR_T_UNICAST 3
246 #define NETDEV_HW_ADDR_T_MULTICAST 4
247 bool global_use;
248 int sync_cnt;
249 int refcount;
250 int synced;
251 struct rcu_head rcu_head;
252 };
253
254 struct netdev_hw_addr_list {
255 struct list_head list;
256 int count;
257
258 /* Auxiliary tree for faster lookup on addition and deletion */
259 struct rb_root tree;
260 };
261
262 #define netdev_hw_addr_list_count(l) ((l)->count)
263 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
264 #define netdev_hw_addr_list_for_each(ha, l) \
265 list_for_each_entry(ha, &(l)->list, list)
266
267 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
268 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
269 #define netdev_for_each_uc_addr(ha, dev) \
270 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
271 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
272 netdev_for_each_uc_addr((_ha), (_dev)) \
273 if ((_ha)->sync_cnt)
274
275 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
276 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
277 #define netdev_for_each_mc_addr(ha, dev) \
278 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
279 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
280 netdev_for_each_mc_addr((_ha), (_dev)) \
281 if ((_ha)->sync_cnt)
282
283 struct hh_cache {
284 unsigned int hh_len;
285 seqlock_t hh_lock;
286
287 /* cached hardware header; allow for machine alignment needs. */
288 #define HH_DATA_MOD 16
289 #define HH_DATA_OFF(__len) \
290 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
291 #define HH_DATA_ALIGN(__len) \
292 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
293 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
294 };
295
296 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
297 * Alternative is:
298 * dev->hard_header_len ? (dev->hard_header_len +
299 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
300 *
301 * We could use other alignment values, but we must maintain the
302 * relationship HH alignment <= LL alignment.
303 */
304 #define LL_RESERVED_SPACE(dev) \
305 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
306 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
307 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
308 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
309 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310
311 struct header_ops {
312 int (*create) (struct sk_buff *skb, struct net_device *dev,
313 unsigned short type, const void *daddr,
314 const void *saddr, unsigned int len);
315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
317 void (*cache_update)(struct hh_cache *hh,
318 const struct net_device *dev,
319 const unsigned char *haddr);
320 bool (*validate)(const char *ll_header, unsigned int len);
321 __be16 (*parse_protocol)(const struct sk_buff *skb);
322 };
323
324 /* These flag bits are private to the generic network queueing
325 * layer; they may not be explicitly referenced by any other
326 * code.
327 */
328
329 enum netdev_state_t {
330 __LINK_STATE_START,
331 __LINK_STATE_PRESENT,
332 __LINK_STATE_NOCARRIER,
333 __LINK_STATE_LINKWATCH_PENDING,
334 __LINK_STATE_DORMANT,
335 __LINK_STATE_TESTING,
336 };
337
338 struct gro_list {
339 struct list_head list;
340 int count;
341 };
342
343 /*
344 * size of gro hash buckets, must less than bit number of
345 * napi_struct::gro_bitmask
346 */
347 #define GRO_HASH_BUCKETS 8
348
349 /*
350 * Structure for NAPI scheduling similar to tasklet but with weighting
351 */
352 struct napi_struct {
353 /* The poll_list must only be managed by the entity which
354 * changes the state of the NAPI_STATE_SCHED bit. This means
355 * whoever atomically sets that bit can add this napi_struct
356 * to the per-CPU poll_list, and whoever clears that bit
357 * can remove from the list right before clearing the bit.
358 */
359 struct list_head poll_list;
360
361 unsigned long state;
362 int weight;
363 int defer_hard_irqs_count;
364 unsigned long gro_bitmask;
365 int (*poll)(struct napi_struct *, int);
366 #ifdef CONFIG_NETPOLL
367 /* CPU actively polling if netpoll is configured */
368 int poll_owner;
369 #endif
370 /* CPU on which NAPI has been scheduled for processing */
371 int list_owner;
372 struct net_device *dev;
373 struct gro_list gro_hash[GRO_HASH_BUCKETS];
374 struct sk_buff *skb;
375 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
376 int rx_count; /* length of rx_list */
377 unsigned int napi_id;
378 struct hrtimer timer;
379 struct task_struct *thread;
380 /* control-path-only fields follow */
381 struct list_head dev_list;
382 struct hlist_node napi_hash_node;
383 };
384
385 enum {
386 NAPI_STATE_SCHED, /* Poll is scheduled */
387 NAPI_STATE_MISSED, /* reschedule a napi */
388 NAPI_STATE_DISABLE, /* Disable pending */
389 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
390 NAPI_STATE_LISTED, /* NAPI added to system lists */
391 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
392 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
393 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
394 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
395 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
396 };
397
398 enum {
399 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
400 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
401 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
402 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
403 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
404 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
405 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
406 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
407 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
408 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
409 };
410
411 enum gro_result {
412 GRO_MERGED,
413 GRO_MERGED_FREE,
414 GRO_HELD,
415 GRO_NORMAL,
416 GRO_CONSUMED,
417 };
418 typedef enum gro_result gro_result_t;
419
420 /*
421 * enum rx_handler_result - Possible return values for rx_handlers.
422 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
423 * further.
424 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
425 * case skb->dev was changed by rx_handler.
426 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
427 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
428 *
429 * rx_handlers are functions called from inside __netif_receive_skb(), to do
430 * special processing of the skb, prior to delivery to protocol handlers.
431 *
432 * Currently, a net_device can only have a single rx_handler registered. Trying
433 * to register a second rx_handler will return -EBUSY.
434 *
435 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
436 * To unregister a rx_handler on a net_device, use
437 * netdev_rx_handler_unregister().
438 *
439 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
440 * do with the skb.
441 *
442 * If the rx_handler consumed the skb in some way, it should return
443 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
444 * the skb to be delivered in some other way.
445 *
446 * If the rx_handler changed skb->dev, to divert the skb to another
447 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
448 * new device will be called if it exists.
449 *
450 * If the rx_handler decides the skb should be ignored, it should return
451 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
452 * are registered on exact device (ptype->dev == skb->dev).
453 *
454 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
455 * delivered, it should return RX_HANDLER_PASS.
456 *
457 * A device without a registered rx_handler will behave as if rx_handler
458 * returned RX_HANDLER_PASS.
459 */
460
461 enum rx_handler_result {
462 RX_HANDLER_CONSUMED,
463 RX_HANDLER_ANOTHER,
464 RX_HANDLER_EXACT,
465 RX_HANDLER_PASS,
466 };
467 typedef enum rx_handler_result rx_handler_result_t;
468 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
469
470 void __napi_schedule(struct napi_struct *n);
471 void __napi_schedule_irqoff(struct napi_struct *n);
472
napi_disable_pending(struct napi_struct * n)473 static inline bool napi_disable_pending(struct napi_struct *n)
474 {
475 return test_bit(NAPI_STATE_DISABLE, &n->state);
476 }
477
napi_prefer_busy_poll(struct napi_struct * n)478 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
479 {
480 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
481 }
482
483 bool napi_schedule_prep(struct napi_struct *n);
484
485 /**
486 * napi_schedule - schedule NAPI poll
487 * @n: NAPI context
488 *
489 * Schedule NAPI poll routine to be called if it is not already
490 * running.
491 */
napi_schedule(struct napi_struct * n)492 static inline void napi_schedule(struct napi_struct *n)
493 {
494 if (napi_schedule_prep(n))
495 __napi_schedule(n);
496 }
497
498 /**
499 * napi_schedule_irqoff - schedule NAPI poll
500 * @n: NAPI context
501 *
502 * Variant of napi_schedule(), assuming hard irqs are masked.
503 */
napi_schedule_irqoff(struct napi_struct * n)504 static inline void napi_schedule_irqoff(struct napi_struct *n)
505 {
506 if (napi_schedule_prep(n))
507 __napi_schedule_irqoff(n);
508 }
509
510 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)511 static inline bool napi_reschedule(struct napi_struct *napi)
512 {
513 if (napi_schedule_prep(napi)) {
514 __napi_schedule(napi);
515 return true;
516 }
517 return false;
518 }
519
520 /**
521 * napi_complete_done - NAPI processing complete
522 * @n: NAPI context
523 * @work_done: number of packets processed
524 *
525 * Mark NAPI processing as complete. Should only be called if poll budget
526 * has not been completely consumed.
527 * Prefer over napi_complete().
528 * Return false if device should avoid rearming interrupts.
529 */
530 bool napi_complete_done(struct napi_struct *n, int work_done);
531
napi_complete(struct napi_struct * n)532 static inline bool napi_complete(struct napi_struct *n)
533 {
534 return napi_complete_done(n, 0);
535 }
536
537 int dev_set_threaded(struct net_device *dev, bool threaded);
538
539 /**
540 * napi_disable - prevent NAPI from scheduling
541 * @n: NAPI context
542 *
543 * Stop NAPI from being scheduled on this context.
544 * Waits till any outstanding processing completes.
545 */
546 void napi_disable(struct napi_struct *n);
547
548 void napi_enable(struct napi_struct *n);
549
550 /**
551 * napi_synchronize - wait until NAPI is not running
552 * @n: NAPI context
553 *
554 * Wait until NAPI is done being scheduled on this context.
555 * Waits till any outstanding processing completes but
556 * does not disable future activations.
557 */
napi_synchronize(const struct napi_struct * n)558 static inline void napi_synchronize(const struct napi_struct *n)
559 {
560 if (IS_ENABLED(CONFIG_SMP))
561 while (test_bit(NAPI_STATE_SCHED, &n->state))
562 msleep(1);
563 else
564 barrier();
565 }
566
567 /**
568 * napi_if_scheduled_mark_missed - if napi is running, set the
569 * NAPIF_STATE_MISSED
570 * @n: NAPI context
571 *
572 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
573 * NAPI is scheduled.
574 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)575 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
576 {
577 unsigned long val, new;
578
579 val = READ_ONCE(n->state);
580 do {
581 if (val & NAPIF_STATE_DISABLE)
582 return true;
583
584 if (!(val & NAPIF_STATE_SCHED))
585 return false;
586
587 new = val | NAPIF_STATE_MISSED;
588 } while (!try_cmpxchg(&n->state, &val, new));
589
590 return true;
591 }
592
593 enum netdev_queue_state_t {
594 __QUEUE_STATE_DRV_XOFF,
595 __QUEUE_STATE_STACK_XOFF,
596 __QUEUE_STATE_FROZEN,
597 };
598
599 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
600 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
601 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
602
603 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
604 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
605 QUEUE_STATE_FROZEN)
606 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
607 QUEUE_STATE_FROZEN)
608
609 /*
610 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
611 * netif_tx_* functions below are used to manipulate this flag. The
612 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
613 * queue independently. The netif_xmit_*stopped functions below are called
614 * to check if the queue has been stopped by the driver or stack (either
615 * of the XOFF bits are set in the state). Drivers should not need to call
616 * netif_xmit*stopped functions, they should only be using netif_tx_*.
617 */
618
619 struct netdev_queue {
620 /*
621 * read-mostly part
622 */
623 struct net_device *dev;
624 netdevice_tracker dev_tracker;
625
626 struct Qdisc __rcu *qdisc;
627 struct Qdisc __rcu *qdisc_sleeping;
628 #ifdef CONFIG_SYSFS
629 struct kobject kobj;
630 #endif
631 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
632 int numa_node;
633 #endif
634 unsigned long tx_maxrate;
635 /*
636 * Number of TX timeouts for this queue
637 * (/sys/class/net/DEV/Q/trans_timeout)
638 */
639 atomic_long_t trans_timeout;
640
641 /* Subordinate device that the queue has been assigned to */
642 struct net_device *sb_dev;
643 #ifdef CONFIG_XDP_SOCKETS
644 struct xsk_buff_pool *pool;
645 #endif
646 /*
647 * write-mostly part
648 */
649 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
650 int xmit_lock_owner;
651 /*
652 * Time (in jiffies) of last Tx
653 */
654 unsigned long trans_start;
655
656 unsigned long state;
657
658 #ifdef CONFIG_BQL
659 struct dql dql;
660 #endif
661 } ____cacheline_aligned_in_smp;
662
663 extern int sysctl_fb_tunnels_only_for_init_net;
664 extern int sysctl_devconf_inherit_init_net;
665
666 /*
667 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
668 * == 1 : For initns only
669 * == 2 : For none.
670 */
net_has_fallback_tunnels(const struct net * net)671 static inline bool net_has_fallback_tunnels(const struct net *net)
672 {
673 #if IS_ENABLED(CONFIG_SYSCTL)
674 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
675
676 return !fb_tunnels_only_for_init_net ||
677 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
678 #else
679 return true;
680 #endif
681 }
682
net_inherit_devconf(void)683 static inline int net_inherit_devconf(void)
684 {
685 #if IS_ENABLED(CONFIG_SYSCTL)
686 return READ_ONCE(sysctl_devconf_inherit_init_net);
687 #else
688 return 0;
689 #endif
690 }
691
netdev_queue_numa_node_read(const struct netdev_queue * q)692 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
693 {
694 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
695 return q->numa_node;
696 #else
697 return NUMA_NO_NODE;
698 #endif
699 }
700
netdev_queue_numa_node_write(struct netdev_queue * q,int node)701 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
702 {
703 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
704 q->numa_node = node;
705 #endif
706 }
707
708 #ifdef CONFIG_RPS
709 /*
710 * This structure holds an RPS map which can be of variable length. The
711 * map is an array of CPUs.
712 */
713 struct rps_map {
714 unsigned int len;
715 struct rcu_head rcu;
716 u16 cpus[];
717 };
718 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
719
720 /*
721 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
722 * tail pointer for that CPU's input queue at the time of last enqueue, and
723 * a hardware filter index.
724 */
725 struct rps_dev_flow {
726 u16 cpu;
727 u16 filter;
728 unsigned int last_qtail;
729 };
730 #define RPS_NO_FILTER 0xffff
731
732 /*
733 * The rps_dev_flow_table structure contains a table of flow mappings.
734 */
735 struct rps_dev_flow_table {
736 unsigned int mask;
737 struct rcu_head rcu;
738 struct rps_dev_flow flows[];
739 };
740 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
741 ((_num) * sizeof(struct rps_dev_flow)))
742
743 /*
744 * The rps_sock_flow_table contains mappings of flows to the last CPU
745 * on which they were processed by the application (set in recvmsg).
746 * Each entry is a 32bit value. Upper part is the high-order bits
747 * of flow hash, lower part is CPU number.
748 * rps_cpu_mask is used to partition the space, depending on number of
749 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
750 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
751 * meaning we use 32-6=26 bits for the hash.
752 */
753 struct rps_sock_flow_table {
754 u32 mask;
755
756 u32 ents[] ____cacheline_aligned_in_smp;
757 };
758 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
759
760 #define RPS_NO_CPU 0xffff
761
762 extern u32 rps_cpu_mask;
763 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
764
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)765 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
766 u32 hash)
767 {
768 if (table && hash) {
769 unsigned int index = hash & table->mask;
770 u32 val = hash & ~rps_cpu_mask;
771
772 /* We only give a hint, preemption can change CPU under us */
773 val |= raw_smp_processor_id();
774
775 /* The following WRITE_ONCE() is paired with the READ_ONCE()
776 * here, and another one in get_rps_cpu().
777 */
778 if (READ_ONCE(table->ents[index]) != val)
779 WRITE_ONCE(table->ents[index], val);
780 }
781 }
782
783 #ifdef CONFIG_RFS_ACCEL
784 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
785 u16 filter_id);
786 #endif
787 #endif /* CONFIG_RPS */
788
789 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
790 enum xps_map_type {
791 XPS_CPUS = 0,
792 XPS_RXQS,
793 XPS_MAPS_MAX,
794 };
795
796 #ifdef CONFIG_XPS
797 /*
798 * This structure holds an XPS map which can be of variable length. The
799 * map is an array of queues.
800 */
801 struct xps_map {
802 unsigned int len;
803 unsigned int alloc_len;
804 struct rcu_head rcu;
805 u16 queues[];
806 };
807 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
808 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
809 - sizeof(struct xps_map)) / sizeof(u16))
810
811 /*
812 * This structure holds all XPS maps for device. Maps are indexed by CPU.
813 *
814 * We keep track of the number of cpus/rxqs used when the struct is allocated,
815 * in nr_ids. This will help not accessing out-of-bound memory.
816 *
817 * We keep track of the number of traffic classes used when the struct is
818 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
819 * not crossing its upper bound, as the original dev->num_tc can be updated in
820 * the meantime.
821 */
822 struct xps_dev_maps {
823 struct rcu_head rcu;
824 unsigned int nr_ids;
825 s16 num_tc;
826 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
827 };
828
829 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
830 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
831
832 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
833 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
834
835 #endif /* CONFIG_XPS */
836
837 #define TC_MAX_QUEUE 16
838 #define TC_BITMASK 15
839 /* HW offloaded queuing disciplines txq count and offset maps */
840 struct netdev_tc_txq {
841 u16 count;
842 u16 offset;
843 };
844
845 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
846 /*
847 * This structure is to hold information about the device
848 * configured to run FCoE protocol stack.
849 */
850 struct netdev_fcoe_hbainfo {
851 char manufacturer[64];
852 char serial_number[64];
853 char hardware_version[64];
854 char driver_version[64];
855 char optionrom_version[64];
856 char firmware_version[64];
857 char model[256];
858 char model_description[256];
859 };
860 #endif
861
862 #define MAX_PHYS_ITEM_ID_LEN 32
863
864 /* This structure holds a unique identifier to identify some
865 * physical item (port for example) used by a netdevice.
866 */
867 struct netdev_phys_item_id {
868 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
869 unsigned char id_len;
870 };
871
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)872 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
873 struct netdev_phys_item_id *b)
874 {
875 return a->id_len == b->id_len &&
876 memcmp(a->id, b->id, a->id_len) == 0;
877 }
878
879 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
880 struct sk_buff *skb,
881 struct net_device *sb_dev);
882
883 enum net_device_path_type {
884 DEV_PATH_ETHERNET = 0,
885 DEV_PATH_VLAN,
886 DEV_PATH_BRIDGE,
887 DEV_PATH_PPPOE,
888 DEV_PATH_DSA,
889 DEV_PATH_MTK_WDMA,
890 };
891
892 struct net_device_path {
893 enum net_device_path_type type;
894 const struct net_device *dev;
895 union {
896 struct {
897 u16 id;
898 __be16 proto;
899 u8 h_dest[ETH_ALEN];
900 } encap;
901 struct {
902 enum {
903 DEV_PATH_BR_VLAN_KEEP,
904 DEV_PATH_BR_VLAN_TAG,
905 DEV_PATH_BR_VLAN_UNTAG,
906 DEV_PATH_BR_VLAN_UNTAG_HW,
907 } vlan_mode;
908 u16 vlan_id;
909 __be16 vlan_proto;
910 } bridge;
911 struct {
912 int port;
913 u16 proto;
914 } dsa;
915 struct {
916 u8 wdma_idx;
917 u8 queue;
918 u16 wcid;
919 u8 bss;
920 } mtk_wdma;
921 };
922 };
923
924 #define NET_DEVICE_PATH_STACK_MAX 5
925 #define NET_DEVICE_PATH_VLAN_MAX 2
926
927 struct net_device_path_stack {
928 int num_paths;
929 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
930 };
931
932 struct net_device_path_ctx {
933 const struct net_device *dev;
934 u8 daddr[ETH_ALEN];
935
936 int num_vlans;
937 struct {
938 u16 id;
939 __be16 proto;
940 } vlan[NET_DEVICE_PATH_VLAN_MAX];
941 };
942
943 enum tc_setup_type {
944 TC_QUERY_CAPS,
945 TC_SETUP_QDISC_MQPRIO,
946 TC_SETUP_CLSU32,
947 TC_SETUP_CLSFLOWER,
948 TC_SETUP_CLSMATCHALL,
949 TC_SETUP_CLSBPF,
950 TC_SETUP_BLOCK,
951 TC_SETUP_QDISC_CBS,
952 TC_SETUP_QDISC_RED,
953 TC_SETUP_QDISC_PRIO,
954 TC_SETUP_QDISC_MQ,
955 TC_SETUP_QDISC_ETF,
956 TC_SETUP_ROOT_QDISC,
957 TC_SETUP_QDISC_GRED,
958 TC_SETUP_QDISC_TAPRIO,
959 TC_SETUP_FT,
960 TC_SETUP_QDISC_ETS,
961 TC_SETUP_QDISC_TBF,
962 TC_SETUP_QDISC_FIFO,
963 TC_SETUP_QDISC_HTB,
964 TC_SETUP_ACT,
965 };
966
967 /* These structures hold the attributes of bpf state that are being passed
968 * to the netdevice through the bpf op.
969 */
970 enum bpf_netdev_command {
971 /* Set or clear a bpf program used in the earliest stages of packet
972 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
973 * is responsible for calling bpf_prog_put on any old progs that are
974 * stored. In case of error, the callee need not release the new prog
975 * reference, but on success it takes ownership and must bpf_prog_put
976 * when it is no longer used.
977 */
978 XDP_SETUP_PROG,
979 XDP_SETUP_PROG_HW,
980 /* BPF program for offload callbacks, invoked at program load time. */
981 BPF_OFFLOAD_MAP_ALLOC,
982 BPF_OFFLOAD_MAP_FREE,
983 XDP_SETUP_XSK_POOL,
984 };
985
986 struct bpf_prog_offload_ops;
987 struct netlink_ext_ack;
988 struct xdp_umem;
989 struct xdp_dev_bulk_queue;
990 struct bpf_xdp_link;
991
992 enum bpf_xdp_mode {
993 XDP_MODE_SKB = 0,
994 XDP_MODE_DRV = 1,
995 XDP_MODE_HW = 2,
996 __MAX_XDP_MODE
997 };
998
999 struct bpf_xdp_entity {
1000 struct bpf_prog *prog;
1001 struct bpf_xdp_link *link;
1002 };
1003
1004 struct netdev_bpf {
1005 enum bpf_netdev_command command;
1006 union {
1007 /* XDP_SETUP_PROG */
1008 struct {
1009 u32 flags;
1010 struct bpf_prog *prog;
1011 struct netlink_ext_ack *extack;
1012 };
1013 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1014 struct {
1015 struct bpf_offloaded_map *offmap;
1016 };
1017 /* XDP_SETUP_XSK_POOL */
1018 struct {
1019 struct xsk_buff_pool *pool;
1020 u16 queue_id;
1021 } xsk;
1022 };
1023 };
1024
1025 /* Flags for ndo_xsk_wakeup. */
1026 #define XDP_WAKEUP_RX (1 << 0)
1027 #define XDP_WAKEUP_TX (1 << 1)
1028
1029 #ifdef CONFIG_XFRM_OFFLOAD
1030 struct xfrmdev_ops {
1031 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1032 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1033 void (*xdo_dev_state_free) (struct xfrm_state *x);
1034 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1035 struct xfrm_state *x);
1036 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1037 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1038 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1039 void (*xdo_dev_policy_delete) (struct xfrm_policy *x);
1040 void (*xdo_dev_policy_free) (struct xfrm_policy *x);
1041 };
1042 #endif
1043
1044 struct dev_ifalias {
1045 struct rcu_head rcuhead;
1046 char ifalias[];
1047 };
1048
1049 struct devlink;
1050 struct tlsdev_ops;
1051
1052 struct netdev_net_notifier {
1053 struct list_head list;
1054 struct notifier_block *nb;
1055 };
1056
1057 /*
1058 * This structure defines the management hooks for network devices.
1059 * The following hooks can be defined; unless noted otherwise, they are
1060 * optional and can be filled with a null pointer.
1061 *
1062 * int (*ndo_init)(struct net_device *dev);
1063 * This function is called once when a network device is registered.
1064 * The network device can use this for any late stage initialization
1065 * or semantic validation. It can fail with an error code which will
1066 * be propagated back to register_netdev.
1067 *
1068 * void (*ndo_uninit)(struct net_device *dev);
1069 * This function is called when device is unregistered or when registration
1070 * fails. It is not called if init fails.
1071 *
1072 * int (*ndo_open)(struct net_device *dev);
1073 * This function is called when a network device transitions to the up
1074 * state.
1075 *
1076 * int (*ndo_stop)(struct net_device *dev);
1077 * This function is called when a network device transitions to the down
1078 * state.
1079 *
1080 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1081 * struct net_device *dev);
1082 * Called when a packet needs to be transmitted.
1083 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1084 * the queue before that can happen; it's for obsolete devices and weird
1085 * corner cases, but the stack really does a non-trivial amount
1086 * of useless work if you return NETDEV_TX_BUSY.
1087 * Required; cannot be NULL.
1088 *
1089 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1090 * struct net_device *dev
1091 * netdev_features_t features);
1092 * Called by core transmit path to determine if device is capable of
1093 * performing offload operations on a given packet. This is to give
1094 * the device an opportunity to implement any restrictions that cannot
1095 * be otherwise expressed by feature flags. The check is called with
1096 * the set of features that the stack has calculated and it returns
1097 * those the driver believes to be appropriate.
1098 *
1099 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1100 * struct net_device *sb_dev);
1101 * Called to decide which queue to use when device supports multiple
1102 * transmit queues.
1103 *
1104 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1105 * This function is called to allow device receiver to make
1106 * changes to configuration when multicast or promiscuous is enabled.
1107 *
1108 * void (*ndo_set_rx_mode)(struct net_device *dev);
1109 * This function is called device changes address list filtering.
1110 * If driver handles unicast address filtering, it should set
1111 * IFF_UNICAST_FLT in its priv_flags.
1112 *
1113 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1114 * This function is called when the Media Access Control address
1115 * needs to be changed. If this interface is not defined, the
1116 * MAC address can not be changed.
1117 *
1118 * int (*ndo_validate_addr)(struct net_device *dev);
1119 * Test if Media Access Control address is valid for the device.
1120 *
1121 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1122 * Old-style ioctl entry point. This is used internally by the
1123 * appletalk and ieee802154 subsystems but is no longer called by
1124 * the device ioctl handler.
1125 *
1126 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1127 * Used by the bonding driver for its device specific ioctls:
1128 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1129 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1130 *
1131 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1132 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1133 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1134 *
1135 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1136 * Used to set network devices bus interface parameters. This interface
1137 * is retained for legacy reasons; new devices should use the bus
1138 * interface (PCI) for low level management.
1139 *
1140 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1141 * Called when a user wants to change the Maximum Transfer Unit
1142 * of a device.
1143 *
1144 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1145 * Callback used when the transmitter has not made any progress
1146 * for dev->watchdog ticks.
1147 *
1148 * void (*ndo_get_stats64)(struct net_device *dev,
1149 * struct rtnl_link_stats64 *storage);
1150 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1151 * Called when a user wants to get the network device usage
1152 * statistics. Drivers must do one of the following:
1153 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1154 * rtnl_link_stats64 structure passed by the caller.
1155 * 2. Define @ndo_get_stats to update a net_device_stats structure
1156 * (which should normally be dev->stats) and return a pointer to
1157 * it. The structure may be changed asynchronously only if each
1158 * field is written atomically.
1159 * 3. Update dev->stats asynchronously and atomically, and define
1160 * neither operation.
1161 *
1162 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1163 * Return true if this device supports offload stats of this attr_id.
1164 *
1165 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1166 * void *attr_data)
1167 * Get statistics for offload operations by attr_id. Write it into the
1168 * attr_data pointer.
1169 *
1170 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1171 * If device supports VLAN filtering this function is called when a
1172 * VLAN id is registered.
1173 *
1174 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1175 * If device supports VLAN filtering this function is called when a
1176 * VLAN id is unregistered.
1177 *
1178 * void (*ndo_poll_controller)(struct net_device *dev);
1179 *
1180 * SR-IOV management functions.
1181 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1182 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1183 * u8 qos, __be16 proto);
1184 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1185 * int max_tx_rate);
1186 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1187 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1188 * int (*ndo_get_vf_config)(struct net_device *dev,
1189 * int vf, struct ifla_vf_info *ivf);
1190 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1191 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1192 * struct nlattr *port[]);
1193 *
1194 * Enable or disable the VF ability to query its RSS Redirection Table and
1195 * Hash Key. This is needed since on some devices VF share this information
1196 * with PF and querying it may introduce a theoretical security risk.
1197 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1198 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1199 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1200 * void *type_data);
1201 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1202 * This is always called from the stack with the rtnl lock held and netif
1203 * tx queues stopped. This allows the netdevice to perform queue
1204 * management safely.
1205 *
1206 * Fiber Channel over Ethernet (FCoE) offload functions.
1207 * int (*ndo_fcoe_enable)(struct net_device *dev);
1208 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1209 * so the underlying device can perform whatever needed configuration or
1210 * initialization to support acceleration of FCoE traffic.
1211 *
1212 * int (*ndo_fcoe_disable)(struct net_device *dev);
1213 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1214 * so the underlying device can perform whatever needed clean-ups to
1215 * stop supporting acceleration of FCoE traffic.
1216 *
1217 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1218 * struct scatterlist *sgl, unsigned int sgc);
1219 * Called when the FCoE Initiator wants to initialize an I/O that
1220 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1221 * perform necessary setup and returns 1 to indicate the device is set up
1222 * successfully to perform DDP on this I/O, otherwise this returns 0.
1223 *
1224 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1225 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1226 * indicated by the FC exchange id 'xid', so the underlying device can
1227 * clean up and reuse resources for later DDP requests.
1228 *
1229 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1230 * struct scatterlist *sgl, unsigned int sgc);
1231 * Called when the FCoE Target wants to initialize an I/O that
1232 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1233 * perform necessary setup and returns 1 to indicate the device is set up
1234 * successfully to perform DDP on this I/O, otherwise this returns 0.
1235 *
1236 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1237 * struct netdev_fcoe_hbainfo *hbainfo);
1238 * Called when the FCoE Protocol stack wants information on the underlying
1239 * device. This information is utilized by the FCoE protocol stack to
1240 * register attributes with Fiber Channel management service as per the
1241 * FC-GS Fabric Device Management Information(FDMI) specification.
1242 *
1243 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1244 * Called when the underlying device wants to override default World Wide
1245 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1246 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1247 * protocol stack to use.
1248 *
1249 * RFS acceleration.
1250 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1251 * u16 rxq_index, u32 flow_id);
1252 * Set hardware filter for RFS. rxq_index is the target queue index;
1253 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1254 * Return the filter ID on success, or a negative error code.
1255 *
1256 * Slave management functions (for bridge, bonding, etc).
1257 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1258 * Called to make another netdev an underling.
1259 *
1260 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1261 * Called to release previously enslaved netdev.
1262 *
1263 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1264 * struct sk_buff *skb,
1265 * bool all_slaves);
1266 * Get the xmit slave of master device. If all_slaves is true, function
1267 * assume all the slaves can transmit.
1268 *
1269 * Feature/offload setting functions.
1270 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1271 * netdev_features_t features);
1272 * Adjusts the requested feature flags according to device-specific
1273 * constraints, and returns the resulting flags. Must not modify
1274 * the device state.
1275 *
1276 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1277 * Called to update device configuration to new features. Passed
1278 * feature set might be less than what was returned by ndo_fix_features()).
1279 * Must return >0 or -errno if it changed dev->features itself.
1280 *
1281 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1282 * struct net_device *dev,
1283 * const unsigned char *addr, u16 vid, u16 flags,
1284 * struct netlink_ext_ack *extack);
1285 * Adds an FDB entry to dev for addr.
1286 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1287 * struct net_device *dev,
1288 * const unsigned char *addr, u16 vid)
1289 * Deletes the FDB entry from dev coresponding to addr.
1290 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1291 * struct net_device *dev,
1292 * u16 vid,
1293 * struct netlink_ext_ack *extack);
1294 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1295 * struct net_device *dev, struct net_device *filter_dev,
1296 * int *idx)
1297 * Used to add FDB entries to dump requests. Implementers should add
1298 * entries to skb and update idx with the number of entries.
1299 *
1300 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1301 * u16 nlmsg_flags, struct netlink_ext_ack *extack);
1302 * Adds an MDB entry to dev.
1303 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1304 * struct netlink_ext_ack *extack);
1305 * Deletes the MDB entry from dev.
1306 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1307 * struct netlink_callback *cb);
1308 * Dumps MDB entries from dev. The first argument (marker) in the netlink
1309 * callback is used by core rtnetlink code.
1310 *
1311 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1312 * u16 flags, struct netlink_ext_ack *extack)
1313 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1314 * struct net_device *dev, u32 filter_mask,
1315 * int nlflags)
1316 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1317 * u16 flags);
1318 *
1319 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1320 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1321 * which do not represent real hardware may define this to allow their
1322 * userspace components to manage their virtual carrier state. Devices
1323 * that determine carrier state from physical hardware properties (eg
1324 * network cables) or protocol-dependent mechanisms (eg
1325 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1326 *
1327 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1328 * struct netdev_phys_item_id *ppid);
1329 * Called to get ID of physical port of this device. If driver does
1330 * not implement this, it is assumed that the hw is not able to have
1331 * multiple net devices on single physical port.
1332 *
1333 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1334 * struct netdev_phys_item_id *ppid)
1335 * Called to get the parent ID of the physical port of this device.
1336 *
1337 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1338 * struct net_device *dev)
1339 * Called by upper layer devices to accelerate switching or other
1340 * station functionality into hardware. 'pdev is the lowerdev
1341 * to use for the offload and 'dev' is the net device that will
1342 * back the offload. Returns a pointer to the private structure
1343 * the upper layer will maintain.
1344 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1345 * Called by upper layer device to delete the station created
1346 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1347 * the station and priv is the structure returned by the add
1348 * operation.
1349 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1350 * int queue_index, u32 maxrate);
1351 * Called when a user wants to set a max-rate limitation of specific
1352 * TX queue.
1353 * int (*ndo_get_iflink)(const struct net_device *dev);
1354 * Called to get the iflink value of this device.
1355 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1356 * This function is used to get egress tunnel information for given skb.
1357 * This is useful for retrieving outer tunnel header parameters while
1358 * sampling packet.
1359 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1360 * This function is used to specify the headroom that the skb must
1361 * consider when allocation skb during packet reception. Setting
1362 * appropriate rx headroom value allows avoiding skb head copy on
1363 * forward. Setting a negative value resets the rx headroom to the
1364 * default value.
1365 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1366 * This function is used to set or query state related to XDP on the
1367 * netdevice and manage BPF offload. See definition of
1368 * enum bpf_netdev_command for details.
1369 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1370 * u32 flags);
1371 * This function is used to submit @n XDP packets for transmit on a
1372 * netdevice. Returns number of frames successfully transmitted, frames
1373 * that got dropped are freed/returned via xdp_return_frame().
1374 * Returns negative number, means general error invoking ndo, meaning
1375 * no frames were xmit'ed and core-caller will free all frames.
1376 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1377 * struct xdp_buff *xdp);
1378 * Get the xmit slave of master device based on the xdp_buff.
1379 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1380 * This function is used to wake up the softirq, ksoftirqd or kthread
1381 * responsible for sending and/or receiving packets on a specific
1382 * queue id bound to an AF_XDP socket. The flags field specifies if
1383 * only RX, only Tx, or both should be woken up using the flags
1384 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1385 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1386 * int cmd);
1387 * Add, change, delete or get information on an IPv4 tunnel.
1388 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1389 * If a device is paired with a peer device, return the peer instance.
1390 * The caller must be under RCU read context.
1391 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1392 * Get the forwarding path to reach the real device from the HW destination address
1393 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1394 * const struct skb_shared_hwtstamps *hwtstamps,
1395 * bool cycles);
1396 * Get hardware timestamp based on normal/adjustable time or free running
1397 * cycle counter. This function is required if physical clock supports a
1398 * free running cycle counter.
1399 *
1400 * int (*ndo_hwtstamp_get)(struct net_device *dev,
1401 * struct kernel_hwtstamp_config *kernel_config);
1402 * Get the currently configured hardware timestamping parameters for the
1403 * NIC device.
1404 *
1405 * int (*ndo_hwtstamp_set)(struct net_device *dev,
1406 * struct kernel_hwtstamp_config *kernel_config,
1407 * struct netlink_ext_ack *extack);
1408 * Change the hardware timestamping parameters for NIC device.
1409 */
1410 struct net_device_ops {
1411 int (*ndo_init)(struct net_device *dev);
1412 void (*ndo_uninit)(struct net_device *dev);
1413 int (*ndo_open)(struct net_device *dev);
1414 int (*ndo_stop)(struct net_device *dev);
1415 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1416 struct net_device *dev);
1417 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1418 struct net_device *dev,
1419 netdev_features_t features);
1420 u16 (*ndo_select_queue)(struct net_device *dev,
1421 struct sk_buff *skb,
1422 struct net_device *sb_dev);
1423 void (*ndo_change_rx_flags)(struct net_device *dev,
1424 int flags);
1425 void (*ndo_set_rx_mode)(struct net_device *dev);
1426 int (*ndo_set_mac_address)(struct net_device *dev,
1427 void *addr);
1428 int (*ndo_validate_addr)(struct net_device *dev);
1429 int (*ndo_do_ioctl)(struct net_device *dev,
1430 struct ifreq *ifr, int cmd);
1431 int (*ndo_eth_ioctl)(struct net_device *dev,
1432 struct ifreq *ifr, int cmd);
1433 int (*ndo_siocbond)(struct net_device *dev,
1434 struct ifreq *ifr, int cmd);
1435 int (*ndo_siocwandev)(struct net_device *dev,
1436 struct if_settings *ifs);
1437 int (*ndo_siocdevprivate)(struct net_device *dev,
1438 struct ifreq *ifr,
1439 void __user *data, int cmd);
1440 int (*ndo_set_config)(struct net_device *dev,
1441 struct ifmap *map);
1442 int (*ndo_change_mtu)(struct net_device *dev,
1443 int new_mtu);
1444 int (*ndo_neigh_setup)(struct net_device *dev,
1445 struct neigh_parms *);
1446 void (*ndo_tx_timeout) (struct net_device *dev,
1447 unsigned int txqueue);
1448
1449 void (*ndo_get_stats64)(struct net_device *dev,
1450 struct rtnl_link_stats64 *storage);
1451 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1452 int (*ndo_get_offload_stats)(int attr_id,
1453 const struct net_device *dev,
1454 void *attr_data);
1455 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1456
1457 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1458 __be16 proto, u16 vid);
1459 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1460 __be16 proto, u16 vid);
1461 #ifdef CONFIG_NET_POLL_CONTROLLER
1462 void (*ndo_poll_controller)(struct net_device *dev);
1463 int (*ndo_netpoll_setup)(struct net_device *dev,
1464 struct netpoll_info *info);
1465 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1466 #endif
1467 int (*ndo_set_vf_mac)(struct net_device *dev,
1468 int queue, u8 *mac);
1469 int (*ndo_set_vf_vlan)(struct net_device *dev,
1470 int queue, u16 vlan,
1471 u8 qos, __be16 proto);
1472 int (*ndo_set_vf_rate)(struct net_device *dev,
1473 int vf, int min_tx_rate,
1474 int max_tx_rate);
1475 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1476 int vf, bool setting);
1477 int (*ndo_set_vf_trust)(struct net_device *dev,
1478 int vf, bool setting);
1479 int (*ndo_get_vf_config)(struct net_device *dev,
1480 int vf,
1481 struct ifla_vf_info *ivf);
1482 int (*ndo_set_vf_link_state)(struct net_device *dev,
1483 int vf, int link_state);
1484 int (*ndo_get_vf_stats)(struct net_device *dev,
1485 int vf,
1486 struct ifla_vf_stats
1487 *vf_stats);
1488 int (*ndo_set_vf_port)(struct net_device *dev,
1489 int vf,
1490 struct nlattr *port[]);
1491 int (*ndo_get_vf_port)(struct net_device *dev,
1492 int vf, struct sk_buff *skb);
1493 int (*ndo_get_vf_guid)(struct net_device *dev,
1494 int vf,
1495 struct ifla_vf_guid *node_guid,
1496 struct ifla_vf_guid *port_guid);
1497 int (*ndo_set_vf_guid)(struct net_device *dev,
1498 int vf, u64 guid,
1499 int guid_type);
1500 int (*ndo_set_vf_rss_query_en)(
1501 struct net_device *dev,
1502 int vf, bool setting);
1503 int (*ndo_setup_tc)(struct net_device *dev,
1504 enum tc_setup_type type,
1505 void *type_data);
1506 #if IS_ENABLED(CONFIG_FCOE)
1507 int (*ndo_fcoe_enable)(struct net_device *dev);
1508 int (*ndo_fcoe_disable)(struct net_device *dev);
1509 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1510 u16 xid,
1511 struct scatterlist *sgl,
1512 unsigned int sgc);
1513 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1514 u16 xid);
1515 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1516 u16 xid,
1517 struct scatterlist *sgl,
1518 unsigned int sgc);
1519 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1520 struct netdev_fcoe_hbainfo *hbainfo);
1521 #endif
1522
1523 #if IS_ENABLED(CONFIG_LIBFCOE)
1524 #define NETDEV_FCOE_WWNN 0
1525 #define NETDEV_FCOE_WWPN 1
1526 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1527 u64 *wwn, int type);
1528 #endif
1529
1530 #ifdef CONFIG_RFS_ACCEL
1531 int (*ndo_rx_flow_steer)(struct net_device *dev,
1532 const struct sk_buff *skb,
1533 u16 rxq_index,
1534 u32 flow_id);
1535 #endif
1536 int (*ndo_add_slave)(struct net_device *dev,
1537 struct net_device *slave_dev,
1538 struct netlink_ext_ack *extack);
1539 int (*ndo_del_slave)(struct net_device *dev,
1540 struct net_device *slave_dev);
1541 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1542 struct sk_buff *skb,
1543 bool all_slaves);
1544 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1545 struct sock *sk);
1546 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1547 netdev_features_t features);
1548 int (*ndo_set_features)(struct net_device *dev,
1549 netdev_features_t features);
1550 int (*ndo_neigh_construct)(struct net_device *dev,
1551 struct neighbour *n);
1552 void (*ndo_neigh_destroy)(struct net_device *dev,
1553 struct neighbour *n);
1554
1555 int (*ndo_fdb_add)(struct ndmsg *ndm,
1556 struct nlattr *tb[],
1557 struct net_device *dev,
1558 const unsigned char *addr,
1559 u16 vid,
1560 u16 flags,
1561 struct netlink_ext_ack *extack);
1562 int (*ndo_fdb_del)(struct ndmsg *ndm,
1563 struct nlattr *tb[],
1564 struct net_device *dev,
1565 const unsigned char *addr,
1566 u16 vid, struct netlink_ext_ack *extack);
1567 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1568 struct nlattr *tb[],
1569 struct net_device *dev,
1570 u16 vid,
1571 struct netlink_ext_ack *extack);
1572 int (*ndo_fdb_dump)(struct sk_buff *skb,
1573 struct netlink_callback *cb,
1574 struct net_device *dev,
1575 struct net_device *filter_dev,
1576 int *idx);
1577 int (*ndo_fdb_get)(struct sk_buff *skb,
1578 struct nlattr *tb[],
1579 struct net_device *dev,
1580 const unsigned char *addr,
1581 u16 vid, u32 portid, u32 seq,
1582 struct netlink_ext_ack *extack);
1583 int (*ndo_mdb_add)(struct net_device *dev,
1584 struct nlattr *tb[],
1585 u16 nlmsg_flags,
1586 struct netlink_ext_ack *extack);
1587 int (*ndo_mdb_del)(struct net_device *dev,
1588 struct nlattr *tb[],
1589 struct netlink_ext_ack *extack);
1590 int (*ndo_mdb_dump)(struct net_device *dev,
1591 struct sk_buff *skb,
1592 struct netlink_callback *cb);
1593 int (*ndo_bridge_setlink)(struct net_device *dev,
1594 struct nlmsghdr *nlh,
1595 u16 flags,
1596 struct netlink_ext_ack *extack);
1597 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1598 u32 pid, u32 seq,
1599 struct net_device *dev,
1600 u32 filter_mask,
1601 int nlflags);
1602 int (*ndo_bridge_dellink)(struct net_device *dev,
1603 struct nlmsghdr *nlh,
1604 u16 flags);
1605 int (*ndo_change_carrier)(struct net_device *dev,
1606 bool new_carrier);
1607 int (*ndo_get_phys_port_id)(struct net_device *dev,
1608 struct netdev_phys_item_id *ppid);
1609 int (*ndo_get_port_parent_id)(struct net_device *dev,
1610 struct netdev_phys_item_id *ppid);
1611 int (*ndo_get_phys_port_name)(struct net_device *dev,
1612 char *name, size_t len);
1613 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1614 struct net_device *dev);
1615 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1616 void *priv);
1617
1618 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1619 int queue_index,
1620 u32 maxrate);
1621 int (*ndo_get_iflink)(const struct net_device *dev);
1622 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1623 struct sk_buff *skb);
1624 void (*ndo_set_rx_headroom)(struct net_device *dev,
1625 int needed_headroom);
1626 int (*ndo_bpf)(struct net_device *dev,
1627 struct netdev_bpf *bpf);
1628 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1629 struct xdp_frame **xdp,
1630 u32 flags);
1631 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1632 struct xdp_buff *xdp);
1633 int (*ndo_xsk_wakeup)(struct net_device *dev,
1634 u32 queue_id, u32 flags);
1635 int (*ndo_tunnel_ctl)(struct net_device *dev,
1636 struct ip_tunnel_parm *p, int cmd);
1637 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1638 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1639 struct net_device_path *path);
1640 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1641 const struct skb_shared_hwtstamps *hwtstamps,
1642 bool cycles);
1643 int (*ndo_hwtstamp_get)(struct net_device *dev,
1644 struct kernel_hwtstamp_config *kernel_config);
1645 int (*ndo_hwtstamp_set)(struct net_device *dev,
1646 struct kernel_hwtstamp_config *kernel_config,
1647 struct netlink_ext_ack *extack);
1648 };
1649
1650 /**
1651 * enum netdev_priv_flags - &struct net_device priv_flags
1652 *
1653 * These are the &struct net_device, they are only set internally
1654 * by drivers and used in the kernel. These flags are invisible to
1655 * userspace; this means that the order of these flags can change
1656 * during any kernel release.
1657 *
1658 * You should have a pretty good reason to be extending these flags.
1659 *
1660 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1661 * @IFF_EBRIDGE: Ethernet bridging device
1662 * @IFF_BONDING: bonding master or slave
1663 * @IFF_ISATAP: ISATAP interface (RFC4214)
1664 * @IFF_WAN_HDLC: WAN HDLC device
1665 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1666 * release skb->dst
1667 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1668 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1669 * @IFF_MACVLAN_PORT: device used as macvlan port
1670 * @IFF_BRIDGE_PORT: device used as bridge port
1671 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1672 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1673 * @IFF_UNICAST_FLT: Supports unicast filtering
1674 * @IFF_TEAM_PORT: device used as team port
1675 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1676 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1677 * change when it's running
1678 * @IFF_MACVLAN: Macvlan device
1679 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1680 * underlying stacked devices
1681 * @IFF_L3MDEV_MASTER: device is an L3 master device
1682 * @IFF_NO_QUEUE: device can run without qdisc attached
1683 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1684 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1685 * @IFF_TEAM: device is a team device
1686 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1687 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1688 * entity (i.e. the master device for bridged veth)
1689 * @IFF_MACSEC: device is a MACsec device
1690 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1691 * @IFF_FAILOVER: device is a failover master device
1692 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1693 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1694 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1695 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1696 * skb_headlen(skb) == 0 (data starts from frag0)
1697 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1698 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1699 * ndo_hwtstamp_set() for all timestamp requests regardless of source,
1700 * even if those aren't HWTSTAMP_SOURCE_NETDEV.
1701 */
1702 enum netdev_priv_flags {
1703 IFF_802_1Q_VLAN = 1<<0,
1704 IFF_EBRIDGE = 1<<1,
1705 IFF_BONDING = 1<<2,
1706 IFF_ISATAP = 1<<3,
1707 IFF_WAN_HDLC = 1<<4,
1708 IFF_XMIT_DST_RELEASE = 1<<5,
1709 IFF_DONT_BRIDGE = 1<<6,
1710 IFF_DISABLE_NETPOLL = 1<<7,
1711 IFF_MACVLAN_PORT = 1<<8,
1712 IFF_BRIDGE_PORT = 1<<9,
1713 IFF_OVS_DATAPATH = 1<<10,
1714 IFF_TX_SKB_SHARING = 1<<11,
1715 IFF_UNICAST_FLT = 1<<12,
1716 IFF_TEAM_PORT = 1<<13,
1717 IFF_SUPP_NOFCS = 1<<14,
1718 IFF_LIVE_ADDR_CHANGE = 1<<15,
1719 IFF_MACVLAN = 1<<16,
1720 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1721 IFF_L3MDEV_MASTER = 1<<18,
1722 IFF_NO_QUEUE = 1<<19,
1723 IFF_OPENVSWITCH = 1<<20,
1724 IFF_L3MDEV_SLAVE = 1<<21,
1725 IFF_TEAM = 1<<22,
1726 IFF_RXFH_CONFIGURED = 1<<23,
1727 IFF_PHONY_HEADROOM = 1<<24,
1728 IFF_MACSEC = 1<<25,
1729 IFF_NO_RX_HANDLER = 1<<26,
1730 IFF_FAILOVER = 1<<27,
1731 IFF_FAILOVER_SLAVE = 1<<28,
1732 IFF_L3MDEV_RX_HANDLER = 1<<29,
1733 IFF_NO_ADDRCONF = BIT_ULL(30),
1734 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1735 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1736 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33),
1737 };
1738
1739 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1740 #define IFF_EBRIDGE IFF_EBRIDGE
1741 #define IFF_BONDING IFF_BONDING
1742 #define IFF_ISATAP IFF_ISATAP
1743 #define IFF_WAN_HDLC IFF_WAN_HDLC
1744 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1745 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1746 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1747 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1748 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1749 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1750 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1751 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1752 #define IFF_TEAM_PORT IFF_TEAM_PORT
1753 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1754 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1755 #define IFF_MACVLAN IFF_MACVLAN
1756 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1757 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1758 #define IFF_NO_QUEUE IFF_NO_QUEUE
1759 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1760 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1761 #define IFF_TEAM IFF_TEAM
1762 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1763 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1764 #define IFF_MACSEC IFF_MACSEC
1765 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1766 #define IFF_FAILOVER IFF_FAILOVER
1767 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1768 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1769 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1770
1771 /* Specifies the type of the struct net_device::ml_priv pointer */
1772 enum netdev_ml_priv_type {
1773 ML_PRIV_NONE,
1774 ML_PRIV_CAN,
1775 };
1776
1777 /**
1778 * struct net_device - The DEVICE structure.
1779 *
1780 * Actually, this whole structure is a big mistake. It mixes I/O
1781 * data with strictly "high-level" data, and it has to know about
1782 * almost every data structure used in the INET module.
1783 *
1784 * @name: This is the first field of the "visible" part of this structure
1785 * (i.e. as seen by users in the "Space.c" file). It is the name
1786 * of the interface.
1787 *
1788 * @name_node: Name hashlist node
1789 * @ifalias: SNMP alias
1790 * @mem_end: Shared memory end
1791 * @mem_start: Shared memory start
1792 * @base_addr: Device I/O address
1793 * @irq: Device IRQ number
1794 *
1795 * @state: Generic network queuing layer state, see netdev_state_t
1796 * @dev_list: The global list of network devices
1797 * @napi_list: List entry used for polling NAPI devices
1798 * @unreg_list: List entry when we are unregistering the
1799 * device; see the function unregister_netdev
1800 * @close_list: List entry used when we are closing the device
1801 * @ptype_all: Device-specific packet handlers for all protocols
1802 * @ptype_specific: Device-specific, protocol-specific packet handlers
1803 *
1804 * @adj_list: Directly linked devices, like slaves for bonding
1805 * @features: Currently active device features
1806 * @hw_features: User-changeable features
1807 *
1808 * @wanted_features: User-requested features
1809 * @vlan_features: Mask of features inheritable by VLAN devices
1810 *
1811 * @hw_enc_features: Mask of features inherited by encapsulating devices
1812 * This field indicates what encapsulation
1813 * offloads the hardware is capable of doing,
1814 * and drivers will need to set them appropriately.
1815 *
1816 * @mpls_features: Mask of features inheritable by MPLS
1817 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1818 *
1819 * @ifindex: interface index
1820 * @group: The group the device belongs to
1821 *
1822 * @stats: Statistics struct, which was left as a legacy, use
1823 * rtnl_link_stats64 instead
1824 *
1825 * @core_stats: core networking counters,
1826 * do not use this in drivers
1827 * @carrier_up_count: Number of times the carrier has been up
1828 * @carrier_down_count: Number of times the carrier has been down
1829 *
1830 * @wireless_handlers: List of functions to handle Wireless Extensions,
1831 * instead of ioctl,
1832 * see <net/iw_handler.h> for details.
1833 * @wireless_data: Instance data managed by the core of wireless extensions
1834 *
1835 * @netdev_ops: Includes several pointers to callbacks,
1836 * if one wants to override the ndo_*() functions
1837 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks.
1838 * @ethtool_ops: Management operations
1839 * @l3mdev_ops: Layer 3 master device operations
1840 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1841 * discovery handling. Necessary for e.g. 6LoWPAN.
1842 * @xfrmdev_ops: Transformation offload operations
1843 * @tlsdev_ops: Transport Layer Security offload operations
1844 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1845 * of Layer 2 headers.
1846 *
1847 * @flags: Interface flags (a la BSD)
1848 * @xdp_features: XDP capability supported by the device
1849 * @priv_flags: Like 'flags' but invisible to userspace,
1850 * see if.h for the definitions
1851 * @gflags: Global flags ( kept as legacy )
1852 * @padded: How much padding added by alloc_netdev()
1853 * @operstate: RFC2863 operstate
1854 * @link_mode: Mapping policy to operstate
1855 * @if_port: Selectable AUI, TP, ...
1856 * @dma: DMA channel
1857 * @mtu: Interface MTU value
1858 * @min_mtu: Interface Minimum MTU value
1859 * @max_mtu: Interface Maximum MTU value
1860 * @type: Interface hardware type
1861 * @hard_header_len: Maximum hardware header length.
1862 * @min_header_len: Minimum hardware header length
1863 *
1864 * @needed_headroom: Extra headroom the hardware may need, but not in all
1865 * cases can this be guaranteed
1866 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1867 * cases can this be guaranteed. Some cases also use
1868 * LL_MAX_HEADER instead to allocate the skb
1869 *
1870 * interface address info:
1871 *
1872 * @perm_addr: Permanent hw address
1873 * @addr_assign_type: Hw address assignment type
1874 * @addr_len: Hardware address length
1875 * @upper_level: Maximum depth level of upper devices.
1876 * @lower_level: Maximum depth level of lower devices.
1877 * @neigh_priv_len: Used in neigh_alloc()
1878 * @dev_id: Used to differentiate devices that share
1879 * the same link layer address
1880 * @dev_port: Used to differentiate devices that share
1881 * the same function
1882 * @addr_list_lock: XXX: need comments on this one
1883 * @name_assign_type: network interface name assignment type
1884 * @uc_promisc: Counter that indicates promiscuous mode
1885 * has been enabled due to the need to listen to
1886 * additional unicast addresses in a device that
1887 * does not implement ndo_set_rx_mode()
1888 * @uc: unicast mac addresses
1889 * @mc: multicast mac addresses
1890 * @dev_addrs: list of device hw addresses
1891 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1892 * @promiscuity: Number of times the NIC is told to work in
1893 * promiscuous mode; if it becomes 0 the NIC will
1894 * exit promiscuous mode
1895 * @allmulti: Counter, enables or disables allmulticast mode
1896 *
1897 * @vlan_info: VLAN info
1898 * @dsa_ptr: dsa specific data
1899 * @tipc_ptr: TIPC specific data
1900 * @atalk_ptr: AppleTalk link
1901 * @ip_ptr: IPv4 specific data
1902 * @ip6_ptr: IPv6 specific data
1903 * @ax25_ptr: AX.25 specific data
1904 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1905 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1906 * device struct
1907 * @mpls_ptr: mpls_dev struct pointer
1908 * @mctp_ptr: MCTP specific data
1909 *
1910 * @dev_addr: Hw address (before bcast,
1911 * because most packets are unicast)
1912 *
1913 * @_rx: Array of RX queues
1914 * @num_rx_queues: Number of RX queues
1915 * allocated at register_netdev() time
1916 * @real_num_rx_queues: Number of RX queues currently active in device
1917 * @xdp_prog: XDP sockets filter program pointer
1918 * @gro_flush_timeout: timeout for GRO layer in NAPI
1919 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1920 * allow to avoid NIC hard IRQ, on busy queues.
1921 *
1922 * @rx_handler: handler for received packets
1923 * @rx_handler_data: XXX: need comments on this one
1924 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing
1925 * @ingress_queue: XXX: need comments on this one
1926 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1927 * @broadcast: hw bcast address
1928 *
1929 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1930 * indexed by RX queue number. Assigned by driver.
1931 * This must only be set if the ndo_rx_flow_steer
1932 * operation is defined
1933 * @index_hlist: Device index hash chain
1934 *
1935 * @_tx: Array of TX queues
1936 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1937 * @real_num_tx_queues: Number of TX queues currently active in device
1938 * @qdisc: Root qdisc from userspace point of view
1939 * @tx_queue_len: Max frames per queue allowed
1940 * @tx_global_lock: XXX: need comments on this one
1941 * @xdp_bulkq: XDP device bulk queue
1942 * @xps_maps: all CPUs/RXQs maps for XPS device
1943 *
1944 * @xps_maps: XXX: need comments on this one
1945 * @tcx_egress: BPF & clsact qdisc specific data for egress processing
1946 * @nf_hooks_egress: netfilter hooks executed for egress packets
1947 * @qdisc_hash: qdisc hash table
1948 * @watchdog_timeo: Represents the timeout that is used by
1949 * the watchdog (see dev_watchdog())
1950 * @watchdog_timer: List of timers
1951 *
1952 * @proto_down_reason: reason a netdev interface is held down
1953 * @pcpu_refcnt: Number of references to this device
1954 * @dev_refcnt: Number of references to this device
1955 * @refcnt_tracker: Tracker directory for tracked references to this device
1956 * @todo_list: Delayed register/unregister
1957 * @link_watch_list: XXX: need comments on this one
1958 *
1959 * @reg_state: Register/unregister state machine
1960 * @dismantle: Device is going to be freed
1961 * @rtnl_link_state: This enum represents the phases of creating
1962 * a new link
1963 *
1964 * @needs_free_netdev: Should unregister perform free_netdev?
1965 * @priv_destructor: Called from unregister
1966 * @npinfo: XXX: need comments on this one
1967 * @nd_net: Network namespace this network device is inside
1968 *
1969 * @ml_priv: Mid-layer private
1970 * @ml_priv_type: Mid-layer private type
1971 * @lstats: Loopback statistics
1972 * @tstats: Tunnel statistics
1973 * @dstats: Dummy statistics
1974 * @vstats: Virtual ethernet statistics
1975 *
1976 * @garp_port: GARP
1977 * @mrp_port: MRP
1978 *
1979 * @dm_private: Drop monitor private
1980 *
1981 * @dev: Class/net/name entry
1982 * @sysfs_groups: Space for optional device, statistics and wireless
1983 * sysfs groups
1984 *
1985 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1986 * @rtnl_link_ops: Rtnl_link_ops
1987 *
1988 * @gso_max_size: Maximum size of generic segmentation offload
1989 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1990 * @gso_max_segs: Maximum number of segments that can be passed to the
1991 * NIC for GSO
1992 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1993 * @gso_ipv4_max_size: Maximum size of generic segmentation offload,
1994 * for IPv4.
1995 *
1996 * @dcbnl_ops: Data Center Bridging netlink ops
1997 * @num_tc: Number of traffic classes in the net device
1998 * @tc_to_txq: XXX: need comments on this one
1999 * @prio_tc_map: XXX: need comments on this one
2000 *
2001 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
2002 *
2003 * @priomap: XXX: need comments on this one
2004 * @phydev: Physical device may attach itself
2005 * for hardware timestamping
2006 * @sfp_bus: attached &struct sfp_bus structure.
2007 *
2008 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2009 *
2010 * @proto_down: protocol port state information can be sent to the
2011 * switch driver and used to set the phys state of the
2012 * switch port.
2013 *
2014 * @wol_enabled: Wake-on-LAN is enabled
2015 *
2016 * @threaded: napi threaded mode is enabled
2017 *
2018 * @net_notifier_list: List of per-net netdev notifier block
2019 * that follow this device when it is moved
2020 * to another network namespace.
2021 *
2022 * @macsec_ops: MACsec offloading ops
2023 *
2024 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
2025 * offload capabilities of the device
2026 * @udp_tunnel_nic: UDP tunnel offload state
2027 * @xdp_state: stores info on attached XDP BPF programs
2028 *
2029 * @nested_level: Used as a parameter of spin_lock_nested() of
2030 * dev->addr_list_lock.
2031 * @unlink_list: As netif_addr_lock() can be called recursively,
2032 * keep a list of interfaces to be deleted.
2033 * @gro_max_size: Maximum size of aggregated packet in generic
2034 * receive offload (GRO)
2035 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic
2036 * receive offload (GRO), for IPv4.
2037 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP
2038 * zero copy driver
2039 *
2040 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2041 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2042 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2043 * @dev_registered_tracker: tracker for reference held while
2044 * registered
2045 * @offload_xstats_l3: L3 HW stats for this netdevice.
2046 *
2047 * @devlink_port: Pointer to related devlink port structure.
2048 * Assigned by a driver before netdev registration using
2049 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2050 * during the time netdevice is registered.
2051 *
2052 * FIXME: cleanup struct net_device such that network protocol info
2053 * moves out.
2054 */
2055
2056 struct net_device {
2057 char name[IFNAMSIZ];
2058 struct netdev_name_node *name_node;
2059 struct dev_ifalias __rcu *ifalias;
2060 /*
2061 * I/O specific fields
2062 * FIXME: Merge these and struct ifmap into one
2063 */
2064 unsigned long mem_end;
2065 unsigned long mem_start;
2066 unsigned long base_addr;
2067
2068 /*
2069 * Some hardware also needs these fields (state,dev_list,
2070 * napi_list,unreg_list,close_list) but they are not
2071 * part of the usual set specified in Space.c.
2072 */
2073
2074 unsigned long state;
2075
2076 struct list_head dev_list;
2077 struct list_head napi_list;
2078 struct list_head unreg_list;
2079 struct list_head close_list;
2080 struct list_head ptype_all;
2081 struct list_head ptype_specific;
2082
2083 struct {
2084 struct list_head upper;
2085 struct list_head lower;
2086 } adj_list;
2087
2088 /* Read-mostly cache-line for fast-path access */
2089 unsigned int flags;
2090 xdp_features_t xdp_features;
2091 unsigned long long priv_flags;
2092 const struct net_device_ops *netdev_ops;
2093 const struct xdp_metadata_ops *xdp_metadata_ops;
2094 int ifindex;
2095 unsigned short gflags;
2096 unsigned short hard_header_len;
2097
2098 /* Note : dev->mtu is often read without holding a lock.
2099 * Writers usually hold RTNL.
2100 * It is recommended to use READ_ONCE() to annotate the reads,
2101 * and to use WRITE_ONCE() to annotate the writes.
2102 */
2103 unsigned int mtu;
2104 unsigned short needed_headroom;
2105 unsigned short needed_tailroom;
2106
2107 netdev_features_t features;
2108 netdev_features_t hw_features;
2109 netdev_features_t wanted_features;
2110 netdev_features_t vlan_features;
2111 netdev_features_t hw_enc_features;
2112 netdev_features_t mpls_features;
2113 netdev_features_t gso_partial_features;
2114
2115 unsigned int min_mtu;
2116 unsigned int max_mtu;
2117 unsigned short type;
2118 unsigned char min_header_len;
2119 unsigned char name_assign_type;
2120
2121 int group;
2122
2123 struct net_device_stats stats; /* not used by modern drivers */
2124
2125 struct net_device_core_stats __percpu *core_stats;
2126
2127 /* Stats to monitor link on/off, flapping */
2128 atomic_t carrier_up_count;
2129 atomic_t carrier_down_count;
2130
2131 #ifdef CONFIG_WIRELESS_EXT
2132 const struct iw_handler_def *wireless_handlers;
2133 struct iw_public_data *wireless_data;
2134 #endif
2135 const struct ethtool_ops *ethtool_ops;
2136 #ifdef CONFIG_NET_L3_MASTER_DEV
2137 const struct l3mdev_ops *l3mdev_ops;
2138 #endif
2139 #if IS_ENABLED(CONFIG_IPV6)
2140 const struct ndisc_ops *ndisc_ops;
2141 #endif
2142
2143 #ifdef CONFIG_XFRM_OFFLOAD
2144 const struct xfrmdev_ops *xfrmdev_ops;
2145 #endif
2146
2147 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2148 const struct tlsdev_ops *tlsdev_ops;
2149 #endif
2150
2151 const struct header_ops *header_ops;
2152
2153 unsigned char operstate;
2154 unsigned char link_mode;
2155
2156 unsigned char if_port;
2157 unsigned char dma;
2158
2159 /* Interface address info. */
2160 unsigned char perm_addr[MAX_ADDR_LEN];
2161 unsigned char addr_assign_type;
2162 unsigned char addr_len;
2163 unsigned char upper_level;
2164 unsigned char lower_level;
2165
2166 unsigned short neigh_priv_len;
2167 unsigned short dev_id;
2168 unsigned short dev_port;
2169 unsigned short padded;
2170
2171 spinlock_t addr_list_lock;
2172 int irq;
2173
2174 struct netdev_hw_addr_list uc;
2175 struct netdev_hw_addr_list mc;
2176 struct netdev_hw_addr_list dev_addrs;
2177
2178 #ifdef CONFIG_SYSFS
2179 struct kset *queues_kset;
2180 #endif
2181 #ifdef CONFIG_LOCKDEP
2182 struct list_head unlink_list;
2183 #endif
2184 unsigned int promiscuity;
2185 unsigned int allmulti;
2186 bool uc_promisc;
2187 #ifdef CONFIG_LOCKDEP
2188 unsigned char nested_level;
2189 #endif
2190
2191
2192 /* Protocol-specific pointers */
2193
2194 struct in_device __rcu *ip_ptr;
2195 struct inet6_dev __rcu *ip6_ptr;
2196 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2197 struct vlan_info __rcu *vlan_info;
2198 #endif
2199 #if IS_ENABLED(CONFIG_NET_DSA)
2200 struct dsa_port *dsa_ptr;
2201 #endif
2202 #if IS_ENABLED(CONFIG_TIPC)
2203 struct tipc_bearer __rcu *tipc_ptr;
2204 #endif
2205 #if IS_ENABLED(CONFIG_ATALK)
2206 void *atalk_ptr;
2207 #endif
2208 #if IS_ENABLED(CONFIG_AX25)
2209 void *ax25_ptr;
2210 #endif
2211 #if IS_ENABLED(CONFIG_CFG80211)
2212 struct wireless_dev *ieee80211_ptr;
2213 #endif
2214 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2215 struct wpan_dev *ieee802154_ptr;
2216 #endif
2217 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2218 struct mpls_dev __rcu *mpls_ptr;
2219 #endif
2220 #if IS_ENABLED(CONFIG_MCTP)
2221 struct mctp_dev __rcu *mctp_ptr;
2222 #endif
2223
2224 /*
2225 * Cache lines mostly used on receive path (including eth_type_trans())
2226 */
2227 /* Interface address info used in eth_type_trans() */
2228 const unsigned char *dev_addr;
2229
2230 struct netdev_rx_queue *_rx;
2231 unsigned int num_rx_queues;
2232 unsigned int real_num_rx_queues;
2233
2234 struct bpf_prog __rcu *xdp_prog;
2235 unsigned long gro_flush_timeout;
2236 int napi_defer_hard_irqs;
2237 #define GRO_LEGACY_MAX_SIZE 65536u
2238 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2239 * and shinfo->gso_segs is a 16bit field.
2240 */
2241 #define GRO_MAX_SIZE (8 * 65535u)
2242 unsigned int gro_max_size;
2243 unsigned int gro_ipv4_max_size;
2244 unsigned int xdp_zc_max_segs;
2245 rx_handler_func_t __rcu *rx_handler;
2246 void __rcu *rx_handler_data;
2247 #ifdef CONFIG_NET_XGRESS
2248 struct bpf_mprog_entry __rcu *tcx_ingress;
2249 #endif
2250 struct netdev_queue __rcu *ingress_queue;
2251 #ifdef CONFIG_NETFILTER_INGRESS
2252 struct nf_hook_entries __rcu *nf_hooks_ingress;
2253 #endif
2254
2255 unsigned char broadcast[MAX_ADDR_LEN];
2256 #ifdef CONFIG_RFS_ACCEL
2257 struct cpu_rmap *rx_cpu_rmap;
2258 #endif
2259 struct hlist_node index_hlist;
2260
2261 /*
2262 * Cache lines mostly used on transmit path
2263 */
2264 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2265 unsigned int num_tx_queues;
2266 unsigned int real_num_tx_queues;
2267 struct Qdisc __rcu *qdisc;
2268 unsigned int tx_queue_len;
2269 spinlock_t tx_global_lock;
2270
2271 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2272
2273 #ifdef CONFIG_XPS
2274 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2275 #endif
2276 #ifdef CONFIG_NET_XGRESS
2277 struct bpf_mprog_entry __rcu *tcx_egress;
2278 #endif
2279 #ifdef CONFIG_NETFILTER_EGRESS
2280 struct nf_hook_entries __rcu *nf_hooks_egress;
2281 #endif
2282
2283 #ifdef CONFIG_NET_SCHED
2284 DECLARE_HASHTABLE (qdisc_hash, 4);
2285 #endif
2286 /* These may be needed for future network-power-down code. */
2287 struct timer_list watchdog_timer;
2288 int watchdog_timeo;
2289
2290 u32 proto_down_reason;
2291
2292 struct list_head todo_list;
2293
2294 #ifdef CONFIG_PCPU_DEV_REFCNT
2295 int __percpu *pcpu_refcnt;
2296 #else
2297 refcount_t dev_refcnt;
2298 #endif
2299 struct ref_tracker_dir refcnt_tracker;
2300
2301 struct list_head link_watch_list;
2302
2303 enum { NETREG_UNINITIALIZED=0,
2304 NETREG_REGISTERED, /* completed register_netdevice */
2305 NETREG_UNREGISTERING, /* called unregister_netdevice */
2306 NETREG_UNREGISTERED, /* completed unregister todo */
2307 NETREG_RELEASED, /* called free_netdev */
2308 NETREG_DUMMY, /* dummy device for NAPI poll */
2309 } reg_state:8;
2310
2311 bool dismantle;
2312
2313 enum {
2314 RTNL_LINK_INITIALIZED,
2315 RTNL_LINK_INITIALIZING,
2316 } rtnl_link_state:16;
2317
2318 bool needs_free_netdev;
2319 void (*priv_destructor)(struct net_device *dev);
2320
2321 #ifdef CONFIG_NETPOLL
2322 struct netpoll_info __rcu *npinfo;
2323 #endif
2324
2325 possible_net_t nd_net;
2326
2327 /* mid-layer private */
2328 void *ml_priv;
2329 enum netdev_ml_priv_type ml_priv_type;
2330
2331 union {
2332 struct pcpu_lstats __percpu *lstats;
2333 struct pcpu_sw_netstats __percpu *tstats;
2334 struct pcpu_dstats __percpu *dstats;
2335 };
2336
2337 #if IS_ENABLED(CONFIG_GARP)
2338 struct garp_port __rcu *garp_port;
2339 #endif
2340 #if IS_ENABLED(CONFIG_MRP)
2341 struct mrp_port __rcu *mrp_port;
2342 #endif
2343 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2344 struct dm_hw_stat_delta __rcu *dm_private;
2345 #endif
2346 struct device dev;
2347 const struct attribute_group *sysfs_groups[4];
2348 const struct attribute_group *sysfs_rx_queue_group;
2349
2350 const struct rtnl_link_ops *rtnl_link_ops;
2351
2352 /* for setting kernel sock attribute on TCP connection setup */
2353 #define GSO_MAX_SEGS 65535u
2354 #define GSO_LEGACY_MAX_SIZE 65536u
2355 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2356 * and shinfo->gso_segs is a 16bit field.
2357 */
2358 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2359
2360 unsigned int gso_max_size;
2361 #define TSO_LEGACY_MAX_SIZE 65536
2362 #define TSO_MAX_SIZE UINT_MAX
2363 unsigned int tso_max_size;
2364 u16 gso_max_segs;
2365 #define TSO_MAX_SEGS U16_MAX
2366 u16 tso_max_segs;
2367 unsigned int gso_ipv4_max_size;
2368
2369 #ifdef CONFIG_DCB
2370 const struct dcbnl_rtnl_ops *dcbnl_ops;
2371 #endif
2372 s16 num_tc;
2373 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2374 u8 prio_tc_map[TC_BITMASK + 1];
2375
2376 #if IS_ENABLED(CONFIG_FCOE)
2377 unsigned int fcoe_ddp_xid;
2378 #endif
2379 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2380 struct netprio_map __rcu *priomap;
2381 #endif
2382 struct phy_device *phydev;
2383 struct sfp_bus *sfp_bus;
2384 struct lock_class_key *qdisc_tx_busylock;
2385 bool proto_down;
2386 unsigned wol_enabled:1;
2387 unsigned threaded:1;
2388
2389 struct list_head net_notifier_list;
2390
2391 #if IS_ENABLED(CONFIG_MACSEC)
2392 /* MACsec management functions */
2393 const struct macsec_ops *macsec_ops;
2394 #endif
2395 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2396 struct udp_tunnel_nic *udp_tunnel_nic;
2397
2398 /* protected by rtnl_lock */
2399 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2400
2401 u8 dev_addr_shadow[MAX_ADDR_LEN];
2402 netdevice_tracker linkwatch_dev_tracker;
2403 netdevice_tracker watchdog_dev_tracker;
2404 netdevice_tracker dev_registered_tracker;
2405 struct rtnl_hw_stats64 *offload_xstats_l3;
2406
2407 struct devlink_port *devlink_port;
2408 };
2409 #define to_net_dev(d) container_of(d, struct net_device, dev)
2410
2411 /*
2412 * Driver should use this to assign devlink port instance to a netdevice
2413 * before it registers the netdevice. Therefore devlink_port is static
2414 * during the netdev lifetime after it is registered.
2415 */
2416 #define SET_NETDEV_DEVLINK_PORT(dev, port) \
2417 ({ \
2418 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \
2419 ((dev)->devlink_port = (port)); \
2420 })
2421
netif_elide_gro(const struct net_device * dev)2422 static inline bool netif_elide_gro(const struct net_device *dev)
2423 {
2424 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2425 return true;
2426 return false;
2427 }
2428
2429 #define NETDEV_ALIGN 32
2430
2431 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2432 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2433 {
2434 return dev->prio_tc_map[prio & TC_BITMASK];
2435 }
2436
2437 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2438 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2439 {
2440 if (tc >= dev->num_tc)
2441 return -EINVAL;
2442
2443 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2444 return 0;
2445 }
2446
2447 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2448 void netdev_reset_tc(struct net_device *dev);
2449 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2450 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2451
2452 static inline
netdev_get_num_tc(struct net_device * dev)2453 int netdev_get_num_tc(struct net_device *dev)
2454 {
2455 return dev->num_tc;
2456 }
2457
net_prefetch(void * p)2458 static inline void net_prefetch(void *p)
2459 {
2460 prefetch(p);
2461 #if L1_CACHE_BYTES < 128
2462 prefetch((u8 *)p + L1_CACHE_BYTES);
2463 #endif
2464 }
2465
net_prefetchw(void * p)2466 static inline void net_prefetchw(void *p)
2467 {
2468 prefetchw(p);
2469 #if L1_CACHE_BYTES < 128
2470 prefetchw((u8 *)p + L1_CACHE_BYTES);
2471 #endif
2472 }
2473
2474 void netdev_unbind_sb_channel(struct net_device *dev,
2475 struct net_device *sb_dev);
2476 int netdev_bind_sb_channel_queue(struct net_device *dev,
2477 struct net_device *sb_dev,
2478 u8 tc, u16 count, u16 offset);
2479 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2480 static inline int netdev_get_sb_channel(struct net_device *dev)
2481 {
2482 return max_t(int, -dev->num_tc, 0);
2483 }
2484
2485 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2486 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2487 unsigned int index)
2488 {
2489 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2490 return &dev->_tx[index];
2491 }
2492
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2493 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2494 const struct sk_buff *skb)
2495 {
2496 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2497 }
2498
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2499 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2500 void (*f)(struct net_device *,
2501 struct netdev_queue *,
2502 void *),
2503 void *arg)
2504 {
2505 unsigned int i;
2506
2507 for (i = 0; i < dev->num_tx_queues; i++)
2508 f(dev, &dev->_tx[i], arg);
2509 }
2510
2511 #define netdev_lockdep_set_classes(dev) \
2512 { \
2513 static struct lock_class_key qdisc_tx_busylock_key; \
2514 static struct lock_class_key qdisc_xmit_lock_key; \
2515 static struct lock_class_key dev_addr_list_lock_key; \
2516 unsigned int i; \
2517 \
2518 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2519 lockdep_set_class(&(dev)->addr_list_lock, \
2520 &dev_addr_list_lock_key); \
2521 for (i = 0; i < (dev)->num_tx_queues; i++) \
2522 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2523 &qdisc_xmit_lock_key); \
2524 }
2525
2526 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2527 struct net_device *sb_dev);
2528 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2529 struct sk_buff *skb,
2530 struct net_device *sb_dev);
2531
2532 /* returns the headroom that the master device needs to take in account
2533 * when forwarding to this dev
2534 */
netdev_get_fwd_headroom(struct net_device * dev)2535 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2536 {
2537 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2538 }
2539
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2540 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2541 {
2542 if (dev->netdev_ops->ndo_set_rx_headroom)
2543 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2544 }
2545
2546 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2547 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2548 {
2549 netdev_set_rx_headroom(dev, -1);
2550 }
2551
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2552 static inline void *netdev_get_ml_priv(struct net_device *dev,
2553 enum netdev_ml_priv_type type)
2554 {
2555 if (dev->ml_priv_type != type)
2556 return NULL;
2557
2558 return dev->ml_priv;
2559 }
2560
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2561 static inline void netdev_set_ml_priv(struct net_device *dev,
2562 void *ml_priv,
2563 enum netdev_ml_priv_type type)
2564 {
2565 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2566 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2567 dev->ml_priv_type, type);
2568 WARN(!dev->ml_priv_type && dev->ml_priv,
2569 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2570
2571 dev->ml_priv = ml_priv;
2572 dev->ml_priv_type = type;
2573 }
2574
2575 /*
2576 * Net namespace inlines
2577 */
2578 static inline
dev_net(const struct net_device * dev)2579 struct net *dev_net(const struct net_device *dev)
2580 {
2581 return read_pnet(&dev->nd_net);
2582 }
2583
2584 static inline
dev_net_set(struct net_device * dev,struct net * net)2585 void dev_net_set(struct net_device *dev, struct net *net)
2586 {
2587 write_pnet(&dev->nd_net, net);
2588 }
2589
2590 /**
2591 * netdev_priv - access network device private data
2592 * @dev: network device
2593 *
2594 * Get network device private data
2595 */
netdev_priv(const struct net_device * dev)2596 static inline void *netdev_priv(const struct net_device *dev)
2597 {
2598 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2599 }
2600
2601 /* Set the sysfs physical device reference for the network logical device
2602 * if set prior to registration will cause a symlink during initialization.
2603 */
2604 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2605
2606 /* Set the sysfs device type for the network logical device to allow
2607 * fine-grained identification of different network device types. For
2608 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2609 */
2610 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2611
2612 /* Default NAPI poll() weight
2613 * Device drivers are strongly advised to not use bigger value
2614 */
2615 #define NAPI_POLL_WEIGHT 64
2616
2617 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2618 int (*poll)(struct napi_struct *, int), int weight);
2619
2620 /**
2621 * netif_napi_add() - initialize a NAPI context
2622 * @dev: network device
2623 * @napi: NAPI context
2624 * @poll: polling function
2625 *
2626 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2627 * *any* of the other NAPI-related functions.
2628 */
2629 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2630 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2631 int (*poll)(struct napi_struct *, int))
2632 {
2633 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2634 }
2635
2636 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2637 netif_napi_add_tx_weight(struct net_device *dev,
2638 struct napi_struct *napi,
2639 int (*poll)(struct napi_struct *, int),
2640 int weight)
2641 {
2642 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2643 netif_napi_add_weight(dev, napi, poll, weight);
2644 }
2645
2646 /**
2647 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2648 * @dev: network device
2649 * @napi: NAPI context
2650 * @poll: polling function
2651 *
2652 * This variant of netif_napi_add() should be used from drivers using NAPI
2653 * to exclusively poll a TX queue.
2654 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2655 */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2656 static inline void netif_napi_add_tx(struct net_device *dev,
2657 struct napi_struct *napi,
2658 int (*poll)(struct napi_struct *, int))
2659 {
2660 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2661 }
2662
2663 /**
2664 * __netif_napi_del - remove a NAPI context
2665 * @napi: NAPI context
2666 *
2667 * Warning: caller must observe RCU grace period before freeing memory
2668 * containing @napi. Drivers might want to call this helper to combine
2669 * all the needed RCU grace periods into a single one.
2670 */
2671 void __netif_napi_del(struct napi_struct *napi);
2672
2673 /**
2674 * netif_napi_del - remove a NAPI context
2675 * @napi: NAPI context
2676 *
2677 * netif_napi_del() removes a NAPI context from the network device NAPI list
2678 */
netif_napi_del(struct napi_struct * napi)2679 static inline void netif_napi_del(struct napi_struct *napi)
2680 {
2681 __netif_napi_del(napi);
2682 synchronize_net();
2683 }
2684
2685 struct packet_type {
2686 __be16 type; /* This is really htons(ether_type). */
2687 bool ignore_outgoing;
2688 struct net_device *dev; /* NULL is wildcarded here */
2689 netdevice_tracker dev_tracker;
2690 int (*func) (struct sk_buff *,
2691 struct net_device *,
2692 struct packet_type *,
2693 struct net_device *);
2694 void (*list_func) (struct list_head *,
2695 struct packet_type *,
2696 struct net_device *);
2697 bool (*id_match)(struct packet_type *ptype,
2698 struct sock *sk);
2699 struct net *af_packet_net;
2700 void *af_packet_priv;
2701 struct list_head list;
2702 };
2703
2704 struct offload_callbacks {
2705 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2706 netdev_features_t features);
2707 struct sk_buff *(*gro_receive)(struct list_head *head,
2708 struct sk_buff *skb);
2709 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2710 };
2711
2712 struct packet_offload {
2713 __be16 type; /* This is really htons(ether_type). */
2714 u16 priority;
2715 struct offload_callbacks callbacks;
2716 struct list_head list;
2717 };
2718
2719 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2720 struct pcpu_sw_netstats {
2721 u64_stats_t rx_packets;
2722 u64_stats_t rx_bytes;
2723 u64_stats_t tx_packets;
2724 u64_stats_t tx_bytes;
2725 struct u64_stats_sync syncp;
2726 } __aligned(4 * sizeof(u64));
2727
2728 struct pcpu_lstats {
2729 u64_stats_t packets;
2730 u64_stats_t bytes;
2731 struct u64_stats_sync syncp;
2732 } __aligned(2 * sizeof(u64));
2733
2734 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2735
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2736 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2737 {
2738 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2739
2740 u64_stats_update_begin(&tstats->syncp);
2741 u64_stats_add(&tstats->rx_bytes, len);
2742 u64_stats_inc(&tstats->rx_packets);
2743 u64_stats_update_end(&tstats->syncp);
2744 }
2745
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2746 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2747 unsigned int packets,
2748 unsigned int len)
2749 {
2750 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2751
2752 u64_stats_update_begin(&tstats->syncp);
2753 u64_stats_add(&tstats->tx_bytes, len);
2754 u64_stats_add(&tstats->tx_packets, packets);
2755 u64_stats_update_end(&tstats->syncp);
2756 }
2757
dev_lstats_add(struct net_device * dev,unsigned int len)2758 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2759 {
2760 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2761
2762 u64_stats_update_begin(&lstats->syncp);
2763 u64_stats_add(&lstats->bytes, len);
2764 u64_stats_inc(&lstats->packets);
2765 u64_stats_update_end(&lstats->syncp);
2766 }
2767
2768 #define __netdev_alloc_pcpu_stats(type, gfp) \
2769 ({ \
2770 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2771 if (pcpu_stats) { \
2772 int __cpu; \
2773 for_each_possible_cpu(__cpu) { \
2774 typeof(type) *stat; \
2775 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2776 u64_stats_init(&stat->syncp); \
2777 } \
2778 } \
2779 pcpu_stats; \
2780 })
2781
2782 #define netdev_alloc_pcpu_stats(type) \
2783 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2784
2785 #define devm_netdev_alloc_pcpu_stats(dev, type) \
2786 ({ \
2787 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2788 if (pcpu_stats) { \
2789 int __cpu; \
2790 for_each_possible_cpu(__cpu) { \
2791 typeof(type) *stat; \
2792 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2793 u64_stats_init(&stat->syncp); \
2794 } \
2795 } \
2796 pcpu_stats; \
2797 })
2798
2799 enum netdev_lag_tx_type {
2800 NETDEV_LAG_TX_TYPE_UNKNOWN,
2801 NETDEV_LAG_TX_TYPE_RANDOM,
2802 NETDEV_LAG_TX_TYPE_BROADCAST,
2803 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2804 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2805 NETDEV_LAG_TX_TYPE_HASH,
2806 };
2807
2808 enum netdev_lag_hash {
2809 NETDEV_LAG_HASH_NONE,
2810 NETDEV_LAG_HASH_L2,
2811 NETDEV_LAG_HASH_L34,
2812 NETDEV_LAG_HASH_L23,
2813 NETDEV_LAG_HASH_E23,
2814 NETDEV_LAG_HASH_E34,
2815 NETDEV_LAG_HASH_VLAN_SRCMAC,
2816 NETDEV_LAG_HASH_UNKNOWN,
2817 };
2818
2819 struct netdev_lag_upper_info {
2820 enum netdev_lag_tx_type tx_type;
2821 enum netdev_lag_hash hash_type;
2822 };
2823
2824 struct netdev_lag_lower_state_info {
2825 u8 link_up : 1,
2826 tx_enabled : 1;
2827 };
2828
2829 #include <linux/notifier.h>
2830
2831 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2832 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2833 * adding new types.
2834 */
2835 enum netdev_cmd {
2836 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2837 NETDEV_DOWN,
2838 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2839 detected a hardware crash and restarted
2840 - we can use this eg to kick tcp sessions
2841 once done */
2842 NETDEV_CHANGE, /* Notify device state change */
2843 NETDEV_REGISTER,
2844 NETDEV_UNREGISTER,
2845 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2846 NETDEV_CHANGEADDR, /* notify after the address change */
2847 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2848 NETDEV_GOING_DOWN,
2849 NETDEV_CHANGENAME,
2850 NETDEV_FEAT_CHANGE,
2851 NETDEV_BONDING_FAILOVER,
2852 NETDEV_PRE_UP,
2853 NETDEV_PRE_TYPE_CHANGE,
2854 NETDEV_POST_TYPE_CHANGE,
2855 NETDEV_POST_INIT,
2856 NETDEV_PRE_UNINIT,
2857 NETDEV_RELEASE,
2858 NETDEV_NOTIFY_PEERS,
2859 NETDEV_JOIN,
2860 NETDEV_CHANGEUPPER,
2861 NETDEV_RESEND_IGMP,
2862 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2863 NETDEV_CHANGEINFODATA,
2864 NETDEV_BONDING_INFO,
2865 NETDEV_PRECHANGEUPPER,
2866 NETDEV_CHANGELOWERSTATE,
2867 NETDEV_UDP_TUNNEL_PUSH_INFO,
2868 NETDEV_UDP_TUNNEL_DROP_INFO,
2869 NETDEV_CHANGE_TX_QUEUE_LEN,
2870 NETDEV_CVLAN_FILTER_PUSH_INFO,
2871 NETDEV_CVLAN_FILTER_DROP_INFO,
2872 NETDEV_SVLAN_FILTER_PUSH_INFO,
2873 NETDEV_SVLAN_FILTER_DROP_INFO,
2874 NETDEV_OFFLOAD_XSTATS_ENABLE,
2875 NETDEV_OFFLOAD_XSTATS_DISABLE,
2876 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2877 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2878 NETDEV_XDP_FEAT_CHANGE,
2879 };
2880 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2881
2882 int register_netdevice_notifier(struct notifier_block *nb);
2883 int unregister_netdevice_notifier(struct notifier_block *nb);
2884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2885 int unregister_netdevice_notifier_net(struct net *net,
2886 struct notifier_block *nb);
2887 int register_netdevice_notifier_dev_net(struct net_device *dev,
2888 struct notifier_block *nb,
2889 struct netdev_net_notifier *nn);
2890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2891 struct notifier_block *nb,
2892 struct netdev_net_notifier *nn);
2893
2894 struct netdev_notifier_info {
2895 struct net_device *dev;
2896 struct netlink_ext_ack *extack;
2897 };
2898
2899 struct netdev_notifier_info_ext {
2900 struct netdev_notifier_info info; /* must be first */
2901 union {
2902 u32 mtu;
2903 } ext;
2904 };
2905
2906 struct netdev_notifier_change_info {
2907 struct netdev_notifier_info info; /* must be first */
2908 unsigned int flags_changed;
2909 };
2910
2911 struct netdev_notifier_changeupper_info {
2912 struct netdev_notifier_info info; /* must be first */
2913 struct net_device *upper_dev; /* new upper dev */
2914 bool master; /* is upper dev master */
2915 bool linking; /* is the notification for link or unlink */
2916 void *upper_info; /* upper dev info */
2917 };
2918
2919 struct netdev_notifier_changelowerstate_info {
2920 struct netdev_notifier_info info; /* must be first */
2921 void *lower_state_info; /* is lower dev state */
2922 };
2923
2924 struct netdev_notifier_pre_changeaddr_info {
2925 struct netdev_notifier_info info; /* must be first */
2926 const unsigned char *dev_addr;
2927 };
2928
2929 enum netdev_offload_xstats_type {
2930 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2931 };
2932
2933 struct netdev_notifier_offload_xstats_info {
2934 struct netdev_notifier_info info; /* must be first */
2935 enum netdev_offload_xstats_type type;
2936
2937 union {
2938 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2939 struct netdev_notifier_offload_xstats_rd *report_delta;
2940 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2941 struct netdev_notifier_offload_xstats_ru *report_used;
2942 };
2943 };
2944
2945 int netdev_offload_xstats_enable(struct net_device *dev,
2946 enum netdev_offload_xstats_type type,
2947 struct netlink_ext_ack *extack);
2948 int netdev_offload_xstats_disable(struct net_device *dev,
2949 enum netdev_offload_xstats_type type);
2950 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2951 enum netdev_offload_xstats_type type);
2952 int netdev_offload_xstats_get(struct net_device *dev,
2953 enum netdev_offload_xstats_type type,
2954 struct rtnl_hw_stats64 *stats, bool *used,
2955 struct netlink_ext_ack *extack);
2956 void
2957 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2958 const struct rtnl_hw_stats64 *stats);
2959 void
2960 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2961 void netdev_offload_xstats_push_delta(struct net_device *dev,
2962 enum netdev_offload_xstats_type type,
2963 const struct rtnl_hw_stats64 *stats);
2964
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2965 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2966 struct net_device *dev)
2967 {
2968 info->dev = dev;
2969 info->extack = NULL;
2970 }
2971
2972 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2973 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2974 {
2975 return info->dev;
2976 }
2977
2978 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2979 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2980 {
2981 return info->extack;
2982 }
2983
2984 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2985 int call_netdevice_notifiers_info(unsigned long val,
2986 struct netdev_notifier_info *info);
2987
2988 extern rwlock_t dev_base_lock; /* Device list lock */
2989
2990 #define for_each_netdev(net, d) \
2991 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2992 #define for_each_netdev_reverse(net, d) \
2993 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2994 #define for_each_netdev_rcu(net, d) \
2995 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2996 #define for_each_netdev_safe(net, d, n) \
2997 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2998 #define for_each_netdev_continue(net, d) \
2999 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3000 #define for_each_netdev_continue_reverse(net, d) \
3001 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3002 dev_list)
3003 #define for_each_netdev_continue_rcu(net, d) \
3004 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3005 #define for_each_netdev_in_bond_rcu(bond, slave) \
3006 for_each_netdev_rcu(&init_net, slave) \
3007 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3008 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
3009
3010 #define for_each_netdev_dump(net, d, ifindex) \
3011 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3012
next_net_device(struct net_device * dev)3013 static inline struct net_device *next_net_device(struct net_device *dev)
3014 {
3015 struct list_head *lh;
3016 struct net *net;
3017
3018 net = dev_net(dev);
3019 lh = dev->dev_list.next;
3020 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3021 }
3022
next_net_device_rcu(struct net_device * dev)3023 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3024 {
3025 struct list_head *lh;
3026 struct net *net;
3027
3028 net = dev_net(dev);
3029 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3030 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3031 }
3032
first_net_device(struct net * net)3033 static inline struct net_device *first_net_device(struct net *net)
3034 {
3035 return list_empty(&net->dev_base_head) ? NULL :
3036 net_device_entry(net->dev_base_head.next);
3037 }
3038
first_net_device_rcu(struct net * net)3039 static inline struct net_device *first_net_device_rcu(struct net *net)
3040 {
3041 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3042
3043 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3044 }
3045
3046 int netdev_boot_setup_check(struct net_device *dev);
3047 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3048 const char *hwaddr);
3049 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3050 void dev_add_pack(struct packet_type *pt);
3051 void dev_remove_pack(struct packet_type *pt);
3052 void __dev_remove_pack(struct packet_type *pt);
3053 void dev_add_offload(struct packet_offload *po);
3054 void dev_remove_offload(struct packet_offload *po);
3055
3056 int dev_get_iflink(const struct net_device *dev);
3057 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3058 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3059 struct net_device_path_stack *stack);
3060 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3061 unsigned short mask);
3062 struct net_device *dev_get_by_name(struct net *net, const char *name);
3063 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3064 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3065 bool netdev_name_in_use(struct net *net, const char *name);
3066 int dev_alloc_name(struct net_device *dev, const char *name);
3067 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3068 void dev_close(struct net_device *dev);
3069 void dev_close_many(struct list_head *head, bool unlink);
3070 void dev_disable_lro(struct net_device *dev);
3071 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3073 struct net_device *sb_dev);
3074 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3075 struct net_device *sb_dev);
3076
3077 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3078 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3079
dev_queue_xmit(struct sk_buff * skb)3080 static inline int dev_queue_xmit(struct sk_buff *skb)
3081 {
3082 return __dev_queue_xmit(skb, NULL);
3083 }
3084
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3085 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3086 struct net_device *sb_dev)
3087 {
3088 return __dev_queue_xmit(skb, sb_dev);
3089 }
3090
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3091 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3092 {
3093 int ret;
3094
3095 ret = __dev_direct_xmit(skb, queue_id);
3096 if (!dev_xmit_complete(ret))
3097 kfree_skb(skb);
3098 return ret;
3099 }
3100
3101 int register_netdevice(struct net_device *dev);
3102 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3103 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3104 static inline void unregister_netdevice(struct net_device *dev)
3105 {
3106 unregister_netdevice_queue(dev, NULL);
3107 }
3108
3109 int netdev_refcnt_read(const struct net_device *dev);
3110 void free_netdev(struct net_device *dev);
3111 void netdev_freemem(struct net_device *dev);
3112 int init_dummy_netdev(struct net_device *dev);
3113
3114 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3115 struct sk_buff *skb,
3116 bool all_slaves);
3117 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3118 struct sock *sk);
3119 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3120 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3121 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3122 netdevice_tracker *tracker, gfp_t gfp);
3123 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3124 netdevice_tracker *tracker, gfp_t gfp);
3125 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3126 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3127
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3128 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3129 unsigned short type,
3130 const void *daddr, const void *saddr,
3131 unsigned int len)
3132 {
3133 if (!dev->header_ops || !dev->header_ops->create)
3134 return 0;
3135
3136 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3137 }
3138
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3139 static inline int dev_parse_header(const struct sk_buff *skb,
3140 unsigned char *haddr)
3141 {
3142 const struct net_device *dev = skb->dev;
3143
3144 if (!dev->header_ops || !dev->header_ops->parse)
3145 return 0;
3146 return dev->header_ops->parse(skb, haddr);
3147 }
3148
dev_parse_header_protocol(const struct sk_buff * skb)3149 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3150 {
3151 const struct net_device *dev = skb->dev;
3152
3153 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3154 return 0;
3155 return dev->header_ops->parse_protocol(skb);
3156 }
3157
3158 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3159 static inline bool dev_validate_header(const struct net_device *dev,
3160 char *ll_header, int len)
3161 {
3162 if (likely(len >= dev->hard_header_len))
3163 return true;
3164 if (len < dev->min_header_len)
3165 return false;
3166
3167 if (capable(CAP_SYS_RAWIO)) {
3168 memset(ll_header + len, 0, dev->hard_header_len - len);
3169 return true;
3170 }
3171
3172 if (dev->header_ops && dev->header_ops->validate)
3173 return dev->header_ops->validate(ll_header, len);
3174
3175 return false;
3176 }
3177
dev_has_header(const struct net_device * dev)3178 static inline bool dev_has_header(const struct net_device *dev)
3179 {
3180 return dev->header_ops && dev->header_ops->create;
3181 }
3182
3183 /*
3184 * Incoming packets are placed on per-CPU queues
3185 */
3186 struct softnet_data {
3187 struct list_head poll_list;
3188 struct sk_buff_head process_queue;
3189
3190 /* stats */
3191 unsigned int processed;
3192 unsigned int time_squeeze;
3193 #ifdef CONFIG_RPS
3194 struct softnet_data *rps_ipi_list;
3195 #endif
3196
3197 bool in_net_rx_action;
3198 bool in_napi_threaded_poll;
3199
3200 #ifdef CONFIG_NET_FLOW_LIMIT
3201 struct sd_flow_limit __rcu *flow_limit;
3202 #endif
3203 struct Qdisc *output_queue;
3204 struct Qdisc **output_queue_tailp;
3205 struct sk_buff *completion_queue;
3206 #ifdef CONFIG_XFRM_OFFLOAD
3207 struct sk_buff_head xfrm_backlog;
3208 #endif
3209 /* written and read only by owning cpu: */
3210 struct {
3211 u16 recursion;
3212 u8 more;
3213 #ifdef CONFIG_NET_EGRESS
3214 u8 skip_txqueue;
3215 #endif
3216 } xmit;
3217 #ifdef CONFIG_RPS
3218 /* input_queue_head should be written by cpu owning this struct,
3219 * and only read by other cpus. Worth using a cache line.
3220 */
3221 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3222
3223 /* Elements below can be accessed between CPUs for RPS/RFS */
3224 call_single_data_t csd ____cacheline_aligned_in_smp;
3225 struct softnet_data *rps_ipi_next;
3226 unsigned int cpu;
3227 unsigned int input_queue_tail;
3228 #endif
3229 unsigned int received_rps;
3230 unsigned int dropped;
3231 struct sk_buff_head input_pkt_queue;
3232 struct napi_struct backlog;
3233
3234 /* Another possibly contended cache line */
3235 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3236 int defer_count;
3237 int defer_ipi_scheduled;
3238 struct sk_buff *defer_list;
3239 call_single_data_t defer_csd;
3240 };
3241
input_queue_head_incr(struct softnet_data * sd)3242 static inline void input_queue_head_incr(struct softnet_data *sd)
3243 {
3244 #ifdef CONFIG_RPS
3245 sd->input_queue_head++;
3246 #endif
3247 }
3248
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3249 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3250 unsigned int *qtail)
3251 {
3252 #ifdef CONFIG_RPS
3253 *qtail = ++sd->input_queue_tail;
3254 #endif
3255 }
3256
3257 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3258
dev_recursion_level(void)3259 static inline int dev_recursion_level(void)
3260 {
3261 return this_cpu_read(softnet_data.xmit.recursion);
3262 }
3263
3264 #define XMIT_RECURSION_LIMIT 8
dev_xmit_recursion(void)3265 static inline bool dev_xmit_recursion(void)
3266 {
3267 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3268 XMIT_RECURSION_LIMIT);
3269 }
3270
dev_xmit_recursion_inc(void)3271 static inline void dev_xmit_recursion_inc(void)
3272 {
3273 __this_cpu_inc(softnet_data.xmit.recursion);
3274 }
3275
dev_xmit_recursion_dec(void)3276 static inline void dev_xmit_recursion_dec(void)
3277 {
3278 __this_cpu_dec(softnet_data.xmit.recursion);
3279 }
3280
3281 void __netif_schedule(struct Qdisc *q);
3282 void netif_schedule_queue(struct netdev_queue *txq);
3283
netif_tx_schedule_all(struct net_device * dev)3284 static inline void netif_tx_schedule_all(struct net_device *dev)
3285 {
3286 unsigned int i;
3287
3288 for (i = 0; i < dev->num_tx_queues; i++)
3289 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3290 }
3291
netif_tx_start_queue(struct netdev_queue * dev_queue)3292 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3293 {
3294 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3295 }
3296
3297 /**
3298 * netif_start_queue - allow transmit
3299 * @dev: network device
3300 *
3301 * Allow upper layers to call the device hard_start_xmit routine.
3302 */
netif_start_queue(struct net_device * dev)3303 static inline void netif_start_queue(struct net_device *dev)
3304 {
3305 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3306 }
3307
netif_tx_start_all_queues(struct net_device * dev)3308 static inline void netif_tx_start_all_queues(struct net_device *dev)
3309 {
3310 unsigned int i;
3311
3312 for (i = 0; i < dev->num_tx_queues; i++) {
3313 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3314 netif_tx_start_queue(txq);
3315 }
3316 }
3317
3318 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3319
3320 /**
3321 * netif_wake_queue - restart transmit
3322 * @dev: network device
3323 *
3324 * Allow upper layers to call the device hard_start_xmit routine.
3325 * Used for flow control when transmit resources are available.
3326 */
netif_wake_queue(struct net_device * dev)3327 static inline void netif_wake_queue(struct net_device *dev)
3328 {
3329 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3330 }
3331
netif_tx_wake_all_queues(struct net_device * dev)3332 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3333 {
3334 unsigned int i;
3335
3336 for (i = 0; i < dev->num_tx_queues; i++) {
3337 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3338 netif_tx_wake_queue(txq);
3339 }
3340 }
3341
netif_tx_stop_queue(struct netdev_queue * dev_queue)3342 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3343 {
3344 /* Must be an atomic op see netif_txq_try_stop() */
3345 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3346 }
3347
3348 /**
3349 * netif_stop_queue - stop transmitted packets
3350 * @dev: network device
3351 *
3352 * Stop upper layers calling the device hard_start_xmit routine.
3353 * Used for flow control when transmit resources are unavailable.
3354 */
netif_stop_queue(struct net_device * dev)3355 static inline void netif_stop_queue(struct net_device *dev)
3356 {
3357 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3358 }
3359
3360 void netif_tx_stop_all_queues(struct net_device *dev);
3361
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3362 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3363 {
3364 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3365 }
3366
3367 /**
3368 * netif_queue_stopped - test if transmit queue is flowblocked
3369 * @dev: network device
3370 *
3371 * Test if transmit queue on device is currently unable to send.
3372 */
netif_queue_stopped(const struct net_device * dev)3373 static inline bool netif_queue_stopped(const struct net_device *dev)
3374 {
3375 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3376 }
3377
netif_xmit_stopped(const struct netdev_queue * dev_queue)3378 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3379 {
3380 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3381 }
3382
3383 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3384 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3385 {
3386 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3387 }
3388
3389 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3390 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3391 {
3392 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3393 }
3394
3395 /**
3396 * netdev_queue_set_dql_min_limit - set dql minimum limit
3397 * @dev_queue: pointer to transmit queue
3398 * @min_limit: dql minimum limit
3399 *
3400 * Forces xmit_more() to return true until the minimum threshold
3401 * defined by @min_limit is reached (or until the tx queue is
3402 * empty). Warning: to be use with care, misuse will impact the
3403 * latency.
3404 */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3405 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3406 unsigned int min_limit)
3407 {
3408 #ifdef CONFIG_BQL
3409 dev_queue->dql.min_limit = min_limit;
3410 #endif
3411 }
3412
3413 /**
3414 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3415 * @dev_queue: pointer to transmit queue
3416 *
3417 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3418 * to give appropriate hint to the CPU.
3419 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3420 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3421 {
3422 #ifdef CONFIG_BQL
3423 prefetchw(&dev_queue->dql.num_queued);
3424 #endif
3425 }
3426
3427 /**
3428 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3429 * @dev_queue: pointer to transmit queue
3430 *
3431 * BQL enabled drivers might use this helper in their TX completion path,
3432 * to give appropriate hint to the CPU.
3433 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3434 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3435 {
3436 #ifdef CONFIG_BQL
3437 prefetchw(&dev_queue->dql.limit);
3438 #endif
3439 }
3440
3441 /**
3442 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3443 * @dev_queue: network device queue
3444 * @bytes: number of bytes queued to the device queue
3445 *
3446 * Report the number of bytes queued for sending/completion to the network
3447 * device hardware queue. @bytes should be a good approximation and should
3448 * exactly match netdev_completed_queue() @bytes.
3449 * This is typically called once per packet, from ndo_start_xmit().
3450 */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3451 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3452 unsigned int bytes)
3453 {
3454 #ifdef CONFIG_BQL
3455 dql_queued(&dev_queue->dql, bytes);
3456
3457 if (likely(dql_avail(&dev_queue->dql) >= 0))
3458 return;
3459
3460 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3461
3462 /*
3463 * The XOFF flag must be set before checking the dql_avail below,
3464 * because in netdev_tx_completed_queue we update the dql_completed
3465 * before checking the XOFF flag.
3466 */
3467 smp_mb();
3468
3469 /* check again in case another CPU has just made room avail */
3470 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3471 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3472 #endif
3473 }
3474
3475 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3476 * that they should not test BQL status themselves.
3477 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3478 * skb of a batch.
3479 * Returns true if the doorbell must be used to kick the NIC.
3480 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3481 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3482 unsigned int bytes,
3483 bool xmit_more)
3484 {
3485 if (xmit_more) {
3486 #ifdef CONFIG_BQL
3487 dql_queued(&dev_queue->dql, bytes);
3488 #endif
3489 return netif_tx_queue_stopped(dev_queue);
3490 }
3491 netdev_tx_sent_queue(dev_queue, bytes);
3492 return true;
3493 }
3494
3495 /**
3496 * netdev_sent_queue - report the number of bytes queued to hardware
3497 * @dev: network device
3498 * @bytes: number of bytes queued to the hardware device queue
3499 *
3500 * Report the number of bytes queued for sending/completion to the network
3501 * device hardware queue#0. @bytes should be a good approximation and should
3502 * exactly match netdev_completed_queue() @bytes.
3503 * This is typically called once per packet, from ndo_start_xmit().
3504 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3505 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3506 {
3507 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3508 }
3509
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3510 static inline bool __netdev_sent_queue(struct net_device *dev,
3511 unsigned int bytes,
3512 bool xmit_more)
3513 {
3514 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3515 xmit_more);
3516 }
3517
3518 /**
3519 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3520 * @dev_queue: network device queue
3521 * @pkts: number of packets (currently ignored)
3522 * @bytes: number of bytes dequeued from the device queue
3523 *
3524 * Must be called at most once per TX completion round (and not per
3525 * individual packet), so that BQL can adjust its limits appropriately.
3526 */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3527 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3528 unsigned int pkts, unsigned int bytes)
3529 {
3530 #ifdef CONFIG_BQL
3531 if (unlikely(!bytes))
3532 return;
3533
3534 dql_completed(&dev_queue->dql, bytes);
3535
3536 /*
3537 * Without the memory barrier there is a small possiblity that
3538 * netdev_tx_sent_queue will miss the update and cause the queue to
3539 * be stopped forever
3540 */
3541 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3542
3543 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3544 return;
3545
3546 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3547 netif_schedule_queue(dev_queue);
3548 #endif
3549 }
3550
3551 /**
3552 * netdev_completed_queue - report bytes and packets completed by device
3553 * @dev: network device
3554 * @pkts: actual number of packets sent over the medium
3555 * @bytes: actual number of bytes sent over the medium
3556 *
3557 * Report the number of bytes and packets transmitted by the network device
3558 * hardware queue over the physical medium, @bytes must exactly match the
3559 * @bytes amount passed to netdev_sent_queue()
3560 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3561 static inline void netdev_completed_queue(struct net_device *dev,
3562 unsigned int pkts, unsigned int bytes)
3563 {
3564 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3565 }
3566
netdev_tx_reset_queue(struct netdev_queue * q)3567 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3568 {
3569 #ifdef CONFIG_BQL
3570 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3571 dql_reset(&q->dql);
3572 #endif
3573 }
3574
3575 /**
3576 * netdev_reset_queue - reset the packets and bytes count of a network device
3577 * @dev_queue: network device
3578 *
3579 * Reset the bytes and packet count of a network device and clear the
3580 * software flow control OFF bit for this network device
3581 */
netdev_reset_queue(struct net_device * dev_queue)3582 static inline void netdev_reset_queue(struct net_device *dev_queue)
3583 {
3584 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3585 }
3586
3587 /**
3588 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3589 * @dev: network device
3590 * @queue_index: given tx queue index
3591 *
3592 * Returns 0 if given tx queue index >= number of device tx queues,
3593 * otherwise returns the originally passed tx queue index.
3594 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3595 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3596 {
3597 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3598 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3599 dev->name, queue_index,
3600 dev->real_num_tx_queues);
3601 return 0;
3602 }
3603
3604 return queue_index;
3605 }
3606
3607 /**
3608 * netif_running - test if up
3609 * @dev: network device
3610 *
3611 * Test if the device has been brought up.
3612 */
netif_running(const struct net_device * dev)3613 static inline bool netif_running(const struct net_device *dev)
3614 {
3615 return test_bit(__LINK_STATE_START, &dev->state);
3616 }
3617
3618 /*
3619 * Routines to manage the subqueues on a device. We only need start,
3620 * stop, and a check if it's stopped. All other device management is
3621 * done at the overall netdevice level.
3622 * Also test the device if we're multiqueue.
3623 */
3624
3625 /**
3626 * netif_start_subqueue - allow sending packets on subqueue
3627 * @dev: network device
3628 * @queue_index: sub queue index
3629 *
3630 * Start individual transmit queue of a device with multiple transmit queues.
3631 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3632 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3633 {
3634 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3635
3636 netif_tx_start_queue(txq);
3637 }
3638
3639 /**
3640 * netif_stop_subqueue - stop sending packets on subqueue
3641 * @dev: network device
3642 * @queue_index: sub queue index
3643 *
3644 * Stop individual transmit queue of a device with multiple transmit queues.
3645 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3646 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3647 {
3648 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3649 netif_tx_stop_queue(txq);
3650 }
3651
3652 /**
3653 * __netif_subqueue_stopped - test status of subqueue
3654 * @dev: network device
3655 * @queue_index: sub queue index
3656 *
3657 * Check individual transmit queue of a device with multiple transmit queues.
3658 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3659 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3660 u16 queue_index)
3661 {
3662 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3663
3664 return netif_tx_queue_stopped(txq);
3665 }
3666
3667 /**
3668 * netif_subqueue_stopped - test status of subqueue
3669 * @dev: network device
3670 * @skb: sub queue buffer pointer
3671 *
3672 * Check individual transmit queue of a device with multiple transmit queues.
3673 */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3674 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3675 struct sk_buff *skb)
3676 {
3677 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3678 }
3679
3680 /**
3681 * netif_wake_subqueue - allow sending packets on subqueue
3682 * @dev: network device
3683 * @queue_index: sub queue index
3684 *
3685 * Resume individual transmit queue of a device with multiple transmit queues.
3686 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3687 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3688 {
3689 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3690
3691 netif_tx_wake_queue(txq);
3692 }
3693
3694 #ifdef CONFIG_XPS
3695 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3696 u16 index);
3697 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3698 u16 index, enum xps_map_type type);
3699
3700 /**
3701 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3702 * @j: CPU/Rx queue index
3703 * @mask: bitmask of all cpus/rx queues
3704 * @nr_bits: number of bits in the bitmask
3705 *
3706 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3707 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3708 static inline bool netif_attr_test_mask(unsigned long j,
3709 const unsigned long *mask,
3710 unsigned int nr_bits)
3711 {
3712 cpu_max_bits_warn(j, nr_bits);
3713 return test_bit(j, mask);
3714 }
3715
3716 /**
3717 * netif_attr_test_online - Test for online CPU/Rx queue
3718 * @j: CPU/Rx queue index
3719 * @online_mask: bitmask for CPUs/Rx queues that are online
3720 * @nr_bits: number of bits in the bitmask
3721 *
3722 * Returns true if a CPU/Rx queue is online.
3723 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3724 static inline bool netif_attr_test_online(unsigned long j,
3725 const unsigned long *online_mask,
3726 unsigned int nr_bits)
3727 {
3728 cpu_max_bits_warn(j, nr_bits);
3729
3730 if (online_mask)
3731 return test_bit(j, online_mask);
3732
3733 return (j < nr_bits);
3734 }
3735
3736 /**
3737 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3738 * @n: CPU/Rx queue index
3739 * @srcp: the cpumask/Rx queue mask pointer
3740 * @nr_bits: number of bits in the bitmask
3741 *
3742 * Returns >= nr_bits if no further CPUs/Rx queues set.
3743 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3744 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3745 unsigned int nr_bits)
3746 {
3747 /* -1 is a legal arg here. */
3748 if (n != -1)
3749 cpu_max_bits_warn(n, nr_bits);
3750
3751 if (srcp)
3752 return find_next_bit(srcp, nr_bits, n + 1);
3753
3754 return n + 1;
3755 }
3756
3757 /**
3758 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3759 * @n: CPU/Rx queue index
3760 * @src1p: the first CPUs/Rx queues mask pointer
3761 * @src2p: the second CPUs/Rx queues mask pointer
3762 * @nr_bits: number of bits in the bitmask
3763 *
3764 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3765 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3766 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3767 const unsigned long *src2p,
3768 unsigned int nr_bits)
3769 {
3770 /* -1 is a legal arg here. */
3771 if (n != -1)
3772 cpu_max_bits_warn(n, nr_bits);
3773
3774 if (src1p && src2p)
3775 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3776 else if (src1p)
3777 return find_next_bit(src1p, nr_bits, n + 1);
3778 else if (src2p)
3779 return find_next_bit(src2p, nr_bits, n + 1);
3780
3781 return n + 1;
3782 }
3783 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3784 static inline int netif_set_xps_queue(struct net_device *dev,
3785 const struct cpumask *mask,
3786 u16 index)
3787 {
3788 return 0;
3789 }
3790
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3791 static inline int __netif_set_xps_queue(struct net_device *dev,
3792 const unsigned long *mask,
3793 u16 index, enum xps_map_type type)
3794 {
3795 return 0;
3796 }
3797 #endif
3798
3799 /**
3800 * netif_is_multiqueue - test if device has multiple transmit queues
3801 * @dev: network device
3802 *
3803 * Check if device has multiple transmit queues
3804 */
netif_is_multiqueue(const struct net_device * dev)3805 static inline bool netif_is_multiqueue(const struct net_device *dev)
3806 {
3807 return dev->num_tx_queues > 1;
3808 }
3809
3810 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3811
3812 #ifdef CONFIG_SYSFS
3813 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3814 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3815 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3816 unsigned int rxqs)
3817 {
3818 dev->real_num_rx_queues = rxqs;
3819 return 0;
3820 }
3821 #endif
3822 int netif_set_real_num_queues(struct net_device *dev,
3823 unsigned int txq, unsigned int rxq);
3824
3825 int netif_get_num_default_rss_queues(void);
3826
3827 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3828 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3829
3830 /*
3831 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3832 * interrupt context or with hardware interrupts being disabled.
3833 * (in_hardirq() || irqs_disabled())
3834 *
3835 * We provide four helpers that can be used in following contexts :
3836 *
3837 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3838 * replacing kfree_skb(skb)
3839 *
3840 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3841 * Typically used in place of consume_skb(skb) in TX completion path
3842 *
3843 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3844 * replacing kfree_skb(skb)
3845 *
3846 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3847 * and consumed a packet. Used in place of consume_skb(skb)
3848 */
dev_kfree_skb_irq(struct sk_buff * skb)3849 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3850 {
3851 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3852 }
3853
dev_consume_skb_irq(struct sk_buff * skb)3854 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3855 {
3856 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3857 }
3858
dev_kfree_skb_any(struct sk_buff * skb)3859 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3860 {
3861 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3862 }
3863
dev_consume_skb_any(struct sk_buff * skb)3864 static inline void dev_consume_skb_any(struct sk_buff *skb)
3865 {
3866 dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3867 }
3868
3869 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3870 struct bpf_prog *xdp_prog);
3871 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3872 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3873 int netif_rx(struct sk_buff *skb);
3874 int __netif_rx(struct sk_buff *skb);
3875
3876 int netif_receive_skb(struct sk_buff *skb);
3877 int netif_receive_skb_core(struct sk_buff *skb);
3878 void netif_receive_skb_list_internal(struct list_head *head);
3879 void netif_receive_skb_list(struct list_head *head);
3880 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3881 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3882 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3883 void napi_get_frags_check(struct napi_struct *napi);
3884 gro_result_t napi_gro_frags(struct napi_struct *napi);
3885 struct packet_offload *gro_find_receive_by_type(__be16 type);
3886 struct packet_offload *gro_find_complete_by_type(__be16 type);
3887
napi_free_frags(struct napi_struct * napi)3888 static inline void napi_free_frags(struct napi_struct *napi)
3889 {
3890 kfree_skb(napi->skb);
3891 napi->skb = NULL;
3892 }
3893
3894 bool netdev_is_rx_handler_busy(struct net_device *dev);
3895 int netdev_rx_handler_register(struct net_device *dev,
3896 rx_handler_func_t *rx_handler,
3897 void *rx_handler_data);
3898 void netdev_rx_handler_unregister(struct net_device *dev);
3899
3900 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3901 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3902 {
3903 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3904 }
3905 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3906 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3907 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3908 void __user *data, bool *need_copyout);
3909 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3910 int generic_hwtstamp_get_lower(struct net_device *dev,
3911 struct kernel_hwtstamp_config *kernel_cfg);
3912 int generic_hwtstamp_set_lower(struct net_device *dev,
3913 struct kernel_hwtstamp_config *kernel_cfg,
3914 struct netlink_ext_ack *extack);
3915 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3916 unsigned int dev_get_flags(const struct net_device *);
3917 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3918 struct netlink_ext_ack *extack);
3919 int dev_change_flags(struct net_device *dev, unsigned int flags,
3920 struct netlink_ext_ack *extack);
3921 int dev_set_alias(struct net_device *, const char *, size_t);
3922 int dev_get_alias(const struct net_device *, char *, size_t);
3923 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3924 const char *pat, int new_ifindex);
3925 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3926 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3927 const char *pat)
3928 {
3929 return __dev_change_net_namespace(dev, net, pat, 0);
3930 }
3931 int __dev_set_mtu(struct net_device *, int);
3932 int dev_set_mtu(struct net_device *, int);
3933 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3934 struct netlink_ext_ack *extack);
3935 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3936 struct netlink_ext_ack *extack);
3937 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3938 struct netlink_ext_ack *extack);
3939 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3940 int dev_get_port_parent_id(struct net_device *dev,
3941 struct netdev_phys_item_id *ppid, bool recurse);
3942 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3943 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3944 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3945 struct netdev_queue *txq, int *ret);
3946
3947 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3948 u8 dev_xdp_prog_count(struct net_device *dev);
3949 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3950
3951 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3952 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3953 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3954 bool is_skb_forwardable(const struct net_device *dev,
3955 const struct sk_buff *skb);
3956
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)3957 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3958 const struct sk_buff *skb,
3959 const bool check_mtu)
3960 {
3961 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3962 unsigned int len;
3963
3964 if (!(dev->flags & IFF_UP))
3965 return false;
3966
3967 if (!check_mtu)
3968 return true;
3969
3970 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3971 if (skb->len <= len)
3972 return true;
3973
3974 /* if TSO is enabled, we don't care about the length as the packet
3975 * could be forwarded without being segmented before
3976 */
3977 if (skb_is_gso(skb))
3978 return true;
3979
3980 return false;
3981 }
3982
3983 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3984
dev_core_stats(struct net_device * dev)3985 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3986 {
3987 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3988 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3989
3990 if (likely(p))
3991 return p;
3992
3993 return netdev_core_stats_alloc(dev);
3994 }
3995
3996 #define DEV_CORE_STATS_INC(FIELD) \
3997 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
3998 { \
3999 struct net_device_core_stats __percpu *p; \
4000 \
4001 p = dev_core_stats(dev); \
4002 if (p) \
4003 this_cpu_inc(p->FIELD); \
4004 }
4005 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4006 DEV_CORE_STATS_INC(tx_dropped)
4007 DEV_CORE_STATS_INC(rx_nohandler)
4008 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4009
4010 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4011 struct sk_buff *skb,
4012 const bool check_mtu)
4013 {
4014 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4015 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4016 dev_core_stats_rx_dropped_inc(dev);
4017 kfree_skb(skb);
4018 return NET_RX_DROP;
4019 }
4020
4021 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4022 skb->priority = 0;
4023 return 0;
4024 }
4025
4026 bool dev_nit_active(struct net_device *dev);
4027 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4028
__dev_put(struct net_device * dev)4029 static inline void __dev_put(struct net_device *dev)
4030 {
4031 if (dev) {
4032 #ifdef CONFIG_PCPU_DEV_REFCNT
4033 this_cpu_dec(*dev->pcpu_refcnt);
4034 #else
4035 refcount_dec(&dev->dev_refcnt);
4036 #endif
4037 }
4038 }
4039
__dev_hold(struct net_device * dev)4040 static inline void __dev_hold(struct net_device *dev)
4041 {
4042 if (dev) {
4043 #ifdef CONFIG_PCPU_DEV_REFCNT
4044 this_cpu_inc(*dev->pcpu_refcnt);
4045 #else
4046 refcount_inc(&dev->dev_refcnt);
4047 #endif
4048 }
4049 }
4050
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4051 static inline void __netdev_tracker_alloc(struct net_device *dev,
4052 netdevice_tracker *tracker,
4053 gfp_t gfp)
4054 {
4055 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4056 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4057 #endif
4058 }
4059
4060 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4061 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4062 */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4063 static inline void netdev_tracker_alloc(struct net_device *dev,
4064 netdevice_tracker *tracker, gfp_t gfp)
4065 {
4066 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4067 refcount_dec(&dev->refcnt_tracker.no_tracker);
4068 __netdev_tracker_alloc(dev, tracker, gfp);
4069 #endif
4070 }
4071
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4072 static inline void netdev_tracker_free(struct net_device *dev,
4073 netdevice_tracker *tracker)
4074 {
4075 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4076 ref_tracker_free(&dev->refcnt_tracker, tracker);
4077 #endif
4078 }
4079
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4080 static inline void netdev_hold(struct net_device *dev,
4081 netdevice_tracker *tracker, gfp_t gfp)
4082 {
4083 if (dev) {
4084 __dev_hold(dev);
4085 __netdev_tracker_alloc(dev, tracker, gfp);
4086 }
4087 }
4088
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4089 static inline void netdev_put(struct net_device *dev,
4090 netdevice_tracker *tracker)
4091 {
4092 if (dev) {
4093 netdev_tracker_free(dev, tracker);
4094 __dev_put(dev);
4095 }
4096 }
4097
4098 /**
4099 * dev_hold - get reference to device
4100 * @dev: network device
4101 *
4102 * Hold reference to device to keep it from being freed.
4103 * Try using netdev_hold() instead.
4104 */
dev_hold(struct net_device * dev)4105 static inline void dev_hold(struct net_device *dev)
4106 {
4107 netdev_hold(dev, NULL, GFP_ATOMIC);
4108 }
4109
4110 /**
4111 * dev_put - release reference to device
4112 * @dev: network device
4113 *
4114 * Release reference to device to allow it to be freed.
4115 * Try using netdev_put() instead.
4116 */
dev_put(struct net_device * dev)4117 static inline void dev_put(struct net_device *dev)
4118 {
4119 netdev_put(dev, NULL);
4120 }
4121
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4122 static inline void netdev_ref_replace(struct net_device *odev,
4123 struct net_device *ndev,
4124 netdevice_tracker *tracker,
4125 gfp_t gfp)
4126 {
4127 if (odev)
4128 netdev_tracker_free(odev, tracker);
4129
4130 __dev_hold(ndev);
4131 __dev_put(odev);
4132
4133 if (ndev)
4134 __netdev_tracker_alloc(ndev, tracker, gfp);
4135 }
4136
4137 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4138 * and _off may be called from IRQ context, but it is caller
4139 * who is responsible for serialization of these calls.
4140 *
4141 * The name carrier is inappropriate, these functions should really be
4142 * called netif_lowerlayer_*() because they represent the state of any
4143 * kind of lower layer not just hardware media.
4144 */
4145 void linkwatch_fire_event(struct net_device *dev);
4146
4147 /**
4148 * netif_carrier_ok - test if carrier present
4149 * @dev: network device
4150 *
4151 * Check if carrier is present on device
4152 */
netif_carrier_ok(const struct net_device * dev)4153 static inline bool netif_carrier_ok(const struct net_device *dev)
4154 {
4155 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4156 }
4157
4158 unsigned long dev_trans_start(struct net_device *dev);
4159
4160 void __netdev_watchdog_up(struct net_device *dev);
4161
4162 void netif_carrier_on(struct net_device *dev);
4163 void netif_carrier_off(struct net_device *dev);
4164 void netif_carrier_event(struct net_device *dev);
4165
4166 /**
4167 * netif_dormant_on - mark device as dormant.
4168 * @dev: network device
4169 *
4170 * Mark device as dormant (as per RFC2863).
4171 *
4172 * The dormant state indicates that the relevant interface is not
4173 * actually in a condition to pass packets (i.e., it is not 'up') but is
4174 * in a "pending" state, waiting for some external event. For "on-
4175 * demand" interfaces, this new state identifies the situation where the
4176 * interface is waiting for events to place it in the up state.
4177 */
netif_dormant_on(struct net_device * dev)4178 static inline void netif_dormant_on(struct net_device *dev)
4179 {
4180 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4181 linkwatch_fire_event(dev);
4182 }
4183
4184 /**
4185 * netif_dormant_off - set device as not dormant.
4186 * @dev: network device
4187 *
4188 * Device is not in dormant state.
4189 */
netif_dormant_off(struct net_device * dev)4190 static inline void netif_dormant_off(struct net_device *dev)
4191 {
4192 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4193 linkwatch_fire_event(dev);
4194 }
4195
4196 /**
4197 * netif_dormant - test if device is dormant
4198 * @dev: network device
4199 *
4200 * Check if device is dormant.
4201 */
netif_dormant(const struct net_device * dev)4202 static inline bool netif_dormant(const struct net_device *dev)
4203 {
4204 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4205 }
4206
4207
4208 /**
4209 * netif_testing_on - mark device as under test.
4210 * @dev: network device
4211 *
4212 * Mark device as under test (as per RFC2863).
4213 *
4214 * The testing state indicates that some test(s) must be performed on
4215 * the interface. After completion, of the test, the interface state
4216 * will change to up, dormant, or down, as appropriate.
4217 */
netif_testing_on(struct net_device * dev)4218 static inline void netif_testing_on(struct net_device *dev)
4219 {
4220 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4221 linkwatch_fire_event(dev);
4222 }
4223
4224 /**
4225 * netif_testing_off - set device as not under test.
4226 * @dev: network device
4227 *
4228 * Device is not in testing state.
4229 */
netif_testing_off(struct net_device * dev)4230 static inline void netif_testing_off(struct net_device *dev)
4231 {
4232 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4233 linkwatch_fire_event(dev);
4234 }
4235
4236 /**
4237 * netif_testing - test if device is under test
4238 * @dev: network device
4239 *
4240 * Check if device is under test
4241 */
netif_testing(const struct net_device * dev)4242 static inline bool netif_testing(const struct net_device *dev)
4243 {
4244 return test_bit(__LINK_STATE_TESTING, &dev->state);
4245 }
4246
4247
4248 /**
4249 * netif_oper_up - test if device is operational
4250 * @dev: network device
4251 *
4252 * Check if carrier is operational
4253 */
netif_oper_up(const struct net_device * dev)4254 static inline bool netif_oper_up(const struct net_device *dev)
4255 {
4256 return (dev->operstate == IF_OPER_UP ||
4257 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4258 }
4259
4260 /**
4261 * netif_device_present - is device available or removed
4262 * @dev: network device
4263 *
4264 * Check if device has not been removed from system.
4265 */
netif_device_present(const struct net_device * dev)4266 static inline bool netif_device_present(const struct net_device *dev)
4267 {
4268 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4269 }
4270
4271 void netif_device_detach(struct net_device *dev);
4272
4273 void netif_device_attach(struct net_device *dev);
4274
4275 /*
4276 * Network interface message level settings
4277 */
4278
4279 enum {
4280 NETIF_MSG_DRV_BIT,
4281 NETIF_MSG_PROBE_BIT,
4282 NETIF_MSG_LINK_BIT,
4283 NETIF_MSG_TIMER_BIT,
4284 NETIF_MSG_IFDOWN_BIT,
4285 NETIF_MSG_IFUP_BIT,
4286 NETIF_MSG_RX_ERR_BIT,
4287 NETIF_MSG_TX_ERR_BIT,
4288 NETIF_MSG_TX_QUEUED_BIT,
4289 NETIF_MSG_INTR_BIT,
4290 NETIF_MSG_TX_DONE_BIT,
4291 NETIF_MSG_RX_STATUS_BIT,
4292 NETIF_MSG_PKTDATA_BIT,
4293 NETIF_MSG_HW_BIT,
4294 NETIF_MSG_WOL_BIT,
4295
4296 /* When you add a new bit above, update netif_msg_class_names array
4297 * in net/ethtool/common.c
4298 */
4299 NETIF_MSG_CLASS_COUNT,
4300 };
4301 /* Both ethtool_ops interface and internal driver implementation use u32 */
4302 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4303
4304 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4305 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4306
4307 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4308 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4309 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4310 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4311 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4312 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4313 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4314 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4315 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4316 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4317 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4318 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4319 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4320 #define NETIF_MSG_HW __NETIF_MSG(HW)
4321 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4322
4323 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4324 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4325 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4326 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4327 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4328 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4329 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4330 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4331 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4332 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4333 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4334 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4335 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4336 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4337 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4338
netif_msg_init(int debug_value,int default_msg_enable_bits)4339 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4340 {
4341 /* use default */
4342 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4343 return default_msg_enable_bits;
4344 if (debug_value == 0) /* no output */
4345 return 0;
4346 /* set low N bits */
4347 return (1U << debug_value) - 1;
4348 }
4349
__netif_tx_lock(struct netdev_queue * txq,int cpu)4350 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4351 {
4352 spin_lock(&txq->_xmit_lock);
4353 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4354 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4355 }
4356
__netif_tx_acquire(struct netdev_queue * txq)4357 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4358 {
4359 __acquire(&txq->_xmit_lock);
4360 return true;
4361 }
4362
__netif_tx_release(struct netdev_queue * txq)4363 static inline void __netif_tx_release(struct netdev_queue *txq)
4364 {
4365 __release(&txq->_xmit_lock);
4366 }
4367
__netif_tx_lock_bh(struct netdev_queue * txq)4368 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4369 {
4370 spin_lock_bh(&txq->_xmit_lock);
4371 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4372 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4373 }
4374
__netif_tx_trylock(struct netdev_queue * txq)4375 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4376 {
4377 bool ok = spin_trylock(&txq->_xmit_lock);
4378
4379 if (likely(ok)) {
4380 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4381 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4382 }
4383 return ok;
4384 }
4385
__netif_tx_unlock(struct netdev_queue * txq)4386 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4387 {
4388 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4389 WRITE_ONCE(txq->xmit_lock_owner, -1);
4390 spin_unlock(&txq->_xmit_lock);
4391 }
4392
__netif_tx_unlock_bh(struct netdev_queue * txq)4393 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4394 {
4395 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4396 WRITE_ONCE(txq->xmit_lock_owner, -1);
4397 spin_unlock_bh(&txq->_xmit_lock);
4398 }
4399
4400 /*
4401 * txq->trans_start can be read locklessly from dev_watchdog()
4402 */
txq_trans_update(struct netdev_queue * txq)4403 static inline void txq_trans_update(struct netdev_queue *txq)
4404 {
4405 if (txq->xmit_lock_owner != -1)
4406 WRITE_ONCE(txq->trans_start, jiffies);
4407 }
4408
txq_trans_cond_update(struct netdev_queue * txq)4409 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4410 {
4411 unsigned long now = jiffies;
4412
4413 if (READ_ONCE(txq->trans_start) != now)
4414 WRITE_ONCE(txq->trans_start, now);
4415 }
4416
4417 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4418 static inline void netif_trans_update(struct net_device *dev)
4419 {
4420 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4421
4422 txq_trans_cond_update(txq);
4423 }
4424
4425 /**
4426 * netif_tx_lock - grab network device transmit lock
4427 * @dev: network device
4428 *
4429 * Get network device transmit lock
4430 */
4431 void netif_tx_lock(struct net_device *dev);
4432
netif_tx_lock_bh(struct net_device * dev)4433 static inline void netif_tx_lock_bh(struct net_device *dev)
4434 {
4435 local_bh_disable();
4436 netif_tx_lock(dev);
4437 }
4438
4439 void netif_tx_unlock(struct net_device *dev);
4440
netif_tx_unlock_bh(struct net_device * dev)4441 static inline void netif_tx_unlock_bh(struct net_device *dev)
4442 {
4443 netif_tx_unlock(dev);
4444 local_bh_enable();
4445 }
4446
4447 #define HARD_TX_LOCK(dev, txq, cpu) { \
4448 if ((dev->features & NETIF_F_LLTX) == 0) { \
4449 __netif_tx_lock(txq, cpu); \
4450 } else { \
4451 __netif_tx_acquire(txq); \
4452 } \
4453 }
4454
4455 #define HARD_TX_TRYLOCK(dev, txq) \
4456 (((dev->features & NETIF_F_LLTX) == 0) ? \
4457 __netif_tx_trylock(txq) : \
4458 __netif_tx_acquire(txq))
4459
4460 #define HARD_TX_UNLOCK(dev, txq) { \
4461 if ((dev->features & NETIF_F_LLTX) == 0) { \
4462 __netif_tx_unlock(txq); \
4463 } else { \
4464 __netif_tx_release(txq); \
4465 } \
4466 }
4467
netif_tx_disable(struct net_device * dev)4468 static inline void netif_tx_disable(struct net_device *dev)
4469 {
4470 unsigned int i;
4471 int cpu;
4472
4473 local_bh_disable();
4474 cpu = smp_processor_id();
4475 spin_lock(&dev->tx_global_lock);
4476 for (i = 0; i < dev->num_tx_queues; i++) {
4477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4478
4479 __netif_tx_lock(txq, cpu);
4480 netif_tx_stop_queue(txq);
4481 __netif_tx_unlock(txq);
4482 }
4483 spin_unlock(&dev->tx_global_lock);
4484 local_bh_enable();
4485 }
4486
netif_addr_lock(struct net_device * dev)4487 static inline void netif_addr_lock(struct net_device *dev)
4488 {
4489 unsigned char nest_level = 0;
4490
4491 #ifdef CONFIG_LOCKDEP
4492 nest_level = dev->nested_level;
4493 #endif
4494 spin_lock_nested(&dev->addr_list_lock, nest_level);
4495 }
4496
netif_addr_lock_bh(struct net_device * dev)4497 static inline void netif_addr_lock_bh(struct net_device *dev)
4498 {
4499 unsigned char nest_level = 0;
4500
4501 #ifdef CONFIG_LOCKDEP
4502 nest_level = dev->nested_level;
4503 #endif
4504 local_bh_disable();
4505 spin_lock_nested(&dev->addr_list_lock, nest_level);
4506 }
4507
netif_addr_unlock(struct net_device * dev)4508 static inline void netif_addr_unlock(struct net_device *dev)
4509 {
4510 spin_unlock(&dev->addr_list_lock);
4511 }
4512
netif_addr_unlock_bh(struct net_device * dev)4513 static inline void netif_addr_unlock_bh(struct net_device *dev)
4514 {
4515 spin_unlock_bh(&dev->addr_list_lock);
4516 }
4517
4518 /*
4519 * dev_addrs walker. Should be used only for read access. Call with
4520 * rcu_read_lock held.
4521 */
4522 #define for_each_dev_addr(dev, ha) \
4523 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4524
4525 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4526
4527 void ether_setup(struct net_device *dev);
4528
4529 /* Support for loadable net-drivers */
4530 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4531 unsigned char name_assign_type,
4532 void (*setup)(struct net_device *),
4533 unsigned int txqs, unsigned int rxqs);
4534 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4535 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4536
4537 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4538 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4539 count)
4540
4541 int register_netdev(struct net_device *dev);
4542 void unregister_netdev(struct net_device *dev);
4543
4544 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4545
4546 /* General hardware address lists handling functions */
4547 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4548 struct netdev_hw_addr_list *from_list, int addr_len);
4549 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4550 struct netdev_hw_addr_list *from_list, int addr_len);
4551 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4552 struct net_device *dev,
4553 int (*sync)(struct net_device *, const unsigned char *),
4554 int (*unsync)(struct net_device *,
4555 const unsigned char *));
4556 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4557 struct net_device *dev,
4558 int (*sync)(struct net_device *,
4559 const unsigned char *, int),
4560 int (*unsync)(struct net_device *,
4561 const unsigned char *, int));
4562 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4563 struct net_device *dev,
4564 int (*unsync)(struct net_device *,
4565 const unsigned char *, int));
4566 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4567 struct net_device *dev,
4568 int (*unsync)(struct net_device *,
4569 const unsigned char *));
4570 void __hw_addr_init(struct netdev_hw_addr_list *list);
4571
4572 /* Functions used for device addresses handling */
4573 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4574 const void *addr, size_t len);
4575
4576 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4577 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4578 {
4579 dev_addr_mod(dev, 0, addr, len);
4580 }
4581
dev_addr_set(struct net_device * dev,const u8 * addr)4582 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4583 {
4584 __dev_addr_set(dev, addr, dev->addr_len);
4585 }
4586
4587 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4588 unsigned char addr_type);
4589 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4590 unsigned char addr_type);
4591
4592 /* Functions used for unicast addresses handling */
4593 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4594 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4595 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4596 int dev_uc_sync(struct net_device *to, struct net_device *from);
4597 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4598 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4599 void dev_uc_flush(struct net_device *dev);
4600 void dev_uc_init(struct net_device *dev);
4601
4602 /**
4603 * __dev_uc_sync - Synchonize device's unicast list
4604 * @dev: device to sync
4605 * @sync: function to call if address should be added
4606 * @unsync: function to call if address should be removed
4607 *
4608 * Add newly added addresses to the interface, and release
4609 * addresses that have been deleted.
4610 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4611 static inline int __dev_uc_sync(struct net_device *dev,
4612 int (*sync)(struct net_device *,
4613 const unsigned char *),
4614 int (*unsync)(struct net_device *,
4615 const unsigned char *))
4616 {
4617 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4618 }
4619
4620 /**
4621 * __dev_uc_unsync - Remove synchronized addresses from device
4622 * @dev: device to sync
4623 * @unsync: function to call if address should be removed
4624 *
4625 * Remove all addresses that were added to the device by dev_uc_sync().
4626 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4627 static inline void __dev_uc_unsync(struct net_device *dev,
4628 int (*unsync)(struct net_device *,
4629 const unsigned char *))
4630 {
4631 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4632 }
4633
4634 /* Functions used for multicast addresses handling */
4635 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4636 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4637 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4638 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4639 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4640 int dev_mc_sync(struct net_device *to, struct net_device *from);
4641 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4642 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4643 void dev_mc_flush(struct net_device *dev);
4644 void dev_mc_init(struct net_device *dev);
4645
4646 /**
4647 * __dev_mc_sync - Synchonize device's multicast list
4648 * @dev: device to sync
4649 * @sync: function to call if address should be added
4650 * @unsync: function to call if address should be removed
4651 *
4652 * Add newly added addresses to the interface, and release
4653 * addresses that have been deleted.
4654 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4655 static inline int __dev_mc_sync(struct net_device *dev,
4656 int (*sync)(struct net_device *,
4657 const unsigned char *),
4658 int (*unsync)(struct net_device *,
4659 const unsigned char *))
4660 {
4661 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4662 }
4663
4664 /**
4665 * __dev_mc_unsync - Remove synchronized addresses from device
4666 * @dev: device to sync
4667 * @unsync: function to call if address should be removed
4668 *
4669 * Remove all addresses that were added to the device by dev_mc_sync().
4670 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4671 static inline void __dev_mc_unsync(struct net_device *dev,
4672 int (*unsync)(struct net_device *,
4673 const unsigned char *))
4674 {
4675 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4676 }
4677
4678 /* Functions used for secondary unicast and multicast support */
4679 void dev_set_rx_mode(struct net_device *dev);
4680 int dev_set_promiscuity(struct net_device *dev, int inc);
4681 int dev_set_allmulti(struct net_device *dev, int inc);
4682 void netdev_state_change(struct net_device *dev);
4683 void __netdev_notify_peers(struct net_device *dev);
4684 void netdev_notify_peers(struct net_device *dev);
4685 void netdev_features_change(struct net_device *dev);
4686 /* Load a device via the kmod */
4687 void dev_load(struct net *net, const char *name);
4688 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4689 struct rtnl_link_stats64 *storage);
4690 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4691 const struct net_device_stats *netdev_stats);
4692 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4693 const struct pcpu_sw_netstats __percpu *netstats);
4694 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4695
4696 extern int netdev_max_backlog;
4697 extern int dev_rx_weight;
4698 extern int dev_tx_weight;
4699 extern int gro_normal_batch;
4700
4701 enum {
4702 NESTED_SYNC_IMM_BIT,
4703 NESTED_SYNC_TODO_BIT,
4704 };
4705
4706 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4707 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4708
4709 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4710 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4711
4712 struct netdev_nested_priv {
4713 unsigned char flags;
4714 void *data;
4715 };
4716
4717 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4718 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4719 struct list_head **iter);
4720
4721 /* iterate through upper list, must be called under RCU read lock */
4722 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4723 for (iter = &(dev)->adj_list.upper, \
4724 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4725 updev; \
4726 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4727
4728 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4729 int (*fn)(struct net_device *upper_dev,
4730 struct netdev_nested_priv *priv),
4731 struct netdev_nested_priv *priv);
4732
4733 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4734 struct net_device *upper_dev);
4735
4736 bool netdev_has_any_upper_dev(struct net_device *dev);
4737
4738 void *netdev_lower_get_next_private(struct net_device *dev,
4739 struct list_head **iter);
4740 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4741 struct list_head **iter);
4742
4743 #define netdev_for_each_lower_private(dev, priv, iter) \
4744 for (iter = (dev)->adj_list.lower.next, \
4745 priv = netdev_lower_get_next_private(dev, &(iter)); \
4746 priv; \
4747 priv = netdev_lower_get_next_private(dev, &(iter)))
4748
4749 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4750 for (iter = &(dev)->adj_list.lower, \
4751 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4752 priv; \
4753 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4754
4755 void *netdev_lower_get_next(struct net_device *dev,
4756 struct list_head **iter);
4757
4758 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4759 for (iter = (dev)->adj_list.lower.next, \
4760 ldev = netdev_lower_get_next(dev, &(iter)); \
4761 ldev; \
4762 ldev = netdev_lower_get_next(dev, &(iter)))
4763
4764 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4765 struct list_head **iter);
4766 int netdev_walk_all_lower_dev(struct net_device *dev,
4767 int (*fn)(struct net_device *lower_dev,
4768 struct netdev_nested_priv *priv),
4769 struct netdev_nested_priv *priv);
4770 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4771 int (*fn)(struct net_device *lower_dev,
4772 struct netdev_nested_priv *priv),
4773 struct netdev_nested_priv *priv);
4774
4775 void *netdev_adjacent_get_private(struct list_head *adj_list);
4776 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4777 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4778 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4779 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4780 struct netlink_ext_ack *extack);
4781 int netdev_master_upper_dev_link(struct net_device *dev,
4782 struct net_device *upper_dev,
4783 void *upper_priv, void *upper_info,
4784 struct netlink_ext_ack *extack);
4785 void netdev_upper_dev_unlink(struct net_device *dev,
4786 struct net_device *upper_dev);
4787 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4788 struct net_device *new_dev,
4789 struct net_device *dev,
4790 struct netlink_ext_ack *extack);
4791 void netdev_adjacent_change_commit(struct net_device *old_dev,
4792 struct net_device *new_dev,
4793 struct net_device *dev);
4794 void netdev_adjacent_change_abort(struct net_device *old_dev,
4795 struct net_device *new_dev,
4796 struct net_device *dev);
4797 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4798 void *netdev_lower_dev_get_private(struct net_device *dev,
4799 struct net_device *lower_dev);
4800 void netdev_lower_state_changed(struct net_device *lower_dev,
4801 void *lower_state_info);
4802
4803 /* RSS keys are 40 or 52 bytes long */
4804 #define NETDEV_RSS_KEY_LEN 52
4805 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4806 void netdev_rss_key_fill(void *buffer, size_t len);
4807
4808 int skb_checksum_help(struct sk_buff *skb);
4809 int skb_crc32c_csum_help(struct sk_buff *skb);
4810 int skb_csum_hwoffload_help(struct sk_buff *skb,
4811 const netdev_features_t features);
4812
4813 struct netdev_bonding_info {
4814 ifslave slave;
4815 ifbond master;
4816 };
4817
4818 struct netdev_notifier_bonding_info {
4819 struct netdev_notifier_info info; /* must be first */
4820 struct netdev_bonding_info bonding_info;
4821 };
4822
4823 void netdev_bonding_info_change(struct net_device *dev,
4824 struct netdev_bonding_info *bonding_info);
4825
4826 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4827 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4828 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4829 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4830 const void *data)
4831 {
4832 }
4833 #endif
4834
4835 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4836
can_checksum_protocol(netdev_features_t features,__be16 protocol)4837 static inline bool can_checksum_protocol(netdev_features_t features,
4838 __be16 protocol)
4839 {
4840 if (protocol == htons(ETH_P_FCOE))
4841 return !!(features & NETIF_F_FCOE_CRC);
4842
4843 /* Assume this is an IP checksum (not SCTP CRC) */
4844
4845 if (features & NETIF_F_HW_CSUM) {
4846 /* Can checksum everything */
4847 return true;
4848 }
4849
4850 switch (protocol) {
4851 case htons(ETH_P_IP):
4852 return !!(features & NETIF_F_IP_CSUM);
4853 case htons(ETH_P_IPV6):
4854 return !!(features & NETIF_F_IPV6_CSUM);
4855 default:
4856 return false;
4857 }
4858 }
4859
4860 #ifdef CONFIG_BUG
4861 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4862 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4863 static inline void netdev_rx_csum_fault(struct net_device *dev,
4864 struct sk_buff *skb)
4865 {
4866 }
4867 #endif
4868 /* rx skb timestamps */
4869 void net_enable_timestamp(void);
4870 void net_disable_timestamp(void);
4871
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4872 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4873 const struct skb_shared_hwtstamps *hwtstamps,
4874 bool cycles)
4875 {
4876 const struct net_device_ops *ops = dev->netdev_ops;
4877
4878 if (ops->ndo_get_tstamp)
4879 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4880
4881 return hwtstamps->hwtstamp;
4882 }
4883
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4884 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4885 struct sk_buff *skb, struct net_device *dev,
4886 bool more)
4887 {
4888 __this_cpu_write(softnet_data.xmit.more, more);
4889 return ops->ndo_start_xmit(skb, dev);
4890 }
4891
netdev_xmit_more(void)4892 static inline bool netdev_xmit_more(void)
4893 {
4894 return __this_cpu_read(softnet_data.xmit.more);
4895 }
4896
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4897 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4898 struct netdev_queue *txq, bool more)
4899 {
4900 const struct net_device_ops *ops = dev->netdev_ops;
4901 netdev_tx_t rc;
4902
4903 rc = __netdev_start_xmit(ops, skb, dev, more);
4904 if (rc == NETDEV_TX_OK)
4905 txq_trans_update(txq);
4906
4907 return rc;
4908 }
4909
4910 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4911 const void *ns);
4912 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4913 const void *ns);
4914
4915 extern const struct kobj_ns_type_operations net_ns_type_operations;
4916
4917 const char *netdev_drivername(const struct net_device *dev);
4918
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4919 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4920 netdev_features_t f2)
4921 {
4922 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4923 if (f1 & NETIF_F_HW_CSUM)
4924 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4925 else
4926 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4927 }
4928
4929 return f1 & f2;
4930 }
4931
netdev_get_wanted_features(struct net_device * dev)4932 static inline netdev_features_t netdev_get_wanted_features(
4933 struct net_device *dev)
4934 {
4935 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4936 }
4937 netdev_features_t netdev_increment_features(netdev_features_t all,
4938 netdev_features_t one, netdev_features_t mask);
4939
4940 /* Allow TSO being used on stacked device :
4941 * Performing the GSO segmentation before last device
4942 * is a performance improvement.
4943 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4944 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4945 netdev_features_t mask)
4946 {
4947 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4948 }
4949
4950 int __netdev_update_features(struct net_device *dev);
4951 void netdev_update_features(struct net_device *dev);
4952 void netdev_change_features(struct net_device *dev);
4953
4954 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4955 struct net_device *dev);
4956
4957 netdev_features_t passthru_features_check(struct sk_buff *skb,
4958 struct net_device *dev,
4959 netdev_features_t features);
4960 netdev_features_t netif_skb_features(struct sk_buff *skb);
4961 void skb_warn_bad_offload(const struct sk_buff *skb);
4962
net_gso_ok(netdev_features_t features,int gso_type)4963 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4964 {
4965 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4966
4967 /* check flags correspondence */
4968 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4969 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4970 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4971 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4972 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4973 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4974 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4975 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4976 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4977 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4978 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4979 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4980 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4981 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4982 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4983 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4984 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4985 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4986 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4987
4988 return (features & feature) == feature;
4989 }
4990
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4991 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4992 {
4993 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4994 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4995 }
4996
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4997 static inline bool netif_needs_gso(struct sk_buff *skb,
4998 netdev_features_t features)
4999 {
5000 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5001 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5002 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5003 }
5004
5005 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5006 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5007 void netif_inherit_tso_max(struct net_device *to,
5008 const struct net_device *from);
5009
netif_is_macsec(const struct net_device * dev)5010 static inline bool netif_is_macsec(const struct net_device *dev)
5011 {
5012 return dev->priv_flags & IFF_MACSEC;
5013 }
5014
netif_is_macvlan(const struct net_device * dev)5015 static inline bool netif_is_macvlan(const struct net_device *dev)
5016 {
5017 return dev->priv_flags & IFF_MACVLAN;
5018 }
5019
netif_is_macvlan_port(const struct net_device * dev)5020 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5021 {
5022 return dev->priv_flags & IFF_MACVLAN_PORT;
5023 }
5024
netif_is_bond_master(const struct net_device * dev)5025 static inline bool netif_is_bond_master(const struct net_device *dev)
5026 {
5027 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5028 }
5029
netif_is_bond_slave(const struct net_device * dev)5030 static inline bool netif_is_bond_slave(const struct net_device *dev)
5031 {
5032 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5033 }
5034
netif_supports_nofcs(struct net_device * dev)5035 static inline bool netif_supports_nofcs(struct net_device *dev)
5036 {
5037 return dev->priv_flags & IFF_SUPP_NOFCS;
5038 }
5039
netif_has_l3_rx_handler(const struct net_device * dev)5040 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5041 {
5042 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5043 }
5044
netif_is_l3_master(const struct net_device * dev)5045 static inline bool netif_is_l3_master(const struct net_device *dev)
5046 {
5047 return dev->priv_flags & IFF_L3MDEV_MASTER;
5048 }
5049
netif_is_l3_slave(const struct net_device * dev)5050 static inline bool netif_is_l3_slave(const struct net_device *dev)
5051 {
5052 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5053 }
5054
dev_sdif(const struct net_device * dev)5055 static inline int dev_sdif(const struct net_device *dev)
5056 {
5057 #ifdef CONFIG_NET_L3_MASTER_DEV
5058 if (netif_is_l3_slave(dev))
5059 return dev->ifindex;
5060 #endif
5061 return 0;
5062 }
5063
netif_is_bridge_master(const struct net_device * dev)5064 static inline bool netif_is_bridge_master(const struct net_device *dev)
5065 {
5066 return dev->priv_flags & IFF_EBRIDGE;
5067 }
5068
netif_is_bridge_port(const struct net_device * dev)5069 static inline bool netif_is_bridge_port(const struct net_device *dev)
5070 {
5071 return dev->priv_flags & IFF_BRIDGE_PORT;
5072 }
5073
netif_is_ovs_master(const struct net_device * dev)5074 static inline bool netif_is_ovs_master(const struct net_device *dev)
5075 {
5076 return dev->priv_flags & IFF_OPENVSWITCH;
5077 }
5078
netif_is_ovs_port(const struct net_device * dev)5079 static inline bool netif_is_ovs_port(const struct net_device *dev)
5080 {
5081 return dev->priv_flags & IFF_OVS_DATAPATH;
5082 }
5083
netif_is_any_bridge_master(const struct net_device * dev)5084 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5085 {
5086 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5087 }
5088
netif_is_any_bridge_port(const struct net_device * dev)5089 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5090 {
5091 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5092 }
5093
netif_is_team_master(const struct net_device * dev)5094 static inline bool netif_is_team_master(const struct net_device *dev)
5095 {
5096 return dev->priv_flags & IFF_TEAM;
5097 }
5098
netif_is_team_port(const struct net_device * dev)5099 static inline bool netif_is_team_port(const struct net_device *dev)
5100 {
5101 return dev->priv_flags & IFF_TEAM_PORT;
5102 }
5103
netif_is_lag_master(const struct net_device * dev)5104 static inline bool netif_is_lag_master(const struct net_device *dev)
5105 {
5106 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5107 }
5108
netif_is_lag_port(const struct net_device * dev)5109 static inline bool netif_is_lag_port(const struct net_device *dev)
5110 {
5111 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5112 }
5113
netif_is_rxfh_configured(const struct net_device * dev)5114 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5115 {
5116 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5117 }
5118
netif_is_failover(const struct net_device * dev)5119 static inline bool netif_is_failover(const struct net_device *dev)
5120 {
5121 return dev->priv_flags & IFF_FAILOVER;
5122 }
5123
netif_is_failover_slave(const struct net_device * dev)5124 static inline bool netif_is_failover_slave(const struct net_device *dev)
5125 {
5126 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5127 }
5128
5129 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5130 static inline void netif_keep_dst(struct net_device *dev)
5131 {
5132 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5133 }
5134
5135 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5136 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5137 {
5138 /* TODO: reserve and use an additional IFF bit, if we get more users */
5139 return netif_is_macsec(dev);
5140 }
5141
5142 extern struct pernet_operations __net_initdata loopback_net_ops;
5143
5144 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5145
5146 /* netdev_printk helpers, similar to dev_printk */
5147
netdev_name(const struct net_device * dev)5148 static inline const char *netdev_name(const struct net_device *dev)
5149 {
5150 if (!dev->name[0] || strchr(dev->name, '%'))
5151 return "(unnamed net_device)";
5152 return dev->name;
5153 }
5154
netdev_reg_state(const struct net_device * dev)5155 static inline const char *netdev_reg_state(const struct net_device *dev)
5156 {
5157 switch (dev->reg_state) {
5158 case NETREG_UNINITIALIZED: return " (uninitialized)";
5159 case NETREG_REGISTERED: return "";
5160 case NETREG_UNREGISTERING: return " (unregistering)";
5161 case NETREG_UNREGISTERED: return " (unregistered)";
5162 case NETREG_RELEASED: return " (released)";
5163 case NETREG_DUMMY: return " (dummy)";
5164 }
5165
5166 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5167 return " (unknown)";
5168 }
5169
5170 #define MODULE_ALIAS_NETDEV(device) \
5171 MODULE_ALIAS("netdev-" device)
5172
5173 /*
5174 * netdev_WARN() acts like dev_printk(), but with the key difference
5175 * of using a WARN/WARN_ON to get the message out, including the
5176 * file/line information and a backtrace.
5177 */
5178 #define netdev_WARN(dev, format, args...) \
5179 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5180 netdev_reg_state(dev), ##args)
5181
5182 #define netdev_WARN_ONCE(dev, format, args...) \
5183 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5184 netdev_reg_state(dev), ##args)
5185
5186 /*
5187 * The list of packet types we will receive (as opposed to discard)
5188 * and the routines to invoke.
5189 *
5190 * Why 16. Because with 16 the only overlap we get on a hash of the
5191 * low nibble of the protocol value is RARP/SNAP/X.25.
5192 *
5193 * 0800 IP
5194 * 0001 802.3
5195 * 0002 AX.25
5196 * 0004 802.2
5197 * 8035 RARP
5198 * 0005 SNAP
5199 * 0805 X.25
5200 * 0806 ARP
5201 * 8137 IPX
5202 * 0009 Localtalk
5203 * 86DD IPv6
5204 */
5205 #define PTYPE_HASH_SIZE (16)
5206 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5207
5208 extern struct list_head ptype_all __read_mostly;
5209 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5210
5211 extern struct net_device *blackhole_netdev;
5212
5213 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5214 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5215 #define DEV_STATS_ADD(DEV, FIELD, VAL) \
5216 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5217
5218 #endif /* _LINUX_NETDEVICE_H */
5219