1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3
4 #ifndef _MLXSW_REG_H
5 #define _MLXSW_REG_H
6
7 #include <linux/kernel.h>
8 #include <linux/string.h>
9 #include <linux/bitops.h>
10 #include <linux/if_vlan.h>
11
12 #include "item.h"
13 #include "port.h"
14
15 struct mlxsw_reg_info {
16 u16 id;
17 u16 len; /* In u8 */
18 const char *name;
19 };
20
21 #define MLXSW_REG_DEFINE(_name, _id, _len) \
22 static const struct mlxsw_reg_info mlxsw_reg_##_name = { \
23 .id = _id, \
24 .len = _len, \
25 .name = #_name, \
26 }
27
28 #define MLXSW_REG(type) (&mlxsw_reg_##type)
29 #define MLXSW_REG_LEN(type) MLXSW_REG(type)->len
30 #define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len)
31
32 /* SGCR - Switch General Configuration Register
33 * --------------------------------------------
34 * This register is used for configuration of the switch capabilities.
35 */
36 #define MLXSW_REG_SGCR_ID 0x2000
37 #define MLXSW_REG_SGCR_LEN 0x10
38
39 MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN);
40
41 /* reg_sgcr_llb
42 * Link Local Broadcast (Default=0)
43 * When set, all Link Local packets (224.0.0.X) will be treated as broadcast
44 * packets and ignore the IGMP snooping entries.
45 * Access: RW
46 */
47 MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1);
48
mlxsw_reg_sgcr_pack(char * payload,bool llb)49 static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb)
50 {
51 MLXSW_REG_ZERO(sgcr, payload);
52 mlxsw_reg_sgcr_llb_set(payload, !!llb);
53 }
54
55 /* SPAD - Switch Physical Address Register
56 * ---------------------------------------
57 * The SPAD register configures the switch physical MAC address.
58 */
59 #define MLXSW_REG_SPAD_ID 0x2002
60 #define MLXSW_REG_SPAD_LEN 0x10
61
62 MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN);
63
64 /* reg_spad_base_mac
65 * Base MAC address for the switch partitions.
66 * Per switch partition MAC address is equal to:
67 * base_mac + swid
68 * Access: RW
69 */
70 MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6);
71
72 /* SMID - Switch Multicast ID
73 * --------------------------
74 * The MID record maps from a MID (Multicast ID), which is a unique identifier
75 * of the multicast group within the stacking domain, into a list of local
76 * ports into which the packet is replicated.
77 */
78 #define MLXSW_REG_SMID_ID 0x2007
79 #define MLXSW_REG_SMID_LEN 0x240
80
81 MLXSW_REG_DEFINE(smid, MLXSW_REG_SMID_ID, MLXSW_REG_SMID_LEN);
82
83 /* reg_smid_swid
84 * Switch partition ID.
85 * Access: Index
86 */
87 MLXSW_ITEM32(reg, smid, swid, 0x00, 24, 8);
88
89 /* reg_smid_mid
90 * Multicast identifier - global identifier that represents the multicast group
91 * across all devices.
92 * Access: Index
93 */
94 MLXSW_ITEM32(reg, smid, mid, 0x00, 0, 16);
95
96 /* reg_smid_port
97 * Local port memebership (1 bit per port).
98 * Access: RW
99 */
100 MLXSW_ITEM_BIT_ARRAY(reg, smid, port, 0x20, 0x20, 1);
101
102 /* reg_smid_port_mask
103 * Local port mask (1 bit per port).
104 * Access: W
105 */
106 MLXSW_ITEM_BIT_ARRAY(reg, smid, port_mask, 0x220, 0x20, 1);
107
mlxsw_reg_smid_pack(char * payload,u16 mid,u8 port,bool set)108 static inline void mlxsw_reg_smid_pack(char *payload, u16 mid,
109 u8 port, bool set)
110 {
111 MLXSW_REG_ZERO(smid, payload);
112 mlxsw_reg_smid_swid_set(payload, 0);
113 mlxsw_reg_smid_mid_set(payload, mid);
114 mlxsw_reg_smid_port_set(payload, port, set);
115 mlxsw_reg_smid_port_mask_set(payload, port, 1);
116 }
117
118 /* SSPR - Switch System Port Record Register
119 * -----------------------------------------
120 * Configures the system port to local port mapping.
121 */
122 #define MLXSW_REG_SSPR_ID 0x2008
123 #define MLXSW_REG_SSPR_LEN 0x8
124
125 MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN);
126
127 /* reg_sspr_m
128 * Master - if set, then the record describes the master system port.
129 * This is needed in case a local port is mapped into several system ports
130 * (for multipathing). That number will be reported as the source system
131 * port when packets are forwarded to the CPU. Only one master port is allowed
132 * per local port.
133 *
134 * Note: Must be set for Spectrum.
135 * Access: RW
136 */
137 MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1);
138
139 /* reg_sspr_local_port
140 * Local port number.
141 *
142 * Access: RW
143 */
144 MLXSW_ITEM32(reg, sspr, local_port, 0x00, 16, 8);
145
146 /* reg_sspr_sub_port
147 * Virtual port within the physical port.
148 * Should be set to 0 when virtual ports are not enabled on the port.
149 *
150 * Access: RW
151 */
152 MLXSW_ITEM32(reg, sspr, sub_port, 0x00, 8, 8);
153
154 /* reg_sspr_system_port
155 * Unique identifier within the stacking domain that represents all the ports
156 * that are available in the system (external ports).
157 *
158 * Currently, only single-ASIC configurations are supported, so we default to
159 * 1:1 mapping between system ports and local ports.
160 * Access: Index
161 */
162 MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16);
163
mlxsw_reg_sspr_pack(char * payload,u8 local_port)164 static inline void mlxsw_reg_sspr_pack(char *payload, u8 local_port)
165 {
166 MLXSW_REG_ZERO(sspr, payload);
167 mlxsw_reg_sspr_m_set(payload, 1);
168 mlxsw_reg_sspr_local_port_set(payload, local_port);
169 mlxsw_reg_sspr_sub_port_set(payload, 0);
170 mlxsw_reg_sspr_system_port_set(payload, local_port);
171 }
172
173 /* SFDAT - Switch Filtering Database Aging Time
174 * --------------------------------------------
175 * Controls the Switch aging time. Aging time is able to be set per Switch
176 * Partition.
177 */
178 #define MLXSW_REG_SFDAT_ID 0x2009
179 #define MLXSW_REG_SFDAT_LEN 0x8
180
181 MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN);
182
183 /* reg_sfdat_swid
184 * Switch partition ID.
185 * Access: Index
186 */
187 MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8);
188
189 /* reg_sfdat_age_time
190 * Aging time in seconds
191 * Min - 10 seconds
192 * Max - 1,000,000 seconds
193 * Default is 300 seconds.
194 * Access: RW
195 */
196 MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20);
197
mlxsw_reg_sfdat_pack(char * payload,u32 age_time)198 static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time)
199 {
200 MLXSW_REG_ZERO(sfdat, payload);
201 mlxsw_reg_sfdat_swid_set(payload, 0);
202 mlxsw_reg_sfdat_age_time_set(payload, age_time);
203 }
204
205 /* SFD - Switch Filtering Database
206 * -------------------------------
207 * The following register defines the access to the filtering database.
208 * The register supports querying, adding, removing and modifying the database.
209 * The access is optimized for bulk updates in which case more than one
210 * FDB record is present in the same command.
211 */
212 #define MLXSW_REG_SFD_ID 0x200A
213 #define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */
214 #define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */
215 #define MLXSW_REG_SFD_REC_MAX_COUNT 64
216 #define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \
217 MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT)
218
219 MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN);
220
221 /* reg_sfd_swid
222 * Switch partition ID for queries. Reserved on Write.
223 * Access: Index
224 */
225 MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8);
226
227 enum mlxsw_reg_sfd_op {
228 /* Dump entire FDB a (process according to record_locator) */
229 MLXSW_REG_SFD_OP_QUERY_DUMP = 0,
230 /* Query records by {MAC, VID/FID} value */
231 MLXSW_REG_SFD_OP_QUERY_QUERY = 1,
232 /* Query and clear activity. Query records by {MAC, VID/FID} value */
233 MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2,
234 /* Test. Response indicates if each of the records could be
235 * added to the FDB.
236 */
237 MLXSW_REG_SFD_OP_WRITE_TEST = 0,
238 /* Add/modify. Aged-out records cannot be added. This command removes
239 * the learning notification of the {MAC, VID/FID}. Response includes
240 * the entries that were added to the FDB.
241 */
242 MLXSW_REG_SFD_OP_WRITE_EDIT = 1,
243 /* Remove record by {MAC, VID/FID}. This command also removes
244 * the learning notification and aged-out notifications
245 * of the {MAC, VID/FID}. The response provides current (pre-removal)
246 * entries as non-aged-out.
247 */
248 MLXSW_REG_SFD_OP_WRITE_REMOVE = 2,
249 /* Remove learned notification by {MAC, VID/FID}. The response provides
250 * the removed learning notification.
251 */
252 MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2,
253 };
254
255 /* reg_sfd_op
256 * Operation.
257 * Access: OP
258 */
259 MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2);
260
261 /* reg_sfd_record_locator
262 * Used for querying the FDB. Use record_locator=0 to initiate the
263 * query. When a record is returned, a new record_locator is
264 * returned to be used in the subsequent query.
265 * Reserved for database update.
266 * Access: Index
267 */
268 MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30);
269
270 /* reg_sfd_num_rec
271 * Request: Number of records to read/add/modify/remove
272 * Response: Number of records read/added/replaced/removed
273 * See above description for more details.
274 * Ranges 0..64
275 * Access: RW
276 */
277 MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8);
278
mlxsw_reg_sfd_pack(char * payload,enum mlxsw_reg_sfd_op op,u32 record_locator)279 static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op,
280 u32 record_locator)
281 {
282 MLXSW_REG_ZERO(sfd, payload);
283 mlxsw_reg_sfd_op_set(payload, op);
284 mlxsw_reg_sfd_record_locator_set(payload, record_locator);
285 }
286
287 /* reg_sfd_rec_swid
288 * Switch partition ID.
289 * Access: Index
290 */
291 MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8,
292 MLXSW_REG_SFD_REC_LEN, 0x00, false);
293
294 enum mlxsw_reg_sfd_rec_type {
295 MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0,
296 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1,
297 MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2,
298 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC,
299 };
300
301 /* reg_sfd_rec_type
302 * FDB record type.
303 * Access: RW
304 */
305 MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4,
306 MLXSW_REG_SFD_REC_LEN, 0x00, false);
307
308 enum mlxsw_reg_sfd_rec_policy {
309 /* Replacement disabled, aging disabled. */
310 MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0,
311 /* (mlag remote): Replacement enabled, aging disabled,
312 * learning notification enabled on this port.
313 */
314 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1,
315 /* (ingress device): Replacement enabled, aging enabled. */
316 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3,
317 };
318
319 /* reg_sfd_rec_policy
320 * Policy.
321 * Access: RW
322 */
323 MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2,
324 MLXSW_REG_SFD_REC_LEN, 0x00, false);
325
326 /* reg_sfd_rec_a
327 * Activity. Set for new static entries. Set for static entries if a frame SMAC
328 * lookup hits on the entry.
329 * To clear the a bit, use "query and clear activity" op.
330 * Access: RO
331 */
332 MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1,
333 MLXSW_REG_SFD_REC_LEN, 0x00, false);
334
335 /* reg_sfd_rec_mac
336 * MAC address.
337 * Access: Index
338 */
339 MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6,
340 MLXSW_REG_SFD_REC_LEN, 0x02);
341
342 enum mlxsw_reg_sfd_rec_action {
343 /* forward */
344 MLXSW_REG_SFD_REC_ACTION_NOP = 0,
345 /* forward and trap, trap_id is FDB_TRAP */
346 MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1,
347 /* trap and do not forward, trap_id is FDB_TRAP */
348 MLXSW_REG_SFD_REC_ACTION_TRAP = 2,
349 /* forward to IP router */
350 MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3,
351 MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15,
352 };
353
354 /* reg_sfd_rec_action
355 * Action to apply on the packet.
356 * Note: Dynamic entries can only be configured with NOP action.
357 * Access: RW
358 */
359 MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4,
360 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
361
362 /* reg_sfd_uc_sub_port
363 * VEPA channel on local port.
364 * Valid only if local port is a non-stacking port. Must be 0 if multichannel
365 * VEPA is not enabled.
366 * Access: RW
367 */
368 MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
369 MLXSW_REG_SFD_REC_LEN, 0x08, false);
370
371 /* reg_sfd_uc_fid_vid
372 * Filtering ID or VLAN ID
373 * For SwitchX and SwitchX-2:
374 * - Dynamic entries (policy 2,3) use FID
375 * - Static entries (policy 0) use VID
376 * - When independent learning is configured, VID=FID
377 * For Spectrum: use FID for both Dynamic and Static entries.
378 * VID should not be used.
379 * Access: Index
380 */
381 MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
382 MLXSW_REG_SFD_REC_LEN, 0x08, false);
383
384 /* reg_sfd_uc_system_port
385 * Unique port identifier for the final destination of the packet.
386 * Access: RW
387 */
388 MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16,
389 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
390
mlxsw_reg_sfd_rec_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_type rec_type,const char * mac,enum mlxsw_reg_sfd_rec_action action)391 static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index,
392 enum mlxsw_reg_sfd_rec_type rec_type,
393 const char *mac,
394 enum mlxsw_reg_sfd_rec_action action)
395 {
396 u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload);
397
398 if (rec_index >= num_rec)
399 mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1);
400 mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0);
401 mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type);
402 mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac);
403 mlxsw_reg_sfd_rec_action_set(payload, rec_index, action);
404 }
405
mlxsw_reg_sfd_uc_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_policy policy,const char * mac,u16 fid_vid,enum mlxsw_reg_sfd_rec_action action,u8 local_port)406 static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index,
407 enum mlxsw_reg_sfd_rec_policy policy,
408 const char *mac, u16 fid_vid,
409 enum mlxsw_reg_sfd_rec_action action,
410 u8 local_port)
411 {
412 mlxsw_reg_sfd_rec_pack(payload, rec_index,
413 MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action);
414 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
415 mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0);
416 mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid);
417 mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port);
418 }
419
mlxsw_reg_sfd_uc_unpack(char * payload,int rec_index,char * mac,u16 * p_fid_vid,u8 * p_local_port)420 static inline void mlxsw_reg_sfd_uc_unpack(char *payload, int rec_index,
421 char *mac, u16 *p_fid_vid,
422 u8 *p_local_port)
423 {
424 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac);
425 *p_fid_vid = mlxsw_reg_sfd_uc_fid_vid_get(payload, rec_index);
426 *p_local_port = mlxsw_reg_sfd_uc_system_port_get(payload, rec_index);
427 }
428
429 /* reg_sfd_uc_lag_sub_port
430 * LAG sub port.
431 * Must be 0 if multichannel VEPA is not enabled.
432 * Access: RW
433 */
434 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
435 MLXSW_REG_SFD_REC_LEN, 0x08, false);
436
437 /* reg_sfd_uc_lag_fid_vid
438 * Filtering ID or VLAN ID
439 * For SwitchX and SwitchX-2:
440 * - Dynamic entries (policy 2,3) use FID
441 * - Static entries (policy 0) use VID
442 * - When independent learning is configured, VID=FID
443 * For Spectrum: use FID for both Dynamic and Static entries.
444 * VID should not be used.
445 * Access: Index
446 */
447 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
448 MLXSW_REG_SFD_REC_LEN, 0x08, false);
449
450 /* reg_sfd_uc_lag_lag_vid
451 * Indicates VID in case of vFIDs. Reserved for FIDs.
452 * Access: RW
453 */
454 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12,
455 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
456
457 /* reg_sfd_uc_lag_lag_id
458 * LAG Identifier - pointer into the LAG descriptor table.
459 * Access: RW
460 */
461 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10,
462 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
463
464 static inline void
mlxsw_reg_sfd_uc_lag_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_policy policy,const char * mac,u16 fid_vid,enum mlxsw_reg_sfd_rec_action action,u16 lag_vid,u16 lag_id)465 mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index,
466 enum mlxsw_reg_sfd_rec_policy policy,
467 const char *mac, u16 fid_vid,
468 enum mlxsw_reg_sfd_rec_action action, u16 lag_vid,
469 u16 lag_id)
470 {
471 mlxsw_reg_sfd_rec_pack(payload, rec_index,
472 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG,
473 mac, action);
474 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
475 mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0);
476 mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid);
477 mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid);
478 mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id);
479 }
480
mlxsw_reg_sfd_uc_lag_unpack(char * payload,int rec_index,char * mac,u16 * p_vid,u16 * p_lag_id)481 static inline void mlxsw_reg_sfd_uc_lag_unpack(char *payload, int rec_index,
482 char *mac, u16 *p_vid,
483 u16 *p_lag_id)
484 {
485 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac);
486 *p_vid = mlxsw_reg_sfd_uc_lag_fid_vid_get(payload, rec_index);
487 *p_lag_id = mlxsw_reg_sfd_uc_lag_lag_id_get(payload, rec_index);
488 }
489
490 /* reg_sfd_mc_pgi
491 *
492 * Multicast port group index - index into the port group table.
493 * Value 0x1FFF indicates the pgi should point to the MID entry.
494 * For Spectrum this value must be set to 0x1FFF
495 * Access: RW
496 */
497 MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13,
498 MLXSW_REG_SFD_REC_LEN, 0x08, false);
499
500 /* reg_sfd_mc_fid_vid
501 *
502 * Filtering ID or VLAN ID
503 * Access: Index
504 */
505 MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
506 MLXSW_REG_SFD_REC_LEN, 0x08, false);
507
508 /* reg_sfd_mc_mid
509 *
510 * Multicast identifier - global identifier that represents the multicast
511 * group across all devices.
512 * Access: RW
513 */
514 MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
515 MLXSW_REG_SFD_REC_LEN, 0x0C, false);
516
517 static inline void
mlxsw_reg_sfd_mc_pack(char * payload,int rec_index,const char * mac,u16 fid_vid,enum mlxsw_reg_sfd_rec_action action,u16 mid)518 mlxsw_reg_sfd_mc_pack(char *payload, int rec_index,
519 const char *mac, u16 fid_vid,
520 enum mlxsw_reg_sfd_rec_action action, u16 mid)
521 {
522 mlxsw_reg_sfd_rec_pack(payload, rec_index,
523 MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action);
524 mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF);
525 mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid);
526 mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid);
527 }
528
529 /* reg_sfd_uc_tunnel_uip_msb
530 * When protocol is IPv4, the most significant byte of the underlay IPv4
531 * destination IP.
532 * When protocol is IPv6, reserved.
533 * Access: RW
534 */
535 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24,
536 8, MLXSW_REG_SFD_REC_LEN, 0x08, false);
537
538 /* reg_sfd_uc_tunnel_fid
539 * Filtering ID.
540 * Access: Index
541 */
542 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
543 MLXSW_REG_SFD_REC_LEN, 0x08, false);
544
545 enum mlxsw_reg_sfd_uc_tunnel_protocol {
546 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4,
547 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6,
548 };
549
550 /* reg_sfd_uc_tunnel_protocol
551 * IP protocol.
552 * Access: RW
553 */
554 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27,
555 1, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
556
557 /* reg_sfd_uc_tunnel_uip_lsb
558 * When protocol is IPv4, the least significant bytes of the underlay
559 * IPv4 destination IP.
560 * When protocol is IPv6, pointer to the underlay IPv6 destination IP
561 * which is configured by RIPS.
562 * Access: RW
563 */
564 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0,
565 24, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
566
567 static inline void
mlxsw_reg_sfd_uc_tunnel_pack(char * payload,int rec_index,enum mlxsw_reg_sfd_rec_policy policy,const char * mac,u16 fid,enum mlxsw_reg_sfd_rec_action action,u32 uip,enum mlxsw_reg_sfd_uc_tunnel_protocol proto)568 mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index,
569 enum mlxsw_reg_sfd_rec_policy policy,
570 const char *mac, u16 fid,
571 enum mlxsw_reg_sfd_rec_action action, u32 uip,
572 enum mlxsw_reg_sfd_uc_tunnel_protocol proto)
573 {
574 mlxsw_reg_sfd_rec_pack(payload, rec_index,
575 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac,
576 action);
577 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
578 mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24);
579 mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip);
580 mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid);
581 mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto);
582 }
583
584 /* SFN - Switch FDB Notification Register
585 * -------------------------------------------
586 * The switch provides notifications on newly learned FDB entries and
587 * aged out entries. The notifications can be polled by software.
588 */
589 #define MLXSW_REG_SFN_ID 0x200B
590 #define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */
591 #define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */
592 #define MLXSW_REG_SFN_REC_MAX_COUNT 64
593 #define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \
594 MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT)
595
596 MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN);
597
598 /* reg_sfn_swid
599 * Switch partition ID.
600 * Access: Index
601 */
602 MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8);
603
604 /* reg_sfn_end
605 * Forces the current session to end.
606 * Access: OP
607 */
608 MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1);
609
610 /* reg_sfn_num_rec
611 * Request: Number of learned notifications and aged-out notification
612 * records requested.
613 * Response: Number of notification records returned (must be smaller
614 * than or equal to the value requested)
615 * Ranges 0..64
616 * Access: OP
617 */
618 MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8);
619
mlxsw_reg_sfn_pack(char * payload)620 static inline void mlxsw_reg_sfn_pack(char *payload)
621 {
622 MLXSW_REG_ZERO(sfn, payload);
623 mlxsw_reg_sfn_swid_set(payload, 0);
624 mlxsw_reg_sfn_end_set(payload, 1);
625 mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT);
626 }
627
628 /* reg_sfn_rec_swid
629 * Switch partition ID.
630 * Access: RO
631 */
632 MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8,
633 MLXSW_REG_SFN_REC_LEN, 0x00, false);
634
635 enum mlxsw_reg_sfn_rec_type {
636 /* MAC addresses learned on a regular port. */
637 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5,
638 /* MAC addresses learned on a LAG port. */
639 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6,
640 /* Aged-out MAC address on a regular port. */
641 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7,
642 /* Aged-out MAC address on a LAG port. */
643 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8,
644 /* Learned unicast tunnel record. */
645 MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD,
646 /* Aged-out unicast tunnel record. */
647 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE,
648 };
649
650 /* reg_sfn_rec_type
651 * Notification record type.
652 * Access: RO
653 */
654 MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4,
655 MLXSW_REG_SFN_REC_LEN, 0x00, false);
656
657 /* reg_sfn_rec_mac
658 * MAC address.
659 * Access: RO
660 */
661 MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6,
662 MLXSW_REG_SFN_REC_LEN, 0x02);
663
664 /* reg_sfn_mac_sub_port
665 * VEPA channel on the local port.
666 * 0 if multichannel VEPA is not enabled.
667 * Access: RO
668 */
669 MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8,
670 MLXSW_REG_SFN_REC_LEN, 0x08, false);
671
672 /* reg_sfn_mac_fid
673 * Filtering identifier.
674 * Access: RO
675 */
676 MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16,
677 MLXSW_REG_SFN_REC_LEN, 0x08, false);
678
679 /* reg_sfn_mac_system_port
680 * Unique port identifier for the final destination of the packet.
681 * Access: RO
682 */
683 MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16,
684 MLXSW_REG_SFN_REC_LEN, 0x0C, false);
685
mlxsw_reg_sfn_mac_unpack(char * payload,int rec_index,char * mac,u16 * p_vid,u8 * p_local_port)686 static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index,
687 char *mac, u16 *p_vid,
688 u8 *p_local_port)
689 {
690 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
691 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
692 *p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index);
693 }
694
695 /* reg_sfn_mac_lag_lag_id
696 * LAG ID (pointer into the LAG descriptor table).
697 * Access: RO
698 */
699 MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10,
700 MLXSW_REG_SFN_REC_LEN, 0x0C, false);
701
mlxsw_reg_sfn_mac_lag_unpack(char * payload,int rec_index,char * mac,u16 * p_vid,u16 * p_lag_id)702 static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index,
703 char *mac, u16 *p_vid,
704 u16 *p_lag_id)
705 {
706 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
707 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
708 *p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index);
709 }
710
711 /* reg_sfn_uc_tunnel_uip_msb
712 * When protocol is IPv4, the most significant byte of the underlay IPv4
713 * address of the remote VTEP.
714 * When protocol is IPv6, reserved.
715 * Access: RO
716 */
717 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24,
718 8, MLXSW_REG_SFN_REC_LEN, 0x08, false);
719
720 enum mlxsw_reg_sfn_uc_tunnel_protocol {
721 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4,
722 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6,
723 };
724
725 /* reg_sfn_uc_tunnel_protocol
726 * IP protocol.
727 * Access: RO
728 */
729 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27,
730 1, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
731
732 /* reg_sfn_uc_tunnel_uip_lsb
733 * When protocol is IPv4, the least significant bytes of the underlay
734 * IPv4 address of the remote VTEP.
735 * When protocol is IPv6, ipv6_id to be queried from TNIPSD.
736 * Access: RO
737 */
738 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0,
739 24, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
740
741 enum mlxsw_reg_sfn_tunnel_port {
742 MLXSW_REG_SFN_TUNNEL_PORT_NVE,
743 MLXSW_REG_SFN_TUNNEL_PORT_VPLS,
744 MLXSW_REG_SFN_TUNNEL_FLEX_TUNNEL0,
745 MLXSW_REG_SFN_TUNNEL_FLEX_TUNNEL1,
746 };
747
748 /* reg_sfn_uc_tunnel_port
749 * Tunnel port.
750 * Reserved on Spectrum.
751 * Access: RO
752 */
753 MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4,
754 MLXSW_REG_SFN_REC_LEN, 0x10, false);
755
756 static inline void
mlxsw_reg_sfn_uc_tunnel_unpack(char * payload,int rec_index,char * mac,u16 * p_fid,u32 * p_uip,enum mlxsw_reg_sfn_uc_tunnel_protocol * p_proto)757 mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac,
758 u16 *p_fid, u32 *p_uip,
759 enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto)
760 {
761 u32 uip_msb, uip_lsb;
762
763 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
764 *p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
765 uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index);
766 uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index);
767 *p_uip = uip_msb << 24 | uip_lsb;
768 *p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index);
769 }
770
771 /* SPMS - Switch Port MSTP/RSTP State Register
772 * -------------------------------------------
773 * Configures the spanning tree state of a physical port.
774 */
775 #define MLXSW_REG_SPMS_ID 0x200D
776 #define MLXSW_REG_SPMS_LEN 0x404
777
778 MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN);
779
780 /* reg_spms_local_port
781 * Local port number.
782 * Access: Index
783 */
784 MLXSW_ITEM32(reg, spms, local_port, 0x00, 16, 8);
785
786 enum mlxsw_reg_spms_state {
787 MLXSW_REG_SPMS_STATE_NO_CHANGE,
788 MLXSW_REG_SPMS_STATE_DISCARDING,
789 MLXSW_REG_SPMS_STATE_LEARNING,
790 MLXSW_REG_SPMS_STATE_FORWARDING,
791 };
792
793 /* reg_spms_state
794 * Spanning tree state of each VLAN ID (VID) of the local port.
795 * 0 - Do not change spanning tree state (used only when writing).
796 * 1 - Discarding. No learning or forwarding to/from this port (default).
797 * 2 - Learning. Port is learning, but not forwarding.
798 * 3 - Forwarding. Port is learning and forwarding.
799 * Access: RW
800 */
801 MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2);
802
mlxsw_reg_spms_pack(char * payload,u8 local_port)803 static inline void mlxsw_reg_spms_pack(char *payload, u8 local_port)
804 {
805 MLXSW_REG_ZERO(spms, payload);
806 mlxsw_reg_spms_local_port_set(payload, local_port);
807 }
808
mlxsw_reg_spms_vid_pack(char * payload,u16 vid,enum mlxsw_reg_spms_state state)809 static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid,
810 enum mlxsw_reg_spms_state state)
811 {
812 mlxsw_reg_spms_state_set(payload, vid, state);
813 }
814
815 /* SPVID - Switch Port VID
816 * -----------------------
817 * The switch port VID configures the default VID for a port.
818 */
819 #define MLXSW_REG_SPVID_ID 0x200E
820 #define MLXSW_REG_SPVID_LEN 0x08
821
822 MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN);
823
824 /* reg_spvid_local_port
825 * Local port number.
826 * Access: Index
827 */
828 MLXSW_ITEM32(reg, spvid, local_port, 0x00, 16, 8);
829
830 /* reg_spvid_sub_port
831 * Virtual port within the physical port.
832 * Should be set to 0 when virtual ports are not enabled on the port.
833 * Access: Index
834 */
835 MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8);
836
837 /* reg_spvid_pvid
838 * Port default VID
839 * Access: RW
840 */
841 MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12);
842
mlxsw_reg_spvid_pack(char * payload,u8 local_port,u16 pvid)843 static inline void mlxsw_reg_spvid_pack(char *payload, u8 local_port, u16 pvid)
844 {
845 MLXSW_REG_ZERO(spvid, payload);
846 mlxsw_reg_spvid_local_port_set(payload, local_port);
847 mlxsw_reg_spvid_pvid_set(payload, pvid);
848 }
849
850 /* SPVM - Switch Port VLAN Membership
851 * ----------------------------------
852 * The Switch Port VLAN Membership register configures the VLAN membership
853 * of a port in a VLAN denoted by VID. VLAN membership is managed per
854 * virtual port. The register can be used to add and remove VID(s) from a port.
855 */
856 #define MLXSW_REG_SPVM_ID 0x200F
857 #define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */
858 #define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */
859 #define MLXSW_REG_SPVM_REC_MAX_COUNT 255
860 #define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \
861 MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT)
862
863 MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN);
864
865 /* reg_spvm_pt
866 * Priority tagged. If this bit is set, packets forwarded to the port with
867 * untagged VLAN membership (u bit is set) will be tagged with priority tag
868 * (VID=0)
869 * Access: RW
870 */
871 MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1);
872
873 /* reg_spvm_pte
874 * Priority Tagged Update Enable. On Write operations, if this bit is cleared,
875 * the pt bit will NOT be updated. To update the pt bit, pte must be set.
876 * Access: WO
877 */
878 MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1);
879
880 /* reg_spvm_local_port
881 * Local port number.
882 * Access: Index
883 */
884 MLXSW_ITEM32(reg, spvm, local_port, 0x00, 16, 8);
885
886 /* reg_spvm_sub_port
887 * Virtual port within the physical port.
888 * Should be set to 0 when virtual ports are not enabled on the port.
889 * Access: Index
890 */
891 MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8);
892
893 /* reg_spvm_num_rec
894 * Number of records to update. Each record contains: i, e, u, vid.
895 * Access: OP
896 */
897 MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8);
898
899 /* reg_spvm_rec_i
900 * Ingress membership in VLAN ID.
901 * Access: Index
902 */
903 MLXSW_ITEM32_INDEXED(reg, spvm, rec_i,
904 MLXSW_REG_SPVM_BASE_LEN, 14, 1,
905 MLXSW_REG_SPVM_REC_LEN, 0, false);
906
907 /* reg_spvm_rec_e
908 * Egress membership in VLAN ID.
909 * Access: Index
910 */
911 MLXSW_ITEM32_INDEXED(reg, spvm, rec_e,
912 MLXSW_REG_SPVM_BASE_LEN, 13, 1,
913 MLXSW_REG_SPVM_REC_LEN, 0, false);
914
915 /* reg_spvm_rec_u
916 * Untagged - port is an untagged member - egress transmission uses untagged
917 * frames on VID<n>
918 * Access: Index
919 */
920 MLXSW_ITEM32_INDEXED(reg, spvm, rec_u,
921 MLXSW_REG_SPVM_BASE_LEN, 12, 1,
922 MLXSW_REG_SPVM_REC_LEN, 0, false);
923
924 /* reg_spvm_rec_vid
925 * Egress membership in VLAN ID.
926 * Access: Index
927 */
928 MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid,
929 MLXSW_REG_SPVM_BASE_LEN, 0, 12,
930 MLXSW_REG_SPVM_REC_LEN, 0, false);
931
mlxsw_reg_spvm_pack(char * payload,u8 local_port,u16 vid_begin,u16 vid_end,bool is_member,bool untagged)932 static inline void mlxsw_reg_spvm_pack(char *payload, u8 local_port,
933 u16 vid_begin, u16 vid_end,
934 bool is_member, bool untagged)
935 {
936 int size = vid_end - vid_begin + 1;
937 int i;
938
939 MLXSW_REG_ZERO(spvm, payload);
940 mlxsw_reg_spvm_local_port_set(payload, local_port);
941 mlxsw_reg_spvm_num_rec_set(payload, size);
942
943 for (i = 0; i < size; i++) {
944 mlxsw_reg_spvm_rec_i_set(payload, i, is_member);
945 mlxsw_reg_spvm_rec_e_set(payload, i, is_member);
946 mlxsw_reg_spvm_rec_u_set(payload, i, untagged);
947 mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i);
948 }
949 }
950
951 /* SPAFT - Switch Port Acceptable Frame Types
952 * ------------------------------------------
953 * The Switch Port Acceptable Frame Types register configures the frame
954 * admittance of the port.
955 */
956 #define MLXSW_REG_SPAFT_ID 0x2010
957 #define MLXSW_REG_SPAFT_LEN 0x08
958
959 MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN);
960
961 /* reg_spaft_local_port
962 * Local port number.
963 * Access: Index
964 *
965 * Note: CPU port is not supported (all tag types are allowed).
966 */
967 MLXSW_ITEM32(reg, spaft, local_port, 0x00, 16, 8);
968
969 /* reg_spaft_sub_port
970 * Virtual port within the physical port.
971 * Should be set to 0 when virtual ports are not enabled on the port.
972 * Access: RW
973 */
974 MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8);
975
976 /* reg_spaft_allow_untagged
977 * When set, untagged frames on the ingress are allowed (default).
978 * Access: RW
979 */
980 MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1);
981
982 /* reg_spaft_allow_prio_tagged
983 * When set, priority tagged frames on the ingress are allowed (default).
984 * Access: RW
985 */
986 MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1);
987
988 /* reg_spaft_allow_tagged
989 * When set, tagged frames on the ingress are allowed (default).
990 * Access: RW
991 */
992 MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1);
993
mlxsw_reg_spaft_pack(char * payload,u8 local_port,bool allow_untagged)994 static inline void mlxsw_reg_spaft_pack(char *payload, u8 local_port,
995 bool allow_untagged)
996 {
997 MLXSW_REG_ZERO(spaft, payload);
998 mlxsw_reg_spaft_local_port_set(payload, local_port);
999 mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged);
1000 mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged);
1001 mlxsw_reg_spaft_allow_tagged_set(payload, true);
1002 }
1003
1004 /* SFGC - Switch Flooding Group Configuration
1005 * ------------------------------------------
1006 * The following register controls the association of flooding tables and MIDs
1007 * to packet types used for flooding.
1008 */
1009 #define MLXSW_REG_SFGC_ID 0x2011
1010 #define MLXSW_REG_SFGC_LEN 0x10
1011
1012 MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN);
1013
1014 enum mlxsw_reg_sfgc_type {
1015 MLXSW_REG_SFGC_TYPE_BROADCAST,
1016 MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST,
1017 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4,
1018 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6,
1019 MLXSW_REG_SFGC_TYPE_RESERVED,
1020 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP,
1021 MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL,
1022 MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST,
1023 MLXSW_REG_SFGC_TYPE_MAX,
1024 };
1025
1026 /* reg_sfgc_type
1027 * The traffic type to reach the flooding table.
1028 * Access: Index
1029 */
1030 MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4);
1031
1032 enum mlxsw_reg_sfgc_bridge_type {
1033 MLXSW_REG_SFGC_BRIDGE_TYPE_1Q_FID = 0,
1034 MLXSW_REG_SFGC_BRIDGE_TYPE_VFID = 1,
1035 };
1036
1037 /* reg_sfgc_bridge_type
1038 * Access: Index
1039 *
1040 * Note: SwitchX-2 only supports 802.1Q mode.
1041 */
1042 MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3);
1043
1044 enum mlxsw_flood_table_type {
1045 MLXSW_REG_SFGC_TABLE_TYPE_VID = 1,
1046 MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2,
1047 MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0,
1048 MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3,
1049 MLXSW_REG_SFGC_TABLE_TYPE_FID = 4,
1050 };
1051
1052 /* reg_sfgc_table_type
1053 * See mlxsw_flood_table_type
1054 * Access: RW
1055 *
1056 * Note: FID offset and FID types are not supported in SwitchX-2.
1057 */
1058 MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3);
1059
1060 /* reg_sfgc_flood_table
1061 * Flooding table index to associate with the specific type on the specific
1062 * switch partition.
1063 * Access: RW
1064 */
1065 MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6);
1066
1067 /* reg_sfgc_mid
1068 * The multicast ID for the swid. Not supported for Spectrum
1069 * Access: RW
1070 */
1071 MLXSW_ITEM32(reg, sfgc, mid, 0x08, 0, 16);
1072
1073 /* reg_sfgc_counter_set_type
1074 * Counter Set Type for flow counters.
1075 * Access: RW
1076 */
1077 MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8);
1078
1079 /* reg_sfgc_counter_index
1080 * Counter Index for flow counters.
1081 * Access: RW
1082 */
1083 MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24);
1084
1085 static inline void
mlxsw_reg_sfgc_pack(char * payload,enum mlxsw_reg_sfgc_type type,enum mlxsw_reg_sfgc_bridge_type bridge_type,enum mlxsw_flood_table_type table_type,unsigned int flood_table)1086 mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type,
1087 enum mlxsw_reg_sfgc_bridge_type bridge_type,
1088 enum mlxsw_flood_table_type table_type,
1089 unsigned int flood_table)
1090 {
1091 MLXSW_REG_ZERO(sfgc, payload);
1092 mlxsw_reg_sfgc_type_set(payload, type);
1093 mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type);
1094 mlxsw_reg_sfgc_table_type_set(payload, table_type);
1095 mlxsw_reg_sfgc_flood_table_set(payload, flood_table);
1096 mlxsw_reg_sfgc_mid_set(payload, MLXSW_PORT_MID);
1097 }
1098
1099 /* SFTR - Switch Flooding Table Register
1100 * -------------------------------------
1101 * The switch flooding table is used for flooding packet replication. The table
1102 * defines a bit mask of ports for packet replication.
1103 */
1104 #define MLXSW_REG_SFTR_ID 0x2012
1105 #define MLXSW_REG_SFTR_LEN 0x420
1106
1107 MLXSW_REG_DEFINE(sftr, MLXSW_REG_SFTR_ID, MLXSW_REG_SFTR_LEN);
1108
1109 /* reg_sftr_swid
1110 * Switch partition ID with which to associate the port.
1111 * Access: Index
1112 */
1113 MLXSW_ITEM32(reg, sftr, swid, 0x00, 24, 8);
1114
1115 /* reg_sftr_flood_table
1116 * Flooding table index to associate with the specific type on the specific
1117 * switch partition.
1118 * Access: Index
1119 */
1120 MLXSW_ITEM32(reg, sftr, flood_table, 0x00, 16, 6);
1121
1122 /* reg_sftr_index
1123 * Index. Used as an index into the Flooding Table in case the table is
1124 * configured to use VID / FID or FID Offset.
1125 * Access: Index
1126 */
1127 MLXSW_ITEM32(reg, sftr, index, 0x00, 0, 16);
1128
1129 /* reg_sftr_table_type
1130 * See mlxsw_flood_table_type
1131 * Access: RW
1132 */
1133 MLXSW_ITEM32(reg, sftr, table_type, 0x04, 16, 3);
1134
1135 /* reg_sftr_range
1136 * Range of entries to update
1137 * Access: Index
1138 */
1139 MLXSW_ITEM32(reg, sftr, range, 0x04, 0, 16);
1140
1141 /* reg_sftr_port
1142 * Local port membership (1 bit per port).
1143 * Access: RW
1144 */
1145 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port, 0x20, 0x20, 1);
1146
1147 /* reg_sftr_cpu_port_mask
1148 * CPU port mask (1 bit per port).
1149 * Access: W
1150 */
1151 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port_mask, 0x220, 0x20, 1);
1152
mlxsw_reg_sftr_pack(char * payload,unsigned int flood_table,unsigned int index,enum mlxsw_flood_table_type table_type,unsigned int range,u8 port,bool set)1153 static inline void mlxsw_reg_sftr_pack(char *payload,
1154 unsigned int flood_table,
1155 unsigned int index,
1156 enum mlxsw_flood_table_type table_type,
1157 unsigned int range, u8 port, bool set)
1158 {
1159 MLXSW_REG_ZERO(sftr, payload);
1160 mlxsw_reg_sftr_swid_set(payload, 0);
1161 mlxsw_reg_sftr_flood_table_set(payload, flood_table);
1162 mlxsw_reg_sftr_index_set(payload, index);
1163 mlxsw_reg_sftr_table_type_set(payload, table_type);
1164 mlxsw_reg_sftr_range_set(payload, range);
1165 mlxsw_reg_sftr_port_set(payload, port, set);
1166 mlxsw_reg_sftr_port_mask_set(payload, port, 1);
1167 }
1168
1169 /* SFDF - Switch Filtering DB Flush
1170 * --------------------------------
1171 * The switch filtering DB flush register is used to flush the FDB.
1172 * Note that FDB notifications are flushed as well.
1173 */
1174 #define MLXSW_REG_SFDF_ID 0x2013
1175 #define MLXSW_REG_SFDF_LEN 0x14
1176
1177 MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN);
1178
1179 /* reg_sfdf_swid
1180 * Switch partition ID.
1181 * Access: Index
1182 */
1183 MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8);
1184
1185 enum mlxsw_reg_sfdf_flush_type {
1186 MLXSW_REG_SFDF_FLUSH_PER_SWID,
1187 MLXSW_REG_SFDF_FLUSH_PER_FID,
1188 MLXSW_REG_SFDF_FLUSH_PER_PORT,
1189 MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID,
1190 MLXSW_REG_SFDF_FLUSH_PER_LAG,
1191 MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID,
1192 MLXSW_REG_SFDF_FLUSH_PER_NVE,
1193 MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID,
1194 };
1195
1196 /* reg_sfdf_flush_type
1197 * Flush type.
1198 * 0 - All SWID dynamic entries are flushed.
1199 * 1 - All FID dynamic entries are flushed.
1200 * 2 - All dynamic entries pointing to port are flushed.
1201 * 3 - All FID dynamic entries pointing to port are flushed.
1202 * 4 - All dynamic entries pointing to LAG are flushed.
1203 * 5 - All FID dynamic entries pointing to LAG are flushed.
1204 * 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
1205 * flushed.
1206 * 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
1207 * flushed, per FID.
1208 * Access: RW
1209 */
1210 MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4);
1211
1212 /* reg_sfdf_flush_static
1213 * Static.
1214 * 0 - Flush only dynamic entries.
1215 * 1 - Flush both dynamic and static entries.
1216 * Access: RW
1217 */
1218 MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1);
1219
mlxsw_reg_sfdf_pack(char * payload,enum mlxsw_reg_sfdf_flush_type type)1220 static inline void mlxsw_reg_sfdf_pack(char *payload,
1221 enum mlxsw_reg_sfdf_flush_type type)
1222 {
1223 MLXSW_REG_ZERO(sfdf, payload);
1224 mlxsw_reg_sfdf_flush_type_set(payload, type);
1225 mlxsw_reg_sfdf_flush_static_set(payload, true);
1226 }
1227
1228 /* reg_sfdf_fid
1229 * FID to flush.
1230 * Access: RW
1231 */
1232 MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16);
1233
1234 /* reg_sfdf_system_port
1235 * Port to flush.
1236 * Access: RW
1237 */
1238 MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16);
1239
1240 /* reg_sfdf_port_fid_system_port
1241 * Port to flush, pointed to by FID.
1242 * Access: RW
1243 */
1244 MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16);
1245
1246 /* reg_sfdf_lag_id
1247 * LAG ID to flush.
1248 * Access: RW
1249 */
1250 MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10);
1251
1252 /* reg_sfdf_lag_fid_lag_id
1253 * LAG ID to flush, pointed to by FID.
1254 * Access: RW
1255 */
1256 MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10);
1257
1258 /* SLDR - Switch LAG Descriptor Register
1259 * -----------------------------------------
1260 * The switch LAG descriptor register is populated by LAG descriptors.
1261 * Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to
1262 * max_lag-1.
1263 */
1264 #define MLXSW_REG_SLDR_ID 0x2014
1265 #define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */
1266
1267 MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN);
1268
1269 enum mlxsw_reg_sldr_op {
1270 /* Indicates a creation of a new LAG-ID, lag_id must be valid */
1271 MLXSW_REG_SLDR_OP_LAG_CREATE,
1272 MLXSW_REG_SLDR_OP_LAG_DESTROY,
1273 /* Ports that appear in the list have the Distributor enabled */
1274 MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST,
1275 /* Removes ports from the disributor list */
1276 MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST,
1277 };
1278
1279 /* reg_sldr_op
1280 * Operation.
1281 * Access: RW
1282 */
1283 MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3);
1284
1285 /* reg_sldr_lag_id
1286 * LAG identifier. The lag_id is the index into the LAG descriptor table.
1287 * Access: Index
1288 */
1289 MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10);
1290
mlxsw_reg_sldr_lag_create_pack(char * payload,u8 lag_id)1291 static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id)
1292 {
1293 MLXSW_REG_ZERO(sldr, payload);
1294 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE);
1295 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1296 }
1297
mlxsw_reg_sldr_lag_destroy_pack(char * payload,u8 lag_id)1298 static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id)
1299 {
1300 MLXSW_REG_ZERO(sldr, payload);
1301 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY);
1302 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1303 }
1304
1305 /* reg_sldr_num_ports
1306 * The number of member ports of the LAG.
1307 * Reserved for Create / Destroy operations
1308 * For Add / Remove operations - indicates the number of ports in the list.
1309 * Access: RW
1310 */
1311 MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8);
1312
1313 /* reg_sldr_system_port
1314 * System port.
1315 * Access: RW
1316 */
1317 MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false);
1318
mlxsw_reg_sldr_lag_add_port_pack(char * payload,u8 lag_id,u8 local_port)1319 static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id,
1320 u8 local_port)
1321 {
1322 MLXSW_REG_ZERO(sldr, payload);
1323 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST);
1324 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1325 mlxsw_reg_sldr_num_ports_set(payload, 1);
1326 mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
1327 }
1328
mlxsw_reg_sldr_lag_remove_port_pack(char * payload,u8 lag_id,u8 local_port)1329 static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id,
1330 u8 local_port)
1331 {
1332 MLXSW_REG_ZERO(sldr, payload);
1333 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST);
1334 mlxsw_reg_sldr_lag_id_set(payload, lag_id);
1335 mlxsw_reg_sldr_num_ports_set(payload, 1);
1336 mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
1337 }
1338
1339 /* SLCR - Switch LAG Configuration 2 Register
1340 * -------------------------------------------
1341 * The Switch LAG Configuration register is used for configuring the
1342 * LAG properties of the switch.
1343 */
1344 #define MLXSW_REG_SLCR_ID 0x2015
1345 #define MLXSW_REG_SLCR_LEN 0x10
1346
1347 MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN);
1348
1349 enum mlxsw_reg_slcr_pp {
1350 /* Global Configuration (for all ports) */
1351 MLXSW_REG_SLCR_PP_GLOBAL,
1352 /* Per port configuration, based on local_port field */
1353 MLXSW_REG_SLCR_PP_PER_PORT,
1354 };
1355
1356 /* reg_slcr_pp
1357 * Per Port Configuration
1358 * Note: Reading at Global mode results in reading port 1 configuration.
1359 * Access: Index
1360 */
1361 MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1);
1362
1363 /* reg_slcr_local_port
1364 * Local port number
1365 * Supported from CPU port
1366 * Not supported from router port
1367 * Reserved when pp = Global Configuration
1368 * Access: Index
1369 */
1370 MLXSW_ITEM32(reg, slcr, local_port, 0x00, 16, 8);
1371
1372 enum mlxsw_reg_slcr_type {
1373 MLXSW_REG_SLCR_TYPE_CRC, /* default */
1374 MLXSW_REG_SLCR_TYPE_XOR,
1375 MLXSW_REG_SLCR_TYPE_RANDOM,
1376 };
1377
1378 /* reg_slcr_type
1379 * Hash type
1380 * Access: RW
1381 */
1382 MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4);
1383
1384 /* Ingress port */
1385 #define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0)
1386 /* SMAC - for IPv4 and IPv6 packets */
1387 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1)
1388 /* SMAC - for non-IP packets */
1389 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2)
1390 #define MLXSW_REG_SLCR_LAG_HASH_SMAC \
1391 (MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \
1392 MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP)
1393 /* DMAC - for IPv4 and IPv6 packets */
1394 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3)
1395 /* DMAC - for non-IP packets */
1396 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4)
1397 #define MLXSW_REG_SLCR_LAG_HASH_DMAC \
1398 (MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \
1399 MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP)
1400 /* Ethertype - for IPv4 and IPv6 packets */
1401 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5)
1402 /* Ethertype - for non-IP packets */
1403 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6)
1404 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \
1405 (MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \
1406 MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP)
1407 /* VLAN ID - for IPv4 and IPv6 packets */
1408 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7)
1409 /* VLAN ID - for non-IP packets */
1410 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8)
1411 #define MLXSW_REG_SLCR_LAG_HASH_VLANID \
1412 (MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \
1413 MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP)
1414 /* Source IP address (can be IPv4 or IPv6) */
1415 #define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9)
1416 /* Destination IP address (can be IPv4 or IPv6) */
1417 #define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10)
1418 /* TCP/UDP source port */
1419 #define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11)
1420 /* TCP/UDP destination port*/
1421 #define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12)
1422 /* IPv4 Protocol/IPv6 Next Header */
1423 #define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13)
1424 /* IPv6 Flow label */
1425 #define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14)
1426 /* SID - FCoE source ID */
1427 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15)
1428 /* DID - FCoE destination ID */
1429 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16)
1430 /* OXID - FCoE originator exchange ID */
1431 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17)
1432 /* Destination QP number - for RoCE packets */
1433 #define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19)
1434
1435 /* reg_slcr_lag_hash
1436 * LAG hashing configuration. This is a bitmask, in which each set
1437 * bit includes the corresponding item in the LAG hash calculation.
1438 * The default lag_hash contains SMAC, DMAC, VLANID and
1439 * Ethertype (for all packet types).
1440 * Access: RW
1441 */
1442 MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20);
1443
1444 /* reg_slcr_seed
1445 * LAG seed value. The seed is the same for all ports.
1446 * Access: RW
1447 */
1448 MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32);
1449
mlxsw_reg_slcr_pack(char * payload,u16 lag_hash,u32 seed)1450 static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed)
1451 {
1452 MLXSW_REG_ZERO(slcr, payload);
1453 mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL);
1454 mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC);
1455 mlxsw_reg_slcr_lag_hash_set(payload, lag_hash);
1456 mlxsw_reg_slcr_seed_set(payload, seed);
1457 }
1458
1459 /* SLCOR - Switch LAG Collector Register
1460 * -------------------------------------
1461 * The Switch LAG Collector register controls the Local Port membership
1462 * in a LAG and enablement of the collector.
1463 */
1464 #define MLXSW_REG_SLCOR_ID 0x2016
1465 #define MLXSW_REG_SLCOR_LEN 0x10
1466
1467 MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN);
1468
1469 enum mlxsw_reg_slcor_col {
1470 /* Port is added with collector disabled */
1471 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT,
1472 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED,
1473 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED,
1474 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT,
1475 };
1476
1477 /* reg_slcor_col
1478 * Collector configuration
1479 * Access: RW
1480 */
1481 MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2);
1482
1483 /* reg_slcor_local_port
1484 * Local port number
1485 * Not supported for CPU port
1486 * Access: Index
1487 */
1488 MLXSW_ITEM32(reg, slcor, local_port, 0x00, 16, 8);
1489
1490 /* reg_slcor_lag_id
1491 * LAG Identifier. Index into the LAG descriptor table.
1492 * Access: Index
1493 */
1494 MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10);
1495
1496 /* reg_slcor_port_index
1497 * Port index in the LAG list. Only valid on Add Port to LAG col.
1498 * Valid range is from 0 to cap_max_lag_members-1
1499 * Access: RW
1500 */
1501 MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10);
1502
mlxsw_reg_slcor_pack(char * payload,u8 local_port,u16 lag_id,enum mlxsw_reg_slcor_col col)1503 static inline void mlxsw_reg_slcor_pack(char *payload,
1504 u8 local_port, u16 lag_id,
1505 enum mlxsw_reg_slcor_col col)
1506 {
1507 MLXSW_REG_ZERO(slcor, payload);
1508 mlxsw_reg_slcor_col_set(payload, col);
1509 mlxsw_reg_slcor_local_port_set(payload, local_port);
1510 mlxsw_reg_slcor_lag_id_set(payload, lag_id);
1511 }
1512
mlxsw_reg_slcor_port_add_pack(char * payload,u8 local_port,u16 lag_id,u8 port_index)1513 static inline void mlxsw_reg_slcor_port_add_pack(char *payload,
1514 u8 local_port, u16 lag_id,
1515 u8 port_index)
1516 {
1517 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1518 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT);
1519 mlxsw_reg_slcor_port_index_set(payload, port_index);
1520 }
1521
mlxsw_reg_slcor_port_remove_pack(char * payload,u8 local_port,u16 lag_id)1522 static inline void mlxsw_reg_slcor_port_remove_pack(char *payload,
1523 u8 local_port, u16 lag_id)
1524 {
1525 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1526 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT);
1527 }
1528
mlxsw_reg_slcor_col_enable_pack(char * payload,u8 local_port,u16 lag_id)1529 static inline void mlxsw_reg_slcor_col_enable_pack(char *payload,
1530 u8 local_port, u16 lag_id)
1531 {
1532 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1533 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
1534 }
1535
mlxsw_reg_slcor_col_disable_pack(char * payload,u8 local_port,u16 lag_id)1536 static inline void mlxsw_reg_slcor_col_disable_pack(char *payload,
1537 u8 local_port, u16 lag_id)
1538 {
1539 mlxsw_reg_slcor_pack(payload, local_port, lag_id,
1540 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
1541 }
1542
1543 /* SPMLR - Switch Port MAC Learning Register
1544 * -----------------------------------------
1545 * Controls the Switch MAC learning policy per port.
1546 */
1547 #define MLXSW_REG_SPMLR_ID 0x2018
1548 #define MLXSW_REG_SPMLR_LEN 0x8
1549
1550 MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN);
1551
1552 /* reg_spmlr_local_port
1553 * Local port number.
1554 * Access: Index
1555 */
1556 MLXSW_ITEM32(reg, spmlr, local_port, 0x00, 16, 8);
1557
1558 /* reg_spmlr_sub_port
1559 * Virtual port within the physical port.
1560 * Should be set to 0 when virtual ports are not enabled on the port.
1561 * Access: Index
1562 */
1563 MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8);
1564
1565 enum mlxsw_reg_spmlr_learn_mode {
1566 MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0,
1567 MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2,
1568 MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3,
1569 };
1570
1571 /* reg_spmlr_learn_mode
1572 * Learning mode on the port.
1573 * 0 - Learning disabled.
1574 * 2 - Learning enabled.
1575 * 3 - Security mode.
1576 *
1577 * In security mode the switch does not learn MACs on the port, but uses the
1578 * SMAC to see if it exists on another ingress port. If so, the packet is
1579 * classified as a bad packet and is discarded unless the software registers
1580 * to receive port security error packets usign HPKT.
1581 */
1582 MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2);
1583
mlxsw_reg_spmlr_pack(char * payload,u8 local_port,enum mlxsw_reg_spmlr_learn_mode mode)1584 static inline void mlxsw_reg_spmlr_pack(char *payload, u8 local_port,
1585 enum mlxsw_reg_spmlr_learn_mode mode)
1586 {
1587 MLXSW_REG_ZERO(spmlr, payload);
1588 mlxsw_reg_spmlr_local_port_set(payload, local_port);
1589 mlxsw_reg_spmlr_sub_port_set(payload, 0);
1590 mlxsw_reg_spmlr_learn_mode_set(payload, mode);
1591 }
1592
1593 /* SVFA - Switch VID to FID Allocation Register
1594 * --------------------------------------------
1595 * Controls the VID to FID mapping and {Port, VID} to FID mapping for
1596 * virtualized ports.
1597 */
1598 #define MLXSW_REG_SVFA_ID 0x201C
1599 #define MLXSW_REG_SVFA_LEN 0x10
1600
1601 MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN);
1602
1603 /* reg_svfa_swid
1604 * Switch partition ID.
1605 * Access: Index
1606 */
1607 MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8);
1608
1609 /* reg_svfa_local_port
1610 * Local port number.
1611 * Access: Index
1612 *
1613 * Note: Reserved for 802.1Q FIDs.
1614 */
1615 MLXSW_ITEM32(reg, svfa, local_port, 0x00, 16, 8);
1616
1617 enum mlxsw_reg_svfa_mt {
1618 MLXSW_REG_SVFA_MT_VID_TO_FID,
1619 MLXSW_REG_SVFA_MT_PORT_VID_TO_FID,
1620 };
1621
1622 /* reg_svfa_mapping_table
1623 * Mapping table:
1624 * 0 - VID to FID
1625 * 1 - {Port, VID} to FID
1626 * Access: Index
1627 *
1628 * Note: Reserved for SwitchX-2.
1629 */
1630 MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3);
1631
1632 /* reg_svfa_v
1633 * Valid.
1634 * Valid if set.
1635 * Access: RW
1636 *
1637 * Note: Reserved for SwitchX-2.
1638 */
1639 MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1);
1640
1641 /* reg_svfa_fid
1642 * Filtering ID.
1643 * Access: RW
1644 */
1645 MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16);
1646
1647 /* reg_svfa_vid
1648 * VLAN ID.
1649 * Access: Index
1650 */
1651 MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12);
1652
1653 /* reg_svfa_counter_set_type
1654 * Counter set type for flow counters.
1655 * Access: RW
1656 *
1657 * Note: Reserved for SwitchX-2.
1658 */
1659 MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8);
1660
1661 /* reg_svfa_counter_index
1662 * Counter index for flow counters.
1663 * Access: RW
1664 *
1665 * Note: Reserved for SwitchX-2.
1666 */
1667 MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24);
1668
mlxsw_reg_svfa_pack(char * payload,u8 local_port,enum mlxsw_reg_svfa_mt mt,bool valid,u16 fid,u16 vid)1669 static inline void mlxsw_reg_svfa_pack(char *payload, u8 local_port,
1670 enum mlxsw_reg_svfa_mt mt, bool valid,
1671 u16 fid, u16 vid)
1672 {
1673 MLXSW_REG_ZERO(svfa, payload);
1674 local_port = mt == MLXSW_REG_SVFA_MT_VID_TO_FID ? 0 : local_port;
1675 mlxsw_reg_svfa_swid_set(payload, 0);
1676 mlxsw_reg_svfa_local_port_set(payload, local_port);
1677 mlxsw_reg_svfa_mapping_table_set(payload, mt);
1678 mlxsw_reg_svfa_v_set(payload, valid);
1679 mlxsw_reg_svfa_fid_set(payload, fid);
1680 mlxsw_reg_svfa_vid_set(payload, vid);
1681 }
1682
1683 /* SVPE - Switch Virtual-Port Enabling Register
1684 * --------------------------------------------
1685 * Enables port virtualization.
1686 */
1687 #define MLXSW_REG_SVPE_ID 0x201E
1688 #define MLXSW_REG_SVPE_LEN 0x4
1689
1690 MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN);
1691
1692 /* reg_svpe_local_port
1693 * Local port number
1694 * Access: Index
1695 *
1696 * Note: CPU port is not supported (uses VLAN mode only).
1697 */
1698 MLXSW_ITEM32(reg, svpe, local_port, 0x00, 16, 8);
1699
1700 /* reg_svpe_vp_en
1701 * Virtual port enable.
1702 * 0 - Disable, VLAN mode (VID to FID).
1703 * 1 - Enable, Virtual port mode ({Port, VID} to FID).
1704 * Access: RW
1705 */
1706 MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1);
1707
mlxsw_reg_svpe_pack(char * payload,u8 local_port,bool enable)1708 static inline void mlxsw_reg_svpe_pack(char *payload, u8 local_port,
1709 bool enable)
1710 {
1711 MLXSW_REG_ZERO(svpe, payload);
1712 mlxsw_reg_svpe_local_port_set(payload, local_port);
1713 mlxsw_reg_svpe_vp_en_set(payload, enable);
1714 }
1715
1716 /* SFMR - Switch FID Management Register
1717 * -------------------------------------
1718 * Creates and configures FIDs.
1719 */
1720 #define MLXSW_REG_SFMR_ID 0x201F
1721 #define MLXSW_REG_SFMR_LEN 0x18
1722
1723 MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN);
1724
1725 enum mlxsw_reg_sfmr_op {
1726 MLXSW_REG_SFMR_OP_CREATE_FID,
1727 MLXSW_REG_SFMR_OP_DESTROY_FID,
1728 };
1729
1730 /* reg_sfmr_op
1731 * Operation.
1732 * 0 - Create or edit FID.
1733 * 1 - Destroy FID.
1734 * Access: WO
1735 */
1736 MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4);
1737
1738 /* reg_sfmr_fid
1739 * Filtering ID.
1740 * Access: Index
1741 */
1742 MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16);
1743
1744 /* reg_sfmr_fid_offset
1745 * FID offset.
1746 * Used to point into the flooding table selected by SFGC register if
1747 * the table is of type FID-Offset. Otherwise, this field is reserved.
1748 * Access: RW
1749 */
1750 MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16);
1751
1752 /* reg_sfmr_vtfp
1753 * Valid Tunnel Flood Pointer.
1754 * If not set, then nve_tunnel_flood_ptr is reserved and considered NULL.
1755 * Access: RW
1756 *
1757 * Note: Reserved for 802.1Q FIDs.
1758 */
1759 MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1);
1760
1761 /* reg_sfmr_nve_tunnel_flood_ptr
1762 * Underlay Flooding and BC Pointer.
1763 * Used as a pointer to the first entry of the group based link lists of
1764 * flooding or BC entries (for NVE tunnels).
1765 * Access: RW
1766 */
1767 MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24);
1768
1769 /* reg_sfmr_vv
1770 * VNI Valid.
1771 * If not set, then vni is reserved.
1772 * Access: RW
1773 *
1774 * Note: Reserved for 802.1Q FIDs.
1775 */
1776 MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1);
1777
1778 /* reg_sfmr_vni
1779 * Virtual Network Identifier.
1780 * Access: RW
1781 *
1782 * Note: A given VNI can only be assigned to one FID.
1783 */
1784 MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24);
1785
mlxsw_reg_sfmr_pack(char * payload,enum mlxsw_reg_sfmr_op op,u16 fid,u16 fid_offset)1786 static inline void mlxsw_reg_sfmr_pack(char *payload,
1787 enum mlxsw_reg_sfmr_op op, u16 fid,
1788 u16 fid_offset)
1789 {
1790 MLXSW_REG_ZERO(sfmr, payload);
1791 mlxsw_reg_sfmr_op_set(payload, op);
1792 mlxsw_reg_sfmr_fid_set(payload, fid);
1793 mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset);
1794 mlxsw_reg_sfmr_vtfp_set(payload, false);
1795 mlxsw_reg_sfmr_vv_set(payload, false);
1796 }
1797
1798 /* SPVMLR - Switch Port VLAN MAC Learning Register
1799 * -----------------------------------------------
1800 * Controls the switch MAC learning policy per {Port, VID}.
1801 */
1802 #define MLXSW_REG_SPVMLR_ID 0x2020
1803 #define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */
1804 #define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */
1805 #define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255
1806 #define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \
1807 MLXSW_REG_SPVMLR_REC_LEN * \
1808 MLXSW_REG_SPVMLR_REC_MAX_COUNT)
1809
1810 MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN);
1811
1812 /* reg_spvmlr_local_port
1813 * Local ingress port.
1814 * Access: Index
1815 *
1816 * Note: CPU port is not supported.
1817 */
1818 MLXSW_ITEM32(reg, spvmlr, local_port, 0x00, 16, 8);
1819
1820 /* reg_spvmlr_num_rec
1821 * Number of records to update.
1822 * Access: OP
1823 */
1824 MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8);
1825
1826 /* reg_spvmlr_rec_learn_enable
1827 * 0 - Disable learning for {Port, VID}.
1828 * 1 - Enable learning for {Port, VID}.
1829 * Access: RW
1830 */
1831 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN,
1832 31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
1833
1834 /* reg_spvmlr_rec_vid
1835 * VLAN ID to be added/removed from port or for querying.
1836 * Access: Index
1837 */
1838 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12,
1839 MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
1840
mlxsw_reg_spvmlr_pack(char * payload,u8 local_port,u16 vid_begin,u16 vid_end,bool learn_enable)1841 static inline void mlxsw_reg_spvmlr_pack(char *payload, u8 local_port,
1842 u16 vid_begin, u16 vid_end,
1843 bool learn_enable)
1844 {
1845 int num_rec = vid_end - vid_begin + 1;
1846 int i;
1847
1848 WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT);
1849
1850 MLXSW_REG_ZERO(spvmlr, payload);
1851 mlxsw_reg_spvmlr_local_port_set(payload, local_port);
1852 mlxsw_reg_spvmlr_num_rec_set(payload, num_rec);
1853
1854 for (i = 0; i < num_rec; i++) {
1855 mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable);
1856 mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i);
1857 }
1858 }
1859
1860 /* CWTP - Congetion WRED ECN TClass Profile
1861 * ----------------------------------------
1862 * Configures the profiles for queues of egress port and traffic class
1863 */
1864 #define MLXSW_REG_CWTP_ID 0x2802
1865 #define MLXSW_REG_CWTP_BASE_LEN 0x28
1866 #define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08
1867 #define MLXSW_REG_CWTP_LEN 0x40
1868
1869 MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN);
1870
1871 /* reg_cwtp_local_port
1872 * Local port number
1873 * Not supported for CPU port
1874 * Access: Index
1875 */
1876 MLXSW_ITEM32(reg, cwtp, local_port, 0, 16, 8);
1877
1878 /* reg_cwtp_traffic_class
1879 * Traffic Class to configure
1880 * Access: Index
1881 */
1882 MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8);
1883
1884 /* reg_cwtp_profile_min
1885 * Minimum Average Queue Size of the profile in cells.
1886 * Access: RW
1887 */
1888 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN,
1889 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false);
1890
1891 /* reg_cwtp_profile_percent
1892 * Percentage of WRED and ECN marking for maximum Average Queue size
1893 * Range is 0 to 100, units of integer percentage
1894 * Access: RW
1895 */
1896 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN,
1897 24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
1898
1899 /* reg_cwtp_profile_max
1900 * Maximum Average Queue size of the profile in cells
1901 * Access: RW
1902 */
1903 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN,
1904 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
1905
1906 #define MLXSW_REG_CWTP_MIN_VALUE 64
1907 #define MLXSW_REG_CWTP_MAX_PROFILE 2
1908 #define MLXSW_REG_CWTP_DEFAULT_PROFILE 1
1909
mlxsw_reg_cwtp_pack(char * payload,u8 local_port,u8 traffic_class)1910 static inline void mlxsw_reg_cwtp_pack(char *payload, u8 local_port,
1911 u8 traffic_class)
1912 {
1913 int i;
1914
1915 MLXSW_REG_ZERO(cwtp, payload);
1916 mlxsw_reg_cwtp_local_port_set(payload, local_port);
1917 mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class);
1918
1919 for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) {
1920 mlxsw_reg_cwtp_profile_min_set(payload, i,
1921 MLXSW_REG_CWTP_MIN_VALUE);
1922 mlxsw_reg_cwtp_profile_max_set(payload, i,
1923 MLXSW_REG_CWTP_MIN_VALUE);
1924 }
1925 }
1926
1927 #define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1)
1928
1929 static inline void
mlxsw_reg_cwtp_profile_pack(char * payload,u8 profile,u32 min,u32 max,u32 probability)1930 mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max,
1931 u32 probability)
1932 {
1933 u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile);
1934
1935 mlxsw_reg_cwtp_profile_min_set(payload, index, min);
1936 mlxsw_reg_cwtp_profile_max_set(payload, index, max);
1937 mlxsw_reg_cwtp_profile_percent_set(payload, index, probability);
1938 }
1939
1940 /* CWTPM - Congestion WRED ECN TClass and Pool Mapping
1941 * ---------------------------------------------------
1942 * The CWTPM register maps each egress port and traffic class to profile num.
1943 */
1944 #define MLXSW_REG_CWTPM_ID 0x2803
1945 #define MLXSW_REG_CWTPM_LEN 0x44
1946
1947 MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN);
1948
1949 /* reg_cwtpm_local_port
1950 * Local port number
1951 * Not supported for CPU port
1952 * Access: Index
1953 */
1954 MLXSW_ITEM32(reg, cwtpm, local_port, 0, 16, 8);
1955
1956 /* reg_cwtpm_traffic_class
1957 * Traffic Class to configure
1958 * Access: Index
1959 */
1960 MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8);
1961
1962 /* reg_cwtpm_ew
1963 * Control enablement of WRED for traffic class:
1964 * 0 - Disable
1965 * 1 - Enable
1966 * Access: RW
1967 */
1968 MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1);
1969
1970 /* reg_cwtpm_ee
1971 * Control enablement of ECN for traffic class:
1972 * 0 - Disable
1973 * 1 - Enable
1974 * Access: RW
1975 */
1976 MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1);
1977
1978 /* reg_cwtpm_tcp_g
1979 * TCP Green Profile.
1980 * Index of the profile within {port, traffic class} to use.
1981 * 0 for disabling both WRED and ECN for this type of traffic.
1982 * Access: RW
1983 */
1984 MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2);
1985
1986 /* reg_cwtpm_tcp_y
1987 * TCP Yellow Profile.
1988 * Index of the profile within {port, traffic class} to use.
1989 * 0 for disabling both WRED and ECN for this type of traffic.
1990 * Access: RW
1991 */
1992 MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2);
1993
1994 /* reg_cwtpm_tcp_r
1995 * TCP Red Profile.
1996 * Index of the profile within {port, traffic class} to use.
1997 * 0 for disabling both WRED and ECN for this type of traffic.
1998 * Access: RW
1999 */
2000 MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2);
2001
2002 /* reg_cwtpm_ntcp_g
2003 * Non-TCP Green Profile.
2004 * Index of the profile within {port, traffic class} to use.
2005 * 0 for disabling both WRED and ECN for this type of traffic.
2006 * Access: RW
2007 */
2008 MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2);
2009
2010 /* reg_cwtpm_ntcp_y
2011 * Non-TCP Yellow Profile.
2012 * Index of the profile within {port, traffic class} to use.
2013 * 0 for disabling both WRED and ECN for this type of traffic.
2014 * Access: RW
2015 */
2016 MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2);
2017
2018 /* reg_cwtpm_ntcp_r
2019 * Non-TCP Red Profile.
2020 * Index of the profile within {port, traffic class} to use.
2021 * 0 for disabling both WRED and ECN for this type of traffic.
2022 * Access: RW
2023 */
2024 MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2);
2025
2026 #define MLXSW_REG_CWTPM_RESET_PROFILE 0
2027
mlxsw_reg_cwtpm_pack(char * payload,u8 local_port,u8 traffic_class,u8 profile,bool wred,bool ecn)2028 static inline void mlxsw_reg_cwtpm_pack(char *payload, u8 local_port,
2029 u8 traffic_class, u8 profile,
2030 bool wred, bool ecn)
2031 {
2032 MLXSW_REG_ZERO(cwtpm, payload);
2033 mlxsw_reg_cwtpm_local_port_set(payload, local_port);
2034 mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class);
2035 mlxsw_reg_cwtpm_ew_set(payload, wred);
2036 mlxsw_reg_cwtpm_ee_set(payload, ecn);
2037 mlxsw_reg_cwtpm_tcp_g_set(payload, profile);
2038 mlxsw_reg_cwtpm_tcp_y_set(payload, profile);
2039 mlxsw_reg_cwtpm_tcp_r_set(payload, profile);
2040 mlxsw_reg_cwtpm_ntcp_g_set(payload, profile);
2041 mlxsw_reg_cwtpm_ntcp_y_set(payload, profile);
2042 mlxsw_reg_cwtpm_ntcp_r_set(payload, profile);
2043 }
2044
2045 /* PGCR - Policy-Engine General Configuration Register
2046 * ---------------------------------------------------
2047 * This register configures general Policy-Engine settings.
2048 */
2049 #define MLXSW_REG_PGCR_ID 0x3001
2050 #define MLXSW_REG_PGCR_LEN 0x20
2051
2052 MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN);
2053
2054 /* reg_pgcr_default_action_pointer_base
2055 * Default action pointer base. Each region has a default action pointer
2056 * which is equal to default_action_pointer_base + region_id.
2057 * Access: RW
2058 */
2059 MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24);
2060
mlxsw_reg_pgcr_pack(char * payload,u32 pointer_base)2061 static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base)
2062 {
2063 MLXSW_REG_ZERO(pgcr, payload);
2064 mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base);
2065 }
2066
2067 /* PPBT - Policy-Engine Port Binding Table
2068 * ---------------------------------------
2069 * This register is used for configuration of the Port Binding Table.
2070 */
2071 #define MLXSW_REG_PPBT_ID 0x3002
2072 #define MLXSW_REG_PPBT_LEN 0x14
2073
2074 MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN);
2075
2076 enum mlxsw_reg_pxbt_e {
2077 MLXSW_REG_PXBT_E_IACL,
2078 MLXSW_REG_PXBT_E_EACL,
2079 };
2080
2081 /* reg_ppbt_e
2082 * Access: Index
2083 */
2084 MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1);
2085
2086 enum mlxsw_reg_pxbt_op {
2087 MLXSW_REG_PXBT_OP_BIND,
2088 MLXSW_REG_PXBT_OP_UNBIND,
2089 };
2090
2091 /* reg_ppbt_op
2092 * Access: RW
2093 */
2094 MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3);
2095
2096 /* reg_ppbt_local_port
2097 * Local port. Not including CPU port.
2098 * Access: Index
2099 */
2100 MLXSW_ITEM32(reg, ppbt, local_port, 0x00, 16, 8);
2101
2102 /* reg_ppbt_g
2103 * group - When set, the binding is of an ACL group. When cleared,
2104 * the binding is of an ACL.
2105 * Must be set to 1 for Spectrum.
2106 * Access: RW
2107 */
2108 MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1);
2109
2110 /* reg_ppbt_acl_info
2111 * ACL/ACL group identifier. If the g bit is set, this field should hold
2112 * the acl_group_id, else it should hold the acl_id.
2113 * Access: RW
2114 */
2115 MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16);
2116
mlxsw_reg_ppbt_pack(char * payload,enum mlxsw_reg_pxbt_e e,enum mlxsw_reg_pxbt_op op,u8 local_port,u16 acl_info)2117 static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e,
2118 enum mlxsw_reg_pxbt_op op,
2119 u8 local_port, u16 acl_info)
2120 {
2121 MLXSW_REG_ZERO(ppbt, payload);
2122 mlxsw_reg_ppbt_e_set(payload, e);
2123 mlxsw_reg_ppbt_op_set(payload, op);
2124 mlxsw_reg_ppbt_local_port_set(payload, local_port);
2125 mlxsw_reg_ppbt_g_set(payload, true);
2126 mlxsw_reg_ppbt_acl_info_set(payload, acl_info);
2127 }
2128
2129 /* PACL - Policy-Engine ACL Register
2130 * ---------------------------------
2131 * This register is used for configuration of the ACL.
2132 */
2133 #define MLXSW_REG_PACL_ID 0x3004
2134 #define MLXSW_REG_PACL_LEN 0x70
2135
2136 MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN);
2137
2138 /* reg_pacl_v
2139 * Valid. Setting the v bit makes the ACL valid. It should not be cleared
2140 * while the ACL is bounded to either a port, VLAN or ACL rule.
2141 * Access: RW
2142 */
2143 MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1);
2144
2145 /* reg_pacl_acl_id
2146 * An identifier representing the ACL (managed by software)
2147 * Range 0 .. cap_max_acl_regions - 1
2148 * Access: Index
2149 */
2150 MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16);
2151
2152 #define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16
2153
2154 /* reg_pacl_tcam_region_info
2155 * Opaque object that represents a TCAM region.
2156 * Obtained through PTAR register.
2157 * Access: RW
2158 */
2159 MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30,
2160 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2161
mlxsw_reg_pacl_pack(char * payload,u16 acl_id,bool valid,const char * tcam_region_info)2162 static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id,
2163 bool valid, const char *tcam_region_info)
2164 {
2165 MLXSW_REG_ZERO(pacl, payload);
2166 mlxsw_reg_pacl_acl_id_set(payload, acl_id);
2167 mlxsw_reg_pacl_v_set(payload, valid);
2168 mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info);
2169 }
2170
2171 /* PAGT - Policy-Engine ACL Group Table
2172 * ------------------------------------
2173 * This register is used for configuration of the ACL Group Table.
2174 */
2175 #define MLXSW_REG_PAGT_ID 0x3005
2176 #define MLXSW_REG_PAGT_BASE_LEN 0x30
2177 #define MLXSW_REG_PAGT_ACL_LEN 4
2178 #define MLXSW_REG_PAGT_ACL_MAX_NUM 16
2179 #define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \
2180 MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN)
2181
2182 MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN);
2183
2184 /* reg_pagt_size
2185 * Number of ACLs in the group.
2186 * Size 0 invalidates a group.
2187 * Range 0 .. cap_max_acl_group_size (hard coded to 16 for now)
2188 * Total number of ACLs in all groups must be lower or equal
2189 * to cap_max_acl_tot_groups
2190 * Note: a group which is binded must not be invalidated
2191 * Access: Index
2192 */
2193 MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8);
2194
2195 /* reg_pagt_acl_group_id
2196 * An identifier (numbered from 0..cap_max_acl_groups-1) representing
2197 * the ACL Group identifier (managed by software).
2198 * Access: Index
2199 */
2200 MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16);
2201
2202 /* reg_pagt_multi
2203 * Multi-ACL
2204 * 0 - This ACL is the last ACL in the multi-ACL
2205 * 1 - This ACL is part of a multi-ACL
2206 * Access: RW
2207 */
2208 MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false);
2209
2210 /* reg_pagt_acl_id
2211 * ACL identifier
2212 * Access: RW
2213 */
2214 MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false);
2215
mlxsw_reg_pagt_pack(char * payload,u16 acl_group_id)2216 static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id)
2217 {
2218 MLXSW_REG_ZERO(pagt, payload);
2219 mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id);
2220 }
2221
mlxsw_reg_pagt_acl_id_pack(char * payload,int index,u16 acl_id,bool multi)2222 static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index,
2223 u16 acl_id, bool multi)
2224 {
2225 u8 size = mlxsw_reg_pagt_size_get(payload);
2226
2227 if (index >= size)
2228 mlxsw_reg_pagt_size_set(payload, index + 1);
2229 mlxsw_reg_pagt_multi_set(payload, index, multi);
2230 mlxsw_reg_pagt_acl_id_set(payload, index, acl_id);
2231 }
2232
2233 /* PTAR - Policy-Engine TCAM Allocation Register
2234 * ---------------------------------------------
2235 * This register is used for allocation of regions in the TCAM.
2236 * Note: Query method is not supported on this register.
2237 */
2238 #define MLXSW_REG_PTAR_ID 0x3006
2239 #define MLXSW_REG_PTAR_BASE_LEN 0x20
2240 #define MLXSW_REG_PTAR_KEY_ID_LEN 1
2241 #define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16
2242 #define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \
2243 MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN)
2244
2245 MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN);
2246
2247 enum mlxsw_reg_ptar_op {
2248 /* allocate a TCAM region */
2249 MLXSW_REG_PTAR_OP_ALLOC,
2250 /* resize a TCAM region */
2251 MLXSW_REG_PTAR_OP_RESIZE,
2252 /* deallocate TCAM region */
2253 MLXSW_REG_PTAR_OP_FREE,
2254 /* test allocation */
2255 MLXSW_REG_PTAR_OP_TEST,
2256 };
2257
2258 /* reg_ptar_op
2259 * Access: OP
2260 */
2261 MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4);
2262
2263 /* reg_ptar_action_set_type
2264 * Type of action set to be used on this region.
2265 * For Spectrum and Spectrum-2, this is always type 2 - "flexible"
2266 * Access: WO
2267 */
2268 MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8);
2269
2270 enum mlxsw_reg_ptar_key_type {
2271 MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */
2272 MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */
2273 };
2274
2275 /* reg_ptar_key_type
2276 * TCAM key type for the region.
2277 * Access: WO
2278 */
2279 MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8);
2280
2281 /* reg_ptar_region_size
2282 * TCAM region size. When allocating/resizing this is the requested size,
2283 * the response is the actual size. Note that actual size may be
2284 * larger than requested.
2285 * Allowed range 1 .. cap_max_rules-1
2286 * Reserved during op deallocate.
2287 * Access: WO
2288 */
2289 MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16);
2290
2291 /* reg_ptar_region_id
2292 * Region identifier
2293 * Range 0 .. cap_max_regions-1
2294 * Access: Index
2295 */
2296 MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16);
2297
2298 /* reg_ptar_tcam_region_info
2299 * Opaque object that represents the TCAM region.
2300 * Returned when allocating a region.
2301 * Provided by software for ACL generation and region deallocation and resize.
2302 * Access: RW
2303 */
2304 MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10,
2305 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2306
2307 /* reg_ptar_flexible_key_id
2308 * Identifier of the Flexible Key.
2309 * Only valid if key_type == "FLEX_KEY"
2310 * The key size will be rounded up to one of the following values:
2311 * 9B, 18B, 36B, 54B.
2312 * This field is reserved for in resize operation.
2313 * Access: WO
2314 */
2315 MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8,
2316 MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false);
2317
mlxsw_reg_ptar_pack(char * payload,enum mlxsw_reg_ptar_op op,enum mlxsw_reg_ptar_key_type key_type,u16 region_size,u16 region_id,const char * tcam_region_info)2318 static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op,
2319 enum mlxsw_reg_ptar_key_type key_type,
2320 u16 region_size, u16 region_id,
2321 const char *tcam_region_info)
2322 {
2323 MLXSW_REG_ZERO(ptar, payload);
2324 mlxsw_reg_ptar_op_set(payload, op);
2325 mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */
2326 mlxsw_reg_ptar_key_type_set(payload, key_type);
2327 mlxsw_reg_ptar_region_size_set(payload, region_size);
2328 mlxsw_reg_ptar_region_id_set(payload, region_id);
2329 mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info);
2330 }
2331
mlxsw_reg_ptar_key_id_pack(char * payload,int index,u16 key_id)2332 static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index,
2333 u16 key_id)
2334 {
2335 mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id);
2336 }
2337
mlxsw_reg_ptar_unpack(char * payload,char * tcam_region_info)2338 static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info)
2339 {
2340 mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info);
2341 }
2342
2343 /* PPBS - Policy-Engine Policy Based Switching Register
2344 * ----------------------------------------------------
2345 * This register retrieves and sets Policy Based Switching Table entries.
2346 */
2347 #define MLXSW_REG_PPBS_ID 0x300C
2348 #define MLXSW_REG_PPBS_LEN 0x14
2349
2350 MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN);
2351
2352 /* reg_ppbs_pbs_ptr
2353 * Index into the PBS table.
2354 * For Spectrum, the index points to the KVD Linear.
2355 * Access: Index
2356 */
2357 MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24);
2358
2359 /* reg_ppbs_system_port
2360 * Unique port identifier for the final destination of the packet.
2361 * Access: RW
2362 */
2363 MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16);
2364
mlxsw_reg_ppbs_pack(char * payload,u32 pbs_ptr,u16 system_port)2365 static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr,
2366 u16 system_port)
2367 {
2368 MLXSW_REG_ZERO(ppbs, payload);
2369 mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr);
2370 mlxsw_reg_ppbs_system_port_set(payload, system_port);
2371 }
2372
2373 /* PRCR - Policy-Engine Rules Copy Register
2374 * ----------------------------------------
2375 * This register is used for accessing rules within a TCAM region.
2376 */
2377 #define MLXSW_REG_PRCR_ID 0x300D
2378 #define MLXSW_REG_PRCR_LEN 0x40
2379
2380 MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN);
2381
2382 enum mlxsw_reg_prcr_op {
2383 /* Move rules. Moves the rules from "tcam_region_info" starting
2384 * at offset "offset" to "dest_tcam_region_info"
2385 * at offset "dest_offset."
2386 */
2387 MLXSW_REG_PRCR_OP_MOVE,
2388 /* Copy rules. Copies the rules from "tcam_region_info" starting
2389 * at offset "offset" to "dest_tcam_region_info"
2390 * at offset "dest_offset."
2391 */
2392 MLXSW_REG_PRCR_OP_COPY,
2393 };
2394
2395 /* reg_prcr_op
2396 * Access: OP
2397 */
2398 MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4);
2399
2400 /* reg_prcr_offset
2401 * Offset within the source region to copy/move from.
2402 * Access: Index
2403 */
2404 MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16);
2405
2406 /* reg_prcr_size
2407 * The number of rules to copy/move.
2408 * Access: WO
2409 */
2410 MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16);
2411
2412 /* reg_prcr_tcam_region_info
2413 * Opaque object that represents the source TCAM region.
2414 * Access: Index
2415 */
2416 MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10,
2417 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2418
2419 /* reg_prcr_dest_offset
2420 * Offset within the source region to copy/move to.
2421 * Access: Index
2422 */
2423 MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16);
2424
2425 /* reg_prcr_dest_tcam_region_info
2426 * Opaque object that represents the destination TCAM region.
2427 * Access: Index
2428 */
2429 MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30,
2430 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2431
mlxsw_reg_prcr_pack(char * payload,enum mlxsw_reg_prcr_op op,const char * src_tcam_region_info,u16 src_offset,const char * dest_tcam_region_info,u16 dest_offset,u16 size)2432 static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op,
2433 const char *src_tcam_region_info,
2434 u16 src_offset,
2435 const char *dest_tcam_region_info,
2436 u16 dest_offset, u16 size)
2437 {
2438 MLXSW_REG_ZERO(prcr, payload);
2439 mlxsw_reg_prcr_op_set(payload, op);
2440 mlxsw_reg_prcr_offset_set(payload, src_offset);
2441 mlxsw_reg_prcr_size_set(payload, size);
2442 mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload,
2443 src_tcam_region_info);
2444 mlxsw_reg_prcr_dest_offset_set(payload, dest_offset);
2445 mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload,
2446 dest_tcam_region_info);
2447 }
2448
2449 /* PEFA - Policy-Engine Extended Flexible Action Register
2450 * ------------------------------------------------------
2451 * This register is used for accessing an extended flexible action entry
2452 * in the central KVD Linear Database.
2453 */
2454 #define MLXSW_REG_PEFA_ID 0x300F
2455 #define MLXSW_REG_PEFA_LEN 0xB0
2456
2457 MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN);
2458
2459 /* reg_pefa_index
2460 * Index in the KVD Linear Centralized Database.
2461 * Access: Index
2462 */
2463 MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24);
2464
2465 /* reg_pefa_a
2466 * Index in the KVD Linear Centralized Database.
2467 * Activity
2468 * For a new entry: set if ca=0, clear if ca=1
2469 * Set if a packet lookup has hit on the specific entry
2470 * Access: RO
2471 */
2472 MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1);
2473
2474 /* reg_pefa_ca
2475 * Clear activity
2476 * When write: activity is according to this field
2477 * When read: after reading the activity is cleared according to ca
2478 * Access: OP
2479 */
2480 MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1);
2481
2482 #define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8
2483
2484 /* reg_pefa_flex_action_set
2485 * Action-set to perform when rule is matched.
2486 * Must be zero padded if action set is shorter.
2487 * Access: RW
2488 */
2489 MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN);
2490
mlxsw_reg_pefa_pack(char * payload,u32 index,bool ca,const char * flex_action_set)2491 static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca,
2492 const char *flex_action_set)
2493 {
2494 MLXSW_REG_ZERO(pefa, payload);
2495 mlxsw_reg_pefa_index_set(payload, index);
2496 mlxsw_reg_pefa_ca_set(payload, ca);
2497 if (flex_action_set)
2498 mlxsw_reg_pefa_flex_action_set_memcpy_to(payload,
2499 flex_action_set);
2500 }
2501
mlxsw_reg_pefa_unpack(char * payload,bool * p_a)2502 static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a)
2503 {
2504 *p_a = mlxsw_reg_pefa_a_get(payload);
2505 }
2506
2507 /* PEMRBT - Policy-Engine Multicast Router Binding Table Register
2508 * --------------------------------------------------------------
2509 * This register is used for binding Multicast router to an ACL group
2510 * that serves the MC router.
2511 * This register is not supported by SwitchX/-2 and Spectrum.
2512 */
2513 #define MLXSW_REG_PEMRBT_ID 0x3014
2514 #define MLXSW_REG_PEMRBT_LEN 0x14
2515
2516 MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN);
2517
2518 enum mlxsw_reg_pemrbt_protocol {
2519 MLXSW_REG_PEMRBT_PROTO_IPV4,
2520 MLXSW_REG_PEMRBT_PROTO_IPV6,
2521 };
2522
2523 /* reg_pemrbt_protocol
2524 * Access: Index
2525 */
2526 MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1);
2527
2528 /* reg_pemrbt_group_id
2529 * ACL group identifier.
2530 * Range 0..cap_max_acl_groups-1
2531 * Access: RW
2532 */
2533 MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16);
2534
2535 static inline void
mlxsw_reg_pemrbt_pack(char * payload,enum mlxsw_reg_pemrbt_protocol protocol,u16 group_id)2536 mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol,
2537 u16 group_id)
2538 {
2539 MLXSW_REG_ZERO(pemrbt, payload);
2540 mlxsw_reg_pemrbt_protocol_set(payload, protocol);
2541 mlxsw_reg_pemrbt_group_id_set(payload, group_id);
2542 }
2543
2544 /* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2
2545 * -----------------------------------------------------
2546 * This register is used for accessing rules within a TCAM region.
2547 * It is a new version of PTCE in order to support wider key,
2548 * mask and action within a TCAM region. This register is not supported
2549 * by SwitchX and SwitchX-2.
2550 */
2551 #define MLXSW_REG_PTCE2_ID 0x3017
2552 #define MLXSW_REG_PTCE2_LEN 0x1D8
2553
2554 MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN);
2555
2556 /* reg_ptce2_v
2557 * Valid.
2558 * Access: RW
2559 */
2560 MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1);
2561
2562 /* reg_ptce2_a
2563 * Activity. Set if a packet lookup has hit on the specific entry.
2564 * To clear the "a" bit, use "clear activity" op or "clear on read" op.
2565 * Access: RO
2566 */
2567 MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1);
2568
2569 enum mlxsw_reg_ptce2_op {
2570 /* Read operation. */
2571 MLXSW_REG_PTCE2_OP_QUERY_READ = 0,
2572 /* clear on read operation. Used to read entry
2573 * and clear Activity bit.
2574 */
2575 MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1,
2576 /* Write operation. Used to write a new entry to the table.
2577 * All R/W fields are relevant for new entry. Activity bit is set
2578 * for new entries - Note write with v = 0 will delete the entry.
2579 */
2580 MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0,
2581 /* Update action. Only action set will be updated. */
2582 MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1,
2583 /* Clear activity. A bit is cleared for the entry. */
2584 MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2,
2585 };
2586
2587 /* reg_ptce2_op
2588 * Access: OP
2589 */
2590 MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3);
2591
2592 /* reg_ptce2_offset
2593 * Access: Index
2594 */
2595 MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16);
2596
2597 /* reg_ptce2_priority
2598 * Priority of the rule, higher values win. The range is 1..cap_kvd_size-1.
2599 * Note: priority does not have to be unique per rule.
2600 * Within a region, higher priority should have lower offset (no limitation
2601 * between regions in a multi-region).
2602 * Access: RW
2603 */
2604 MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24);
2605
2606 /* reg_ptce2_tcam_region_info
2607 * Opaque object that represents the TCAM region.
2608 * Access: Index
2609 */
2610 MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10,
2611 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2612
2613 #define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96
2614
2615 /* reg_ptce2_flex_key_blocks
2616 * ACL Key.
2617 * Access: RW
2618 */
2619 MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20,
2620 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
2621
2622 /* reg_ptce2_mask
2623 * mask- in the same size as key. A bit that is set directs the TCAM
2624 * to compare the corresponding bit in key. A bit that is clear directs
2625 * the TCAM to ignore the corresponding bit in key.
2626 * Access: RW
2627 */
2628 MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80,
2629 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
2630
2631 /* reg_ptce2_flex_action_set
2632 * ACL action set.
2633 * Access: RW
2634 */
2635 MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0,
2636 MLXSW_REG_FLEX_ACTION_SET_LEN);
2637
mlxsw_reg_ptce2_pack(char * payload,bool valid,enum mlxsw_reg_ptce2_op op,const char * tcam_region_info,u16 offset,u32 priority)2638 static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid,
2639 enum mlxsw_reg_ptce2_op op,
2640 const char *tcam_region_info,
2641 u16 offset, u32 priority)
2642 {
2643 MLXSW_REG_ZERO(ptce2, payload);
2644 mlxsw_reg_ptce2_v_set(payload, valid);
2645 mlxsw_reg_ptce2_op_set(payload, op);
2646 mlxsw_reg_ptce2_offset_set(payload, offset);
2647 mlxsw_reg_ptce2_priority_set(payload, priority);
2648 mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info);
2649 }
2650
2651 /* PERPT - Policy-Engine ERP Table Register
2652 * ----------------------------------------
2653 * This register adds and removes eRPs from the eRP table.
2654 */
2655 #define MLXSW_REG_PERPT_ID 0x3021
2656 #define MLXSW_REG_PERPT_LEN 0x80
2657
2658 MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN);
2659
2660 /* reg_perpt_erpt_bank
2661 * eRP table bank.
2662 * Range 0 .. cap_max_erp_table_banks - 1
2663 * Access: Index
2664 */
2665 MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4);
2666
2667 /* reg_perpt_erpt_index
2668 * Index to eRP table within the eRP bank.
2669 * Range is 0 .. cap_max_erp_table_bank_size - 1
2670 * Access: Index
2671 */
2672 MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8);
2673
2674 enum mlxsw_reg_perpt_key_size {
2675 MLXSW_REG_PERPT_KEY_SIZE_2KB,
2676 MLXSW_REG_PERPT_KEY_SIZE_4KB,
2677 MLXSW_REG_PERPT_KEY_SIZE_8KB,
2678 MLXSW_REG_PERPT_KEY_SIZE_12KB,
2679 };
2680
2681 /* reg_perpt_key_size
2682 * Access: OP
2683 */
2684 MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4);
2685
2686 /* reg_perpt_bf_bypass
2687 * 0 - The eRP is used only if bloom filter state is set for the given
2688 * rule.
2689 * 1 - The eRP is used regardless of bloom filter state.
2690 * The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass
2691 * Access: RW
2692 */
2693 MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1);
2694
2695 /* reg_perpt_erp_id
2696 * eRP ID for use by the rules.
2697 * Access: RW
2698 */
2699 MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4);
2700
2701 /* reg_perpt_erpt_base_bank
2702 * Base eRP table bank, points to head of erp_vector
2703 * Range is 0 .. cap_max_erp_table_banks - 1
2704 * Access: OP
2705 */
2706 MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4);
2707
2708 /* reg_perpt_erpt_base_index
2709 * Base index to eRP table within the eRP bank
2710 * Range is 0 .. cap_max_erp_table_bank_size - 1
2711 * Access: OP
2712 */
2713 MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8);
2714
2715 /* reg_perpt_erp_index_in_vector
2716 * eRP index in the vector.
2717 * Access: OP
2718 */
2719 MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4);
2720
2721 /* reg_perpt_erp_vector
2722 * eRP vector.
2723 * Access: OP
2724 */
2725 MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1);
2726
2727 /* reg_perpt_mask
2728 * Mask
2729 * 0 - A-TCAM will ignore the bit in key
2730 * 1 - A-TCAM will compare the bit in key
2731 * Access: RW
2732 */
2733 MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
2734
mlxsw_reg_perpt_erp_vector_pack(char * payload,unsigned long * erp_vector,unsigned long size)2735 static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload,
2736 unsigned long *erp_vector,
2737 unsigned long size)
2738 {
2739 unsigned long bit;
2740
2741 for_each_set_bit(bit, erp_vector, size)
2742 mlxsw_reg_perpt_erp_vector_set(payload, bit, true);
2743 }
2744
2745 static inline void
mlxsw_reg_perpt_pack(char * payload,u8 erpt_bank,u8 erpt_index,enum mlxsw_reg_perpt_key_size key_size,u8 erp_id,u8 erpt_base_bank,u8 erpt_base_index,u8 erp_index,char * mask)2746 mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index,
2747 enum mlxsw_reg_perpt_key_size key_size, u8 erp_id,
2748 u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index,
2749 char *mask)
2750 {
2751 MLXSW_REG_ZERO(perpt, payload);
2752 mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank);
2753 mlxsw_reg_perpt_erpt_index_set(payload, erpt_index);
2754 mlxsw_reg_perpt_key_size_set(payload, key_size);
2755 mlxsw_reg_perpt_bf_bypass_set(payload, false);
2756 mlxsw_reg_perpt_erp_id_set(payload, erp_id);
2757 mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank);
2758 mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index);
2759 mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index);
2760 mlxsw_reg_perpt_mask_memcpy_to(payload, mask);
2761 }
2762
2763 /* PERAR - Policy-Engine Region Association Register
2764 * -------------------------------------------------
2765 * This register associates a hw region for region_id's. Changing on the fly
2766 * is supported by the device.
2767 */
2768 #define MLXSW_REG_PERAR_ID 0x3026
2769 #define MLXSW_REG_PERAR_LEN 0x08
2770
2771 MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN);
2772
2773 /* reg_perar_region_id
2774 * Region identifier
2775 * Range 0 .. cap_max_regions-1
2776 * Access: Index
2777 */
2778 MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16);
2779
2780 static inline unsigned int
mlxsw_reg_perar_hw_regions_needed(unsigned int block_num)2781 mlxsw_reg_perar_hw_regions_needed(unsigned int block_num)
2782 {
2783 return DIV_ROUND_UP(block_num, 4);
2784 }
2785
2786 /* reg_perar_hw_region
2787 * HW Region
2788 * Range 0 .. cap_max_regions-1
2789 * Default: hw_region = region_id
2790 * For a 8 key block region, 2 consecutive regions are used
2791 * For a 12 key block region, 3 consecutive regions are used
2792 * Access: RW
2793 */
2794 MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16);
2795
mlxsw_reg_perar_pack(char * payload,u16 region_id,u16 hw_region)2796 static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id,
2797 u16 hw_region)
2798 {
2799 MLXSW_REG_ZERO(perar, payload);
2800 mlxsw_reg_perar_region_id_set(payload, region_id);
2801 mlxsw_reg_perar_hw_region_set(payload, hw_region);
2802 }
2803
2804 /* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3
2805 * -----------------------------------------------------
2806 * This register is a new version of PTCE-V2 in order to support the
2807 * A-TCAM. This register is not supported by SwitchX/-2 and Spectrum.
2808 */
2809 #define MLXSW_REG_PTCE3_ID 0x3027
2810 #define MLXSW_REG_PTCE3_LEN 0xF0
2811
2812 MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN);
2813
2814 /* reg_ptce3_v
2815 * Valid.
2816 * Access: RW
2817 */
2818 MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1);
2819
2820 enum mlxsw_reg_ptce3_op {
2821 /* Write operation. Used to write a new entry to the table.
2822 * All R/W fields are relevant for new entry. Activity bit is set
2823 * for new entries. Write with v = 0 will delete the entry. Must
2824 * not be used if an entry exists.
2825 */
2826 MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0,
2827 /* Update operation */
2828 MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1,
2829 /* Read operation */
2830 MLXSW_REG_PTCE3_OP_QUERY_READ = 0,
2831 };
2832
2833 /* reg_ptce3_op
2834 * Access: OP
2835 */
2836 MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3);
2837
2838 /* reg_ptce3_priority
2839 * Priority of the rule. Higher values win.
2840 * For Spectrum-2 range is 1..cap_kvd_size - 1
2841 * Note: Priority does not have to be unique per rule.
2842 * Access: RW
2843 */
2844 MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24);
2845
2846 /* reg_ptce3_tcam_region_info
2847 * Opaque object that represents the TCAM region.
2848 * Access: Index
2849 */
2850 MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10,
2851 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
2852
2853 /* reg_ptce3_flex2_key_blocks
2854 * ACL key. The key must be masked according to eRP (if exists) or
2855 * according to master mask.
2856 * Access: Index
2857 */
2858 MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20,
2859 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
2860
2861 /* reg_ptce3_erp_id
2862 * eRP ID.
2863 * Access: Index
2864 */
2865 MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4);
2866
2867 /* reg_ptce3_delta_start
2868 * Start point of delta_value and delta_mask, in bits. Must not exceed
2869 * num_key_blocks * 36 - 8. Reserved when delta_mask = 0.
2870 * Access: Index
2871 */
2872 MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10);
2873
2874 /* reg_ptce3_delta_mask
2875 * Delta mask.
2876 * 0 - Ignore relevant bit in delta_value
2877 * 1 - Compare relevant bit in delta_value
2878 * Delta mask must not be set for reserved fields in the key blocks.
2879 * Note: No delta when no eRPs. Thus, for regions with
2880 * PERERP.erpt_pointer_valid = 0 the delta mask must be 0.
2881 * Access: Index
2882 */
2883 MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8);
2884
2885 /* reg_ptce3_delta_value
2886 * Delta value.
2887 * Bits which are masked by delta_mask must be 0.
2888 * Access: Index
2889 */
2890 MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8);
2891
2892 /* reg_ptce3_prune_vector
2893 * Pruning vector relative to the PERPT.erp_id.
2894 * Used for reducing lookups.
2895 * 0 - NEED: Do a lookup using the eRP.
2896 * 1 - PRUNE: Do not perform a lookup using the eRP.
2897 * Maybe be modified by PEAPBL and PEAPBM.
2898 * Note: In Spectrum-2, a region of 8 key blocks must be set to either
2899 * all 1's or all 0's.
2900 * Access: RW
2901 */
2902 MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1);
2903
2904 /* reg_ptce3_prune_ctcam
2905 * Pruning on C-TCAM. Used for reducing lookups.
2906 * 0 - NEED: Do a lookup in the C-TCAM.
2907 * 1 - PRUNE: Do not perform a lookup in the C-TCAM.
2908 * Access: RW
2909 */
2910 MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1);
2911
2912 /* reg_ptce3_large_exists
2913 * Large entry key ID exists.
2914 * Within the region:
2915 * 0 - SINGLE: The large_entry_key_id is not currently in use.
2916 * For rule insert: The MSB of the key (blocks 6..11) will be added.
2917 * For rule delete: The MSB of the key will be removed.
2918 * 1 - NON_SINGLE: The large_entry_key_id is currently in use.
2919 * For rule insert: The MSB of the key (blocks 6..11) will not be added.
2920 * For rule delete: The MSB of the key will not be removed.
2921 * Access: WO
2922 */
2923 MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1);
2924
2925 /* reg_ptce3_large_entry_key_id
2926 * Large entry key ID.
2927 * A key for 12 key blocks rules. Reserved when region has less than 12 key
2928 * blocks. Must be different for different keys which have the same common
2929 * 6 key blocks (MSB, blocks 6..11) key within a region.
2930 * Range is 0..cap_max_pe_large_key_id - 1
2931 * Access: RW
2932 */
2933 MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24);
2934
2935 /* reg_ptce3_action_pointer
2936 * Pointer to action.
2937 * Range is 0..cap_max_kvd_action_sets - 1
2938 * Access: RW
2939 */
2940 MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24);
2941
mlxsw_reg_ptce3_pack(char * payload,bool valid,enum mlxsw_reg_ptce3_op op,u32 priority,const char * tcam_region_info,const char * key,u8 erp_id,u16 delta_start,u8 delta_mask,u8 delta_value,bool large_exists,u32 lkey_id,u32 action_pointer)2942 static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid,
2943 enum mlxsw_reg_ptce3_op op,
2944 u32 priority,
2945 const char *tcam_region_info,
2946 const char *key, u8 erp_id,
2947 u16 delta_start, u8 delta_mask,
2948 u8 delta_value, bool large_exists,
2949 u32 lkey_id, u32 action_pointer)
2950 {
2951 MLXSW_REG_ZERO(ptce3, payload);
2952 mlxsw_reg_ptce3_v_set(payload, valid);
2953 mlxsw_reg_ptce3_op_set(payload, op);
2954 mlxsw_reg_ptce3_priority_set(payload, priority);
2955 mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info);
2956 mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key);
2957 mlxsw_reg_ptce3_erp_id_set(payload, erp_id);
2958 mlxsw_reg_ptce3_delta_start_set(payload, delta_start);
2959 mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask);
2960 mlxsw_reg_ptce3_delta_value_set(payload, delta_value);
2961 mlxsw_reg_ptce3_large_exists_set(payload, large_exists);
2962 mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id);
2963 mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer);
2964 }
2965
2966 /* PERCR - Policy-Engine Region Configuration Register
2967 * ---------------------------------------------------
2968 * This register configures the region parameters. The region_id must be
2969 * allocated.
2970 */
2971 #define MLXSW_REG_PERCR_ID 0x302A
2972 #define MLXSW_REG_PERCR_LEN 0x80
2973
2974 MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN);
2975
2976 /* reg_percr_region_id
2977 * Region identifier.
2978 * Range 0..cap_max_regions-1
2979 * Access: Index
2980 */
2981 MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16);
2982
2983 /* reg_percr_atcam_ignore_prune
2984 * Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule.
2985 * Access: RW
2986 */
2987 MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1);
2988
2989 /* reg_percr_ctcam_ignore_prune
2990 * Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule.
2991 * Access: RW
2992 */
2993 MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1);
2994
2995 /* reg_percr_bf_bypass
2996 * Bloom filter bypass.
2997 * 0 - Bloom filter is used (default)
2998 * 1 - Bloom filter is bypassed. The bypass is an OR condition of
2999 * region_id or eRP. See PERPT.bf_bypass
3000 * Access: RW
3001 */
3002 MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1);
3003
3004 /* reg_percr_master_mask
3005 * Master mask. Logical OR mask of all masks of all rules of a region
3006 * (both A-TCAM and C-TCAM). When there are no eRPs
3007 * (erpt_pointer_valid = 0), then this provides the mask.
3008 * Access: RW
3009 */
3010 MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96);
3011
mlxsw_reg_percr_pack(char * payload,u16 region_id)3012 static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id)
3013 {
3014 MLXSW_REG_ZERO(percr, payload);
3015 mlxsw_reg_percr_region_id_set(payload, region_id);
3016 mlxsw_reg_percr_atcam_ignore_prune_set(payload, false);
3017 mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false);
3018 mlxsw_reg_percr_bf_bypass_set(payload, false);
3019 }
3020
3021 /* PERERP - Policy-Engine Region eRP Register
3022 * ------------------------------------------
3023 * This register configures the region eRP. The region_id must be
3024 * allocated.
3025 */
3026 #define MLXSW_REG_PERERP_ID 0x302B
3027 #define MLXSW_REG_PERERP_LEN 0x1C
3028
3029 MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN);
3030
3031 /* reg_pererp_region_id
3032 * Region identifier.
3033 * Range 0..cap_max_regions-1
3034 * Access: Index
3035 */
3036 MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16);
3037
3038 /* reg_pererp_ctcam_le
3039 * C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0.
3040 * Access: RW
3041 */
3042 MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1);
3043
3044 /* reg_pererp_erpt_pointer_valid
3045 * erpt_pointer is valid.
3046 * Access: RW
3047 */
3048 MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1);
3049
3050 /* reg_pererp_erpt_bank_pointer
3051 * Pointer to eRP table bank. May be modified at any time.
3052 * Range 0..cap_max_erp_table_banks-1
3053 * Reserved when erpt_pointer_valid = 0
3054 */
3055 MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4);
3056
3057 /* reg_pererp_erpt_pointer
3058 * Pointer to eRP table within the eRP bank. Can be changed for an
3059 * existing region.
3060 * Range 0..cap_max_erp_table_size-1
3061 * Reserved when erpt_pointer_valid = 0
3062 * Access: RW
3063 */
3064 MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8);
3065
3066 /* reg_pererp_erpt_vector
3067 * Vector of allowed eRP indexes starting from erpt_pointer within the
3068 * erpt_bank_pointer. Next entries will be in next bank.
3069 * Note that eRP index is used and not eRP ID.
3070 * Reserved when erpt_pointer_valid = 0
3071 * Access: RW
3072 */
3073 MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1);
3074
3075 /* reg_pererp_master_rp_id
3076 * Master RP ID. When there are no eRPs, then this provides the eRP ID
3077 * for the lookup. Can be changed for an existing region.
3078 * Reserved when erpt_pointer_valid = 1
3079 * Access: RW
3080 */
3081 MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4);
3082
mlxsw_reg_pererp_erp_vector_pack(char * payload,unsigned long * erp_vector,unsigned long size)3083 static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload,
3084 unsigned long *erp_vector,
3085 unsigned long size)
3086 {
3087 unsigned long bit;
3088
3089 for_each_set_bit(bit, erp_vector, size)
3090 mlxsw_reg_pererp_erpt_vector_set(payload, bit, true);
3091 }
3092
mlxsw_reg_pererp_pack(char * payload,u16 region_id,bool ctcam_le,bool erpt_pointer_valid,u8 erpt_bank_pointer,u8 erpt_pointer,u8 master_rp_id)3093 static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id,
3094 bool ctcam_le, bool erpt_pointer_valid,
3095 u8 erpt_bank_pointer, u8 erpt_pointer,
3096 u8 master_rp_id)
3097 {
3098 MLXSW_REG_ZERO(pererp, payload);
3099 mlxsw_reg_pererp_region_id_set(payload, region_id);
3100 mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le);
3101 mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid);
3102 mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer);
3103 mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer);
3104 mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id);
3105 }
3106
3107 /* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register
3108 * ----------------------------------------------------------------
3109 * This register configures the Bloom filter entries.
3110 */
3111 #define MLXSW_REG_PEABFE_ID 0x3022
3112 #define MLXSW_REG_PEABFE_BASE_LEN 0x10
3113 #define MLXSW_REG_PEABFE_BF_REC_LEN 0x4
3114 #define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256
3115 #define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \
3116 MLXSW_REG_PEABFE_BF_REC_LEN * \
3117 MLXSW_REG_PEABFE_BF_REC_MAX_COUNT)
3118
3119 MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN);
3120
3121 /* reg_peabfe_size
3122 * Number of BF entries to be updated.
3123 * Range 1..256
3124 * Access: Op
3125 */
3126 MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9);
3127
3128 /* reg_peabfe_bf_entry_state
3129 * Bloom filter state
3130 * 0 - Clear
3131 * 1 - Set
3132 * Access: RW
3133 */
3134 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state,
3135 MLXSW_REG_PEABFE_BASE_LEN, 31, 1,
3136 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
3137
3138 /* reg_peabfe_bf_entry_bank
3139 * Bloom filter bank ID
3140 * Range 0..cap_max_erp_table_banks-1
3141 * Access: Index
3142 */
3143 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank,
3144 MLXSW_REG_PEABFE_BASE_LEN, 24, 4,
3145 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
3146
3147 /* reg_peabfe_bf_entry_index
3148 * Bloom filter entry index
3149 * Range 0..2^cap_max_bf_log-1
3150 * Access: Index
3151 */
3152 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index,
3153 MLXSW_REG_PEABFE_BASE_LEN, 0, 24,
3154 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
3155
mlxsw_reg_peabfe_pack(char * payload)3156 static inline void mlxsw_reg_peabfe_pack(char *payload)
3157 {
3158 MLXSW_REG_ZERO(peabfe, payload);
3159 }
3160
mlxsw_reg_peabfe_rec_pack(char * payload,int rec_index,u8 state,u8 bank,u32 bf_index)3161 static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index,
3162 u8 state, u8 bank, u32 bf_index)
3163 {
3164 u8 num_rec = mlxsw_reg_peabfe_size_get(payload);
3165
3166 if (rec_index >= num_rec)
3167 mlxsw_reg_peabfe_size_set(payload, rec_index + 1);
3168 mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state);
3169 mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank);
3170 mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index);
3171 }
3172
3173 /* IEDR - Infrastructure Entry Delete Register
3174 * ----------------------------------------------------
3175 * This register is used for deleting entries from the entry tables.
3176 * It is legitimate to attempt to delete a nonexisting entry (the device will
3177 * respond as a good flow).
3178 */
3179 #define MLXSW_REG_IEDR_ID 0x3804
3180 #define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */
3181 #define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */
3182 #define MLXSW_REG_IEDR_REC_MAX_COUNT 64
3183 #define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \
3184 MLXSW_REG_IEDR_REC_LEN * \
3185 MLXSW_REG_IEDR_REC_MAX_COUNT)
3186
3187 MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN);
3188
3189 /* reg_iedr_num_rec
3190 * Number of records.
3191 * Access: OP
3192 */
3193 MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8);
3194
3195 /* reg_iedr_rec_type
3196 * Resource type.
3197 * Access: OP
3198 */
3199 MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8,
3200 MLXSW_REG_IEDR_REC_LEN, 0x00, false);
3201
3202 /* reg_iedr_rec_size
3203 * Size of entries do be deleted. The unit is 1 entry, regardless of entry type.
3204 * Access: OP
3205 */
3206 MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 11,
3207 MLXSW_REG_IEDR_REC_LEN, 0x00, false);
3208
3209 /* reg_iedr_rec_index_start
3210 * Resource index start.
3211 * Access: OP
3212 */
3213 MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24,
3214 MLXSW_REG_IEDR_REC_LEN, 0x04, false);
3215
mlxsw_reg_iedr_pack(char * payload)3216 static inline void mlxsw_reg_iedr_pack(char *payload)
3217 {
3218 MLXSW_REG_ZERO(iedr, payload);
3219 }
3220
mlxsw_reg_iedr_rec_pack(char * payload,int rec_index,u8 rec_type,u16 rec_size,u32 rec_index_start)3221 static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index,
3222 u8 rec_type, u16 rec_size,
3223 u32 rec_index_start)
3224 {
3225 u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload);
3226
3227 if (rec_index >= num_rec)
3228 mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1);
3229 mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type);
3230 mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size);
3231 mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start);
3232 }
3233
3234 /* QPTS - QoS Priority Trust State Register
3235 * ----------------------------------------
3236 * This register controls the port policy to calculate the switch priority and
3237 * packet color based on incoming packet fields.
3238 */
3239 #define MLXSW_REG_QPTS_ID 0x4002
3240 #define MLXSW_REG_QPTS_LEN 0x8
3241
3242 MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN);
3243
3244 /* reg_qpts_local_port
3245 * Local port number.
3246 * Access: Index
3247 *
3248 * Note: CPU port is supported.
3249 */
3250 MLXSW_ITEM32(reg, qpts, local_port, 0x00, 16, 8);
3251
3252 enum mlxsw_reg_qpts_trust_state {
3253 MLXSW_REG_QPTS_TRUST_STATE_PCP = 1,
3254 MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */
3255 };
3256
3257 /* reg_qpts_trust_state
3258 * Trust state for a given port.
3259 * Access: RW
3260 */
3261 MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3);
3262
mlxsw_reg_qpts_pack(char * payload,u8 local_port,enum mlxsw_reg_qpts_trust_state ts)3263 static inline void mlxsw_reg_qpts_pack(char *payload, u8 local_port,
3264 enum mlxsw_reg_qpts_trust_state ts)
3265 {
3266 MLXSW_REG_ZERO(qpts, payload);
3267
3268 mlxsw_reg_qpts_local_port_set(payload, local_port);
3269 mlxsw_reg_qpts_trust_state_set(payload, ts);
3270 }
3271
3272 /* QPCR - QoS Policer Configuration Register
3273 * -----------------------------------------
3274 * The QPCR register is used to create policers - that limit
3275 * the rate of bytes or packets via some trap group.
3276 */
3277 #define MLXSW_REG_QPCR_ID 0x4004
3278 #define MLXSW_REG_QPCR_LEN 0x28
3279
3280 MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN);
3281
3282 enum mlxsw_reg_qpcr_g {
3283 MLXSW_REG_QPCR_G_GLOBAL = 2,
3284 MLXSW_REG_QPCR_G_STORM_CONTROL = 3,
3285 };
3286
3287 /* reg_qpcr_g
3288 * The policer type.
3289 * Access: Index
3290 */
3291 MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2);
3292
3293 /* reg_qpcr_pid
3294 * Policer ID.
3295 * Access: Index
3296 */
3297 MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14);
3298
3299 /* reg_qpcr_color_aware
3300 * Is the policer aware of colors.
3301 * Must be 0 (unaware) for cpu port.
3302 * Access: RW for unbounded policer. RO for bounded policer.
3303 */
3304 MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1);
3305
3306 /* reg_qpcr_bytes
3307 * Is policer limit is for bytes per sec or packets per sec.
3308 * 0 - packets
3309 * 1 - bytes
3310 * Access: RW for unbounded policer. RO for bounded policer.
3311 */
3312 MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1);
3313
3314 enum mlxsw_reg_qpcr_ir_units {
3315 MLXSW_REG_QPCR_IR_UNITS_M,
3316 MLXSW_REG_QPCR_IR_UNITS_K,
3317 };
3318
3319 /* reg_qpcr_ir_units
3320 * Policer's units for cir and eir fields (for bytes limits only)
3321 * 1 - 10^3
3322 * 0 - 10^6
3323 * Access: OP
3324 */
3325 MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1);
3326
3327 enum mlxsw_reg_qpcr_rate_type {
3328 MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1,
3329 MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2,
3330 };
3331
3332 /* reg_qpcr_rate_type
3333 * Policer can have one limit (single rate) or 2 limits with specific operation
3334 * for packets that exceed the lower rate but not the upper one.
3335 * (For cpu port must be single rate)
3336 * Access: RW for unbounded policer. RO for bounded policer.
3337 */
3338 MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2);
3339
3340 /* reg_qpc_cbs
3341 * Policer's committed burst size.
3342 * The policer is working with time slices of 50 nano sec. By default every
3343 * slice is granted the proportionate share of the committed rate. If we want to
3344 * allow a slice to exceed that share (while still keeping the rate per sec) we
3345 * can allow burst. The burst size is between the default proportionate share
3346 * (and no lower than 8) to 32Gb. (Even though giving a number higher than the
3347 * committed rate will result in exceeding the rate). The burst size must be a
3348 * log of 2 and will be determined by 2^cbs.
3349 * Access: RW
3350 */
3351 MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6);
3352
3353 /* reg_qpcr_cir
3354 * Policer's committed rate.
3355 * The rate used for sungle rate, the lower rate for double rate.
3356 * For bytes limits, the rate will be this value * the unit from ir_units.
3357 * (Resolution error is up to 1%).
3358 * Access: RW
3359 */
3360 MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32);
3361
3362 /* reg_qpcr_eir
3363 * Policer's exceed rate.
3364 * The higher rate for double rate, reserved for single rate.
3365 * Lower rate for double rate policer.
3366 * For bytes limits, the rate will be this value * the unit from ir_units.
3367 * (Resolution error is up to 1%).
3368 * Access: RW
3369 */
3370 MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32);
3371
3372 #define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2
3373
3374 /* reg_qpcr_exceed_action.
3375 * What to do with packets between the 2 limits for double rate.
3376 * Access: RW for unbounded policer. RO for bounded policer.
3377 */
3378 MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4);
3379
3380 enum mlxsw_reg_qpcr_action {
3381 /* Discard */
3382 MLXSW_REG_QPCR_ACTION_DISCARD = 1,
3383 /* Forward and set color to red.
3384 * If the packet is intended to cpu port, it will be dropped.
3385 */
3386 MLXSW_REG_QPCR_ACTION_FORWARD = 2,
3387 };
3388
3389 /* reg_qpcr_violate_action
3390 * What to do with packets that cross the cir limit (for single rate) or the eir
3391 * limit (for double rate).
3392 * Access: RW for unbounded policer. RO for bounded policer.
3393 */
3394 MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4);
3395
mlxsw_reg_qpcr_pack(char * payload,u16 pid,enum mlxsw_reg_qpcr_ir_units ir_units,bool bytes,u32 cir,u16 cbs)3396 static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid,
3397 enum mlxsw_reg_qpcr_ir_units ir_units,
3398 bool bytes, u32 cir, u16 cbs)
3399 {
3400 MLXSW_REG_ZERO(qpcr, payload);
3401 mlxsw_reg_qpcr_pid_set(payload, pid);
3402 mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL);
3403 mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE);
3404 mlxsw_reg_qpcr_violate_action_set(payload,
3405 MLXSW_REG_QPCR_ACTION_DISCARD);
3406 mlxsw_reg_qpcr_cir_set(payload, cir);
3407 mlxsw_reg_qpcr_ir_units_set(payload, ir_units);
3408 mlxsw_reg_qpcr_bytes_set(payload, bytes);
3409 mlxsw_reg_qpcr_cbs_set(payload, cbs);
3410 }
3411
3412 /* QTCT - QoS Switch Traffic Class Table
3413 * -------------------------------------
3414 * Configures the mapping between the packet switch priority and the
3415 * traffic class on the transmit port.
3416 */
3417 #define MLXSW_REG_QTCT_ID 0x400A
3418 #define MLXSW_REG_QTCT_LEN 0x08
3419
3420 MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN);
3421
3422 /* reg_qtct_local_port
3423 * Local port number.
3424 * Access: Index
3425 *
3426 * Note: CPU port is not supported.
3427 */
3428 MLXSW_ITEM32(reg, qtct, local_port, 0x00, 16, 8);
3429
3430 /* reg_qtct_sub_port
3431 * Virtual port within the physical port.
3432 * Should be set to 0 when virtual ports are not enabled on the port.
3433 * Access: Index
3434 */
3435 MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8);
3436
3437 /* reg_qtct_switch_prio
3438 * Switch priority.
3439 * Access: Index
3440 */
3441 MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4);
3442
3443 /* reg_qtct_tclass
3444 * Traffic class.
3445 * Default values:
3446 * switch_prio 0 : tclass 1
3447 * switch_prio 1 : tclass 0
3448 * switch_prio i : tclass i, for i > 1
3449 * Access: RW
3450 */
3451 MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4);
3452
mlxsw_reg_qtct_pack(char * payload,u8 local_port,u8 switch_prio,u8 tclass)3453 static inline void mlxsw_reg_qtct_pack(char *payload, u8 local_port,
3454 u8 switch_prio, u8 tclass)
3455 {
3456 MLXSW_REG_ZERO(qtct, payload);
3457 mlxsw_reg_qtct_local_port_set(payload, local_port);
3458 mlxsw_reg_qtct_switch_prio_set(payload, switch_prio);
3459 mlxsw_reg_qtct_tclass_set(payload, tclass);
3460 }
3461
3462 /* QEEC - QoS ETS Element Configuration Register
3463 * ---------------------------------------------
3464 * Configures the ETS elements.
3465 */
3466 #define MLXSW_REG_QEEC_ID 0x400D
3467 #define MLXSW_REG_QEEC_LEN 0x20
3468
3469 MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN);
3470
3471 /* reg_qeec_local_port
3472 * Local port number.
3473 * Access: Index
3474 *
3475 * Note: CPU port is supported.
3476 */
3477 MLXSW_ITEM32(reg, qeec, local_port, 0x00, 16, 8);
3478
3479 enum mlxsw_reg_qeec_hr {
3480 MLXSW_REG_QEEC_HIERARCY_PORT,
3481 MLXSW_REG_QEEC_HIERARCY_GROUP,
3482 MLXSW_REG_QEEC_HIERARCY_SUBGROUP,
3483 MLXSW_REG_QEEC_HIERARCY_TC,
3484 };
3485
3486 /* reg_qeec_element_hierarchy
3487 * 0 - Port
3488 * 1 - Group
3489 * 2 - Subgroup
3490 * 3 - Traffic Class
3491 * Access: Index
3492 */
3493 MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4);
3494
3495 /* reg_qeec_element_index
3496 * The index of the element in the hierarchy.
3497 * Access: Index
3498 */
3499 MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8);
3500
3501 /* reg_qeec_next_element_index
3502 * The index of the next (lower) element in the hierarchy.
3503 * Access: RW
3504 *
3505 * Note: Reserved for element_hierarchy 0.
3506 */
3507 MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8);
3508
3509 /* reg_qeec_mise
3510 * Min shaper configuration enable. Enables configuration of the min
3511 * shaper on this ETS element
3512 * 0 - Disable
3513 * 1 - Enable
3514 * Access: RW
3515 */
3516 MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1);
3517
3518 /* reg_qeec_ptps
3519 * PTP shaper
3520 * 0: regular shaper mode
3521 * 1: PTP oriented shaper
3522 * Allowed only for hierarchy 0
3523 * Not supported for CPU port
3524 * Note that ptps mode may affect the shaper rates of all hierarchies
3525 * Supported only on Spectrum-1
3526 * Access: RW
3527 */
3528 MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1);
3529
3530 enum {
3531 MLXSW_REG_QEEC_BYTES_MODE,
3532 MLXSW_REG_QEEC_PACKETS_MODE,
3533 };
3534
3535 /* reg_qeec_pb
3536 * Packets or bytes mode.
3537 * 0 - Bytes mode
3538 * 1 - Packets mode
3539 * Access: RW
3540 *
3541 * Note: Used for max shaper configuration. For Spectrum, packets mode
3542 * is supported only for traffic classes of CPU port.
3543 */
3544 MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1);
3545
3546 /* The smallest permitted min shaper rate. */
3547 #define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */
3548
3549 /* reg_qeec_min_shaper_rate
3550 * Min shaper information rate.
3551 * For CPU port, can only be configured for port hierarchy.
3552 * When in bytes mode, value is specified in units of 1000bps.
3553 * Access: RW
3554 */
3555 MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28);
3556
3557 /* reg_qeec_mase
3558 * Max shaper configuration enable. Enables configuration of the max
3559 * shaper on this ETS element.
3560 * 0 - Disable
3561 * 1 - Enable
3562 * Access: RW
3563 */
3564 MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1);
3565
3566 /* A large max rate will disable the max shaper. */
3567 #define MLXSW_REG_QEEC_MAS_DIS 200000000 /* Kbps */
3568
3569 /* reg_qeec_max_shaper_rate
3570 * Max shaper information rate.
3571 * For CPU port, can only be configured for port hierarchy.
3572 * When in bytes mode, value is specified in units of 1000bps.
3573 * Access: RW
3574 */
3575 MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 28);
3576
3577 /* reg_qeec_de
3578 * DWRR configuration enable. Enables configuration of the dwrr and
3579 * dwrr_weight.
3580 * 0 - Disable
3581 * 1 - Enable
3582 * Access: RW
3583 */
3584 MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1);
3585
3586 /* reg_qeec_dwrr
3587 * Transmission selection algorithm to use on the link going down from
3588 * the ETS element.
3589 * 0 - Strict priority
3590 * 1 - DWRR
3591 * Access: RW
3592 */
3593 MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1);
3594
3595 /* reg_qeec_dwrr_weight
3596 * DWRR weight on the link going down from the ETS element. The
3597 * percentage of bandwidth guaranteed to an ETS element within
3598 * its hierarchy. The sum of all weights across all ETS elements
3599 * within one hierarchy should be equal to 100. Reserved when
3600 * transmission selection algorithm is strict priority.
3601 * Access: RW
3602 */
3603 MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8);
3604
mlxsw_reg_qeec_pack(char * payload,u8 local_port,enum mlxsw_reg_qeec_hr hr,u8 index,u8 next_index)3605 static inline void mlxsw_reg_qeec_pack(char *payload, u8 local_port,
3606 enum mlxsw_reg_qeec_hr hr, u8 index,
3607 u8 next_index)
3608 {
3609 MLXSW_REG_ZERO(qeec, payload);
3610 mlxsw_reg_qeec_local_port_set(payload, local_port);
3611 mlxsw_reg_qeec_element_hierarchy_set(payload, hr);
3612 mlxsw_reg_qeec_element_index_set(payload, index);
3613 mlxsw_reg_qeec_next_element_index_set(payload, next_index);
3614 }
3615
mlxsw_reg_qeec_ptps_pack(char * payload,u8 local_port,bool ptps)3616 static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u8 local_port,
3617 bool ptps)
3618 {
3619 MLXSW_REG_ZERO(qeec, payload);
3620 mlxsw_reg_qeec_local_port_set(payload, local_port);
3621 mlxsw_reg_qeec_element_hierarchy_set(payload,
3622 MLXSW_REG_QEEC_HIERARCY_PORT);
3623 mlxsw_reg_qeec_ptps_set(payload, ptps);
3624 }
3625
3626 /* QRWE - QoS ReWrite Enable
3627 * -------------------------
3628 * This register configures the rewrite enable per receive port.
3629 */
3630 #define MLXSW_REG_QRWE_ID 0x400F
3631 #define MLXSW_REG_QRWE_LEN 0x08
3632
3633 MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN);
3634
3635 /* reg_qrwe_local_port
3636 * Local port number.
3637 * Access: Index
3638 *
3639 * Note: CPU port is supported. No support for router port.
3640 */
3641 MLXSW_ITEM32(reg, qrwe, local_port, 0x00, 16, 8);
3642
3643 /* reg_qrwe_dscp
3644 * Whether to enable DSCP rewrite (default is 0, don't rewrite).
3645 * Access: RW
3646 */
3647 MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1);
3648
3649 /* reg_qrwe_pcp
3650 * Whether to enable PCP and DEI rewrite (default is 0, don't rewrite).
3651 * Access: RW
3652 */
3653 MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1);
3654
mlxsw_reg_qrwe_pack(char * payload,u8 local_port,bool rewrite_pcp,bool rewrite_dscp)3655 static inline void mlxsw_reg_qrwe_pack(char *payload, u8 local_port,
3656 bool rewrite_pcp, bool rewrite_dscp)
3657 {
3658 MLXSW_REG_ZERO(qrwe, payload);
3659 mlxsw_reg_qrwe_local_port_set(payload, local_port);
3660 mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp);
3661 mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp);
3662 }
3663
3664 /* QPDSM - QoS Priority to DSCP Mapping
3665 * ------------------------------------
3666 * QoS Priority to DSCP Mapping Register
3667 */
3668 #define MLXSW_REG_QPDSM_ID 0x4011
3669 #define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */
3670 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */
3671 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16
3672 #define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \
3673 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \
3674 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT)
3675
3676 MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN);
3677
3678 /* reg_qpdsm_local_port
3679 * Local Port. Supported for data packets from CPU port.
3680 * Access: Index
3681 */
3682 MLXSW_ITEM32(reg, qpdsm, local_port, 0x00, 16, 8);
3683
3684 /* reg_qpdsm_prio_entry_color0_e
3685 * Enable update of the entry for color 0 and a given port.
3686 * Access: WO
3687 */
3688 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e,
3689 MLXSW_REG_QPDSM_BASE_LEN, 31, 1,
3690 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3691
3692 /* reg_qpdsm_prio_entry_color0_dscp
3693 * DSCP field in the outer label of the packet for color 0 and a given port.
3694 * Reserved when e=0.
3695 * Access: RW
3696 */
3697 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp,
3698 MLXSW_REG_QPDSM_BASE_LEN, 24, 6,
3699 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3700
3701 /* reg_qpdsm_prio_entry_color1_e
3702 * Enable update of the entry for color 1 and a given port.
3703 * Access: WO
3704 */
3705 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e,
3706 MLXSW_REG_QPDSM_BASE_LEN, 23, 1,
3707 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3708
3709 /* reg_qpdsm_prio_entry_color1_dscp
3710 * DSCP field in the outer label of the packet for color 1 and a given port.
3711 * Reserved when e=0.
3712 * Access: RW
3713 */
3714 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp,
3715 MLXSW_REG_QPDSM_BASE_LEN, 16, 6,
3716 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3717
3718 /* reg_qpdsm_prio_entry_color2_e
3719 * Enable update of the entry for color 2 and a given port.
3720 * Access: WO
3721 */
3722 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e,
3723 MLXSW_REG_QPDSM_BASE_LEN, 15, 1,
3724 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3725
3726 /* reg_qpdsm_prio_entry_color2_dscp
3727 * DSCP field in the outer label of the packet for color 2 and a given port.
3728 * Reserved when e=0.
3729 * Access: RW
3730 */
3731 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp,
3732 MLXSW_REG_QPDSM_BASE_LEN, 8, 6,
3733 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
3734
mlxsw_reg_qpdsm_pack(char * payload,u8 local_port)3735 static inline void mlxsw_reg_qpdsm_pack(char *payload, u8 local_port)
3736 {
3737 MLXSW_REG_ZERO(qpdsm, payload);
3738 mlxsw_reg_qpdsm_local_port_set(payload, local_port);
3739 }
3740
3741 static inline void
mlxsw_reg_qpdsm_prio_pack(char * payload,unsigned short prio,u8 dscp)3742 mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp)
3743 {
3744 mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1);
3745 mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp);
3746 mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1);
3747 mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp);
3748 mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1);
3749 mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp);
3750 }
3751
3752 /* QPDPM - QoS Port DSCP to Priority Mapping Register
3753 * --------------------------------------------------
3754 * This register controls the mapping from DSCP field to
3755 * Switch Priority for IP packets.
3756 */
3757 #define MLXSW_REG_QPDPM_ID 0x4013
3758 #define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */
3759 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */
3760 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64
3761 #define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \
3762 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \
3763 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT)
3764
3765 MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN);
3766
3767 /* reg_qpdpm_local_port
3768 * Local Port. Supported for data packets from CPU port.
3769 * Access: Index
3770 */
3771 MLXSW_ITEM32(reg, qpdpm, local_port, 0x00, 16, 8);
3772
3773 /* reg_qpdpm_dscp_e
3774 * Enable update of the specific entry. When cleared, the switch_prio and color
3775 * fields are ignored and the previous switch_prio and color values are
3776 * preserved.
3777 * Access: WO
3778 */
3779 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1,
3780 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
3781
3782 /* reg_qpdpm_dscp_prio
3783 * The new Switch Priority value for the relevant DSCP value.
3784 * Access: RW
3785 */
3786 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio,
3787 MLXSW_REG_QPDPM_BASE_LEN, 0, 4,
3788 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
3789
mlxsw_reg_qpdpm_pack(char * payload,u8 local_port)3790 static inline void mlxsw_reg_qpdpm_pack(char *payload, u8 local_port)
3791 {
3792 MLXSW_REG_ZERO(qpdpm, payload);
3793 mlxsw_reg_qpdpm_local_port_set(payload, local_port);
3794 }
3795
3796 static inline void
mlxsw_reg_qpdpm_dscp_pack(char * payload,unsigned short dscp,u8 prio)3797 mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio)
3798 {
3799 mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1);
3800 mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio);
3801 }
3802
3803 /* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register
3804 * ------------------------------------------------------------------
3805 * This register configures if the Switch Priority to Traffic Class mapping is
3806 * based on Multicast packet indication. If so, then multicast packets will get
3807 * a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by
3808 * QTCT.
3809 * By default, Switch Priority to Traffic Class mapping is not based on
3810 * Multicast packet indication.
3811 */
3812 #define MLXSW_REG_QTCTM_ID 0x401A
3813 #define MLXSW_REG_QTCTM_LEN 0x08
3814
3815 MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN);
3816
3817 /* reg_qtctm_local_port
3818 * Local port number.
3819 * No support for CPU port.
3820 * Access: Index
3821 */
3822 MLXSW_ITEM32(reg, qtctm, local_port, 0x00, 16, 8);
3823
3824 /* reg_qtctm_mc
3825 * Multicast Mode
3826 * Whether Switch Priority to Traffic Class mapping is based on Multicast packet
3827 * indication (default is 0, not based on Multicast packet indication).
3828 */
3829 MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1);
3830
3831 static inline void
mlxsw_reg_qtctm_pack(char * payload,u8 local_port,bool mc)3832 mlxsw_reg_qtctm_pack(char *payload, u8 local_port, bool mc)
3833 {
3834 MLXSW_REG_ZERO(qtctm, payload);
3835 mlxsw_reg_qtctm_local_port_set(payload, local_port);
3836 mlxsw_reg_qtctm_mc_set(payload, mc);
3837 }
3838
3839 /* QPSC - QoS PTP Shaper Configuration Register
3840 * --------------------------------------------
3841 * The QPSC allows advanced configuration of the shapers when QEEC.ptps=1.
3842 * Supported only on Spectrum-1.
3843 */
3844 #define MLXSW_REG_QPSC_ID 0x401B
3845 #define MLXSW_REG_QPSC_LEN 0x28
3846
3847 MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN);
3848
3849 enum mlxsw_reg_qpsc_port_speed {
3850 MLXSW_REG_QPSC_PORT_SPEED_100M,
3851 MLXSW_REG_QPSC_PORT_SPEED_1G,
3852 MLXSW_REG_QPSC_PORT_SPEED_10G,
3853 MLXSW_REG_QPSC_PORT_SPEED_25G,
3854 };
3855
3856 /* reg_qpsc_port_speed
3857 * Port speed.
3858 * Access: Index
3859 */
3860 MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4);
3861
3862 /* reg_qpsc_shaper_time_exp
3863 * The base-time-interval for updating the shapers tokens (for all hierarchies).
3864 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
3865 * shaper_rate = 64bit * shaper_inc / shaper_update_rate
3866 * Access: RW
3867 */
3868 MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4);
3869
3870 /* reg_qpsc_shaper_time_mantissa
3871 * The base-time-interval for updating the shapers tokens (for all hierarchies).
3872 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
3873 * shaper_rate = 64bit * shaper_inc / shaper_update_rate
3874 * Access: RW
3875 */
3876 MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5);
3877
3878 /* reg_qpsc_shaper_inc
3879 * Number of tokens added to shaper on each update.
3880 * Units of 8B.
3881 * Access: RW
3882 */
3883 MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5);
3884
3885 /* reg_qpsc_shaper_bs
3886 * Max shaper Burst size.
3887 * Burst size is 2 ^ max_shaper_bs * 512 [bits]
3888 * Range is: 5..25 (from 2KB..2GB)
3889 * Access: RW
3890 */
3891 MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6);
3892
3893 /* reg_qpsc_ptsc_we
3894 * Write enable to port_to_shaper_credits.
3895 * Access: WO
3896 */
3897 MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1);
3898
3899 /* reg_qpsc_port_to_shaper_credits
3900 * For split ports: range 1..57
3901 * For non-split ports: range 1..112
3902 * Written only when ptsc_we is set.
3903 * Access: RW
3904 */
3905 MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8);
3906
3907 /* reg_qpsc_ing_timestamp_inc
3908 * Ingress timestamp increment.
3909 * 2's complement.
3910 * The timestamp of MTPPTR at ingress will be incremented by this value. Global
3911 * value for all ports.
3912 * Same units as used by MTPPTR.
3913 * Access: RW
3914 */
3915 MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32);
3916
3917 /* reg_qpsc_egr_timestamp_inc
3918 * Egress timestamp increment.
3919 * 2's complement.
3920 * The timestamp of MTPPTR at egress will be incremented by this value. Global
3921 * value for all ports.
3922 * Same units as used by MTPPTR.
3923 * Access: RW
3924 */
3925 MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32);
3926
3927 static inline void
mlxsw_reg_qpsc_pack(char * payload,enum mlxsw_reg_qpsc_port_speed port_speed,u8 shaper_time_exp,u8 shaper_time_mantissa,u8 shaper_inc,u8 shaper_bs,u8 port_to_shaper_credits,int ing_timestamp_inc,int egr_timestamp_inc)3928 mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed,
3929 u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc,
3930 u8 shaper_bs, u8 port_to_shaper_credits,
3931 int ing_timestamp_inc, int egr_timestamp_inc)
3932 {
3933 MLXSW_REG_ZERO(qpsc, payload);
3934 mlxsw_reg_qpsc_port_speed_set(payload, port_speed);
3935 mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp);
3936 mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa);
3937 mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc);
3938 mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs);
3939 mlxsw_reg_qpsc_ptsc_we_set(payload, true);
3940 mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits);
3941 mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc);
3942 mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc);
3943 }
3944
3945 /* PMLP - Ports Module to Local Port Register
3946 * ------------------------------------------
3947 * Configures the assignment of modules to local ports.
3948 */
3949 #define MLXSW_REG_PMLP_ID 0x5002
3950 #define MLXSW_REG_PMLP_LEN 0x40
3951
3952 MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN);
3953
3954 /* reg_pmlp_rxtx
3955 * 0 - Tx value is used for both Tx and Rx.
3956 * 1 - Rx value is taken from a separte field.
3957 * Access: RW
3958 */
3959 MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1);
3960
3961 /* reg_pmlp_local_port
3962 * Local port number.
3963 * Access: Index
3964 */
3965 MLXSW_ITEM32(reg, pmlp, local_port, 0x00, 16, 8);
3966
3967 /* reg_pmlp_width
3968 * 0 - Unmap local port.
3969 * 1 - Lane 0 is used.
3970 * 2 - Lanes 0 and 1 are used.
3971 * 4 - Lanes 0, 1, 2 and 3 are used.
3972 * Access: RW
3973 */
3974 MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8);
3975
3976 /* reg_pmlp_module
3977 * Module number.
3978 * Access: RW
3979 */
3980 MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false);
3981
3982 /* reg_pmlp_tx_lane
3983 * Tx Lane. When rxtx field is cleared, this field is used for Rx as well.
3984 * Access: RW
3985 */
3986 MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 2, 0x04, 0x00, false);
3987
3988 /* reg_pmlp_rx_lane
3989 * Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is
3990 * equal to Tx lane.
3991 * Access: RW
3992 */
3993 MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 2, 0x04, 0x00, false);
3994
mlxsw_reg_pmlp_pack(char * payload,u8 local_port)3995 static inline void mlxsw_reg_pmlp_pack(char *payload, u8 local_port)
3996 {
3997 MLXSW_REG_ZERO(pmlp, payload);
3998 mlxsw_reg_pmlp_local_port_set(payload, local_port);
3999 }
4000
4001 /* PMTU - Port MTU Register
4002 * ------------------------
4003 * Configures and reports the port MTU.
4004 */
4005 #define MLXSW_REG_PMTU_ID 0x5003
4006 #define MLXSW_REG_PMTU_LEN 0x10
4007
4008 MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN);
4009
4010 /* reg_pmtu_local_port
4011 * Local port number.
4012 * Access: Index
4013 */
4014 MLXSW_ITEM32(reg, pmtu, local_port, 0x00, 16, 8);
4015
4016 /* reg_pmtu_max_mtu
4017 * Maximum MTU.
4018 * When port type (e.g. Ethernet) is configured, the relevant MTU is
4019 * reported, otherwise the minimum between the max_mtu of the different
4020 * types is reported.
4021 * Access: RO
4022 */
4023 MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16);
4024
4025 /* reg_pmtu_admin_mtu
4026 * MTU value to set port to. Must be smaller or equal to max_mtu.
4027 * Note: If port type is Infiniband, then port must be disabled, when its
4028 * MTU is set.
4029 * Access: RW
4030 */
4031 MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16);
4032
4033 /* reg_pmtu_oper_mtu
4034 * The actual MTU configured on the port. Packets exceeding this size
4035 * will be dropped.
4036 * Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband
4037 * oper_mtu might be smaller than admin_mtu.
4038 * Access: RO
4039 */
4040 MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16);
4041
mlxsw_reg_pmtu_pack(char * payload,u8 local_port,u16 new_mtu)4042 static inline void mlxsw_reg_pmtu_pack(char *payload, u8 local_port,
4043 u16 new_mtu)
4044 {
4045 MLXSW_REG_ZERO(pmtu, payload);
4046 mlxsw_reg_pmtu_local_port_set(payload, local_port);
4047 mlxsw_reg_pmtu_max_mtu_set(payload, 0);
4048 mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu);
4049 mlxsw_reg_pmtu_oper_mtu_set(payload, 0);
4050 }
4051
4052 /* PTYS - Port Type and Speed Register
4053 * -----------------------------------
4054 * Configures and reports the port speed type.
4055 *
4056 * Note: When set while the link is up, the changes will not take effect
4057 * until the port transitions from down to up state.
4058 */
4059 #define MLXSW_REG_PTYS_ID 0x5004
4060 #define MLXSW_REG_PTYS_LEN 0x40
4061
4062 MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN);
4063
4064 /* an_disable_admin
4065 * Auto negotiation disable administrative configuration
4066 * 0 - Device doesn't support AN disable.
4067 * 1 - Device supports AN disable.
4068 * Access: RW
4069 */
4070 MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1);
4071
4072 /* reg_ptys_local_port
4073 * Local port number.
4074 * Access: Index
4075 */
4076 MLXSW_ITEM32(reg, ptys, local_port, 0x00, 16, 8);
4077
4078 #define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0)
4079 #define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2)
4080
4081 /* reg_ptys_proto_mask
4082 * Protocol mask. Indicates which protocol is used.
4083 * 0 - Infiniband.
4084 * 1 - Fibre Channel.
4085 * 2 - Ethernet.
4086 * Access: Index
4087 */
4088 MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3);
4089
4090 enum {
4091 MLXSW_REG_PTYS_AN_STATUS_NA,
4092 MLXSW_REG_PTYS_AN_STATUS_OK,
4093 MLXSW_REG_PTYS_AN_STATUS_FAIL,
4094 };
4095
4096 /* reg_ptys_an_status
4097 * Autonegotiation status.
4098 * Access: RO
4099 */
4100 MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4);
4101
4102 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0)
4103 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1)
4104 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_2_5GBASE_X_2_5GMII BIT(2)
4105 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3)
4106 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4)
4107 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5)
4108 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6)
4109 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7)
4110 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8)
4111 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9)
4112 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10)
4113 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12)
4114
4115 /* reg_ptys_ext_eth_proto_cap
4116 * Extended Ethernet port supported speeds and protocols.
4117 * Access: RO
4118 */
4119 MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32);
4120
4121 #define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0)
4122 #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1)
4123 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2)
4124 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3)
4125 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4)
4126 #define MLXSW_REG_PTYS_ETH_SPEED_20GBASE_KR2 BIT(5)
4127 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6)
4128 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7)
4129 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12)
4130 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13)
4131 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14)
4132 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15)
4133 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16)
4134 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18)
4135 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19)
4136 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20)
4137 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21)
4138 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22)
4139 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23)
4140 #define MLXSW_REG_PTYS_ETH_SPEED_100BASE_TX BIT(24)
4141 #define MLXSW_REG_PTYS_ETH_SPEED_100BASE_T BIT(25)
4142 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_T BIT(26)
4143 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27)
4144 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28)
4145 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29)
4146 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30)
4147 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31)
4148
4149 /* reg_ptys_eth_proto_cap
4150 * Ethernet port supported speeds and protocols.
4151 * Access: RO
4152 */
4153 MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32);
4154
4155 /* reg_ptys_ib_link_width_cap
4156 * IB port supported widths.
4157 * Access: RO
4158 */
4159 MLXSW_ITEM32(reg, ptys, ib_link_width_cap, 0x10, 16, 16);
4160
4161 #define MLXSW_REG_PTYS_IB_SPEED_SDR BIT(0)
4162 #define MLXSW_REG_PTYS_IB_SPEED_DDR BIT(1)
4163 #define MLXSW_REG_PTYS_IB_SPEED_QDR BIT(2)
4164 #define MLXSW_REG_PTYS_IB_SPEED_FDR10 BIT(3)
4165 #define MLXSW_REG_PTYS_IB_SPEED_FDR BIT(4)
4166 #define MLXSW_REG_PTYS_IB_SPEED_EDR BIT(5)
4167
4168 /* reg_ptys_ib_proto_cap
4169 * IB port supported speeds and protocols.
4170 * Access: RO
4171 */
4172 MLXSW_ITEM32(reg, ptys, ib_proto_cap, 0x10, 0, 16);
4173
4174 /* reg_ptys_ext_eth_proto_admin
4175 * Extended speed and protocol to set port to.
4176 * Access: RW
4177 */
4178 MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32);
4179
4180 /* reg_ptys_eth_proto_admin
4181 * Speed and protocol to set port to.
4182 * Access: RW
4183 */
4184 MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32);
4185
4186 /* reg_ptys_ib_link_width_admin
4187 * IB width to set port to.
4188 * Access: RW
4189 */
4190 MLXSW_ITEM32(reg, ptys, ib_link_width_admin, 0x1C, 16, 16);
4191
4192 /* reg_ptys_ib_proto_admin
4193 * IB speeds and protocols to set port to.
4194 * Access: RW
4195 */
4196 MLXSW_ITEM32(reg, ptys, ib_proto_admin, 0x1C, 0, 16);
4197
4198 /* reg_ptys_ext_eth_proto_oper
4199 * The extended current speed and protocol configured for the port.
4200 * Access: RO
4201 */
4202 MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32);
4203
4204 /* reg_ptys_eth_proto_oper
4205 * The current speed and protocol configured for the port.
4206 * Access: RO
4207 */
4208 MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32);
4209
4210 /* reg_ptys_ib_link_width_oper
4211 * The current IB width to set port to.
4212 * Access: RO
4213 */
4214 MLXSW_ITEM32(reg, ptys, ib_link_width_oper, 0x28, 16, 16);
4215
4216 /* reg_ptys_ib_proto_oper
4217 * The current IB speed and protocol.
4218 * Access: RO
4219 */
4220 MLXSW_ITEM32(reg, ptys, ib_proto_oper, 0x28, 0, 16);
4221
4222 enum mlxsw_reg_ptys_connector_type {
4223 MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR,
4224 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE,
4225 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP,
4226 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI,
4227 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC,
4228 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII,
4229 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE,
4230 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA,
4231 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER,
4232 };
4233
4234 /* reg_ptys_connector_type
4235 * Connector type indication.
4236 * Access: RO
4237 */
4238 MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4);
4239
mlxsw_reg_ptys_eth_pack(char * payload,u8 local_port,u32 proto_admin,bool autoneg)4240 static inline void mlxsw_reg_ptys_eth_pack(char *payload, u8 local_port,
4241 u32 proto_admin, bool autoneg)
4242 {
4243 MLXSW_REG_ZERO(ptys, payload);
4244 mlxsw_reg_ptys_local_port_set(payload, local_port);
4245 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
4246 mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin);
4247 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
4248 }
4249
mlxsw_reg_ptys_ext_eth_pack(char * payload,u8 local_port,u32 proto_admin,bool autoneg)4250 static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u8 local_port,
4251 u32 proto_admin, bool autoneg)
4252 {
4253 MLXSW_REG_ZERO(ptys, payload);
4254 mlxsw_reg_ptys_local_port_set(payload, local_port);
4255 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
4256 mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin);
4257 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
4258 }
4259
mlxsw_reg_ptys_eth_unpack(char * payload,u32 * p_eth_proto_cap,u32 * p_eth_proto_admin,u32 * p_eth_proto_oper)4260 static inline void mlxsw_reg_ptys_eth_unpack(char *payload,
4261 u32 *p_eth_proto_cap,
4262 u32 *p_eth_proto_admin,
4263 u32 *p_eth_proto_oper)
4264 {
4265 if (p_eth_proto_cap)
4266 *p_eth_proto_cap =
4267 mlxsw_reg_ptys_eth_proto_cap_get(payload);
4268 if (p_eth_proto_admin)
4269 *p_eth_proto_admin =
4270 mlxsw_reg_ptys_eth_proto_admin_get(payload);
4271 if (p_eth_proto_oper)
4272 *p_eth_proto_oper =
4273 mlxsw_reg_ptys_eth_proto_oper_get(payload);
4274 }
4275
mlxsw_reg_ptys_ext_eth_unpack(char * payload,u32 * p_eth_proto_cap,u32 * p_eth_proto_admin,u32 * p_eth_proto_oper)4276 static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload,
4277 u32 *p_eth_proto_cap,
4278 u32 *p_eth_proto_admin,
4279 u32 *p_eth_proto_oper)
4280 {
4281 if (p_eth_proto_cap)
4282 *p_eth_proto_cap =
4283 mlxsw_reg_ptys_ext_eth_proto_cap_get(payload);
4284 if (p_eth_proto_admin)
4285 *p_eth_proto_admin =
4286 mlxsw_reg_ptys_ext_eth_proto_admin_get(payload);
4287 if (p_eth_proto_oper)
4288 *p_eth_proto_oper =
4289 mlxsw_reg_ptys_ext_eth_proto_oper_get(payload);
4290 }
4291
mlxsw_reg_ptys_ib_pack(char * payload,u8 local_port,u16 proto_admin,u16 link_width)4292 static inline void mlxsw_reg_ptys_ib_pack(char *payload, u8 local_port,
4293 u16 proto_admin, u16 link_width)
4294 {
4295 MLXSW_REG_ZERO(ptys, payload);
4296 mlxsw_reg_ptys_local_port_set(payload, local_port);
4297 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_IB);
4298 mlxsw_reg_ptys_ib_proto_admin_set(payload, proto_admin);
4299 mlxsw_reg_ptys_ib_link_width_admin_set(payload, link_width);
4300 }
4301
mlxsw_reg_ptys_ib_unpack(char * payload,u16 * p_ib_proto_cap,u16 * p_ib_link_width_cap,u16 * p_ib_proto_oper,u16 * p_ib_link_width_oper)4302 static inline void mlxsw_reg_ptys_ib_unpack(char *payload, u16 *p_ib_proto_cap,
4303 u16 *p_ib_link_width_cap,
4304 u16 *p_ib_proto_oper,
4305 u16 *p_ib_link_width_oper)
4306 {
4307 if (p_ib_proto_cap)
4308 *p_ib_proto_cap = mlxsw_reg_ptys_ib_proto_cap_get(payload);
4309 if (p_ib_link_width_cap)
4310 *p_ib_link_width_cap =
4311 mlxsw_reg_ptys_ib_link_width_cap_get(payload);
4312 if (p_ib_proto_oper)
4313 *p_ib_proto_oper = mlxsw_reg_ptys_ib_proto_oper_get(payload);
4314 if (p_ib_link_width_oper)
4315 *p_ib_link_width_oper =
4316 mlxsw_reg_ptys_ib_link_width_oper_get(payload);
4317 }
4318
4319 /* PPAD - Port Physical Address Register
4320 * -------------------------------------
4321 * The PPAD register configures the per port physical MAC address.
4322 */
4323 #define MLXSW_REG_PPAD_ID 0x5005
4324 #define MLXSW_REG_PPAD_LEN 0x10
4325
4326 MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN);
4327
4328 /* reg_ppad_single_base_mac
4329 * 0: base_mac, local port should be 0 and mac[7:0] is
4330 * reserved. HW will set incremental
4331 * 1: single_mac - mac of the local_port
4332 * Access: RW
4333 */
4334 MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1);
4335
4336 /* reg_ppad_local_port
4337 * port number, if single_base_mac = 0 then local_port is reserved
4338 * Access: RW
4339 */
4340 MLXSW_ITEM32(reg, ppad, local_port, 0x00, 16, 8);
4341
4342 /* reg_ppad_mac
4343 * If single_base_mac = 0 - base MAC address, mac[7:0] is reserved.
4344 * If single_base_mac = 1 - the per port MAC address
4345 * Access: RW
4346 */
4347 MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6);
4348
mlxsw_reg_ppad_pack(char * payload,bool single_base_mac,u8 local_port)4349 static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac,
4350 u8 local_port)
4351 {
4352 MLXSW_REG_ZERO(ppad, payload);
4353 mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac);
4354 mlxsw_reg_ppad_local_port_set(payload, local_port);
4355 }
4356
4357 /* PAOS - Ports Administrative and Operational Status Register
4358 * -----------------------------------------------------------
4359 * Configures and retrieves per port administrative and operational status.
4360 */
4361 #define MLXSW_REG_PAOS_ID 0x5006
4362 #define MLXSW_REG_PAOS_LEN 0x10
4363
4364 MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN);
4365
4366 /* reg_paos_swid
4367 * Switch partition ID with which to associate the port.
4368 * Note: while external ports uses unique local port numbers (and thus swid is
4369 * redundant), router ports use the same local port number where swid is the
4370 * only indication for the relevant port.
4371 * Access: Index
4372 */
4373 MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8);
4374
4375 /* reg_paos_local_port
4376 * Local port number.
4377 * Access: Index
4378 */
4379 MLXSW_ITEM32(reg, paos, local_port, 0x00, 16, 8);
4380
4381 /* reg_paos_admin_status
4382 * Port administrative state (the desired state of the port):
4383 * 1 - Up.
4384 * 2 - Down.
4385 * 3 - Up once. This means that in case of link failure, the port won't go
4386 * into polling mode, but will wait to be re-enabled by software.
4387 * 4 - Disabled by system. Can only be set by hardware.
4388 * Access: RW
4389 */
4390 MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4);
4391
4392 /* reg_paos_oper_status
4393 * Port operational state (the current state):
4394 * 1 - Up.
4395 * 2 - Down.
4396 * 3 - Down by port failure. This means that the device will not let the
4397 * port up again until explicitly specified by software.
4398 * Access: RO
4399 */
4400 MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4);
4401
4402 /* reg_paos_ase
4403 * Admin state update enabled.
4404 * Access: WO
4405 */
4406 MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1);
4407
4408 /* reg_paos_ee
4409 * Event update enable. If this bit is set, event generation will be
4410 * updated based on the e field.
4411 * Access: WO
4412 */
4413 MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1);
4414
4415 /* reg_paos_e
4416 * Event generation on operational state change:
4417 * 0 - Do not generate event.
4418 * 1 - Generate Event.
4419 * 2 - Generate Single Event.
4420 * Access: RW
4421 */
4422 MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2);
4423
mlxsw_reg_paos_pack(char * payload,u8 local_port,enum mlxsw_port_admin_status status)4424 static inline void mlxsw_reg_paos_pack(char *payload, u8 local_port,
4425 enum mlxsw_port_admin_status status)
4426 {
4427 MLXSW_REG_ZERO(paos, payload);
4428 mlxsw_reg_paos_swid_set(payload, 0);
4429 mlxsw_reg_paos_local_port_set(payload, local_port);
4430 mlxsw_reg_paos_admin_status_set(payload, status);
4431 mlxsw_reg_paos_oper_status_set(payload, 0);
4432 mlxsw_reg_paos_ase_set(payload, 1);
4433 mlxsw_reg_paos_ee_set(payload, 1);
4434 mlxsw_reg_paos_e_set(payload, 1);
4435 }
4436
4437 /* PFCC - Ports Flow Control Configuration Register
4438 * ------------------------------------------------
4439 * Configures and retrieves the per port flow control configuration.
4440 */
4441 #define MLXSW_REG_PFCC_ID 0x5007
4442 #define MLXSW_REG_PFCC_LEN 0x20
4443
4444 MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN);
4445
4446 /* reg_pfcc_local_port
4447 * Local port number.
4448 * Access: Index
4449 */
4450 MLXSW_ITEM32(reg, pfcc, local_port, 0x00, 16, 8);
4451
4452 /* reg_pfcc_pnat
4453 * Port number access type. Determines the way local_port is interpreted:
4454 * 0 - Local port number.
4455 * 1 - IB / label port number.
4456 * Access: Index
4457 */
4458 MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2);
4459
4460 /* reg_pfcc_shl_cap
4461 * Send to higher layers capabilities:
4462 * 0 - No capability of sending Pause and PFC frames to higher layers.
4463 * 1 - Device has capability of sending Pause and PFC frames to higher
4464 * layers.
4465 * Access: RO
4466 */
4467 MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1);
4468
4469 /* reg_pfcc_shl_opr
4470 * Send to higher layers operation:
4471 * 0 - Pause and PFC frames are handled by the port (default).
4472 * 1 - Pause and PFC frames are handled by the port and also sent to
4473 * higher layers. Only valid if shl_cap = 1.
4474 * Access: RW
4475 */
4476 MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1);
4477
4478 /* reg_pfcc_ppan
4479 * Pause policy auto negotiation.
4480 * 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx.
4481 * 1 - Enabled. When auto-negotiation is performed, set the Pause policy
4482 * based on the auto-negotiation resolution.
4483 * Access: RW
4484 *
4485 * Note: The auto-negotiation advertisement is set according to pptx and
4486 * pprtx. When PFC is set on Tx / Rx, ppan must be set to 0.
4487 */
4488 MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4);
4489
4490 /* reg_pfcc_prio_mask_tx
4491 * Bit per priority indicating if Tx flow control policy should be
4492 * updated based on bit pfctx.
4493 * Access: WO
4494 */
4495 MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8);
4496
4497 /* reg_pfcc_prio_mask_rx
4498 * Bit per priority indicating if Rx flow control policy should be
4499 * updated based on bit pfcrx.
4500 * Access: WO
4501 */
4502 MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8);
4503
4504 /* reg_pfcc_pptx
4505 * Admin Pause policy on Tx.
4506 * 0 - Never generate Pause frames (default).
4507 * 1 - Generate Pause frames according to Rx buffer threshold.
4508 * Access: RW
4509 */
4510 MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1);
4511
4512 /* reg_pfcc_aptx
4513 * Active (operational) Pause policy on Tx.
4514 * 0 - Never generate Pause frames.
4515 * 1 - Generate Pause frames according to Rx buffer threshold.
4516 * Access: RO
4517 */
4518 MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1);
4519
4520 /* reg_pfcc_pfctx
4521 * Priority based flow control policy on Tx[7:0]. Per-priority bit mask:
4522 * 0 - Never generate priority Pause frames on the specified priority
4523 * (default).
4524 * 1 - Generate priority Pause frames according to Rx buffer threshold on
4525 * the specified priority.
4526 * Access: RW
4527 *
4528 * Note: pfctx and pptx must be mutually exclusive.
4529 */
4530 MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8);
4531
4532 /* reg_pfcc_pprx
4533 * Admin Pause policy on Rx.
4534 * 0 - Ignore received Pause frames (default).
4535 * 1 - Respect received Pause frames.
4536 * Access: RW
4537 */
4538 MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1);
4539
4540 /* reg_pfcc_aprx
4541 * Active (operational) Pause policy on Rx.
4542 * 0 - Ignore received Pause frames.
4543 * 1 - Respect received Pause frames.
4544 * Access: RO
4545 */
4546 MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1);
4547
4548 /* reg_pfcc_pfcrx
4549 * Priority based flow control policy on Rx[7:0]. Per-priority bit mask:
4550 * 0 - Ignore incoming priority Pause frames on the specified priority
4551 * (default).
4552 * 1 - Respect incoming priority Pause frames on the specified priority.
4553 * Access: RW
4554 */
4555 MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8);
4556
4557 #define MLXSW_REG_PFCC_ALL_PRIO 0xFF
4558
mlxsw_reg_pfcc_prio_pack(char * payload,u8 pfc_en)4559 static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en)
4560 {
4561 mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
4562 mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
4563 mlxsw_reg_pfcc_pfctx_set(payload, pfc_en);
4564 mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en);
4565 }
4566
mlxsw_reg_pfcc_pack(char * payload,u8 local_port)4567 static inline void mlxsw_reg_pfcc_pack(char *payload, u8 local_port)
4568 {
4569 MLXSW_REG_ZERO(pfcc, payload);
4570 mlxsw_reg_pfcc_local_port_set(payload, local_port);
4571 }
4572
4573 /* PPCNT - Ports Performance Counters Register
4574 * -------------------------------------------
4575 * The PPCNT register retrieves per port performance counters.
4576 */
4577 #define MLXSW_REG_PPCNT_ID 0x5008
4578 #define MLXSW_REG_PPCNT_LEN 0x100
4579 #define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08
4580
4581 MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN);
4582
4583 /* reg_ppcnt_swid
4584 * For HCA: must be always 0.
4585 * Switch partition ID to associate port with.
4586 * Switch partitions are numbered from 0 to 7 inclusively.
4587 * Switch partition 254 indicates stacking ports.
4588 * Switch partition 255 indicates all switch partitions.
4589 * Only valid on Set() operation with local_port=255.
4590 * Access: Index
4591 */
4592 MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8);
4593
4594 /* reg_ppcnt_local_port
4595 * Local port number.
4596 * 255 indicates all ports on the device, and is only allowed
4597 * for Set() operation.
4598 * Access: Index
4599 */
4600 MLXSW_ITEM32(reg, ppcnt, local_port, 0x00, 16, 8);
4601
4602 /* reg_ppcnt_pnat
4603 * Port number access type:
4604 * 0 - Local port number
4605 * 1 - IB port number
4606 * Access: Index
4607 */
4608 MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2);
4609
4610 enum mlxsw_reg_ppcnt_grp {
4611 MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0,
4612 MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1,
4613 MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2,
4614 MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3,
4615 MLXSW_REG_PPCNT_EXT_CNT = 0x5,
4616 MLXSW_REG_PPCNT_DISCARD_CNT = 0x6,
4617 MLXSW_REG_PPCNT_PRIO_CNT = 0x10,
4618 MLXSW_REG_PPCNT_TC_CNT = 0x11,
4619 MLXSW_REG_PPCNT_TC_CONG_TC = 0x13,
4620 };
4621
4622 /* reg_ppcnt_grp
4623 * Performance counter group.
4624 * Group 63 indicates all groups. Only valid on Set() operation with
4625 * clr bit set.
4626 * 0x0: IEEE 802.3 Counters
4627 * 0x1: RFC 2863 Counters
4628 * 0x2: RFC 2819 Counters
4629 * 0x3: RFC 3635 Counters
4630 * 0x5: Ethernet Extended Counters
4631 * 0x6: Ethernet Discard Counters
4632 * 0x8: Link Level Retransmission Counters
4633 * 0x10: Per Priority Counters
4634 * 0x11: Per Traffic Class Counters
4635 * 0x12: Physical Layer Counters
4636 * 0x13: Per Traffic Class Congestion Counters
4637 * Access: Index
4638 */
4639 MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6);
4640
4641 /* reg_ppcnt_clr
4642 * Clear counters. Setting the clr bit will reset the counter value
4643 * for all counters in the counter group. This bit can be set
4644 * for both Set() and Get() operation.
4645 * Access: OP
4646 */
4647 MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1);
4648
4649 /* reg_ppcnt_prio_tc
4650 * Priority for counter set that support per priority, valid values: 0-7.
4651 * Traffic class for counter set that support per traffic class,
4652 * valid values: 0- cap_max_tclass-1 .
4653 * For HCA: cap_max_tclass is always 8.
4654 * Otherwise must be 0.
4655 * Access: Index
4656 */
4657 MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5);
4658
4659 /* Ethernet IEEE 802.3 Counter Group */
4660
4661 /* reg_ppcnt_a_frames_transmitted_ok
4662 * Access: RO
4663 */
4664 MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok,
4665 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
4666
4667 /* reg_ppcnt_a_frames_received_ok
4668 * Access: RO
4669 */
4670 MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok,
4671 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
4672
4673 /* reg_ppcnt_a_frame_check_sequence_errors
4674 * Access: RO
4675 */
4676 MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors,
4677 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
4678
4679 /* reg_ppcnt_a_alignment_errors
4680 * Access: RO
4681 */
4682 MLXSW_ITEM64(reg, ppcnt, a_alignment_errors,
4683 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
4684
4685 /* reg_ppcnt_a_octets_transmitted_ok
4686 * Access: RO
4687 */
4688 MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok,
4689 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
4690
4691 /* reg_ppcnt_a_octets_received_ok
4692 * Access: RO
4693 */
4694 MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok,
4695 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
4696
4697 /* reg_ppcnt_a_multicast_frames_xmitted_ok
4698 * Access: RO
4699 */
4700 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok,
4701 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
4702
4703 /* reg_ppcnt_a_broadcast_frames_xmitted_ok
4704 * Access: RO
4705 */
4706 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok,
4707 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
4708
4709 /* reg_ppcnt_a_multicast_frames_received_ok
4710 * Access: RO
4711 */
4712 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok,
4713 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
4714
4715 /* reg_ppcnt_a_broadcast_frames_received_ok
4716 * Access: RO
4717 */
4718 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok,
4719 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
4720
4721 /* reg_ppcnt_a_in_range_length_errors
4722 * Access: RO
4723 */
4724 MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors,
4725 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
4726
4727 /* reg_ppcnt_a_out_of_range_length_field
4728 * Access: RO
4729 */
4730 MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field,
4731 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
4732
4733 /* reg_ppcnt_a_frame_too_long_errors
4734 * Access: RO
4735 */
4736 MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors,
4737 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
4738
4739 /* reg_ppcnt_a_symbol_error_during_carrier
4740 * Access: RO
4741 */
4742 MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier,
4743 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
4744
4745 /* reg_ppcnt_a_mac_control_frames_transmitted
4746 * Access: RO
4747 */
4748 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted,
4749 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
4750
4751 /* reg_ppcnt_a_mac_control_frames_received
4752 * Access: RO
4753 */
4754 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received,
4755 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
4756
4757 /* reg_ppcnt_a_unsupported_opcodes_received
4758 * Access: RO
4759 */
4760 MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received,
4761 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
4762
4763 /* reg_ppcnt_a_pause_mac_ctrl_frames_received
4764 * Access: RO
4765 */
4766 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received,
4767 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
4768
4769 /* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted
4770 * Access: RO
4771 */
4772 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted,
4773 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
4774
4775 /* Ethernet RFC 2863 Counter Group */
4776
4777 /* reg_ppcnt_if_in_discards
4778 * Access: RO
4779 */
4780 MLXSW_ITEM64(reg, ppcnt, if_in_discards,
4781 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
4782
4783 /* reg_ppcnt_if_out_discards
4784 * Access: RO
4785 */
4786 MLXSW_ITEM64(reg, ppcnt, if_out_discards,
4787 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
4788
4789 /* reg_ppcnt_if_out_errors
4790 * Access: RO
4791 */
4792 MLXSW_ITEM64(reg, ppcnt, if_out_errors,
4793 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
4794
4795 /* Ethernet RFC 2819 Counter Group */
4796
4797 /* reg_ppcnt_ether_stats_undersize_pkts
4798 * Access: RO
4799 */
4800 MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts,
4801 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
4802
4803 /* reg_ppcnt_ether_stats_oversize_pkts
4804 * Access: RO
4805 */
4806 MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts,
4807 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
4808
4809 /* reg_ppcnt_ether_stats_fragments
4810 * Access: RO
4811 */
4812 MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments,
4813 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
4814
4815 /* reg_ppcnt_ether_stats_pkts64octets
4816 * Access: RO
4817 */
4818 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets,
4819 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
4820
4821 /* reg_ppcnt_ether_stats_pkts65to127octets
4822 * Access: RO
4823 */
4824 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets,
4825 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
4826
4827 /* reg_ppcnt_ether_stats_pkts128to255octets
4828 * Access: RO
4829 */
4830 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets,
4831 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
4832
4833 /* reg_ppcnt_ether_stats_pkts256to511octets
4834 * Access: RO
4835 */
4836 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets,
4837 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
4838
4839 /* reg_ppcnt_ether_stats_pkts512to1023octets
4840 * Access: RO
4841 */
4842 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets,
4843 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
4844
4845 /* reg_ppcnt_ether_stats_pkts1024to1518octets
4846 * Access: RO
4847 */
4848 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets,
4849 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
4850
4851 /* reg_ppcnt_ether_stats_pkts1519to2047octets
4852 * Access: RO
4853 */
4854 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets,
4855 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
4856
4857 /* reg_ppcnt_ether_stats_pkts2048to4095octets
4858 * Access: RO
4859 */
4860 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets,
4861 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
4862
4863 /* reg_ppcnt_ether_stats_pkts4096to8191octets
4864 * Access: RO
4865 */
4866 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets,
4867 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64);
4868
4869 /* reg_ppcnt_ether_stats_pkts8192to10239octets
4870 * Access: RO
4871 */
4872 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets,
4873 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64);
4874
4875 /* Ethernet RFC 3635 Counter Group */
4876
4877 /* reg_ppcnt_dot3stats_fcs_errors
4878 * Access: RO
4879 */
4880 MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors,
4881 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
4882
4883 /* reg_ppcnt_dot3stats_symbol_errors
4884 * Access: RO
4885 */
4886 MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors,
4887 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
4888
4889 /* reg_ppcnt_dot3control_in_unknown_opcodes
4890 * Access: RO
4891 */
4892 MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes,
4893 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
4894
4895 /* reg_ppcnt_dot3in_pause_frames
4896 * Access: RO
4897 */
4898 MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames,
4899 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
4900
4901 /* Ethernet Extended Counter Group Counters */
4902
4903 /* reg_ppcnt_ecn_marked
4904 * Access: RO
4905 */
4906 MLXSW_ITEM64(reg, ppcnt, ecn_marked,
4907 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
4908
4909 /* Ethernet Discard Counter Group Counters */
4910
4911 /* reg_ppcnt_ingress_general
4912 * Access: RO
4913 */
4914 MLXSW_ITEM64(reg, ppcnt, ingress_general,
4915 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
4916
4917 /* reg_ppcnt_ingress_policy_engine
4918 * Access: RO
4919 */
4920 MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine,
4921 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
4922
4923 /* reg_ppcnt_ingress_vlan_membership
4924 * Access: RO
4925 */
4926 MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership,
4927 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
4928
4929 /* reg_ppcnt_ingress_tag_frame_type
4930 * Access: RO
4931 */
4932 MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type,
4933 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
4934
4935 /* reg_ppcnt_egress_vlan_membership
4936 * Access: RO
4937 */
4938 MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership,
4939 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
4940
4941 /* reg_ppcnt_loopback_filter
4942 * Access: RO
4943 */
4944 MLXSW_ITEM64(reg, ppcnt, loopback_filter,
4945 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
4946
4947 /* reg_ppcnt_egress_general
4948 * Access: RO
4949 */
4950 MLXSW_ITEM64(reg, ppcnt, egress_general,
4951 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
4952
4953 /* reg_ppcnt_egress_hoq
4954 * Access: RO
4955 */
4956 MLXSW_ITEM64(reg, ppcnt, egress_hoq,
4957 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
4958
4959 /* reg_ppcnt_egress_policy_engine
4960 * Access: RO
4961 */
4962 MLXSW_ITEM64(reg, ppcnt, egress_policy_engine,
4963 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
4964
4965 /* reg_ppcnt_ingress_tx_link_down
4966 * Access: RO
4967 */
4968 MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down,
4969 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
4970
4971 /* reg_ppcnt_egress_stp_filter
4972 * Access: RO
4973 */
4974 MLXSW_ITEM64(reg, ppcnt, egress_stp_filter,
4975 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
4976
4977 /* reg_ppcnt_egress_sll
4978 * Access: RO
4979 */
4980 MLXSW_ITEM64(reg, ppcnt, egress_sll,
4981 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
4982
4983 /* Ethernet Per Priority Group Counters */
4984
4985 /* reg_ppcnt_rx_octets
4986 * Access: RO
4987 */
4988 MLXSW_ITEM64(reg, ppcnt, rx_octets,
4989 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
4990
4991 /* reg_ppcnt_rx_frames
4992 * Access: RO
4993 */
4994 MLXSW_ITEM64(reg, ppcnt, rx_frames,
4995 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
4996
4997 /* reg_ppcnt_tx_octets
4998 * Access: RO
4999 */
5000 MLXSW_ITEM64(reg, ppcnt, tx_octets,
5001 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
5002
5003 /* reg_ppcnt_tx_frames
5004 * Access: RO
5005 */
5006 MLXSW_ITEM64(reg, ppcnt, tx_frames,
5007 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
5008
5009 /* reg_ppcnt_rx_pause
5010 * Access: RO
5011 */
5012 MLXSW_ITEM64(reg, ppcnt, rx_pause,
5013 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
5014
5015 /* reg_ppcnt_rx_pause_duration
5016 * Access: RO
5017 */
5018 MLXSW_ITEM64(reg, ppcnt, rx_pause_duration,
5019 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
5020
5021 /* reg_ppcnt_tx_pause
5022 * Access: RO
5023 */
5024 MLXSW_ITEM64(reg, ppcnt, tx_pause,
5025 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
5026
5027 /* reg_ppcnt_tx_pause_duration
5028 * Access: RO
5029 */
5030 MLXSW_ITEM64(reg, ppcnt, tx_pause_duration,
5031 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
5032
5033 /* reg_ppcnt_rx_pause_transition
5034 * Access: RO
5035 */
5036 MLXSW_ITEM64(reg, ppcnt, tx_pause_transition,
5037 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
5038
5039 /* Ethernet Per Traffic Group Counters */
5040
5041 /* reg_ppcnt_tc_transmit_queue
5042 * Contains the transmit queue depth in cells of traffic class
5043 * selected by prio_tc and the port selected by local_port.
5044 * The field cannot be cleared.
5045 * Access: RO
5046 */
5047 MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue,
5048 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5049
5050 /* reg_ppcnt_tc_no_buffer_discard_uc
5051 * The number of unicast packets dropped due to lack of shared
5052 * buffer resources.
5053 * Access: RO
5054 */
5055 MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc,
5056 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
5057
5058 /* Ethernet Per Traffic Class Congestion Group Counters */
5059
5060 /* reg_ppcnt_wred_discard
5061 * Access: RO
5062 */
5063 MLXSW_ITEM64(reg, ppcnt, wred_discard,
5064 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
5065
mlxsw_reg_ppcnt_pack(char * payload,u8 local_port,enum mlxsw_reg_ppcnt_grp grp,u8 prio_tc)5066 static inline void mlxsw_reg_ppcnt_pack(char *payload, u8 local_port,
5067 enum mlxsw_reg_ppcnt_grp grp,
5068 u8 prio_tc)
5069 {
5070 MLXSW_REG_ZERO(ppcnt, payload);
5071 mlxsw_reg_ppcnt_swid_set(payload, 0);
5072 mlxsw_reg_ppcnt_local_port_set(payload, local_port);
5073 mlxsw_reg_ppcnt_pnat_set(payload, 0);
5074 mlxsw_reg_ppcnt_grp_set(payload, grp);
5075 mlxsw_reg_ppcnt_clr_set(payload, 0);
5076 mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc);
5077 }
5078
5079 /* PLIB - Port Local to InfiniBand Port
5080 * ------------------------------------
5081 * The PLIB register performs mapping from Local Port into InfiniBand Port.
5082 */
5083 #define MLXSW_REG_PLIB_ID 0x500A
5084 #define MLXSW_REG_PLIB_LEN 0x10
5085
5086 MLXSW_REG_DEFINE(plib, MLXSW_REG_PLIB_ID, MLXSW_REG_PLIB_LEN);
5087
5088 /* reg_plib_local_port
5089 * Local port number.
5090 * Access: Index
5091 */
5092 MLXSW_ITEM32(reg, plib, local_port, 0x00, 16, 8);
5093
5094 /* reg_plib_ib_port
5095 * InfiniBand port remapping for local_port.
5096 * Access: RW
5097 */
5098 MLXSW_ITEM32(reg, plib, ib_port, 0x00, 0, 8);
5099
5100 /* PPTB - Port Prio To Buffer Register
5101 * -----------------------------------
5102 * Configures the switch priority to buffer table.
5103 */
5104 #define MLXSW_REG_PPTB_ID 0x500B
5105 #define MLXSW_REG_PPTB_LEN 0x10
5106
5107 MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN);
5108
5109 enum {
5110 MLXSW_REG_PPTB_MM_UM,
5111 MLXSW_REG_PPTB_MM_UNICAST,
5112 MLXSW_REG_PPTB_MM_MULTICAST,
5113 };
5114
5115 /* reg_pptb_mm
5116 * Mapping mode.
5117 * 0 - Map both unicast and multicast packets to the same buffer.
5118 * 1 - Map only unicast packets.
5119 * 2 - Map only multicast packets.
5120 * Access: Index
5121 *
5122 * Note: SwitchX-2 only supports the first option.
5123 */
5124 MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2);
5125
5126 /* reg_pptb_local_port
5127 * Local port number.
5128 * Access: Index
5129 */
5130 MLXSW_ITEM32(reg, pptb, local_port, 0x00, 16, 8);
5131
5132 /* reg_pptb_um
5133 * Enables the update of the untagged_buf field.
5134 * Access: RW
5135 */
5136 MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1);
5137
5138 /* reg_pptb_pm
5139 * Enables the update of the prio_to_buff field.
5140 * Bit <i> is a flag for updating the mapping for switch priority <i>.
5141 * Access: RW
5142 */
5143 MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8);
5144
5145 /* reg_pptb_prio_to_buff
5146 * Mapping of switch priority <i> to one of the allocated receive port
5147 * buffers.
5148 * Access: RW
5149 */
5150 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4);
5151
5152 /* reg_pptb_pm_msb
5153 * Enables the update of the prio_to_buff field.
5154 * Bit <i> is a flag for updating the mapping for switch priority <i+8>.
5155 * Access: RW
5156 */
5157 MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8);
5158
5159 /* reg_pptb_untagged_buff
5160 * Mapping of untagged frames to one of the allocated receive port buffers.
5161 * Access: RW
5162 *
5163 * Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for
5164 * Spectrum, as it maps untagged packets based on the default switch priority.
5165 */
5166 MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4);
5167
5168 /* reg_pptb_prio_to_buff_msb
5169 * Mapping of switch priority <i+8> to one of the allocated receive port
5170 * buffers.
5171 * Access: RW
5172 */
5173 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4);
5174
5175 #define MLXSW_REG_PPTB_ALL_PRIO 0xFF
5176
mlxsw_reg_pptb_pack(char * payload,u8 local_port)5177 static inline void mlxsw_reg_pptb_pack(char *payload, u8 local_port)
5178 {
5179 MLXSW_REG_ZERO(pptb, payload);
5180 mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM);
5181 mlxsw_reg_pptb_local_port_set(payload, local_port);
5182 mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
5183 mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
5184 }
5185
mlxsw_reg_pptb_prio_to_buff_pack(char * payload,u8 prio,u8 buff)5186 static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio,
5187 u8 buff)
5188 {
5189 mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff);
5190 mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff);
5191 }
5192
5193 /* PBMC - Port Buffer Management Control Register
5194 * ----------------------------------------------
5195 * The PBMC register configures and retrieves the port packet buffer
5196 * allocation for different Prios, and the Pause threshold management.
5197 */
5198 #define MLXSW_REG_PBMC_ID 0x500C
5199 #define MLXSW_REG_PBMC_LEN 0x6C
5200
5201 MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN);
5202
5203 /* reg_pbmc_local_port
5204 * Local port number.
5205 * Access: Index
5206 */
5207 MLXSW_ITEM32(reg, pbmc, local_port, 0x00, 16, 8);
5208
5209 /* reg_pbmc_xoff_timer_value
5210 * When device generates a pause frame, it uses this value as the pause
5211 * timer (time for the peer port to pause in quota-512 bit time).
5212 * Access: RW
5213 */
5214 MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16);
5215
5216 /* reg_pbmc_xoff_refresh
5217 * The time before a new pause frame should be sent to refresh the pause RW
5218 * state. Using the same units as xoff_timer_value above (in quota-512 bit
5219 * time).
5220 * Access: RW
5221 */
5222 MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16);
5223
5224 #define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11
5225
5226 /* reg_pbmc_buf_lossy
5227 * The field indicates if the buffer is lossy.
5228 * 0 - Lossless
5229 * 1 - Lossy
5230 * Access: RW
5231 */
5232 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false);
5233
5234 /* reg_pbmc_buf_epsb
5235 * Eligible for Port Shared buffer.
5236 * If epsb is set, packets assigned to buffer are allowed to insert the port
5237 * shared buffer.
5238 * When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved.
5239 * Access: RW
5240 */
5241 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false);
5242
5243 /* reg_pbmc_buf_size
5244 * The part of the packet buffer array is allocated for the specific buffer.
5245 * Units are represented in cells.
5246 * Access: RW
5247 */
5248 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false);
5249
5250 /* reg_pbmc_buf_xoff_threshold
5251 * Once the amount of data in the buffer goes above this value, device
5252 * starts sending PFC frames for all priorities associated with the
5253 * buffer. Units are represented in cells. Reserved in case of lossy
5254 * buffer.
5255 * Access: RW
5256 *
5257 * Note: In Spectrum, reserved for buffer[9].
5258 */
5259 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16,
5260 0x08, 0x04, false);
5261
5262 /* reg_pbmc_buf_xon_threshold
5263 * When the amount of data in the buffer goes below this value, device
5264 * stops sending PFC frames for the priorities associated with the
5265 * buffer. Units are represented in cells. Reserved in case of lossy
5266 * buffer.
5267 * Access: RW
5268 *
5269 * Note: In Spectrum, reserved for buffer[9].
5270 */
5271 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16,
5272 0x08, 0x04, false);
5273
mlxsw_reg_pbmc_pack(char * payload,u8 local_port,u16 xoff_timer_value,u16 xoff_refresh)5274 static inline void mlxsw_reg_pbmc_pack(char *payload, u8 local_port,
5275 u16 xoff_timer_value, u16 xoff_refresh)
5276 {
5277 MLXSW_REG_ZERO(pbmc, payload);
5278 mlxsw_reg_pbmc_local_port_set(payload, local_port);
5279 mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value);
5280 mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh);
5281 }
5282
mlxsw_reg_pbmc_lossy_buffer_pack(char * payload,int buf_index,u16 size)5283 static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload,
5284 int buf_index,
5285 u16 size)
5286 {
5287 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1);
5288 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
5289 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
5290 }
5291
mlxsw_reg_pbmc_lossless_buffer_pack(char * payload,int buf_index,u16 size,u16 threshold)5292 static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload,
5293 int buf_index, u16 size,
5294 u16 threshold)
5295 {
5296 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0);
5297 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
5298 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
5299 mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold);
5300 mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold);
5301 }
5302
5303 /* PSPA - Port Switch Partition Allocation
5304 * ---------------------------------------
5305 * Controls the association of a port with a switch partition and enables
5306 * configuring ports as stacking ports.
5307 */
5308 #define MLXSW_REG_PSPA_ID 0x500D
5309 #define MLXSW_REG_PSPA_LEN 0x8
5310
5311 MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN);
5312
5313 /* reg_pspa_swid
5314 * Switch partition ID.
5315 * Access: RW
5316 */
5317 MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8);
5318
5319 /* reg_pspa_local_port
5320 * Local port number.
5321 * Access: Index
5322 */
5323 MLXSW_ITEM32(reg, pspa, local_port, 0x00, 16, 8);
5324
5325 /* reg_pspa_sub_port
5326 * Virtual port within the local port. Set to 0 when virtual ports are
5327 * disabled on the local port.
5328 * Access: Index
5329 */
5330 MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8);
5331
mlxsw_reg_pspa_pack(char * payload,u8 swid,u8 local_port)5332 static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u8 local_port)
5333 {
5334 MLXSW_REG_ZERO(pspa, payload);
5335 mlxsw_reg_pspa_swid_set(payload, swid);
5336 mlxsw_reg_pspa_local_port_set(payload, local_port);
5337 mlxsw_reg_pspa_sub_port_set(payload, 0);
5338 }
5339
5340 /* PPLR - Port Physical Loopback Register
5341 * --------------------------------------
5342 * This register allows configuration of the port's loopback mode.
5343 */
5344 #define MLXSW_REG_PPLR_ID 0x5018
5345 #define MLXSW_REG_PPLR_LEN 0x8
5346
5347 MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN);
5348
5349 /* reg_pplr_local_port
5350 * Local port number.
5351 * Access: Index
5352 */
5353 MLXSW_ITEM32(reg, pplr, local_port, 0x00, 16, 8);
5354
5355 /* Phy local loopback. When set the port's egress traffic is looped back
5356 * to the receiver and the port transmitter is disabled.
5357 */
5358 #define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1)
5359
5360 /* reg_pplr_lb_en
5361 * Loopback enable.
5362 * Access: RW
5363 */
5364 MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8);
5365
mlxsw_reg_pplr_pack(char * payload,u8 local_port,bool phy_local)5366 static inline void mlxsw_reg_pplr_pack(char *payload, u8 local_port,
5367 bool phy_local)
5368 {
5369 MLXSW_REG_ZERO(pplr, payload);
5370 mlxsw_reg_pplr_local_port_set(payload, local_port);
5371 mlxsw_reg_pplr_lb_en_set(payload,
5372 phy_local ?
5373 MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0);
5374 }
5375
5376 /* HTGT - Host Trap Group Table
5377 * ----------------------------
5378 * Configures the properties for forwarding to CPU.
5379 */
5380 #define MLXSW_REG_HTGT_ID 0x7002
5381 #define MLXSW_REG_HTGT_LEN 0x20
5382
5383 MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN);
5384
5385 /* reg_htgt_swid
5386 * Switch partition ID.
5387 * Access: Index
5388 */
5389 MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8);
5390
5391 #define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */
5392
5393 /* reg_htgt_type
5394 * CPU path type.
5395 * Access: RW
5396 */
5397 MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4);
5398
5399 enum mlxsw_reg_htgt_trap_group {
5400 MLXSW_REG_HTGT_TRAP_GROUP_EMAD,
5401 MLXSW_REG_HTGT_TRAP_GROUP_SX2_RX,
5402 MLXSW_REG_HTGT_TRAP_GROUP_SX2_CTRL,
5403 MLXSW_REG_HTGT_TRAP_GROUP_SP_STP,
5404 MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP,
5405 MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP,
5406 MLXSW_REG_HTGT_TRAP_GROUP_SP_IGMP,
5407 MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP,
5408 MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF,
5409 MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM,
5410 MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST,
5411 MLXSW_REG_HTGT_TRAP_GROUP_SP_ARP,
5412 MLXSW_REG_HTGT_TRAP_GROUP_SP_HOST_MISS,
5413 MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP,
5414 MLXSW_REG_HTGT_TRAP_GROUP_SP_REMOTE_ROUTE,
5415 MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME,
5416 MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP,
5417 MLXSW_REG_HTGT_TRAP_GROUP_SP_RPF,
5418 MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT,
5419 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6_MLD,
5420 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6_ND,
5421 MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR,
5422 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0,
5423 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1,
5424
5425 __MLXSW_REG_HTGT_TRAP_GROUP_MAX,
5426 MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1
5427 };
5428
5429 enum mlxsw_reg_htgt_discard_trap_group {
5430 MLXSW_REG_HTGT_DISCARD_TRAP_GROUP_BASE = MLXSW_REG_HTGT_TRAP_GROUP_MAX,
5431 MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS,
5432 };
5433
5434 /* reg_htgt_trap_group
5435 * Trap group number. User defined number specifying which trap groups
5436 * should be forwarded to the CPU. The mapping between trap IDs and trap
5437 * groups is configured using HPKT register.
5438 * Access: Index
5439 */
5440 MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8);
5441
5442 enum {
5443 MLXSW_REG_HTGT_POLICER_DISABLE,
5444 MLXSW_REG_HTGT_POLICER_ENABLE,
5445 };
5446
5447 /* reg_htgt_pide
5448 * Enable policer ID specified using 'pid' field.
5449 * Access: RW
5450 */
5451 MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1);
5452
5453 #define MLXSW_REG_HTGT_INVALID_POLICER 0xff
5454
5455 /* reg_htgt_pid
5456 * Policer ID for the trap group.
5457 * Access: RW
5458 */
5459 MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8);
5460
5461 #define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0
5462
5463 /* reg_htgt_mirror_action
5464 * Mirror action to use.
5465 * 0 - Trap to CPU.
5466 * 1 - Trap to CPU and mirror to a mirroring agent.
5467 * 2 - Mirror to a mirroring agent and do not trap to CPU.
5468 * Access: RW
5469 *
5470 * Note: Mirroring to a mirroring agent is only supported in Spectrum.
5471 */
5472 MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2);
5473
5474 /* reg_htgt_mirroring_agent
5475 * Mirroring agent.
5476 * Access: RW
5477 */
5478 MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3);
5479
5480 #define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0
5481
5482 /* reg_htgt_priority
5483 * Trap group priority.
5484 * In case a packet matches multiple classification rules, the packet will
5485 * only be trapped once, based on the trap ID associated with the group (via
5486 * register HPKT) with the highest priority.
5487 * Supported values are 0-7, with 7 represnting the highest priority.
5488 * Access: RW
5489 *
5490 * Note: In SwitchX-2 this field is ignored and the priority value is replaced
5491 * by the 'trap_group' field.
5492 */
5493 MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4);
5494
5495 #define MLXSW_REG_HTGT_DEFAULT_TC 7
5496
5497 /* reg_htgt_local_path_cpu_tclass
5498 * CPU ingress traffic class for the trap group.
5499 * Access: RW
5500 */
5501 MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6);
5502
5503 enum mlxsw_reg_htgt_local_path_rdq {
5504 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13,
5505 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14,
5506 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15,
5507 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15,
5508 };
5509 /* reg_htgt_local_path_rdq
5510 * Receive descriptor queue (RDQ) to use for the trap group.
5511 * Access: RW
5512 */
5513 MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6);
5514
mlxsw_reg_htgt_pack(char * payload,u8 group,u8 policer_id,u8 priority,u8 tc)5515 static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id,
5516 u8 priority, u8 tc)
5517 {
5518 MLXSW_REG_ZERO(htgt, payload);
5519
5520 if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) {
5521 mlxsw_reg_htgt_pide_set(payload,
5522 MLXSW_REG_HTGT_POLICER_DISABLE);
5523 } else {
5524 mlxsw_reg_htgt_pide_set(payload,
5525 MLXSW_REG_HTGT_POLICER_ENABLE);
5526 mlxsw_reg_htgt_pid_set(payload, policer_id);
5527 }
5528
5529 mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL);
5530 mlxsw_reg_htgt_trap_group_set(payload, group);
5531 mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU);
5532 mlxsw_reg_htgt_mirroring_agent_set(payload, 0);
5533 mlxsw_reg_htgt_priority_set(payload, priority);
5534 mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc);
5535 mlxsw_reg_htgt_local_path_rdq_set(payload, group);
5536 }
5537
5538 /* HPKT - Host Packet Trap
5539 * -----------------------
5540 * Configures trap IDs inside trap groups.
5541 */
5542 #define MLXSW_REG_HPKT_ID 0x7003
5543 #define MLXSW_REG_HPKT_LEN 0x10
5544
5545 MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN);
5546
5547 enum {
5548 MLXSW_REG_HPKT_ACK_NOT_REQUIRED,
5549 MLXSW_REG_HPKT_ACK_REQUIRED,
5550 };
5551
5552 /* reg_hpkt_ack
5553 * Require acknowledgements from the host for events.
5554 * If set, then the device will wait for the event it sent to be acknowledged
5555 * by the host. This option is only relevant for event trap IDs.
5556 * Access: RW
5557 *
5558 * Note: Currently not supported by firmware.
5559 */
5560 MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1);
5561
5562 enum mlxsw_reg_hpkt_action {
5563 MLXSW_REG_HPKT_ACTION_FORWARD,
5564 MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU,
5565 MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU,
5566 MLXSW_REG_HPKT_ACTION_DISCARD,
5567 MLXSW_REG_HPKT_ACTION_SOFT_DISCARD,
5568 MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD,
5569 MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU,
5570 MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15,
5571 };
5572
5573 /* reg_hpkt_action
5574 * Action to perform on packet when trapped.
5575 * 0 - No action. Forward to CPU based on switching rules.
5576 * 1 - Trap to CPU (CPU receives sole copy).
5577 * 2 - Mirror to CPU (CPU receives a replica of the packet).
5578 * 3 - Discard.
5579 * 4 - Soft discard (allow other traps to act on the packet).
5580 * 5 - Trap and soft discard (allow other traps to overwrite this trap).
5581 * 6 - Trap to CPU (CPU receives sole copy) and count it as error.
5582 * 15 - Restore the firmware's default action.
5583 * Access: RW
5584 *
5585 * Note: Must be set to 0 (forward) for event trap IDs, as they are already
5586 * addressed to the CPU.
5587 */
5588 MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3);
5589
5590 /* reg_hpkt_trap_group
5591 * Trap group to associate the trap with.
5592 * Access: RW
5593 */
5594 MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6);
5595
5596 /* reg_hpkt_trap_id
5597 * Trap ID.
5598 * Access: Index
5599 *
5600 * Note: A trap ID can only be associated with a single trap group. The device
5601 * will associate the trap ID with the last trap group configured.
5602 */
5603 MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 9);
5604
5605 enum {
5606 MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT,
5607 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER,
5608 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER,
5609 };
5610
5611 /* reg_hpkt_ctrl
5612 * Configure dedicated buffer resources for control packets.
5613 * Ignored by SwitchX-2.
5614 * 0 - Keep factory defaults.
5615 * 1 - Do not use control buffer for this trap ID.
5616 * 2 - Use control buffer for this trap ID.
5617 * Access: RW
5618 */
5619 MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2);
5620
mlxsw_reg_hpkt_pack(char * payload,u8 action,u16 trap_id,enum mlxsw_reg_htgt_trap_group trap_group,bool is_ctrl)5621 static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id,
5622 enum mlxsw_reg_htgt_trap_group trap_group,
5623 bool is_ctrl)
5624 {
5625 MLXSW_REG_ZERO(hpkt, payload);
5626 mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED);
5627 mlxsw_reg_hpkt_action_set(payload, action);
5628 mlxsw_reg_hpkt_trap_group_set(payload, trap_group);
5629 mlxsw_reg_hpkt_trap_id_set(payload, trap_id);
5630 mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ?
5631 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER :
5632 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER);
5633 }
5634
5635 /* RGCR - Router General Configuration Register
5636 * --------------------------------------------
5637 * The register is used for setting up the router configuration.
5638 */
5639 #define MLXSW_REG_RGCR_ID 0x8001
5640 #define MLXSW_REG_RGCR_LEN 0x28
5641
5642 MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN);
5643
5644 /* reg_rgcr_ipv4_en
5645 * IPv4 router enable.
5646 * Access: RW
5647 */
5648 MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1);
5649
5650 /* reg_rgcr_ipv6_en
5651 * IPv6 router enable.
5652 * Access: RW
5653 */
5654 MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1);
5655
5656 /* reg_rgcr_max_router_interfaces
5657 * Defines the maximum number of active router interfaces for all virtual
5658 * routers.
5659 * Access: RW
5660 */
5661 MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16);
5662
5663 /* reg_rgcr_usp
5664 * Update switch priority and packet color.
5665 * 0 - Preserve the value of Switch Priority and packet color.
5666 * 1 - Recalculate the value of Switch Priority and packet color.
5667 * Access: RW
5668 *
5669 * Note: Not supported by SwitchX and SwitchX-2.
5670 */
5671 MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1);
5672
5673 /* reg_rgcr_pcp_rw
5674 * Indicates how to handle the pcp_rewrite_en value:
5675 * 0 - Preserve the value of pcp_rewrite_en.
5676 * 2 - Disable PCP rewrite.
5677 * 3 - Enable PCP rewrite.
5678 * Access: RW
5679 *
5680 * Note: Not supported by SwitchX and SwitchX-2.
5681 */
5682 MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2);
5683
5684 /* reg_rgcr_activity_dis
5685 * Activity disable:
5686 * 0 - Activity will be set when an entry is hit (default).
5687 * 1 - Activity will not be set when an entry is hit.
5688 *
5689 * Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry
5690 * (RALUE).
5691 * Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host
5692 * Entry (RAUHT).
5693 * Bits 2:7 are reserved.
5694 * Access: RW
5695 *
5696 * Note: Not supported by SwitchX, SwitchX-2 and Switch-IB.
5697 */
5698 MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8);
5699
mlxsw_reg_rgcr_pack(char * payload,bool ipv4_en,bool ipv6_en)5700 static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en,
5701 bool ipv6_en)
5702 {
5703 MLXSW_REG_ZERO(rgcr, payload);
5704 mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en);
5705 mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en);
5706 }
5707
5708 /* RITR - Router Interface Table Register
5709 * --------------------------------------
5710 * The register is used to configure the router interface table.
5711 */
5712 #define MLXSW_REG_RITR_ID 0x8002
5713 #define MLXSW_REG_RITR_LEN 0x40
5714
5715 MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN);
5716
5717 /* reg_ritr_enable
5718 * Enables routing on the router interface.
5719 * Access: RW
5720 */
5721 MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1);
5722
5723 /* reg_ritr_ipv4
5724 * IPv4 routing enable. Enables routing of IPv4 traffic on the router
5725 * interface.
5726 * Access: RW
5727 */
5728 MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1);
5729
5730 /* reg_ritr_ipv6
5731 * IPv6 routing enable. Enables routing of IPv6 traffic on the router
5732 * interface.
5733 * Access: RW
5734 */
5735 MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1);
5736
5737 /* reg_ritr_ipv4_mc
5738 * IPv4 multicast routing enable.
5739 * Access: RW
5740 */
5741 MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1);
5742
5743 /* reg_ritr_ipv6_mc
5744 * IPv6 multicast routing enable.
5745 * Access: RW
5746 */
5747 MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1);
5748
5749 enum mlxsw_reg_ritr_if_type {
5750 /* VLAN interface. */
5751 MLXSW_REG_RITR_VLAN_IF,
5752 /* FID interface. */
5753 MLXSW_REG_RITR_FID_IF,
5754 /* Sub-port interface. */
5755 MLXSW_REG_RITR_SP_IF,
5756 /* Loopback Interface. */
5757 MLXSW_REG_RITR_LOOPBACK_IF,
5758 };
5759
5760 /* reg_ritr_type
5761 * Router interface type as per enum mlxsw_reg_ritr_if_type.
5762 * Access: RW
5763 */
5764 MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3);
5765
5766 enum {
5767 MLXSW_REG_RITR_RIF_CREATE,
5768 MLXSW_REG_RITR_RIF_DEL,
5769 };
5770
5771 /* reg_ritr_op
5772 * Opcode:
5773 * 0 - Create or edit RIF.
5774 * 1 - Delete RIF.
5775 * Reserved for SwitchX-2. For Spectrum, editing of interface properties
5776 * is not supported. An interface must be deleted and re-created in order
5777 * to update properties.
5778 * Access: WO
5779 */
5780 MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2);
5781
5782 /* reg_ritr_rif
5783 * Router interface index. A pointer to the Router Interface Table.
5784 * Access: Index
5785 */
5786 MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16);
5787
5788 /* reg_ritr_ipv4_fe
5789 * IPv4 Forwarding Enable.
5790 * Enables routing of IPv4 traffic on the router interface. When disabled,
5791 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
5792 * Not supported in SwitchX-2.
5793 * Access: RW
5794 */
5795 MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1);
5796
5797 /* reg_ritr_ipv6_fe
5798 * IPv6 Forwarding Enable.
5799 * Enables routing of IPv6 traffic on the router interface. When disabled,
5800 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
5801 * Not supported in SwitchX-2.
5802 * Access: RW
5803 */
5804 MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1);
5805
5806 /* reg_ritr_ipv4_mc_fe
5807 * IPv4 Multicast Forwarding Enable.
5808 * When disabled, forwarding is blocked but local traffic (traps and IP to me)
5809 * will be enabled.
5810 * Access: RW
5811 */
5812 MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1);
5813
5814 /* reg_ritr_ipv6_mc_fe
5815 * IPv6 Multicast Forwarding Enable.
5816 * When disabled, forwarding is blocked but local traffic (traps and IP to me)
5817 * will be enabled.
5818 * Access: RW
5819 */
5820 MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1);
5821
5822 /* reg_ritr_lb_en
5823 * Loop-back filter enable for unicast packets.
5824 * If the flag is set then loop-back filter for unicast packets is
5825 * implemented on the RIF. Multicast packets are always subject to
5826 * loop-back filtering.
5827 * Access: RW
5828 */
5829 MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1);
5830
5831 /* reg_ritr_virtual_router
5832 * Virtual router ID associated with the router interface.
5833 * Access: RW
5834 */
5835 MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16);
5836
5837 /* reg_ritr_mtu
5838 * Router interface MTU.
5839 * Access: RW
5840 */
5841 MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16);
5842
5843 /* reg_ritr_if_swid
5844 * Switch partition ID.
5845 * Access: RW
5846 */
5847 MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8);
5848
5849 /* reg_ritr_if_mac
5850 * Router interface MAC address.
5851 * In Spectrum, all MAC addresses must have the same 38 MSBits.
5852 * Access: RW
5853 */
5854 MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6);
5855
5856 /* reg_ritr_if_vrrp_id_ipv6
5857 * VRRP ID for IPv6
5858 * Note: Reserved for RIF types other than VLAN, FID and Sub-port.
5859 * Access: RW
5860 */
5861 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8);
5862
5863 /* reg_ritr_if_vrrp_id_ipv4
5864 * VRRP ID for IPv4
5865 * Note: Reserved for RIF types other than VLAN, FID and Sub-port.
5866 * Access: RW
5867 */
5868 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8);
5869
5870 /* VLAN Interface */
5871
5872 /* reg_ritr_vlan_if_vid
5873 * VLAN ID.
5874 * Access: RW
5875 */
5876 MLXSW_ITEM32(reg, ritr, vlan_if_vid, 0x08, 0, 12);
5877
5878 /* FID Interface */
5879
5880 /* reg_ritr_fid_if_fid
5881 * Filtering ID. Used to connect a bridge to the router. Only FIDs from
5882 * the vFID range are supported.
5883 * Access: RW
5884 */
5885 MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16);
5886
mlxsw_reg_ritr_fid_set(char * payload,enum mlxsw_reg_ritr_if_type rif_type,u16 fid)5887 static inline void mlxsw_reg_ritr_fid_set(char *payload,
5888 enum mlxsw_reg_ritr_if_type rif_type,
5889 u16 fid)
5890 {
5891 if (rif_type == MLXSW_REG_RITR_FID_IF)
5892 mlxsw_reg_ritr_fid_if_fid_set(payload, fid);
5893 else
5894 mlxsw_reg_ritr_vlan_if_vid_set(payload, fid);
5895 }
5896
5897 /* Sub-port Interface */
5898
5899 /* reg_ritr_sp_if_lag
5900 * LAG indication. When this bit is set the system_port field holds the
5901 * LAG identifier.
5902 * Access: RW
5903 */
5904 MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1);
5905
5906 /* reg_ritr_sp_system_port
5907 * Port unique indentifier. When lag bit is set, this field holds the
5908 * lag_id in bits 0:9.
5909 * Access: RW
5910 */
5911 MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16);
5912
5913 /* reg_ritr_sp_if_vid
5914 * VLAN ID.
5915 * Access: RW
5916 */
5917 MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12);
5918
5919 /* Loopback Interface */
5920
5921 enum mlxsw_reg_ritr_loopback_protocol {
5922 /* IPinIP IPv4 underlay Unicast */
5923 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4,
5924 /* IPinIP IPv6 underlay Unicast */
5925 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6,
5926 /* IPinIP generic - used for Spectrum-2 underlay RIF */
5927 MLXSW_REG_RITR_LOOPBACK_GENERIC,
5928 };
5929
5930 /* reg_ritr_loopback_protocol
5931 * Access: RW
5932 */
5933 MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4);
5934
5935 enum mlxsw_reg_ritr_loopback_ipip_type {
5936 /* Tunnel is IPinIP. */
5937 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP,
5938 /* Tunnel is GRE, no key. */
5939 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP,
5940 /* Tunnel is GRE, with a key. */
5941 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP,
5942 };
5943
5944 /* reg_ritr_loopback_ipip_type
5945 * Encapsulation type.
5946 * Access: RW
5947 */
5948 MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4);
5949
5950 enum mlxsw_reg_ritr_loopback_ipip_options {
5951 /* The key is defined by gre_key. */
5952 MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET,
5953 };
5954
5955 /* reg_ritr_loopback_ipip_options
5956 * Access: RW
5957 */
5958 MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4);
5959
5960 /* reg_ritr_loopback_ipip_uvr
5961 * Underlay Virtual Router ID.
5962 * Range is 0..cap_max_virtual_routers-1.
5963 * Reserved for Spectrum-2.
5964 * Access: RW
5965 */
5966 MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16);
5967
5968 /* reg_ritr_loopback_ipip_underlay_rif
5969 * Underlay ingress router interface.
5970 * Reserved for Spectrum.
5971 * Access: RW
5972 */
5973 MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16);
5974
5975 /* reg_ritr_loopback_ipip_usip*
5976 * Encapsulation Underlay source IP.
5977 * Access: RW
5978 */
5979 MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16);
5980 MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32);
5981
5982 /* reg_ritr_loopback_ipip_gre_key
5983 * GRE Key.
5984 * Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP.
5985 * Access: RW
5986 */
5987 MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32);
5988
5989 /* Shared between ingress/egress */
5990 enum mlxsw_reg_ritr_counter_set_type {
5991 /* No Count. */
5992 MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0,
5993 /* Basic. Used for router interfaces, counting the following:
5994 * - Error and Discard counters.
5995 * - Unicast, Multicast and Broadcast counters. Sharing the
5996 * same set of counters for the different type of traffic
5997 * (IPv4, IPv6 and mpls).
5998 */
5999 MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9,
6000 };
6001
6002 /* reg_ritr_ingress_counter_index
6003 * Counter Index for flow counter.
6004 * Access: RW
6005 */
6006 MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24);
6007
6008 /* reg_ritr_ingress_counter_set_type
6009 * Igress Counter Set Type for router interface counter.
6010 * Access: RW
6011 */
6012 MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8);
6013
6014 /* reg_ritr_egress_counter_index
6015 * Counter Index for flow counter.
6016 * Access: RW
6017 */
6018 MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24);
6019
6020 /* reg_ritr_egress_counter_set_type
6021 * Egress Counter Set Type for router interface counter.
6022 * Access: RW
6023 */
6024 MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8);
6025
mlxsw_reg_ritr_counter_pack(char * payload,u32 index,bool enable,bool egress)6026 static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index,
6027 bool enable, bool egress)
6028 {
6029 enum mlxsw_reg_ritr_counter_set_type set_type;
6030
6031 if (enable)
6032 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC;
6033 else
6034 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT;
6035 mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type);
6036
6037 if (egress)
6038 mlxsw_reg_ritr_egress_counter_index_set(payload, index);
6039 else
6040 mlxsw_reg_ritr_ingress_counter_index_set(payload, index);
6041 }
6042
mlxsw_reg_ritr_rif_pack(char * payload,u16 rif)6043 static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif)
6044 {
6045 MLXSW_REG_ZERO(ritr, payload);
6046 mlxsw_reg_ritr_rif_set(payload, rif);
6047 }
6048
mlxsw_reg_ritr_sp_if_pack(char * payload,bool lag,u16 system_port,u16 vid)6049 static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag,
6050 u16 system_port, u16 vid)
6051 {
6052 mlxsw_reg_ritr_sp_if_lag_set(payload, lag);
6053 mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port);
6054 mlxsw_reg_ritr_sp_if_vid_set(payload, vid);
6055 }
6056
mlxsw_reg_ritr_pack(char * payload,bool enable,enum mlxsw_reg_ritr_if_type type,u16 rif,u16 vr_id,u16 mtu)6057 static inline void mlxsw_reg_ritr_pack(char *payload, bool enable,
6058 enum mlxsw_reg_ritr_if_type type,
6059 u16 rif, u16 vr_id, u16 mtu)
6060 {
6061 bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL;
6062
6063 MLXSW_REG_ZERO(ritr, payload);
6064 mlxsw_reg_ritr_enable_set(payload, enable);
6065 mlxsw_reg_ritr_ipv4_set(payload, 1);
6066 mlxsw_reg_ritr_ipv6_set(payload, 1);
6067 mlxsw_reg_ritr_ipv4_mc_set(payload, 1);
6068 mlxsw_reg_ritr_ipv6_mc_set(payload, 1);
6069 mlxsw_reg_ritr_type_set(payload, type);
6070 mlxsw_reg_ritr_op_set(payload, op);
6071 mlxsw_reg_ritr_rif_set(payload, rif);
6072 mlxsw_reg_ritr_ipv4_fe_set(payload, 1);
6073 mlxsw_reg_ritr_ipv6_fe_set(payload, 1);
6074 mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1);
6075 mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1);
6076 mlxsw_reg_ritr_lb_en_set(payload, 1);
6077 mlxsw_reg_ritr_virtual_router_set(payload, vr_id);
6078 mlxsw_reg_ritr_mtu_set(payload, mtu);
6079 }
6080
mlxsw_reg_ritr_mac_pack(char * payload,const char * mac)6081 static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac)
6082 {
6083 mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac);
6084 }
6085
6086 static inline void
mlxsw_reg_ritr_loopback_ipip_common_pack(char * payload,enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,enum mlxsw_reg_ritr_loopback_ipip_options options,u16 uvr_id,u16 underlay_rif,u32 gre_key)6087 mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload,
6088 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
6089 enum mlxsw_reg_ritr_loopback_ipip_options options,
6090 u16 uvr_id, u16 underlay_rif, u32 gre_key)
6091 {
6092 mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type);
6093 mlxsw_reg_ritr_loopback_ipip_options_set(payload, options);
6094 mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id);
6095 mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif);
6096 mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key);
6097 }
6098
6099 static inline void
mlxsw_reg_ritr_loopback_ipip4_pack(char * payload,enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,enum mlxsw_reg_ritr_loopback_ipip_options options,u16 uvr_id,u16 underlay_rif,u32 usip,u32 gre_key)6100 mlxsw_reg_ritr_loopback_ipip4_pack(char *payload,
6101 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
6102 enum mlxsw_reg_ritr_loopback_ipip_options options,
6103 u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key)
6104 {
6105 mlxsw_reg_ritr_loopback_protocol_set(payload,
6106 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4);
6107 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options,
6108 uvr_id, underlay_rif, gre_key);
6109 mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip);
6110 }
6111
6112 /* RTAR - Router TCAM Allocation Register
6113 * --------------------------------------
6114 * This register is used for allocation of regions in the TCAM table.
6115 */
6116 #define MLXSW_REG_RTAR_ID 0x8004
6117 #define MLXSW_REG_RTAR_LEN 0x20
6118
6119 MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN);
6120
6121 enum mlxsw_reg_rtar_op {
6122 MLXSW_REG_RTAR_OP_ALLOCATE,
6123 MLXSW_REG_RTAR_OP_RESIZE,
6124 MLXSW_REG_RTAR_OP_DEALLOCATE,
6125 };
6126
6127 /* reg_rtar_op
6128 * Access: WO
6129 */
6130 MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4);
6131
6132 enum mlxsw_reg_rtar_key_type {
6133 MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1,
6134 MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3
6135 };
6136
6137 /* reg_rtar_key_type
6138 * TCAM key type for the region.
6139 * Access: WO
6140 */
6141 MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8);
6142
6143 /* reg_rtar_region_size
6144 * TCAM region size. When allocating/resizing this is the requested
6145 * size, the response is the actual size.
6146 * Note: Actual size may be larger than requested.
6147 * Reserved for op = Deallocate
6148 * Access: WO
6149 */
6150 MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16);
6151
mlxsw_reg_rtar_pack(char * payload,enum mlxsw_reg_rtar_op op,enum mlxsw_reg_rtar_key_type key_type,u16 region_size)6152 static inline void mlxsw_reg_rtar_pack(char *payload,
6153 enum mlxsw_reg_rtar_op op,
6154 enum mlxsw_reg_rtar_key_type key_type,
6155 u16 region_size)
6156 {
6157 MLXSW_REG_ZERO(rtar, payload);
6158 mlxsw_reg_rtar_op_set(payload, op);
6159 mlxsw_reg_rtar_key_type_set(payload, key_type);
6160 mlxsw_reg_rtar_region_size_set(payload, region_size);
6161 }
6162
6163 /* RATR - Router Adjacency Table Register
6164 * --------------------------------------
6165 * The RATR register is used to configure the Router Adjacency (next-hop)
6166 * Table.
6167 */
6168 #define MLXSW_REG_RATR_ID 0x8008
6169 #define MLXSW_REG_RATR_LEN 0x2C
6170
6171 MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN);
6172
6173 enum mlxsw_reg_ratr_op {
6174 /* Read */
6175 MLXSW_REG_RATR_OP_QUERY_READ = 0,
6176 /* Read and clear activity */
6177 MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2,
6178 /* Write Adjacency entry */
6179 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1,
6180 /* Write Adjacency entry only if the activity is cleared.
6181 * The write may not succeed if the activity is set. There is not
6182 * direct feedback if the write has succeeded or not, however
6183 * the get will reveal the actual entry (SW can compare the get
6184 * response to the set command).
6185 */
6186 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3,
6187 };
6188
6189 /* reg_ratr_op
6190 * Note that Write operation may also be used for updating
6191 * counter_set_type and counter_index. In this case all other
6192 * fields must not be updated.
6193 * Access: OP
6194 */
6195 MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4);
6196
6197 /* reg_ratr_v
6198 * Valid bit. Indicates if the adjacency entry is valid.
6199 * Note: the device may need some time before reusing an invalidated
6200 * entry. During this time the entry can not be reused. It is
6201 * recommended to use another entry before reusing an invalidated
6202 * entry (e.g. software can put it at the end of the list for
6203 * reusing). Trying to access an invalidated entry not yet cleared
6204 * by the device results with failure indicating "Try Again" status.
6205 * When valid is '0' then egress_router_interface,trap_action,
6206 * adjacency_parameters and counters are reserved
6207 * Access: RW
6208 */
6209 MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1);
6210
6211 /* reg_ratr_a
6212 * Activity. Set for new entries. Set if a packet lookup has hit on
6213 * the specific entry. To clear the a bit, use "clear activity".
6214 * Access: RO
6215 */
6216 MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1);
6217
6218 enum mlxsw_reg_ratr_type {
6219 /* Ethernet */
6220 MLXSW_REG_RATR_TYPE_ETHERNET,
6221 /* IPoIB Unicast without GRH.
6222 * Reserved for Spectrum.
6223 */
6224 MLXSW_REG_RATR_TYPE_IPOIB_UC,
6225 /* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast
6226 * adjacency).
6227 * Reserved for Spectrum.
6228 */
6229 MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH,
6230 /* IPoIB Multicast.
6231 * Reserved for Spectrum.
6232 */
6233 MLXSW_REG_RATR_TYPE_IPOIB_MC,
6234 /* MPLS.
6235 * Reserved for SwitchX/-2.
6236 */
6237 MLXSW_REG_RATR_TYPE_MPLS,
6238 /* IPinIP Encap.
6239 * Reserved for SwitchX/-2.
6240 */
6241 MLXSW_REG_RATR_TYPE_IPIP,
6242 };
6243
6244 /* reg_ratr_type
6245 * Adjacency entry type.
6246 * Access: RW
6247 */
6248 MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4);
6249
6250 /* reg_ratr_adjacency_index_low
6251 * Bits 15:0 of index into the adjacency table.
6252 * For SwitchX and SwitchX-2, the adjacency table is linear and
6253 * used for adjacency entries only.
6254 * For Spectrum, the index is to the KVD linear.
6255 * Access: Index
6256 */
6257 MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16);
6258
6259 /* reg_ratr_egress_router_interface
6260 * Range is 0 .. cap_max_router_interfaces - 1
6261 * Access: RW
6262 */
6263 MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16);
6264
6265 enum mlxsw_reg_ratr_trap_action {
6266 MLXSW_REG_RATR_TRAP_ACTION_NOP,
6267 MLXSW_REG_RATR_TRAP_ACTION_TRAP,
6268 MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU,
6269 MLXSW_REG_RATR_TRAP_ACTION_MIRROR,
6270 MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS,
6271 };
6272
6273 /* reg_ratr_trap_action
6274 * see mlxsw_reg_ratr_trap_action
6275 * Access: RW
6276 */
6277 MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4);
6278
6279 /* reg_ratr_adjacency_index_high
6280 * Bits 23:16 of the adjacency_index.
6281 * Access: Index
6282 */
6283 MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8);
6284
6285 enum mlxsw_reg_ratr_trap_id {
6286 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0,
6287 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1,
6288 };
6289
6290 /* reg_ratr_trap_id
6291 * Trap ID to be reported to CPU.
6292 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
6293 * For trap_action of NOP, MIRROR and DISCARD_ERROR
6294 * Access: RW
6295 */
6296 MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8);
6297
6298 /* reg_ratr_eth_destination_mac
6299 * MAC address of the destination next-hop.
6300 * Access: RW
6301 */
6302 MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6);
6303
6304 enum mlxsw_reg_ratr_ipip_type {
6305 /* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */
6306 MLXSW_REG_RATR_IPIP_TYPE_IPV4,
6307 /* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */
6308 MLXSW_REG_RATR_IPIP_TYPE_IPV6,
6309 };
6310
6311 /* reg_ratr_ipip_type
6312 * Underlay destination ip type.
6313 * Note: the type field must match the protocol of the router interface.
6314 * Access: RW
6315 */
6316 MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4);
6317
6318 /* reg_ratr_ipip_ipv4_udip
6319 * Underlay ipv4 dip.
6320 * Reserved when ipip_type is IPv6.
6321 * Access: RW
6322 */
6323 MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32);
6324
6325 /* reg_ratr_ipip_ipv6_ptr
6326 * Pointer to IPv6 underlay destination ip address.
6327 * For Spectrum: Pointer to KVD linear space.
6328 * Access: RW
6329 */
6330 MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24);
6331
6332 enum mlxsw_reg_flow_counter_set_type {
6333 /* No count */
6334 MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00,
6335 /* Count packets and bytes */
6336 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03,
6337 /* Count only packets */
6338 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05,
6339 };
6340
6341 /* reg_ratr_counter_set_type
6342 * Counter set type for flow counters
6343 * Access: RW
6344 */
6345 MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8);
6346
6347 /* reg_ratr_counter_index
6348 * Counter index for flow counters
6349 * Access: RW
6350 */
6351 MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24);
6352
6353 static inline void
mlxsw_reg_ratr_pack(char * payload,enum mlxsw_reg_ratr_op op,bool valid,enum mlxsw_reg_ratr_type type,u32 adjacency_index,u16 egress_rif)6354 mlxsw_reg_ratr_pack(char *payload,
6355 enum mlxsw_reg_ratr_op op, bool valid,
6356 enum mlxsw_reg_ratr_type type,
6357 u32 adjacency_index, u16 egress_rif)
6358 {
6359 MLXSW_REG_ZERO(ratr, payload);
6360 mlxsw_reg_ratr_op_set(payload, op);
6361 mlxsw_reg_ratr_v_set(payload, valid);
6362 mlxsw_reg_ratr_type_set(payload, type);
6363 mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index);
6364 mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16);
6365 mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif);
6366 }
6367
mlxsw_reg_ratr_eth_entry_pack(char * payload,const char * dest_mac)6368 static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload,
6369 const char *dest_mac)
6370 {
6371 mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac);
6372 }
6373
mlxsw_reg_ratr_ipip4_entry_pack(char * payload,u32 ipv4_udip)6374 static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip)
6375 {
6376 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4);
6377 mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip);
6378 }
6379
mlxsw_reg_ratr_counter_pack(char * payload,u64 counter_index,bool counter_enable)6380 static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index,
6381 bool counter_enable)
6382 {
6383 enum mlxsw_reg_flow_counter_set_type set_type;
6384
6385 if (counter_enable)
6386 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES;
6387 else
6388 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT;
6389
6390 mlxsw_reg_ratr_counter_index_set(payload, counter_index);
6391 mlxsw_reg_ratr_counter_set_type_set(payload, set_type);
6392 }
6393
6394 /* RDPM - Router DSCP to Priority Mapping
6395 * --------------------------------------
6396 * Controls the mapping from DSCP field to switch priority on routed packets
6397 */
6398 #define MLXSW_REG_RDPM_ID 0x8009
6399 #define MLXSW_REG_RDPM_BASE_LEN 0x00
6400 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01
6401 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64
6402 #define MLXSW_REG_RDPM_LEN 0x40
6403 #define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \
6404 MLXSW_REG_RDPM_LEN - \
6405 MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN)
6406
6407 MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN);
6408
6409 /* reg_dscp_entry_e
6410 * Enable update of the specific entry
6411 * Access: Index
6412 */
6413 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1,
6414 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
6415
6416 /* reg_dscp_entry_prio
6417 * Switch Priority
6418 * Access: RW
6419 */
6420 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4,
6421 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
6422
mlxsw_reg_rdpm_pack(char * payload,unsigned short index,u8 prio)6423 static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index,
6424 u8 prio)
6425 {
6426 mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1);
6427 mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio);
6428 }
6429
6430 /* RICNT - Router Interface Counter Register
6431 * -----------------------------------------
6432 * The RICNT register retrieves per port performance counters
6433 */
6434 #define MLXSW_REG_RICNT_ID 0x800B
6435 #define MLXSW_REG_RICNT_LEN 0x100
6436
6437 MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN);
6438
6439 /* reg_ricnt_counter_index
6440 * Counter index
6441 * Access: RW
6442 */
6443 MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24);
6444
6445 enum mlxsw_reg_ricnt_counter_set_type {
6446 /* No Count. */
6447 MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00,
6448 /* Basic. Used for router interfaces, counting the following:
6449 * - Error and Discard counters.
6450 * - Unicast, Multicast and Broadcast counters. Sharing the
6451 * same set of counters for the different type of traffic
6452 * (IPv4, IPv6 and mpls).
6453 */
6454 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09,
6455 };
6456
6457 /* reg_ricnt_counter_set_type
6458 * Counter Set Type for router interface counter
6459 * Access: RW
6460 */
6461 MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8);
6462
6463 enum mlxsw_reg_ricnt_opcode {
6464 /* Nop. Supported only for read access*/
6465 MLXSW_REG_RICNT_OPCODE_NOP = 0x00,
6466 /* Clear. Setting the clr bit will reset the counter value for
6467 * all counters of the specified Router Interface.
6468 */
6469 MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08,
6470 };
6471
6472 /* reg_ricnt_opcode
6473 * Opcode
6474 * Access: RW
6475 */
6476 MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4);
6477
6478 /* reg_ricnt_good_unicast_packets
6479 * good unicast packets.
6480 * Access: RW
6481 */
6482 MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64);
6483
6484 /* reg_ricnt_good_multicast_packets
6485 * good multicast packets.
6486 * Access: RW
6487 */
6488 MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64);
6489
6490 /* reg_ricnt_good_broadcast_packets
6491 * good broadcast packets
6492 * Access: RW
6493 */
6494 MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64);
6495
6496 /* reg_ricnt_good_unicast_bytes
6497 * A count of L3 data and padding octets not including L2 headers
6498 * for good unicast frames.
6499 * Access: RW
6500 */
6501 MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64);
6502
6503 /* reg_ricnt_good_multicast_bytes
6504 * A count of L3 data and padding octets not including L2 headers
6505 * for good multicast frames.
6506 * Access: RW
6507 */
6508 MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64);
6509
6510 /* reg_ritr_good_broadcast_bytes
6511 * A count of L3 data and padding octets not including L2 headers
6512 * for good broadcast frames.
6513 * Access: RW
6514 */
6515 MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64);
6516
6517 /* reg_ricnt_error_packets
6518 * A count of errored frames that do not pass the router checks.
6519 * Access: RW
6520 */
6521 MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64);
6522
6523 /* reg_ricnt_discrad_packets
6524 * A count of non-errored frames that do not pass the router checks.
6525 * Access: RW
6526 */
6527 MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64);
6528
6529 /* reg_ricnt_error_bytes
6530 * A count of L3 data and padding octets not including L2 headers
6531 * for errored frames.
6532 * Access: RW
6533 */
6534 MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64);
6535
6536 /* reg_ricnt_discard_bytes
6537 * A count of L3 data and padding octets not including L2 headers
6538 * for non-errored frames that do not pass the router checks.
6539 * Access: RW
6540 */
6541 MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64);
6542
mlxsw_reg_ricnt_pack(char * payload,u32 index,enum mlxsw_reg_ricnt_opcode op)6543 static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index,
6544 enum mlxsw_reg_ricnt_opcode op)
6545 {
6546 MLXSW_REG_ZERO(ricnt, payload);
6547 mlxsw_reg_ricnt_op_set(payload, op);
6548 mlxsw_reg_ricnt_counter_index_set(payload, index);
6549 mlxsw_reg_ricnt_counter_set_type_set(payload,
6550 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC);
6551 }
6552
6553 /* RRCR - Router Rules Copy Register Layout
6554 * ----------------------------------------
6555 * This register is used for moving and copying route entry rules.
6556 */
6557 #define MLXSW_REG_RRCR_ID 0x800F
6558 #define MLXSW_REG_RRCR_LEN 0x24
6559
6560 MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN);
6561
6562 enum mlxsw_reg_rrcr_op {
6563 /* Move rules */
6564 MLXSW_REG_RRCR_OP_MOVE,
6565 /* Copy rules */
6566 MLXSW_REG_RRCR_OP_COPY,
6567 };
6568
6569 /* reg_rrcr_op
6570 * Access: WO
6571 */
6572 MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4);
6573
6574 /* reg_rrcr_offset
6575 * Offset within the region from which to copy/move.
6576 * Access: Index
6577 */
6578 MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16);
6579
6580 /* reg_rrcr_size
6581 * The number of rules to copy/move.
6582 * Access: WO
6583 */
6584 MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16);
6585
6586 /* reg_rrcr_table_id
6587 * Identifier of the table on which to perform the operation. Encoding is the
6588 * same as in RTAR.key_type
6589 * Access: Index
6590 */
6591 MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4);
6592
6593 /* reg_rrcr_dest_offset
6594 * Offset within the region to which to copy/move
6595 * Access: Index
6596 */
6597 MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16);
6598
mlxsw_reg_rrcr_pack(char * payload,enum mlxsw_reg_rrcr_op op,u16 offset,u16 size,enum mlxsw_reg_rtar_key_type table_id,u16 dest_offset)6599 static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op,
6600 u16 offset, u16 size,
6601 enum mlxsw_reg_rtar_key_type table_id,
6602 u16 dest_offset)
6603 {
6604 MLXSW_REG_ZERO(rrcr, payload);
6605 mlxsw_reg_rrcr_op_set(payload, op);
6606 mlxsw_reg_rrcr_offset_set(payload, offset);
6607 mlxsw_reg_rrcr_size_set(payload, size);
6608 mlxsw_reg_rrcr_table_id_set(payload, table_id);
6609 mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset);
6610 }
6611
6612 /* RALTA - Router Algorithmic LPM Tree Allocation Register
6613 * -------------------------------------------------------
6614 * RALTA is used to allocate the LPM trees of the SHSPM method.
6615 */
6616 #define MLXSW_REG_RALTA_ID 0x8010
6617 #define MLXSW_REG_RALTA_LEN 0x04
6618
6619 MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN);
6620
6621 /* reg_ralta_op
6622 * opcode (valid for Write, must be 0 on Read)
6623 * 0 - allocate a tree
6624 * 1 - deallocate a tree
6625 * Access: OP
6626 */
6627 MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2);
6628
6629 enum mlxsw_reg_ralxx_protocol {
6630 MLXSW_REG_RALXX_PROTOCOL_IPV4,
6631 MLXSW_REG_RALXX_PROTOCOL_IPV6,
6632 };
6633
6634 /* reg_ralta_protocol
6635 * Protocol.
6636 * Deallocation opcode: Reserved.
6637 * Access: RW
6638 */
6639 MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4);
6640
6641 /* reg_ralta_tree_id
6642 * An identifier (numbered from 1..cap_shspm_max_trees-1) representing
6643 * the tree identifier (managed by software).
6644 * Note that tree_id 0 is allocated for a default-route tree.
6645 * Access: Index
6646 */
6647 MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8);
6648
mlxsw_reg_ralta_pack(char * payload,bool alloc,enum mlxsw_reg_ralxx_protocol protocol,u8 tree_id)6649 static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc,
6650 enum mlxsw_reg_ralxx_protocol protocol,
6651 u8 tree_id)
6652 {
6653 MLXSW_REG_ZERO(ralta, payload);
6654 mlxsw_reg_ralta_op_set(payload, !alloc);
6655 mlxsw_reg_ralta_protocol_set(payload, protocol);
6656 mlxsw_reg_ralta_tree_id_set(payload, tree_id);
6657 }
6658
6659 /* RALST - Router Algorithmic LPM Structure Tree Register
6660 * ------------------------------------------------------
6661 * RALST is used to set and query the structure of an LPM tree.
6662 * The structure of the tree must be sorted as a sorted binary tree, while
6663 * each node is a bin that is tagged as the length of the prefixes the lookup
6664 * will refer to. Therefore, bin X refers to a set of entries with prefixes
6665 * of X bits to match with the destination address. The bin 0 indicates
6666 * the default action, when there is no match of any prefix.
6667 */
6668 #define MLXSW_REG_RALST_ID 0x8011
6669 #define MLXSW_REG_RALST_LEN 0x104
6670
6671 MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN);
6672
6673 /* reg_ralst_root_bin
6674 * The bin number of the root bin.
6675 * 0<root_bin=<(length of IP address)
6676 * For a default-route tree configure 0xff
6677 * Access: RW
6678 */
6679 MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8);
6680
6681 /* reg_ralst_tree_id
6682 * Tree identifier numbered from 1..(cap_shspm_max_trees-1).
6683 * Access: Index
6684 */
6685 MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8);
6686
6687 #define MLXSW_REG_RALST_BIN_NO_CHILD 0xff
6688 #define MLXSW_REG_RALST_BIN_OFFSET 0x04
6689 #define MLXSW_REG_RALST_BIN_COUNT 128
6690
6691 /* reg_ralst_left_child_bin
6692 * Holding the children of the bin according to the stored tree's structure.
6693 * For trees composed of less than 4 blocks, the bins in excess are reserved.
6694 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
6695 * Access: RW
6696 */
6697 MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false);
6698
6699 /* reg_ralst_right_child_bin
6700 * Holding the children of the bin according to the stored tree's structure.
6701 * For trees composed of less than 4 blocks, the bins in excess are reserved.
6702 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
6703 * Access: RW
6704 */
6705 MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00,
6706 false);
6707
mlxsw_reg_ralst_pack(char * payload,u8 root_bin,u8 tree_id)6708 static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id)
6709 {
6710 MLXSW_REG_ZERO(ralst, payload);
6711
6712 /* Initialize all bins to have no left or right child */
6713 memset(payload + MLXSW_REG_RALST_BIN_OFFSET,
6714 MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2);
6715
6716 mlxsw_reg_ralst_root_bin_set(payload, root_bin);
6717 mlxsw_reg_ralst_tree_id_set(payload, tree_id);
6718 }
6719
mlxsw_reg_ralst_bin_pack(char * payload,u8 bin_number,u8 left_child_bin,u8 right_child_bin)6720 static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number,
6721 u8 left_child_bin,
6722 u8 right_child_bin)
6723 {
6724 int bin_index = bin_number - 1;
6725
6726 mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin);
6727 mlxsw_reg_ralst_right_child_bin_set(payload, bin_index,
6728 right_child_bin);
6729 }
6730
6731 /* RALTB - Router Algorithmic LPM Tree Binding Register
6732 * ----------------------------------------------------
6733 * RALTB is used to bind virtual router and protocol to an allocated LPM tree.
6734 */
6735 #define MLXSW_REG_RALTB_ID 0x8012
6736 #define MLXSW_REG_RALTB_LEN 0x04
6737
6738 MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN);
6739
6740 /* reg_raltb_virtual_router
6741 * Virtual Router ID
6742 * Range is 0..cap_max_virtual_routers-1
6743 * Access: Index
6744 */
6745 MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16);
6746
6747 /* reg_raltb_protocol
6748 * Protocol.
6749 * Access: Index
6750 */
6751 MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4);
6752
6753 /* reg_raltb_tree_id
6754 * Tree to be used for the {virtual_router, protocol}
6755 * Tree identifier numbered from 1..(cap_shspm_max_trees-1).
6756 * By default, all Unicast IPv4 and IPv6 are bound to tree_id 0.
6757 * Access: RW
6758 */
6759 MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8);
6760
mlxsw_reg_raltb_pack(char * payload,u16 virtual_router,enum mlxsw_reg_ralxx_protocol protocol,u8 tree_id)6761 static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router,
6762 enum mlxsw_reg_ralxx_protocol protocol,
6763 u8 tree_id)
6764 {
6765 MLXSW_REG_ZERO(raltb, payload);
6766 mlxsw_reg_raltb_virtual_router_set(payload, virtual_router);
6767 mlxsw_reg_raltb_protocol_set(payload, protocol);
6768 mlxsw_reg_raltb_tree_id_set(payload, tree_id);
6769 }
6770
6771 /* RALUE - Router Algorithmic LPM Unicast Entry Register
6772 * -----------------------------------------------------
6773 * RALUE is used to configure and query LPM entries that serve
6774 * the Unicast protocols.
6775 */
6776 #define MLXSW_REG_RALUE_ID 0x8013
6777 #define MLXSW_REG_RALUE_LEN 0x38
6778
6779 MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN);
6780
6781 /* reg_ralue_protocol
6782 * Protocol.
6783 * Access: Index
6784 */
6785 MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4);
6786
6787 enum mlxsw_reg_ralue_op {
6788 /* Read operation. If entry doesn't exist, the operation fails. */
6789 MLXSW_REG_RALUE_OP_QUERY_READ = 0,
6790 /* Clear on read operation. Used to read entry and
6791 * clear Activity bit.
6792 */
6793 MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1,
6794 /* Write operation. Used to write a new entry to the table. All RW
6795 * fields are written for new entry. Activity bit is set
6796 * for new entries.
6797 */
6798 MLXSW_REG_RALUE_OP_WRITE_WRITE = 0,
6799 /* Update operation. Used to update an existing route entry and
6800 * only update the RW fields that are detailed in the field
6801 * op_u_mask. If entry doesn't exist, the operation fails.
6802 */
6803 MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1,
6804 /* Clear activity. The Activity bit (the field a) is cleared
6805 * for the entry.
6806 */
6807 MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2,
6808 /* Delete operation. Used to delete an existing entry. If entry
6809 * doesn't exist, the operation fails.
6810 */
6811 MLXSW_REG_RALUE_OP_WRITE_DELETE = 3,
6812 };
6813
6814 /* reg_ralue_op
6815 * Operation.
6816 * Access: OP
6817 */
6818 MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3);
6819
6820 /* reg_ralue_a
6821 * Activity. Set for new entries. Set if a packet lookup has hit on the
6822 * specific entry, only if the entry is a route. To clear the a bit, use
6823 * "clear activity" op.
6824 * Enabled by activity_dis in RGCR
6825 * Access: RO
6826 */
6827 MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1);
6828
6829 /* reg_ralue_virtual_router
6830 * Virtual Router ID
6831 * Range is 0..cap_max_virtual_routers-1
6832 * Access: Index
6833 */
6834 MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16);
6835
6836 #define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0)
6837 #define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1)
6838 #define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2)
6839
6840 /* reg_ralue_op_u_mask
6841 * opcode update mask.
6842 * On read operation, this field is reserved.
6843 * This field is valid for update opcode, otherwise - reserved.
6844 * This field is a bitmask of the fields that should be updated.
6845 * Access: WO
6846 */
6847 MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3);
6848
6849 /* reg_ralue_prefix_len
6850 * Number of bits in the prefix of the LPM route.
6851 * Note that for IPv6 prefixes, if prefix_len>64 the entry consumes
6852 * two entries in the physical HW table.
6853 * Access: Index
6854 */
6855 MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8);
6856
6857 /* reg_ralue_dip*
6858 * The prefix of the route or of the marker that the object of the LPM
6859 * is compared with. The most significant bits of the dip are the prefix.
6860 * The least significant bits must be '0' if the prefix_len is smaller
6861 * than 128 for IPv6 or smaller than 32 for IPv4.
6862 * IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved.
6863 * Access: Index
6864 */
6865 MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32);
6866 MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16);
6867
6868 enum mlxsw_reg_ralue_entry_type {
6869 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1,
6870 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2,
6871 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3,
6872 };
6873
6874 /* reg_ralue_entry_type
6875 * Entry type.
6876 * Note - for Marker entries, the action_type and action fields are reserved.
6877 * Access: RW
6878 */
6879 MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2);
6880
6881 /* reg_ralue_bmp_len
6882 * The best match prefix length in the case that there is no match for
6883 * longer prefixes.
6884 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len
6885 * Note for any update operation with entry_type modification this
6886 * field must be set.
6887 * Access: RW
6888 */
6889 MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8);
6890
6891 enum mlxsw_reg_ralue_action_type {
6892 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE,
6893 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL,
6894 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME,
6895 };
6896
6897 /* reg_ralue_action_type
6898 * Action Type
6899 * Indicates how the IP address is connected.
6900 * It can be connected to a local subnet through local_erif or can be
6901 * on a remote subnet connected through a next-hop router,
6902 * or transmitted to the CPU.
6903 * Reserved when entry_type = MARKER_ENTRY
6904 * Access: RW
6905 */
6906 MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2);
6907
6908 enum mlxsw_reg_ralue_trap_action {
6909 MLXSW_REG_RALUE_TRAP_ACTION_NOP,
6910 MLXSW_REG_RALUE_TRAP_ACTION_TRAP,
6911 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU,
6912 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR,
6913 MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR,
6914 };
6915
6916 /* reg_ralue_trap_action
6917 * Trap action.
6918 * For IP2ME action, only NOP and MIRROR are possible.
6919 * Access: RW
6920 */
6921 MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4);
6922
6923 /* reg_ralue_trap_id
6924 * Trap ID to be reported to CPU.
6925 * Trap ID is RTR_INGRESS0 or RTR_INGRESS1.
6926 * For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved.
6927 * Access: RW
6928 */
6929 MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9);
6930
6931 /* reg_ralue_adjacency_index
6932 * Points to the first entry of the group-based ECMP.
6933 * Only relevant in case of REMOTE action.
6934 * Access: RW
6935 */
6936 MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24);
6937
6938 /* reg_ralue_ecmp_size
6939 * Amount of sequential entries starting
6940 * from the adjacency_index (the number of ECMPs).
6941 * The valid range is 1-64, 512, 1024, 2048 and 4096.
6942 * Reserved when trap_action is TRAP or DISCARD_ERROR.
6943 * Only relevant in case of REMOTE action.
6944 * Access: RW
6945 */
6946 MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13);
6947
6948 /* reg_ralue_local_erif
6949 * Egress Router Interface.
6950 * Only relevant in case of LOCAL action.
6951 * Access: RW
6952 */
6953 MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16);
6954
6955 /* reg_ralue_ip2me_v
6956 * Valid bit for the tunnel_ptr field.
6957 * If valid = 0 then trap to CPU as IP2ME trap ID.
6958 * If valid = 1 and the packet format allows NVE or IPinIP tunnel
6959 * decapsulation then tunnel decapsulation is done.
6960 * If valid = 1 and packet format does not allow NVE or IPinIP tunnel
6961 * decapsulation then trap as IP2ME trap ID.
6962 * Only relevant in case of IP2ME action.
6963 * Access: RW
6964 */
6965 MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1);
6966
6967 /* reg_ralue_ip2me_tunnel_ptr
6968 * Tunnel Pointer for NVE or IPinIP tunnel decapsulation.
6969 * For Spectrum, pointer to KVD Linear.
6970 * Only relevant in case of IP2ME action.
6971 * Access: RW
6972 */
6973 MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24);
6974
mlxsw_reg_ralue_pack(char * payload,enum mlxsw_reg_ralxx_protocol protocol,enum mlxsw_reg_ralue_op op,u16 virtual_router,u8 prefix_len)6975 static inline void mlxsw_reg_ralue_pack(char *payload,
6976 enum mlxsw_reg_ralxx_protocol protocol,
6977 enum mlxsw_reg_ralue_op op,
6978 u16 virtual_router, u8 prefix_len)
6979 {
6980 MLXSW_REG_ZERO(ralue, payload);
6981 mlxsw_reg_ralue_protocol_set(payload, protocol);
6982 mlxsw_reg_ralue_op_set(payload, op);
6983 mlxsw_reg_ralue_virtual_router_set(payload, virtual_router);
6984 mlxsw_reg_ralue_prefix_len_set(payload, prefix_len);
6985 mlxsw_reg_ralue_entry_type_set(payload,
6986 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY);
6987 mlxsw_reg_ralue_bmp_len_set(payload, prefix_len);
6988 }
6989
mlxsw_reg_ralue_pack4(char * payload,enum mlxsw_reg_ralxx_protocol protocol,enum mlxsw_reg_ralue_op op,u16 virtual_router,u8 prefix_len,u32 dip)6990 static inline void mlxsw_reg_ralue_pack4(char *payload,
6991 enum mlxsw_reg_ralxx_protocol protocol,
6992 enum mlxsw_reg_ralue_op op,
6993 u16 virtual_router, u8 prefix_len,
6994 u32 dip)
6995 {
6996 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
6997 mlxsw_reg_ralue_dip4_set(payload, dip);
6998 }
6999
mlxsw_reg_ralue_pack6(char * payload,enum mlxsw_reg_ralxx_protocol protocol,enum mlxsw_reg_ralue_op op,u16 virtual_router,u8 prefix_len,const void * dip)7000 static inline void mlxsw_reg_ralue_pack6(char *payload,
7001 enum mlxsw_reg_ralxx_protocol protocol,
7002 enum mlxsw_reg_ralue_op op,
7003 u16 virtual_router, u8 prefix_len,
7004 const void *dip)
7005 {
7006 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
7007 mlxsw_reg_ralue_dip6_memcpy_to(payload, dip);
7008 }
7009
7010 static inline void
mlxsw_reg_ralue_act_remote_pack(char * payload,enum mlxsw_reg_ralue_trap_action trap_action,u16 trap_id,u32 adjacency_index,u16 ecmp_size)7011 mlxsw_reg_ralue_act_remote_pack(char *payload,
7012 enum mlxsw_reg_ralue_trap_action trap_action,
7013 u16 trap_id, u32 adjacency_index, u16 ecmp_size)
7014 {
7015 mlxsw_reg_ralue_action_type_set(payload,
7016 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE);
7017 mlxsw_reg_ralue_trap_action_set(payload, trap_action);
7018 mlxsw_reg_ralue_trap_id_set(payload, trap_id);
7019 mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index);
7020 mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size);
7021 }
7022
7023 static inline void
mlxsw_reg_ralue_act_local_pack(char * payload,enum mlxsw_reg_ralue_trap_action trap_action,u16 trap_id,u16 local_erif)7024 mlxsw_reg_ralue_act_local_pack(char *payload,
7025 enum mlxsw_reg_ralue_trap_action trap_action,
7026 u16 trap_id, u16 local_erif)
7027 {
7028 mlxsw_reg_ralue_action_type_set(payload,
7029 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL);
7030 mlxsw_reg_ralue_trap_action_set(payload, trap_action);
7031 mlxsw_reg_ralue_trap_id_set(payload, trap_id);
7032 mlxsw_reg_ralue_local_erif_set(payload, local_erif);
7033 }
7034
7035 static inline void
mlxsw_reg_ralue_act_ip2me_pack(char * payload)7036 mlxsw_reg_ralue_act_ip2me_pack(char *payload)
7037 {
7038 mlxsw_reg_ralue_action_type_set(payload,
7039 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
7040 }
7041
7042 static inline void
mlxsw_reg_ralue_act_ip2me_tun_pack(char * payload,u32 tunnel_ptr)7043 mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr)
7044 {
7045 mlxsw_reg_ralue_action_type_set(payload,
7046 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
7047 mlxsw_reg_ralue_ip2me_v_set(payload, 1);
7048 mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr);
7049 }
7050
7051 /* RAUHT - Router Algorithmic LPM Unicast Host Table Register
7052 * ----------------------------------------------------------
7053 * The RAUHT register is used to configure and query the Unicast Host table in
7054 * devices that implement the Algorithmic LPM.
7055 */
7056 #define MLXSW_REG_RAUHT_ID 0x8014
7057 #define MLXSW_REG_RAUHT_LEN 0x74
7058
7059 MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN);
7060
7061 enum mlxsw_reg_rauht_type {
7062 MLXSW_REG_RAUHT_TYPE_IPV4,
7063 MLXSW_REG_RAUHT_TYPE_IPV6,
7064 };
7065
7066 /* reg_rauht_type
7067 * Access: Index
7068 */
7069 MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2);
7070
7071 enum mlxsw_reg_rauht_op {
7072 MLXSW_REG_RAUHT_OP_QUERY_READ = 0,
7073 /* Read operation */
7074 MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1,
7075 /* Clear on read operation. Used to read entry and clear
7076 * activity bit.
7077 */
7078 MLXSW_REG_RAUHT_OP_WRITE_ADD = 0,
7079 /* Add. Used to write a new entry to the table. All R/W fields are
7080 * relevant for new entry. Activity bit is set for new entries.
7081 */
7082 MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1,
7083 /* Update action. Used to update an existing route entry and
7084 * only update the following fields:
7085 * trap_action, trap_id, mac, counter_set_type, counter_index
7086 */
7087 MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2,
7088 /* Clear activity. A bit is cleared for the entry. */
7089 MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3,
7090 /* Delete entry */
7091 MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4,
7092 /* Delete all host entries on a RIF. In this command, dip
7093 * field is reserved.
7094 */
7095 };
7096
7097 /* reg_rauht_op
7098 * Access: OP
7099 */
7100 MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3);
7101
7102 /* reg_rauht_a
7103 * Activity. Set for new entries. Set if a packet lookup has hit on
7104 * the specific entry.
7105 * To clear the a bit, use "clear activity" op.
7106 * Enabled by activity_dis in RGCR
7107 * Access: RO
7108 */
7109 MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1);
7110
7111 /* reg_rauht_rif
7112 * Router Interface
7113 * Access: Index
7114 */
7115 MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16);
7116
7117 /* reg_rauht_dip*
7118 * Destination address.
7119 * Access: Index
7120 */
7121 MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32);
7122 MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16);
7123
7124 enum mlxsw_reg_rauht_trap_action {
7125 MLXSW_REG_RAUHT_TRAP_ACTION_NOP,
7126 MLXSW_REG_RAUHT_TRAP_ACTION_TRAP,
7127 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU,
7128 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR,
7129 MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS,
7130 };
7131
7132 /* reg_rauht_trap_action
7133 * Access: RW
7134 */
7135 MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4);
7136
7137 enum mlxsw_reg_rauht_trap_id {
7138 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0,
7139 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1,
7140 };
7141
7142 /* reg_rauht_trap_id
7143 * Trap ID to be reported to CPU.
7144 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
7145 * For trap_action of NOP, MIRROR and DISCARD_ERROR,
7146 * trap_id is reserved.
7147 * Access: RW
7148 */
7149 MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9);
7150
7151 /* reg_rauht_counter_set_type
7152 * Counter set type for flow counters
7153 * Access: RW
7154 */
7155 MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8);
7156
7157 /* reg_rauht_counter_index
7158 * Counter index for flow counters
7159 * Access: RW
7160 */
7161 MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24);
7162
7163 /* reg_rauht_mac
7164 * MAC address.
7165 * Access: RW
7166 */
7167 MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6);
7168
mlxsw_reg_rauht_pack(char * payload,enum mlxsw_reg_rauht_op op,u16 rif,const char * mac)7169 static inline void mlxsw_reg_rauht_pack(char *payload,
7170 enum mlxsw_reg_rauht_op op, u16 rif,
7171 const char *mac)
7172 {
7173 MLXSW_REG_ZERO(rauht, payload);
7174 mlxsw_reg_rauht_op_set(payload, op);
7175 mlxsw_reg_rauht_rif_set(payload, rif);
7176 mlxsw_reg_rauht_mac_memcpy_to(payload, mac);
7177 }
7178
mlxsw_reg_rauht_pack4(char * payload,enum mlxsw_reg_rauht_op op,u16 rif,const char * mac,u32 dip)7179 static inline void mlxsw_reg_rauht_pack4(char *payload,
7180 enum mlxsw_reg_rauht_op op, u16 rif,
7181 const char *mac, u32 dip)
7182 {
7183 mlxsw_reg_rauht_pack(payload, op, rif, mac);
7184 mlxsw_reg_rauht_dip4_set(payload, dip);
7185 }
7186
mlxsw_reg_rauht_pack6(char * payload,enum mlxsw_reg_rauht_op op,u16 rif,const char * mac,const char * dip)7187 static inline void mlxsw_reg_rauht_pack6(char *payload,
7188 enum mlxsw_reg_rauht_op op, u16 rif,
7189 const char *mac, const char *dip)
7190 {
7191 mlxsw_reg_rauht_pack(payload, op, rif, mac);
7192 mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6);
7193 mlxsw_reg_rauht_dip6_memcpy_to(payload, dip);
7194 }
7195
mlxsw_reg_rauht_pack_counter(char * payload,u64 counter_index)7196 static inline void mlxsw_reg_rauht_pack_counter(char *payload,
7197 u64 counter_index)
7198 {
7199 mlxsw_reg_rauht_counter_index_set(payload, counter_index);
7200 mlxsw_reg_rauht_counter_set_type_set(payload,
7201 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES);
7202 }
7203
7204 /* RALEU - Router Algorithmic LPM ECMP Update Register
7205 * ---------------------------------------------------
7206 * The register enables updating the ECMP section in the action for multiple
7207 * LPM Unicast entries in a single operation. The update is executed to
7208 * all entries of a {virtual router, protocol} tuple using the same ECMP group.
7209 */
7210 #define MLXSW_REG_RALEU_ID 0x8015
7211 #define MLXSW_REG_RALEU_LEN 0x28
7212
7213 MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN);
7214
7215 /* reg_raleu_protocol
7216 * Protocol.
7217 * Access: Index
7218 */
7219 MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4);
7220
7221 /* reg_raleu_virtual_router
7222 * Virtual Router ID
7223 * Range is 0..cap_max_virtual_routers-1
7224 * Access: Index
7225 */
7226 MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16);
7227
7228 /* reg_raleu_adjacency_index
7229 * Adjacency Index used for matching on the existing entries.
7230 * Access: Index
7231 */
7232 MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24);
7233
7234 /* reg_raleu_ecmp_size
7235 * ECMP Size used for matching on the existing entries.
7236 * Access: Index
7237 */
7238 MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13);
7239
7240 /* reg_raleu_new_adjacency_index
7241 * New Adjacency Index.
7242 * Access: WO
7243 */
7244 MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24);
7245
7246 /* reg_raleu_new_ecmp_size
7247 * New ECMP Size.
7248 * Access: WO
7249 */
7250 MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13);
7251
mlxsw_reg_raleu_pack(char * payload,enum mlxsw_reg_ralxx_protocol protocol,u16 virtual_router,u32 adjacency_index,u16 ecmp_size,u32 new_adjacency_index,u16 new_ecmp_size)7252 static inline void mlxsw_reg_raleu_pack(char *payload,
7253 enum mlxsw_reg_ralxx_protocol protocol,
7254 u16 virtual_router,
7255 u32 adjacency_index, u16 ecmp_size,
7256 u32 new_adjacency_index,
7257 u16 new_ecmp_size)
7258 {
7259 MLXSW_REG_ZERO(raleu, payload);
7260 mlxsw_reg_raleu_protocol_set(payload, protocol);
7261 mlxsw_reg_raleu_virtual_router_set(payload, virtual_router);
7262 mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index);
7263 mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size);
7264 mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index);
7265 mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size);
7266 }
7267
7268 /* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register
7269 * ----------------------------------------------------------------
7270 * The RAUHTD register allows dumping entries from the Router Unicast Host
7271 * Table. For a given session an entry is dumped no more than one time. The
7272 * first RAUHTD access after reset is a new session. A session ends when the
7273 * num_rec response is smaller than num_rec request or for IPv4 when the
7274 * num_entries is smaller than 4. The clear activity affect the current session
7275 * or the last session if a new session has not started.
7276 */
7277 #define MLXSW_REG_RAUHTD_ID 0x8018
7278 #define MLXSW_REG_RAUHTD_BASE_LEN 0x20
7279 #define MLXSW_REG_RAUHTD_REC_LEN 0x20
7280 #define MLXSW_REG_RAUHTD_REC_MAX_NUM 32
7281 #define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \
7282 MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN)
7283 #define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4
7284
7285 MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN);
7286
7287 #define MLXSW_REG_RAUHTD_FILTER_A BIT(0)
7288 #define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3)
7289
7290 /* reg_rauhtd_filter_fields
7291 * if a bit is '0' then the relevant field is ignored and dump is done
7292 * regardless of the field value
7293 * Bit0 - filter by activity: entry_a
7294 * Bit3 - filter by entry rip: entry_rif
7295 * Access: Index
7296 */
7297 MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8);
7298
7299 enum mlxsw_reg_rauhtd_op {
7300 MLXSW_REG_RAUHTD_OP_DUMP,
7301 MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR,
7302 };
7303
7304 /* reg_rauhtd_op
7305 * Access: OP
7306 */
7307 MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2);
7308
7309 /* reg_rauhtd_num_rec
7310 * At request: number of records requested
7311 * At response: number of records dumped
7312 * For IPv4, each record has 4 entries at request and up to 4 entries
7313 * at response
7314 * Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM
7315 * Access: Index
7316 */
7317 MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8);
7318
7319 /* reg_rauhtd_entry_a
7320 * Dump only if activity has value of entry_a
7321 * Reserved if filter_fields bit0 is '0'
7322 * Access: Index
7323 */
7324 MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1);
7325
7326 enum mlxsw_reg_rauhtd_type {
7327 MLXSW_REG_RAUHTD_TYPE_IPV4,
7328 MLXSW_REG_RAUHTD_TYPE_IPV6,
7329 };
7330
7331 /* reg_rauhtd_type
7332 * Dump only if record type is:
7333 * 0 - IPv4
7334 * 1 - IPv6
7335 * Access: Index
7336 */
7337 MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4);
7338
7339 /* reg_rauhtd_entry_rif
7340 * Dump only if RIF has value of entry_rif
7341 * Reserved if filter_fields bit3 is '0'
7342 * Access: Index
7343 */
7344 MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16);
7345
mlxsw_reg_rauhtd_pack(char * payload,enum mlxsw_reg_rauhtd_type type)7346 static inline void mlxsw_reg_rauhtd_pack(char *payload,
7347 enum mlxsw_reg_rauhtd_type type)
7348 {
7349 MLXSW_REG_ZERO(rauhtd, payload);
7350 mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A);
7351 mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR);
7352 mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM);
7353 mlxsw_reg_rauhtd_entry_a_set(payload, 1);
7354 mlxsw_reg_rauhtd_type_set(payload, type);
7355 }
7356
7357 /* reg_rauhtd_ipv4_rec_num_entries
7358 * Number of valid entries in this record:
7359 * 0 - 1 valid entry
7360 * 1 - 2 valid entries
7361 * 2 - 3 valid entries
7362 * 3 - 4 valid entries
7363 * Access: RO
7364 */
7365 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries,
7366 MLXSW_REG_RAUHTD_BASE_LEN, 28, 2,
7367 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
7368
7369 /* reg_rauhtd_rec_type
7370 * Record type.
7371 * 0 - IPv4
7372 * 1 - IPv6
7373 * Access: RO
7374 */
7375 MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2,
7376 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
7377
7378 #define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8
7379
7380 /* reg_rauhtd_ipv4_ent_a
7381 * Activity. Set for new entries. Set if a packet lookup has hit on the
7382 * specific entry.
7383 * Access: RO
7384 */
7385 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
7386 MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
7387
7388 /* reg_rauhtd_ipv4_ent_rif
7389 * Router interface.
7390 * Access: RO
7391 */
7392 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
7393 16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
7394
7395 /* reg_rauhtd_ipv4_ent_dip
7396 * Destination IPv4 address.
7397 * Access: RO
7398 */
7399 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0,
7400 32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false);
7401
7402 #define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20
7403
7404 /* reg_rauhtd_ipv6_ent_a
7405 * Activity. Set for new entries. Set if a packet lookup has hit on the
7406 * specific entry.
7407 * Access: RO
7408 */
7409 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
7410 MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
7411
7412 /* reg_rauhtd_ipv6_ent_rif
7413 * Router interface.
7414 * Access: RO
7415 */
7416 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
7417 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
7418
7419 /* reg_rauhtd_ipv6_ent_dip
7420 * Destination IPv6 address.
7421 * Access: RO
7422 */
7423 MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN,
7424 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10);
7425
mlxsw_reg_rauhtd_ent_ipv4_unpack(char * payload,int ent_index,u16 * p_rif,u32 * p_dip)7426 static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload,
7427 int ent_index, u16 *p_rif,
7428 u32 *p_dip)
7429 {
7430 *p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index);
7431 *p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index);
7432 }
7433
mlxsw_reg_rauhtd_ent_ipv6_unpack(char * payload,int rec_index,u16 * p_rif,char * p_dip)7434 static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload,
7435 int rec_index, u16 *p_rif,
7436 char *p_dip)
7437 {
7438 *p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index);
7439 mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip);
7440 }
7441
7442 /* RTDP - Routing Tunnel Decap Properties Register
7443 * -----------------------------------------------
7444 * The RTDP register is used for configuring the tunnel decap properties of NVE
7445 * and IPinIP.
7446 */
7447 #define MLXSW_REG_RTDP_ID 0x8020
7448 #define MLXSW_REG_RTDP_LEN 0x44
7449
7450 MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN);
7451
7452 enum mlxsw_reg_rtdp_type {
7453 MLXSW_REG_RTDP_TYPE_NVE,
7454 MLXSW_REG_RTDP_TYPE_IPIP,
7455 };
7456
7457 /* reg_rtdp_type
7458 * Type of the RTDP entry as per enum mlxsw_reg_rtdp_type.
7459 * Access: RW
7460 */
7461 MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4);
7462
7463 /* reg_rtdp_tunnel_index
7464 * Index to the Decap entry.
7465 * For Spectrum, Index to KVD Linear.
7466 * Access: Index
7467 */
7468 MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24);
7469
7470 /* reg_rtdp_egress_router_interface
7471 * Underlay egress router interface.
7472 * Valid range is from 0 to cap_max_router_interfaces - 1
7473 * Access: RW
7474 */
7475 MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16);
7476
7477 /* IPinIP */
7478
7479 /* reg_rtdp_ipip_irif
7480 * Ingress Router Interface for the overlay router
7481 * Access: RW
7482 */
7483 MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16);
7484
7485 enum mlxsw_reg_rtdp_ipip_sip_check {
7486 /* No sip checks. */
7487 MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO,
7488 /* Filter packet if underlay is not IPv4 or if underlay SIP does not
7489 * equal ipv4_usip.
7490 */
7491 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4,
7492 /* Filter packet if underlay is not IPv6 or if underlay SIP does not
7493 * equal ipv6_usip.
7494 */
7495 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3,
7496 };
7497
7498 /* reg_rtdp_ipip_sip_check
7499 * SIP check to perform. If decapsulation failed due to these configurations
7500 * then trap_id is IPIP_DECAP_ERROR.
7501 * Access: RW
7502 */
7503 MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3);
7504
7505 /* If set, allow decapsulation of IPinIP (without GRE). */
7506 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0)
7507 /* If set, allow decapsulation of IPinGREinIP without a key. */
7508 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1)
7509 /* If set, allow decapsulation of IPinGREinIP with a key. */
7510 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2)
7511
7512 /* reg_rtdp_ipip_type_check
7513 * Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to
7514 * these configurations then trap_id is IPIP_DECAP_ERROR.
7515 * Access: RW
7516 */
7517 MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3);
7518
7519 /* reg_rtdp_ipip_gre_key_check
7520 * Whether GRE key should be checked. When check is enabled:
7521 * - A packet received as IPinIP (without GRE) will always pass.
7522 * - A packet received as IPinGREinIP without a key will not pass the check.
7523 * - A packet received as IPinGREinIP with a key will pass the check only if the
7524 * key in the packet is equal to expected_gre_key.
7525 * If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR.
7526 * Access: RW
7527 */
7528 MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1);
7529
7530 /* reg_rtdp_ipip_ipv4_usip
7531 * Underlay IPv4 address for ipv4 source address check.
7532 * Reserved when sip_check is not '1'.
7533 * Access: RW
7534 */
7535 MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32);
7536
7537 /* reg_rtdp_ipip_ipv6_usip_ptr
7538 * This field is valid when sip_check is "sipv6 check explicitly". This is a
7539 * pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index
7540 * is to the KVD linear.
7541 * Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6.
7542 * Access: RW
7543 */
7544 MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24);
7545
7546 /* reg_rtdp_ipip_expected_gre_key
7547 * GRE key for checking.
7548 * Reserved when gre_key_check is '0'.
7549 * Access: RW
7550 */
7551 MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32);
7552
mlxsw_reg_rtdp_pack(char * payload,enum mlxsw_reg_rtdp_type type,u32 tunnel_index)7553 static inline void mlxsw_reg_rtdp_pack(char *payload,
7554 enum mlxsw_reg_rtdp_type type,
7555 u32 tunnel_index)
7556 {
7557 MLXSW_REG_ZERO(rtdp, payload);
7558 mlxsw_reg_rtdp_type_set(payload, type);
7559 mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index);
7560 }
7561
7562 static inline void
mlxsw_reg_rtdp_ipip4_pack(char * payload,u16 irif,enum mlxsw_reg_rtdp_ipip_sip_check sip_check,unsigned int type_check,bool gre_key_check,u32 ipv4_usip,u32 expected_gre_key)7563 mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif,
7564 enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
7565 unsigned int type_check, bool gre_key_check,
7566 u32 ipv4_usip, u32 expected_gre_key)
7567 {
7568 mlxsw_reg_rtdp_ipip_irif_set(payload, irif);
7569 mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check);
7570 mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check);
7571 mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check);
7572 mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip);
7573 mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key);
7574 }
7575
7576 /* RIGR-V2 - Router Interface Group Register Version 2
7577 * ---------------------------------------------------
7578 * The RIGR_V2 register is used to add, remove and query egress interface list
7579 * of a multicast forwarding entry.
7580 */
7581 #define MLXSW_REG_RIGR2_ID 0x8023
7582 #define MLXSW_REG_RIGR2_LEN 0xB0
7583
7584 #define MLXSW_REG_RIGR2_MAX_ERIFS 32
7585
7586 MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN);
7587
7588 /* reg_rigr2_rigr_index
7589 * KVD Linear index.
7590 * Access: Index
7591 */
7592 MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24);
7593
7594 /* reg_rigr2_vnext
7595 * Next RIGR Index is valid.
7596 * Access: RW
7597 */
7598 MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1);
7599
7600 /* reg_rigr2_next_rigr_index
7601 * Next RIGR Index. The index is to the KVD linear.
7602 * Reserved when vnxet = '0'.
7603 * Access: RW
7604 */
7605 MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24);
7606
7607 /* reg_rigr2_vrmid
7608 * RMID Index is valid.
7609 * Access: RW
7610 */
7611 MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1);
7612
7613 /* reg_rigr2_rmid_index
7614 * RMID Index.
7615 * Range 0 .. max_mid - 1
7616 * Reserved when vrmid = '0'.
7617 * The index is to the Port Group Table (PGT)
7618 * Access: RW
7619 */
7620 MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16);
7621
7622 /* reg_rigr2_erif_entry_v
7623 * Egress Router Interface is valid.
7624 * Note that low-entries must be set if high-entries are set. For
7625 * example: if erif_entry[2].v is set then erif_entry[1].v and
7626 * erif_entry[0].v must be set.
7627 * Index can be from 0 to cap_mc_erif_list_entries-1
7628 * Access: RW
7629 */
7630 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false);
7631
7632 /* reg_rigr2_erif_entry_erif
7633 * Egress Router Interface.
7634 * Valid range is from 0 to cap_max_router_interfaces - 1
7635 * Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1
7636 * Access: RW
7637 */
7638 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false);
7639
mlxsw_reg_rigr2_pack(char * payload,u32 rigr_index,bool vnext,u32 next_rigr_index)7640 static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index,
7641 bool vnext, u32 next_rigr_index)
7642 {
7643 MLXSW_REG_ZERO(rigr2, payload);
7644 mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index);
7645 mlxsw_reg_rigr2_vnext_set(payload, vnext);
7646 mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index);
7647 mlxsw_reg_rigr2_vrmid_set(payload, 0);
7648 mlxsw_reg_rigr2_rmid_index_set(payload, 0);
7649 }
7650
mlxsw_reg_rigr2_erif_entry_pack(char * payload,int index,bool v,u16 erif)7651 static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index,
7652 bool v, u16 erif)
7653 {
7654 mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v);
7655 mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif);
7656 }
7657
7658 /* RECR-V2 - Router ECMP Configuration Version 2 Register
7659 * ------------------------------------------------------
7660 */
7661 #define MLXSW_REG_RECR2_ID 0x8025
7662 #define MLXSW_REG_RECR2_LEN 0x38
7663
7664 MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN);
7665
7666 /* reg_recr2_pp
7667 * Per-port configuration
7668 * Access: Index
7669 */
7670 MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1);
7671
7672 /* reg_recr2_sh
7673 * Symmetric hash
7674 * Access: RW
7675 */
7676 MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1);
7677
7678 /* reg_recr2_seed
7679 * Seed
7680 * Access: RW
7681 */
7682 MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32);
7683
7684 enum {
7685 /* Enable IPv4 fields if packet is not TCP and not UDP */
7686 MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3,
7687 /* Enable IPv4 fields if packet is TCP or UDP */
7688 MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4,
7689 /* Enable IPv6 fields if packet is not TCP and not UDP */
7690 MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5,
7691 /* Enable IPv6 fields if packet is TCP or UDP */
7692 MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6,
7693 /* Enable TCP/UDP header fields if packet is IPv4 */
7694 MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7,
7695 /* Enable TCP/UDP header fields if packet is IPv6 */
7696 MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8,
7697 };
7698
7699 /* reg_recr2_outer_header_enables
7700 * Bit mask where each bit enables a specific layer to be included in
7701 * the hash calculation.
7702 * Access: RW
7703 */
7704 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1);
7705
7706 enum {
7707 /* IPv4 Source IP */
7708 MLXSW_REG_RECR2_IPV4_SIP0 = 9,
7709 MLXSW_REG_RECR2_IPV4_SIP3 = 12,
7710 /* IPv4 Destination IP */
7711 MLXSW_REG_RECR2_IPV4_DIP0 = 13,
7712 MLXSW_REG_RECR2_IPV4_DIP3 = 16,
7713 /* IP Protocol */
7714 MLXSW_REG_RECR2_IPV4_PROTOCOL = 17,
7715 /* IPv6 Source IP */
7716 MLXSW_REG_RECR2_IPV6_SIP0_7 = 21,
7717 MLXSW_REG_RECR2_IPV6_SIP8 = 29,
7718 MLXSW_REG_RECR2_IPV6_SIP15 = 36,
7719 /* IPv6 Destination IP */
7720 MLXSW_REG_RECR2_IPV6_DIP0_7 = 37,
7721 MLXSW_REG_RECR2_IPV6_DIP8 = 45,
7722 MLXSW_REG_RECR2_IPV6_DIP15 = 52,
7723 /* IPv6 Next Header */
7724 MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53,
7725 /* IPv6 Flow Label */
7726 MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57,
7727 /* TCP/UDP Source Port */
7728 MLXSW_REG_RECR2_TCP_UDP_SPORT = 74,
7729 /* TCP/UDP Destination Port */
7730 MLXSW_REG_RECR2_TCP_UDP_DPORT = 75,
7731 };
7732
7733 /* reg_recr2_outer_header_fields_enable
7734 * Packet fields to enable for ECMP hash subject to outer_header_enable.
7735 * Access: RW
7736 */
7737 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1);
7738
mlxsw_reg_recr2_ipv4_sip_enable(char * payload)7739 static inline void mlxsw_reg_recr2_ipv4_sip_enable(char *payload)
7740 {
7741 int i;
7742
7743 for (i = MLXSW_REG_RECR2_IPV4_SIP0; i <= MLXSW_REG_RECR2_IPV4_SIP3; i++)
7744 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i,
7745 true);
7746 }
7747
mlxsw_reg_recr2_ipv4_dip_enable(char * payload)7748 static inline void mlxsw_reg_recr2_ipv4_dip_enable(char *payload)
7749 {
7750 int i;
7751
7752 for (i = MLXSW_REG_RECR2_IPV4_DIP0; i <= MLXSW_REG_RECR2_IPV4_DIP3; i++)
7753 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i,
7754 true);
7755 }
7756
mlxsw_reg_recr2_ipv6_sip_enable(char * payload)7757 static inline void mlxsw_reg_recr2_ipv6_sip_enable(char *payload)
7758 {
7759 int i = MLXSW_REG_RECR2_IPV6_SIP0_7;
7760
7761 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, true);
7762
7763 i = MLXSW_REG_RECR2_IPV6_SIP8;
7764 for (; i <= MLXSW_REG_RECR2_IPV6_SIP15; i++)
7765 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i,
7766 true);
7767 }
7768
mlxsw_reg_recr2_ipv6_dip_enable(char * payload)7769 static inline void mlxsw_reg_recr2_ipv6_dip_enable(char *payload)
7770 {
7771 int i = MLXSW_REG_RECR2_IPV6_DIP0_7;
7772
7773 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, true);
7774
7775 i = MLXSW_REG_RECR2_IPV6_DIP8;
7776 for (; i <= MLXSW_REG_RECR2_IPV6_DIP15; i++)
7777 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i,
7778 true);
7779 }
7780
mlxsw_reg_recr2_pack(char * payload,u32 seed)7781 static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed)
7782 {
7783 MLXSW_REG_ZERO(recr2, payload);
7784 mlxsw_reg_recr2_pp_set(payload, false);
7785 mlxsw_reg_recr2_sh_set(payload, true);
7786 mlxsw_reg_recr2_seed_set(payload, seed);
7787 }
7788
7789 /* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register
7790 * --------------------------------------------------------------
7791 * The RMFT_V2 register is used to configure and query the multicast table.
7792 */
7793 #define MLXSW_REG_RMFT2_ID 0x8027
7794 #define MLXSW_REG_RMFT2_LEN 0x174
7795
7796 MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN);
7797
7798 /* reg_rmft2_v
7799 * Valid
7800 * Access: RW
7801 */
7802 MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1);
7803
7804 enum mlxsw_reg_rmft2_type {
7805 MLXSW_REG_RMFT2_TYPE_IPV4,
7806 MLXSW_REG_RMFT2_TYPE_IPV6
7807 };
7808
7809 /* reg_rmft2_type
7810 * Access: Index
7811 */
7812 MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2);
7813
7814 enum mlxsw_sp_reg_rmft2_op {
7815 /* For Write:
7816 * Write operation. Used to write a new entry to the table. All RW
7817 * fields are relevant for new entry. Activity bit is set for new
7818 * entries - Note write with v (Valid) 0 will delete the entry.
7819 * For Query:
7820 * Read operation
7821 */
7822 MLXSW_REG_RMFT2_OP_READ_WRITE,
7823 };
7824
7825 /* reg_rmft2_op
7826 * Operation.
7827 * Access: OP
7828 */
7829 MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2);
7830
7831 /* reg_rmft2_a
7832 * Activity. Set for new entries. Set if a packet lookup has hit on the specific
7833 * entry.
7834 * Access: RO
7835 */
7836 MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1);
7837
7838 /* reg_rmft2_offset
7839 * Offset within the multicast forwarding table to write to.
7840 * Access: Index
7841 */
7842 MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16);
7843
7844 /* reg_rmft2_virtual_router
7845 * Virtual Router ID. Range from 0..cap_max_virtual_routers-1
7846 * Access: RW
7847 */
7848 MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16);
7849
7850 enum mlxsw_reg_rmft2_irif_mask {
7851 MLXSW_REG_RMFT2_IRIF_MASK_IGNORE,
7852 MLXSW_REG_RMFT2_IRIF_MASK_COMPARE
7853 };
7854
7855 /* reg_rmft2_irif_mask
7856 * Ingress RIF mask.
7857 * Access: RW
7858 */
7859 MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1);
7860
7861 /* reg_rmft2_irif
7862 * Ingress RIF index.
7863 * Access: RW
7864 */
7865 MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16);
7866
7867 /* reg_rmft2_dip{4,6}
7868 * Destination IPv4/6 address
7869 * Access: RW
7870 */
7871 MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16);
7872 MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32);
7873
7874 /* reg_rmft2_dip{4,6}_mask
7875 * A bit that is set directs the TCAM to compare the corresponding bit in key. A
7876 * bit that is clear directs the TCAM to ignore the corresponding bit in key.
7877 * Access: RW
7878 */
7879 MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16);
7880 MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32);
7881
7882 /* reg_rmft2_sip{4,6}
7883 * Source IPv4/6 address
7884 * Access: RW
7885 */
7886 MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16);
7887 MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32);
7888
7889 /* reg_rmft2_sip{4,6}_mask
7890 * A bit that is set directs the TCAM to compare the corresponding bit in key. A
7891 * bit that is clear directs the TCAM to ignore the corresponding bit in key.
7892 * Access: RW
7893 */
7894 MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16);
7895 MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32);
7896
7897 /* reg_rmft2_flexible_action_set
7898 * ACL action set. The only supported action types in this field and in any
7899 * action-set pointed from here are as follows:
7900 * 00h: ACTION_NULL
7901 * 01h: ACTION_MAC_TTL, only TTL configuration is supported.
7902 * 03h: ACTION_TRAP
7903 * 06h: ACTION_QOS
7904 * 08h: ACTION_POLICING_MONITORING
7905 * 10h: ACTION_ROUTER_MC
7906 * Access: RW
7907 */
7908 MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80,
7909 MLXSW_REG_FLEX_ACTION_SET_LEN);
7910
7911 static inline void
mlxsw_reg_rmft2_common_pack(char * payload,bool v,u16 offset,u16 virtual_router,enum mlxsw_reg_rmft2_irif_mask irif_mask,u16 irif,const char * flex_action_set)7912 mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset,
7913 u16 virtual_router,
7914 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
7915 const char *flex_action_set)
7916 {
7917 MLXSW_REG_ZERO(rmft2, payload);
7918 mlxsw_reg_rmft2_v_set(payload, v);
7919 mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE);
7920 mlxsw_reg_rmft2_offset_set(payload, offset);
7921 mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router);
7922 mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask);
7923 mlxsw_reg_rmft2_irif_set(payload, irif);
7924 if (flex_action_set)
7925 mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload,
7926 flex_action_set);
7927 }
7928
7929 static inline void
mlxsw_reg_rmft2_ipv4_pack(char * payload,bool v,u16 offset,u16 virtual_router,enum mlxsw_reg_rmft2_irif_mask irif_mask,u16 irif,u32 dip4,u32 dip4_mask,u32 sip4,u32 sip4_mask,const char * flexible_action_set)7930 mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router,
7931 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
7932 u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask,
7933 const char *flexible_action_set)
7934 {
7935 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
7936 irif_mask, irif, flexible_action_set);
7937 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4);
7938 mlxsw_reg_rmft2_dip4_set(payload, dip4);
7939 mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask);
7940 mlxsw_reg_rmft2_sip4_set(payload, sip4);
7941 mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask);
7942 }
7943
7944 static inline void
mlxsw_reg_rmft2_ipv6_pack(char * payload,bool v,u16 offset,u16 virtual_router,enum mlxsw_reg_rmft2_irif_mask irif_mask,u16 irif,struct in6_addr dip6,struct in6_addr dip6_mask,struct in6_addr sip6,struct in6_addr sip6_mask,const char * flexible_action_set)7945 mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router,
7946 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
7947 struct in6_addr dip6, struct in6_addr dip6_mask,
7948 struct in6_addr sip6, struct in6_addr sip6_mask,
7949 const char *flexible_action_set)
7950 {
7951 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
7952 irif_mask, irif, flexible_action_set);
7953 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6);
7954 mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6);
7955 mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask);
7956 mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6);
7957 mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask);
7958 }
7959
7960 /* MFCR - Management Fan Control Register
7961 * --------------------------------------
7962 * This register controls the settings of the Fan Speed PWM mechanism.
7963 */
7964 #define MLXSW_REG_MFCR_ID 0x9001
7965 #define MLXSW_REG_MFCR_LEN 0x08
7966
7967 MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN);
7968
7969 enum mlxsw_reg_mfcr_pwm_frequency {
7970 MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00,
7971 MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01,
7972 MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02,
7973 MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40,
7974 MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41,
7975 MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42,
7976 MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43,
7977 MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44,
7978 };
7979
7980 /* reg_mfcr_pwm_frequency
7981 * Controls the frequency of the PWM signal.
7982 * Access: RW
7983 */
7984 MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7);
7985
7986 #define MLXSW_MFCR_TACHOS_MAX 10
7987
7988 /* reg_mfcr_tacho_active
7989 * Indicates which of the tachometer is active (bit per tachometer).
7990 * Access: RO
7991 */
7992 MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX);
7993
7994 #define MLXSW_MFCR_PWMS_MAX 5
7995
7996 /* reg_mfcr_pwm_active
7997 * Indicates which of the PWM control is active (bit per PWM).
7998 * Access: RO
7999 */
8000 MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX);
8001
8002 static inline void
mlxsw_reg_mfcr_pack(char * payload,enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency)8003 mlxsw_reg_mfcr_pack(char *payload,
8004 enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency)
8005 {
8006 MLXSW_REG_ZERO(mfcr, payload);
8007 mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency);
8008 }
8009
8010 static inline void
mlxsw_reg_mfcr_unpack(char * payload,enum mlxsw_reg_mfcr_pwm_frequency * p_pwm_frequency,u16 * p_tacho_active,u8 * p_pwm_active)8011 mlxsw_reg_mfcr_unpack(char *payload,
8012 enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency,
8013 u16 *p_tacho_active, u8 *p_pwm_active)
8014 {
8015 *p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload);
8016 *p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload);
8017 *p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload);
8018 }
8019
8020 /* MFSC - Management Fan Speed Control Register
8021 * --------------------------------------------
8022 * This register controls the settings of the Fan Speed PWM mechanism.
8023 */
8024 #define MLXSW_REG_MFSC_ID 0x9002
8025 #define MLXSW_REG_MFSC_LEN 0x08
8026
8027 MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN);
8028
8029 /* reg_mfsc_pwm
8030 * Fan pwm to control / monitor.
8031 * Access: Index
8032 */
8033 MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3);
8034
8035 /* reg_mfsc_pwm_duty_cycle
8036 * Controls the duty cycle of the PWM. Value range from 0..255 to
8037 * represent duty cycle of 0%...100%.
8038 * Access: RW
8039 */
8040 MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8);
8041
mlxsw_reg_mfsc_pack(char * payload,u8 pwm,u8 pwm_duty_cycle)8042 static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm,
8043 u8 pwm_duty_cycle)
8044 {
8045 MLXSW_REG_ZERO(mfsc, payload);
8046 mlxsw_reg_mfsc_pwm_set(payload, pwm);
8047 mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle);
8048 }
8049
8050 /* MFSM - Management Fan Speed Measurement
8051 * ---------------------------------------
8052 * This register controls the settings of the Tacho measurements and
8053 * enables reading the Tachometer measurements.
8054 */
8055 #define MLXSW_REG_MFSM_ID 0x9003
8056 #define MLXSW_REG_MFSM_LEN 0x08
8057
8058 MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN);
8059
8060 /* reg_mfsm_tacho
8061 * Fan tachometer index.
8062 * Access: Index
8063 */
8064 MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4);
8065
8066 /* reg_mfsm_rpm
8067 * Fan speed (round per minute).
8068 * Access: RO
8069 */
8070 MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16);
8071
mlxsw_reg_mfsm_pack(char * payload,u8 tacho)8072 static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho)
8073 {
8074 MLXSW_REG_ZERO(mfsm, payload);
8075 mlxsw_reg_mfsm_tacho_set(payload, tacho);
8076 }
8077
8078 /* MFSL - Management Fan Speed Limit Register
8079 * ------------------------------------------
8080 * The Fan Speed Limit register is used to configure the fan speed
8081 * event / interrupt notification mechanism. Fan speed threshold are
8082 * defined for both under-speed and over-speed.
8083 */
8084 #define MLXSW_REG_MFSL_ID 0x9004
8085 #define MLXSW_REG_MFSL_LEN 0x0C
8086
8087 MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN);
8088
8089 /* reg_mfsl_tacho
8090 * Fan tachometer index.
8091 * Access: Index
8092 */
8093 MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4);
8094
8095 /* reg_mfsl_tach_min
8096 * Tachometer minimum value (minimum RPM).
8097 * Access: RW
8098 */
8099 MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16);
8100
8101 /* reg_mfsl_tach_max
8102 * Tachometer maximum value (maximum RPM).
8103 * Access: RW
8104 */
8105 MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16);
8106
mlxsw_reg_mfsl_pack(char * payload,u8 tacho,u16 tach_min,u16 tach_max)8107 static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho,
8108 u16 tach_min, u16 tach_max)
8109 {
8110 MLXSW_REG_ZERO(mfsl, payload);
8111 mlxsw_reg_mfsl_tacho_set(payload, tacho);
8112 mlxsw_reg_mfsl_tach_min_set(payload, tach_min);
8113 mlxsw_reg_mfsl_tach_max_set(payload, tach_max);
8114 }
8115
mlxsw_reg_mfsl_unpack(char * payload,u8 tacho,u16 * p_tach_min,u16 * p_tach_max)8116 static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho,
8117 u16 *p_tach_min, u16 *p_tach_max)
8118 {
8119 if (p_tach_min)
8120 *p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload);
8121
8122 if (p_tach_max)
8123 *p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload);
8124 }
8125
8126 /* FORE - Fan Out of Range Event Register
8127 * --------------------------------------
8128 * This register reports the status of the controlled fans compared to the
8129 * range defined by the MFSL register.
8130 */
8131 #define MLXSW_REG_FORE_ID 0x9007
8132 #define MLXSW_REG_FORE_LEN 0x0C
8133
8134 MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN);
8135
8136 /* fan_under_limit
8137 * Fan speed is below the low limit defined in MFSL register. Each bit relates
8138 * to a single tachometer and indicates the specific tachometer reading is
8139 * below the threshold.
8140 * Access: RO
8141 */
8142 MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10);
8143
mlxsw_reg_fore_unpack(char * payload,u8 tacho,bool * fault)8144 static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho,
8145 bool *fault)
8146 {
8147 u16 limit;
8148
8149 if (fault) {
8150 limit = mlxsw_reg_fore_fan_under_limit_get(payload);
8151 *fault = limit & BIT(tacho);
8152 }
8153 }
8154
8155 /* MTCAP - Management Temperature Capabilities
8156 * -------------------------------------------
8157 * This register exposes the capabilities of the device and
8158 * system temperature sensing.
8159 */
8160 #define MLXSW_REG_MTCAP_ID 0x9009
8161 #define MLXSW_REG_MTCAP_LEN 0x08
8162
8163 MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN);
8164
8165 /* reg_mtcap_sensor_count
8166 * Number of sensors supported by the device.
8167 * This includes the QSFP module sensors (if exists in the QSFP module).
8168 * Access: RO
8169 */
8170 MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7);
8171
8172 /* MTMP - Management Temperature
8173 * -----------------------------
8174 * This register controls the settings of the temperature measurements
8175 * and enables reading the temperature measurements. Note that temperature
8176 * is in 0.125 degrees Celsius.
8177 */
8178 #define MLXSW_REG_MTMP_ID 0x900A
8179 #define MLXSW_REG_MTMP_LEN 0x20
8180
8181 MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN);
8182
8183 #define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64
8184 #define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256
8185 /* reg_mtmp_sensor_index
8186 * Sensors index to access.
8187 * 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially
8188 * (module 0 is mapped to sensor_index 64).
8189 * Access: Index
8190 */
8191 MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12);
8192
8193 /* Convert to milli degrees Celsius */
8194 #define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \
8195 ((v_) >= 0) ? ((v_) * 125) : \
8196 ((s16)((GENMASK(15, 0) + (v_) + 1) \
8197 * 125)); })
8198
8199 /* reg_mtmp_temperature
8200 * Temperature reading from the sensor. Reading is in 0.125 Celsius
8201 * degrees units.
8202 * Access: RO
8203 */
8204 MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16);
8205
8206 /* reg_mtmp_mte
8207 * Max Temperature Enable - enables measuring the max temperature on a sensor.
8208 * Access: RW
8209 */
8210 MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1);
8211
8212 /* reg_mtmp_mtr
8213 * Max Temperature Reset - clears the value of the max temperature register.
8214 * Access: WO
8215 */
8216 MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1);
8217
8218 /* reg_mtmp_max_temperature
8219 * The highest measured temperature from the sensor.
8220 * When the bit mte is cleared, the field max_temperature is reserved.
8221 * Access: RO
8222 */
8223 MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16);
8224
8225 /* reg_mtmp_tee
8226 * Temperature Event Enable.
8227 * 0 - Do not generate event
8228 * 1 - Generate event
8229 * 2 - Generate single event
8230 * Access: RW
8231 */
8232 MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2);
8233
8234 #define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */
8235
8236 /* reg_mtmp_temperature_threshold_hi
8237 * High threshold for Temperature Warning Event. In 0.125 Celsius.
8238 * Access: RW
8239 */
8240 MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16);
8241
8242 /* reg_mtmp_temperature_threshold_lo
8243 * Low threshold for Temperature Warning Event. In 0.125 Celsius.
8244 * Access: RW
8245 */
8246 MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16);
8247
8248 #define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8
8249
8250 /* reg_mtmp_sensor_name
8251 * Sensor Name
8252 * Access: RO
8253 */
8254 MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE);
8255
mlxsw_reg_mtmp_pack(char * payload,u16 sensor_index,bool max_temp_enable,bool max_temp_reset)8256 static inline void mlxsw_reg_mtmp_pack(char *payload, u16 sensor_index,
8257 bool max_temp_enable,
8258 bool max_temp_reset)
8259 {
8260 MLXSW_REG_ZERO(mtmp, payload);
8261 mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index);
8262 mlxsw_reg_mtmp_mte_set(payload, max_temp_enable);
8263 mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset);
8264 mlxsw_reg_mtmp_temperature_threshold_hi_set(payload,
8265 MLXSW_REG_MTMP_THRESH_HI);
8266 }
8267
mlxsw_reg_mtmp_unpack(char * payload,int * p_temp,int * p_max_temp,char * sensor_name)8268 static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp,
8269 int *p_max_temp, char *sensor_name)
8270 {
8271 s16 temp;
8272
8273 if (p_temp) {
8274 temp = mlxsw_reg_mtmp_temperature_get(payload);
8275 *p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
8276 }
8277 if (p_max_temp) {
8278 temp = mlxsw_reg_mtmp_max_temperature_get(payload);
8279 *p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
8280 }
8281 if (sensor_name)
8282 mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name);
8283 }
8284
8285 /* MTBR - Management Temperature Bulk Register
8286 * -------------------------------------------
8287 * This register is used for bulk temperature reading.
8288 */
8289 #define MLXSW_REG_MTBR_ID 0x900F
8290 #define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */
8291 #define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */
8292 #define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */
8293 #define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \
8294 MLXSW_REG_MTBR_REC_LEN * \
8295 MLXSW_REG_MTBR_REC_MAX_COUNT)
8296
8297 MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN);
8298
8299 /* reg_mtbr_base_sensor_index
8300 * Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors,
8301 * 64-127 are mapped to the SFP+/QSFP modules sequentially).
8302 * Access: Index
8303 */
8304 MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12);
8305
8306 /* reg_mtbr_num_rec
8307 * Request: Number of records to read
8308 * Response: Number of records read
8309 * See above description for more details.
8310 * Range 1..255
8311 * Access: RW
8312 */
8313 MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8);
8314
8315 /* reg_mtbr_rec_max_temp
8316 * The highest measured temperature from the sensor.
8317 * When the bit mte is cleared, the field max_temperature is reserved.
8318 * Access: RO
8319 */
8320 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16,
8321 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false);
8322
8323 /* reg_mtbr_rec_temp
8324 * Temperature reading from the sensor. Reading is in 0..125 Celsius
8325 * degrees units.
8326 * Access: RO
8327 */
8328 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16,
8329 MLXSW_REG_MTBR_REC_LEN, 0x00, false);
8330
mlxsw_reg_mtbr_pack(char * payload,u16 base_sensor_index,u8 num_rec)8331 static inline void mlxsw_reg_mtbr_pack(char *payload, u16 base_sensor_index,
8332 u8 num_rec)
8333 {
8334 MLXSW_REG_ZERO(mtbr, payload);
8335 mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index);
8336 mlxsw_reg_mtbr_num_rec_set(payload, num_rec);
8337 }
8338
8339 /* Error codes from temperatute reading */
8340 enum mlxsw_reg_mtbr_temp_status {
8341 MLXSW_REG_MTBR_NO_CONN = 0x8000,
8342 MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001,
8343 MLXSW_REG_MTBR_INDEX_NA = 0x8002,
8344 MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003,
8345 };
8346
8347 /* Base index for reading modules temperature */
8348 #define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64
8349
mlxsw_reg_mtbr_temp_unpack(char * payload,int rec_ind,u16 * p_temp,u16 * p_max_temp)8350 static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind,
8351 u16 *p_temp, u16 *p_max_temp)
8352 {
8353 if (p_temp)
8354 *p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind);
8355 if (p_max_temp)
8356 *p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind);
8357 }
8358
8359 /* MCIA - Management Cable Info Access
8360 * -----------------------------------
8361 * MCIA register is used to access the SFP+ and QSFP connector's EPROM.
8362 */
8363
8364 #define MLXSW_REG_MCIA_ID 0x9014
8365 #define MLXSW_REG_MCIA_LEN 0x40
8366
8367 MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN);
8368
8369 /* reg_mcia_l
8370 * Lock bit. Setting this bit will lock the access to the specific
8371 * cable. Used for updating a full page in a cable EPROM. Any access
8372 * other then subsequence writes will fail while the port is locked.
8373 * Access: RW
8374 */
8375 MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1);
8376
8377 /* reg_mcia_module
8378 * Module number.
8379 * Access: Index
8380 */
8381 MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8);
8382
8383 /* reg_mcia_status
8384 * Module status.
8385 * Access: RO
8386 */
8387 MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8);
8388
8389 /* reg_mcia_i2c_device_address
8390 * I2C device address.
8391 * Access: RW
8392 */
8393 MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8);
8394
8395 /* reg_mcia_page_number
8396 * Page number.
8397 * Access: RW
8398 */
8399 MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8);
8400
8401 /* reg_mcia_device_address
8402 * Device address.
8403 * Access: RW
8404 */
8405 MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16);
8406
8407 /* reg_mcia_size
8408 * Number of bytes to read/write (up to 48 bytes).
8409 * Access: RW
8410 */
8411 MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16);
8412
8413 #define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256
8414 #define MLXSW_REG_MCIA_EEPROM_SIZE 48
8415 #define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50
8416 #define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51
8417 #define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0
8418 #define MLXSW_REG_MCIA_TH_ITEM_SIZE 2
8419 #define MLXSW_REG_MCIA_TH_PAGE_NUM 3
8420 #define MLXSW_REG_MCIA_PAGE0_LO 0
8421 #define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80
8422
8423 enum mlxsw_reg_mcia_eeprom_module_info_rev_id {
8424 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00,
8425 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01,
8426 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03,
8427 };
8428
8429 enum mlxsw_reg_mcia_eeprom_module_info_id {
8430 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03,
8431 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C,
8432 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D,
8433 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11,
8434 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18,
8435 };
8436
8437 enum mlxsw_reg_mcia_eeprom_module_info {
8438 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID,
8439 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID,
8440 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE,
8441 };
8442
8443 /* reg_mcia_eeprom
8444 * Bytes to read/write.
8445 * Access: RW
8446 */
8447 MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE);
8448
mlxsw_reg_mcia_pack(char * payload,u8 module,u8 lock,u8 page_number,u16 device_addr,u8 size,u8 i2c_device_addr)8449 static inline void mlxsw_reg_mcia_pack(char *payload, u8 module, u8 lock,
8450 u8 page_number, u16 device_addr,
8451 u8 size, u8 i2c_device_addr)
8452 {
8453 MLXSW_REG_ZERO(mcia, payload);
8454 mlxsw_reg_mcia_module_set(payload, module);
8455 mlxsw_reg_mcia_l_set(payload, lock);
8456 mlxsw_reg_mcia_page_number_set(payload, page_number);
8457 mlxsw_reg_mcia_device_address_set(payload, device_addr);
8458 mlxsw_reg_mcia_size_set(payload, size);
8459 mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr);
8460 }
8461
8462 /* MPAT - Monitoring Port Analyzer Table
8463 * -------------------------------------
8464 * MPAT Register is used to query and configure the Switch PortAnalyzer Table.
8465 * For an enabled analyzer, all fields except e (enable) cannot be modified.
8466 */
8467 #define MLXSW_REG_MPAT_ID 0x901A
8468 #define MLXSW_REG_MPAT_LEN 0x78
8469
8470 MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN);
8471
8472 /* reg_mpat_pa_id
8473 * Port Analyzer ID.
8474 * Access: Index
8475 */
8476 MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4);
8477
8478 /* reg_mpat_system_port
8479 * A unique port identifier for the final destination of the packet.
8480 * Access: RW
8481 */
8482 MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16);
8483
8484 /* reg_mpat_e
8485 * Enable. Indicating the Port Analyzer is enabled.
8486 * Access: RW
8487 */
8488 MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1);
8489
8490 /* reg_mpat_qos
8491 * Quality Of Service Mode.
8492 * 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation
8493 * PCP, DEI, DSCP or VL) are configured.
8494 * 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the
8495 * same as in the original packet that has triggered the mirroring. For
8496 * SPAN also the pcp,dei are maintained.
8497 * Access: RW
8498 */
8499 MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1);
8500
8501 /* reg_mpat_be
8502 * Best effort mode. Indicates mirroring traffic should not cause packet
8503 * drop or back pressure, but will discard the mirrored packets. Mirrored
8504 * packets will be forwarded on a best effort manner.
8505 * 0: Do not discard mirrored packets
8506 * 1: Discard mirrored packets if causing congestion
8507 * Access: RW
8508 */
8509 MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1);
8510
8511 enum mlxsw_reg_mpat_span_type {
8512 /* Local SPAN Ethernet.
8513 * The original packet is not encapsulated.
8514 */
8515 MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0,
8516
8517 /* Remote SPAN Ethernet VLAN.
8518 * The packet is forwarded to the monitoring port on the monitoring
8519 * VLAN.
8520 */
8521 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1,
8522
8523 /* Encapsulated Remote SPAN Ethernet L3 GRE.
8524 * The packet is encapsulated with GRE header.
8525 */
8526 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3,
8527 };
8528
8529 /* reg_mpat_span_type
8530 * SPAN type.
8531 * Access: RW
8532 */
8533 MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4);
8534
8535 /* Remote SPAN - Ethernet VLAN
8536 * - - - - - - - - - - - - - -
8537 */
8538
8539 /* reg_mpat_eth_rspan_vid
8540 * Encapsulation header VLAN ID.
8541 * Access: RW
8542 */
8543 MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12);
8544
8545 /* Encapsulated Remote SPAN - Ethernet L2
8546 * - - - - - - - - - - - - - - - - - - -
8547 */
8548
8549 enum mlxsw_reg_mpat_eth_rspan_version {
8550 MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15,
8551 };
8552
8553 /* reg_mpat_eth_rspan_version
8554 * RSPAN mirror header version.
8555 * Access: RW
8556 */
8557 MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4);
8558
8559 /* reg_mpat_eth_rspan_mac
8560 * Destination MAC address.
8561 * Access: RW
8562 */
8563 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6);
8564
8565 /* reg_mpat_eth_rspan_tp
8566 * Tag Packet. Indicates whether the mirroring header should be VLAN tagged.
8567 * Access: RW
8568 */
8569 MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1);
8570
8571 /* Encapsulated Remote SPAN - Ethernet L3
8572 * - - - - - - - - - - - - - - - - - - -
8573 */
8574
8575 enum mlxsw_reg_mpat_eth_rspan_protocol {
8576 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4,
8577 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6,
8578 };
8579
8580 /* reg_mpat_eth_rspan_protocol
8581 * SPAN encapsulation protocol.
8582 * Access: RW
8583 */
8584 MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4);
8585
8586 /* reg_mpat_eth_rspan_ttl
8587 * Encapsulation header Time-to-Live/HopLimit.
8588 * Access: RW
8589 */
8590 MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8);
8591
8592 /* reg_mpat_eth_rspan_smac
8593 * Source MAC address
8594 * Access: RW
8595 */
8596 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6);
8597
8598 /* reg_mpat_eth_rspan_dip*
8599 * Destination IP address. The IP version is configured by protocol.
8600 * Access: RW
8601 */
8602 MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32);
8603 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16);
8604
8605 /* reg_mpat_eth_rspan_sip*
8606 * Source IP address. The IP version is configured by protocol.
8607 * Access: RW
8608 */
8609 MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32);
8610 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16);
8611
mlxsw_reg_mpat_pack(char * payload,u8 pa_id,u16 system_port,bool e,enum mlxsw_reg_mpat_span_type span_type)8612 static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id,
8613 u16 system_port, bool e,
8614 enum mlxsw_reg_mpat_span_type span_type)
8615 {
8616 MLXSW_REG_ZERO(mpat, payload);
8617 mlxsw_reg_mpat_pa_id_set(payload, pa_id);
8618 mlxsw_reg_mpat_system_port_set(payload, system_port);
8619 mlxsw_reg_mpat_e_set(payload, e);
8620 mlxsw_reg_mpat_qos_set(payload, 1);
8621 mlxsw_reg_mpat_be_set(payload, 1);
8622 mlxsw_reg_mpat_span_type_set(payload, span_type);
8623 }
8624
mlxsw_reg_mpat_eth_rspan_pack(char * payload,u16 vid)8625 static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid)
8626 {
8627 mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid);
8628 }
8629
8630 static inline void
mlxsw_reg_mpat_eth_rspan_l2_pack(char * payload,enum mlxsw_reg_mpat_eth_rspan_version version,const char * mac,bool tp)8631 mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload,
8632 enum mlxsw_reg_mpat_eth_rspan_version version,
8633 const char *mac,
8634 bool tp)
8635 {
8636 mlxsw_reg_mpat_eth_rspan_version_set(payload, version);
8637 mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac);
8638 mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp);
8639 }
8640
8641 static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char * payload,u8 ttl,const char * smac,u32 sip,u32 dip)8642 mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl,
8643 const char *smac,
8644 u32 sip, u32 dip)
8645 {
8646 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
8647 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
8648 mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
8649 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4);
8650 mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip);
8651 mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip);
8652 }
8653
8654 static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char * payload,u8 ttl,const char * smac,struct in6_addr sip,struct in6_addr dip)8655 mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl,
8656 const char *smac,
8657 struct in6_addr sip, struct in6_addr dip)
8658 {
8659 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
8660 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
8661 mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
8662 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6);
8663 mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip);
8664 mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip);
8665 }
8666
8667 /* MPAR - Monitoring Port Analyzer Register
8668 * ----------------------------------------
8669 * MPAR register is used to query and configure the port analyzer port mirroring
8670 * properties.
8671 */
8672 #define MLXSW_REG_MPAR_ID 0x901B
8673 #define MLXSW_REG_MPAR_LEN 0x08
8674
8675 MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN);
8676
8677 /* reg_mpar_local_port
8678 * The local port to mirror the packets from.
8679 * Access: Index
8680 */
8681 MLXSW_ITEM32(reg, mpar, local_port, 0x00, 16, 8);
8682
8683 enum mlxsw_reg_mpar_i_e {
8684 MLXSW_REG_MPAR_TYPE_EGRESS,
8685 MLXSW_REG_MPAR_TYPE_INGRESS,
8686 };
8687
8688 /* reg_mpar_i_e
8689 * Ingress/Egress
8690 * Access: Index
8691 */
8692 MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4);
8693
8694 /* reg_mpar_enable
8695 * Enable mirroring
8696 * By default, port mirroring is disabled for all ports.
8697 * Access: RW
8698 */
8699 MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1);
8700
8701 /* reg_mpar_pa_id
8702 * Port Analyzer ID.
8703 * Access: RW
8704 */
8705 MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4);
8706
mlxsw_reg_mpar_pack(char * payload,u8 local_port,enum mlxsw_reg_mpar_i_e i_e,bool enable,u8 pa_id)8707 static inline void mlxsw_reg_mpar_pack(char *payload, u8 local_port,
8708 enum mlxsw_reg_mpar_i_e i_e,
8709 bool enable, u8 pa_id)
8710 {
8711 MLXSW_REG_ZERO(mpar, payload);
8712 mlxsw_reg_mpar_local_port_set(payload, local_port);
8713 mlxsw_reg_mpar_enable_set(payload, enable);
8714 mlxsw_reg_mpar_i_e_set(payload, i_e);
8715 mlxsw_reg_mpar_pa_id_set(payload, pa_id);
8716 }
8717
8718 /* MGIR - Management General Information Register
8719 * ----------------------------------------------
8720 * MGIR register allows software to query the hardware and firmware general
8721 * information.
8722 */
8723 #define MLXSW_REG_MGIR_ID 0x9020
8724 #define MLXSW_REG_MGIR_LEN 0x9C
8725
8726 MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN);
8727
8728 /* reg_mgir_hw_info_device_hw_revision
8729 * Access: RO
8730 */
8731 MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16);
8732
8733 #define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16
8734
8735 /* reg_mgir_fw_info_psid
8736 * PSID (ASCII string).
8737 * Access: RO
8738 */
8739 MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE);
8740
8741 /* reg_mgir_fw_info_extended_major
8742 * Access: RO
8743 */
8744 MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32);
8745
8746 /* reg_mgir_fw_info_extended_minor
8747 * Access: RO
8748 */
8749 MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32);
8750
8751 /* reg_mgir_fw_info_extended_sub_minor
8752 * Access: RO
8753 */
8754 MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32);
8755
mlxsw_reg_mgir_pack(char * payload)8756 static inline void mlxsw_reg_mgir_pack(char *payload)
8757 {
8758 MLXSW_REG_ZERO(mgir, payload);
8759 }
8760
8761 static inline void
mlxsw_reg_mgir_unpack(char * payload,u32 * hw_rev,char * fw_info_psid,u32 * fw_major,u32 * fw_minor,u32 * fw_sub_minor)8762 mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid,
8763 u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor)
8764 {
8765 *hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload);
8766 mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid);
8767 *fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload);
8768 *fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload);
8769 *fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload);
8770 }
8771
8772 /* MRSR - Management Reset and Shutdown Register
8773 * ---------------------------------------------
8774 * MRSR register is used to reset or shutdown the switch or
8775 * the entire system (when applicable).
8776 */
8777 #define MLXSW_REG_MRSR_ID 0x9023
8778 #define MLXSW_REG_MRSR_LEN 0x08
8779
8780 MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN);
8781
8782 /* reg_mrsr_command
8783 * Reset/shutdown command
8784 * 0 - do nothing
8785 * 1 - software reset
8786 * Access: WO
8787 */
8788 MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4);
8789
mlxsw_reg_mrsr_pack(char * payload)8790 static inline void mlxsw_reg_mrsr_pack(char *payload)
8791 {
8792 MLXSW_REG_ZERO(mrsr, payload);
8793 mlxsw_reg_mrsr_command_set(payload, 1);
8794 }
8795
8796 /* MLCR - Management LED Control Register
8797 * --------------------------------------
8798 * Controls the system LEDs.
8799 */
8800 #define MLXSW_REG_MLCR_ID 0x902B
8801 #define MLXSW_REG_MLCR_LEN 0x0C
8802
8803 MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN);
8804
8805 /* reg_mlcr_local_port
8806 * Local port number.
8807 * Access: RW
8808 */
8809 MLXSW_ITEM32(reg, mlcr, local_port, 0x00, 16, 8);
8810
8811 #define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF
8812
8813 /* reg_mlcr_beacon_duration
8814 * Duration of the beacon to be active, in seconds.
8815 * 0x0 - Will turn off the beacon.
8816 * 0xFFFF - Will turn on the beacon until explicitly turned off.
8817 * Access: RW
8818 */
8819 MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16);
8820
8821 /* reg_mlcr_beacon_remain
8822 * Remaining duration of the beacon, in seconds.
8823 * 0xFFFF indicates an infinite amount of time.
8824 * Access: RO
8825 */
8826 MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16);
8827
mlxsw_reg_mlcr_pack(char * payload,u8 local_port,bool active)8828 static inline void mlxsw_reg_mlcr_pack(char *payload, u8 local_port,
8829 bool active)
8830 {
8831 MLXSW_REG_ZERO(mlcr, payload);
8832 mlxsw_reg_mlcr_local_port_set(payload, local_port);
8833 mlxsw_reg_mlcr_beacon_duration_set(payload, active ?
8834 MLXSW_REG_MLCR_DURATION_MAX : 0);
8835 }
8836
8837 /* MTPPS - Management Pulse Per Second Register
8838 * --------------------------------------------
8839 * This register provides the device PPS capabilities, configure the PPS in and
8840 * out modules and holds the PPS in time stamp.
8841 */
8842 #define MLXSW_REG_MTPPS_ID 0x9053
8843 #define MLXSW_REG_MTPPS_LEN 0x3C
8844
8845 MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN);
8846
8847 /* reg_mtpps_enable
8848 * Enables the PPS functionality the specific pin.
8849 * A boolean variable.
8850 * Access: RW
8851 */
8852 MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1);
8853
8854 enum mlxsw_reg_mtpps_pin_mode {
8855 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2,
8856 };
8857
8858 /* reg_mtpps_pin_mode
8859 * Pin mode to be used. The mode must comply with the supported modes of the
8860 * requested pin.
8861 * Access: RW
8862 */
8863 MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4);
8864
8865 #define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7
8866
8867 /* reg_mtpps_pin
8868 * Pin to be configured or queried out of the supported pins.
8869 * Access: Index
8870 */
8871 MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8);
8872
8873 /* reg_mtpps_time_stamp
8874 * When pin_mode = pps_in, the latched device time when it was triggered from
8875 * the external GPIO pin.
8876 * When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target
8877 * time to generate next output signal.
8878 * Time is in units of device clock.
8879 * Access: RW
8880 */
8881 MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64);
8882
8883 static inline void
mlxsw_reg_mtpps_vpin_pack(char * payload,u64 time_stamp)8884 mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp)
8885 {
8886 MLXSW_REG_ZERO(mtpps, payload);
8887 mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN);
8888 mlxsw_reg_mtpps_pin_mode_set(payload,
8889 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN);
8890 mlxsw_reg_mtpps_enable_set(payload, true);
8891 mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp);
8892 }
8893
8894 /* MTUTC - Management UTC Register
8895 * -------------------------------
8896 * Configures the HW UTC counter.
8897 */
8898 #define MLXSW_REG_MTUTC_ID 0x9055
8899 #define MLXSW_REG_MTUTC_LEN 0x1C
8900
8901 MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN);
8902
8903 enum mlxsw_reg_mtutc_operation {
8904 MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0,
8905 MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3,
8906 };
8907
8908 /* reg_mtutc_operation
8909 * Operation.
8910 * Access: OP
8911 */
8912 MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4);
8913
8914 /* reg_mtutc_freq_adjustment
8915 * Frequency adjustment: Every PPS the HW frequency will be
8916 * adjusted by this value. Units of HW clock, where HW counts
8917 * 10^9 HW clocks for 1 HW second.
8918 * Access: RW
8919 */
8920 MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32);
8921
8922 /* reg_mtutc_utc_sec
8923 * UTC seconds.
8924 * Access: WO
8925 */
8926 MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32);
8927
8928 static inline void
mlxsw_reg_mtutc_pack(char * payload,enum mlxsw_reg_mtutc_operation oper,u32 freq_adj,u32 utc_sec)8929 mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper,
8930 u32 freq_adj, u32 utc_sec)
8931 {
8932 MLXSW_REG_ZERO(mtutc, payload);
8933 mlxsw_reg_mtutc_operation_set(payload, oper);
8934 mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj);
8935 mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec);
8936 }
8937
8938 /* MCQI - Management Component Query Information
8939 * ---------------------------------------------
8940 * This register allows querying information about firmware components.
8941 */
8942 #define MLXSW_REG_MCQI_ID 0x9061
8943 #define MLXSW_REG_MCQI_BASE_LEN 0x18
8944 #define MLXSW_REG_MCQI_CAP_LEN 0x14
8945 #define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN)
8946
8947 MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN);
8948
8949 /* reg_mcqi_component_index
8950 * Index of the accessed component.
8951 * Access: Index
8952 */
8953 MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16);
8954
8955 enum mlxfw_reg_mcqi_info_type {
8956 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES,
8957 };
8958
8959 /* reg_mcqi_info_type
8960 * Component properties set.
8961 * Access: RW
8962 */
8963 MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5);
8964
8965 /* reg_mcqi_offset
8966 * The requested/returned data offset from the section start, given in bytes.
8967 * Must be DWORD aligned.
8968 * Access: RW
8969 */
8970 MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32);
8971
8972 /* reg_mcqi_data_size
8973 * The requested/returned data size, given in bytes. If data_size is not DWORD
8974 * aligned, the last bytes are zero padded.
8975 * Access: RW
8976 */
8977 MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16);
8978
8979 /* reg_mcqi_cap_max_component_size
8980 * Maximum size for this component, given in bytes.
8981 * Access: RO
8982 */
8983 MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32);
8984
8985 /* reg_mcqi_cap_log_mcda_word_size
8986 * Log 2 of the access word size in bytes. Read and write access must be aligned
8987 * to the word size. Write access must be done for an integer number of words.
8988 * Access: RO
8989 */
8990 MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4);
8991
8992 /* reg_mcqi_cap_mcda_max_write_size
8993 * Maximal write size for MCDA register
8994 * Access: RO
8995 */
8996 MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16);
8997
mlxsw_reg_mcqi_pack(char * payload,u16 component_index)8998 static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index)
8999 {
9000 MLXSW_REG_ZERO(mcqi, payload);
9001 mlxsw_reg_mcqi_component_index_set(payload, component_index);
9002 mlxsw_reg_mcqi_info_type_set(payload,
9003 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES);
9004 mlxsw_reg_mcqi_offset_set(payload, 0);
9005 mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN);
9006 }
9007
mlxsw_reg_mcqi_unpack(char * payload,u32 * p_cap_max_component_size,u8 * p_cap_log_mcda_word_size,u16 * p_cap_mcda_max_write_size)9008 static inline void mlxsw_reg_mcqi_unpack(char *payload,
9009 u32 *p_cap_max_component_size,
9010 u8 *p_cap_log_mcda_word_size,
9011 u16 *p_cap_mcda_max_write_size)
9012 {
9013 *p_cap_max_component_size =
9014 mlxsw_reg_mcqi_cap_max_component_size_get(payload);
9015 *p_cap_log_mcda_word_size =
9016 mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload);
9017 *p_cap_mcda_max_write_size =
9018 mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload);
9019 }
9020
9021 /* MCC - Management Component Control
9022 * ----------------------------------
9023 * Controls the firmware component and updates the FSM.
9024 */
9025 #define MLXSW_REG_MCC_ID 0x9062
9026 #define MLXSW_REG_MCC_LEN 0x1C
9027
9028 MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN);
9029
9030 enum mlxsw_reg_mcc_instruction {
9031 MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01,
9032 MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02,
9033 MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03,
9034 MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04,
9035 MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06,
9036 MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08,
9037 };
9038
9039 /* reg_mcc_instruction
9040 * Command to be executed by the FSM.
9041 * Applicable for write operation only.
9042 * Access: RW
9043 */
9044 MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8);
9045
9046 /* reg_mcc_component_index
9047 * Index of the accessed component. Applicable only for commands that
9048 * refer to components. Otherwise, this field is reserved.
9049 * Access: Index
9050 */
9051 MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16);
9052
9053 /* reg_mcc_update_handle
9054 * Token representing the current flow executed by the FSM.
9055 * Access: WO
9056 */
9057 MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24);
9058
9059 /* reg_mcc_error_code
9060 * Indicates the successful completion of the instruction, or the reason it
9061 * failed
9062 * Access: RO
9063 */
9064 MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8);
9065
9066 /* reg_mcc_control_state
9067 * Current FSM state
9068 * Access: RO
9069 */
9070 MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4);
9071
9072 /* reg_mcc_component_size
9073 * Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying
9074 * the size may shorten the update time. Value 0x0 means that size is
9075 * unspecified.
9076 * Access: WO
9077 */
9078 MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32);
9079
mlxsw_reg_mcc_pack(char * payload,enum mlxsw_reg_mcc_instruction instr,u16 component_index,u32 update_handle,u32 component_size)9080 static inline void mlxsw_reg_mcc_pack(char *payload,
9081 enum mlxsw_reg_mcc_instruction instr,
9082 u16 component_index, u32 update_handle,
9083 u32 component_size)
9084 {
9085 MLXSW_REG_ZERO(mcc, payload);
9086 mlxsw_reg_mcc_instruction_set(payload, instr);
9087 mlxsw_reg_mcc_component_index_set(payload, component_index);
9088 mlxsw_reg_mcc_update_handle_set(payload, update_handle);
9089 mlxsw_reg_mcc_component_size_set(payload, component_size);
9090 }
9091
mlxsw_reg_mcc_unpack(char * payload,u32 * p_update_handle,u8 * p_error_code,u8 * p_control_state)9092 static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle,
9093 u8 *p_error_code, u8 *p_control_state)
9094 {
9095 if (p_update_handle)
9096 *p_update_handle = mlxsw_reg_mcc_update_handle_get(payload);
9097 if (p_error_code)
9098 *p_error_code = mlxsw_reg_mcc_error_code_get(payload);
9099 if (p_control_state)
9100 *p_control_state = mlxsw_reg_mcc_control_state_get(payload);
9101 }
9102
9103 /* MCDA - Management Component Data Access
9104 * ---------------------------------------
9105 * This register allows reading and writing a firmware component.
9106 */
9107 #define MLXSW_REG_MCDA_ID 0x9063
9108 #define MLXSW_REG_MCDA_BASE_LEN 0x10
9109 #define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80
9110 #define MLXSW_REG_MCDA_LEN \
9111 (MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN)
9112
9113 MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN);
9114
9115 /* reg_mcda_update_handle
9116 * Token representing the current flow executed by the FSM.
9117 * Access: RW
9118 */
9119 MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24);
9120
9121 /* reg_mcda_offset
9122 * Offset of accessed address relative to component start. Accesses must be in
9123 * accordance to log_mcda_word_size in MCQI reg.
9124 * Access: RW
9125 */
9126 MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32);
9127
9128 /* reg_mcda_size
9129 * Size of the data accessed, given in bytes.
9130 * Access: RW
9131 */
9132 MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16);
9133
9134 /* reg_mcda_data
9135 * Data block accessed.
9136 * Access: RW
9137 */
9138 MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false);
9139
mlxsw_reg_mcda_pack(char * payload,u32 update_handle,u32 offset,u16 size,u8 * data)9140 static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle,
9141 u32 offset, u16 size, u8 *data)
9142 {
9143 int i;
9144
9145 MLXSW_REG_ZERO(mcda, payload);
9146 mlxsw_reg_mcda_update_handle_set(payload, update_handle);
9147 mlxsw_reg_mcda_offset_set(payload, offset);
9148 mlxsw_reg_mcda_size_set(payload, size);
9149
9150 for (i = 0; i < size / 4; i++)
9151 mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]);
9152 }
9153
9154 /* MPSC - Monitoring Packet Sampling Configuration Register
9155 * --------------------------------------------------------
9156 * MPSC Register is used to configure the Packet Sampling mechanism.
9157 */
9158 #define MLXSW_REG_MPSC_ID 0x9080
9159 #define MLXSW_REG_MPSC_LEN 0x1C
9160
9161 MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN);
9162
9163 /* reg_mpsc_local_port
9164 * Local port number
9165 * Not supported for CPU port
9166 * Access: Index
9167 */
9168 MLXSW_ITEM32(reg, mpsc, local_port, 0x00, 16, 8);
9169
9170 /* reg_mpsc_e
9171 * Enable sampling on port local_port
9172 * Access: RW
9173 */
9174 MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1);
9175
9176 #define MLXSW_REG_MPSC_RATE_MAX 3500000000UL
9177
9178 /* reg_mpsc_rate
9179 * Sampling rate = 1 out of rate packets (with randomization around
9180 * the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX
9181 * Access: RW
9182 */
9183 MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32);
9184
mlxsw_reg_mpsc_pack(char * payload,u8 local_port,bool e,u32 rate)9185 static inline void mlxsw_reg_mpsc_pack(char *payload, u8 local_port, bool e,
9186 u32 rate)
9187 {
9188 MLXSW_REG_ZERO(mpsc, payload);
9189 mlxsw_reg_mpsc_local_port_set(payload, local_port);
9190 mlxsw_reg_mpsc_e_set(payload, e);
9191 mlxsw_reg_mpsc_rate_set(payload, rate);
9192 }
9193
9194 /* MGPC - Monitoring General Purpose Counter Set Register
9195 * The MGPC register retrieves and sets the General Purpose Counter Set.
9196 */
9197 #define MLXSW_REG_MGPC_ID 0x9081
9198 #define MLXSW_REG_MGPC_LEN 0x18
9199
9200 MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN);
9201
9202 /* reg_mgpc_counter_set_type
9203 * Counter set type.
9204 * Access: OP
9205 */
9206 MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8);
9207
9208 /* reg_mgpc_counter_index
9209 * Counter index.
9210 * Access: Index
9211 */
9212 MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24);
9213
9214 enum mlxsw_reg_mgpc_opcode {
9215 /* Nop */
9216 MLXSW_REG_MGPC_OPCODE_NOP = 0x00,
9217 /* Clear counters */
9218 MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08,
9219 };
9220
9221 /* reg_mgpc_opcode
9222 * Opcode.
9223 * Access: OP
9224 */
9225 MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4);
9226
9227 /* reg_mgpc_byte_counter
9228 * Byte counter value.
9229 * Access: RW
9230 */
9231 MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64);
9232
9233 /* reg_mgpc_packet_counter
9234 * Packet counter value.
9235 * Access: RW
9236 */
9237 MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64);
9238
mlxsw_reg_mgpc_pack(char * payload,u32 counter_index,enum mlxsw_reg_mgpc_opcode opcode,enum mlxsw_reg_flow_counter_set_type set_type)9239 static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index,
9240 enum mlxsw_reg_mgpc_opcode opcode,
9241 enum mlxsw_reg_flow_counter_set_type set_type)
9242 {
9243 MLXSW_REG_ZERO(mgpc, payload);
9244 mlxsw_reg_mgpc_counter_index_set(payload, counter_index);
9245 mlxsw_reg_mgpc_counter_set_type_set(payload, set_type);
9246 mlxsw_reg_mgpc_opcode_set(payload, opcode);
9247 }
9248
9249 /* MPRS - Monitoring Parsing State Register
9250 * ----------------------------------------
9251 * The MPRS register is used for setting up the parsing for hash,
9252 * policy-engine and routing.
9253 */
9254 #define MLXSW_REG_MPRS_ID 0x9083
9255 #define MLXSW_REG_MPRS_LEN 0x14
9256
9257 MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN);
9258
9259 /* reg_mprs_parsing_depth
9260 * Minimum parsing depth.
9261 * Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL
9262 * rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2.
9263 * Access: RW
9264 */
9265 MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16);
9266
9267 /* reg_mprs_parsing_en
9268 * Parsing enable.
9269 * Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and
9270 * NVGRE. Default is enabled. Reserved when SwitchX-2.
9271 * Access: RW
9272 */
9273 MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16);
9274
9275 /* reg_mprs_vxlan_udp_dport
9276 * VxLAN UDP destination port.
9277 * Used for identifying VxLAN packets and for dport field in
9278 * encapsulation. Default is 4789.
9279 * Access: RW
9280 */
9281 MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16);
9282
mlxsw_reg_mprs_pack(char * payload,u16 parsing_depth,u16 vxlan_udp_dport)9283 static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth,
9284 u16 vxlan_udp_dport)
9285 {
9286 MLXSW_REG_ZERO(mprs, payload);
9287 mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth);
9288 mlxsw_reg_mprs_parsing_en_set(payload, true);
9289 mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport);
9290 }
9291
9292 /* MOGCR - Monitoring Global Configuration Register
9293 * ------------------------------------------------
9294 */
9295 #define MLXSW_REG_MOGCR_ID 0x9086
9296 #define MLXSW_REG_MOGCR_LEN 0x20
9297
9298 MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN);
9299
9300 /* reg_mogcr_ptp_iftc
9301 * PTP Ingress FIFO Trap Clear
9302 * The PTP_ING_FIFO trap provides MTPPTR with clr according
9303 * to this value. Default 0.
9304 * Reserved when IB switches and when SwitchX/-2, Spectrum-2
9305 * Access: RW
9306 */
9307 MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1);
9308
9309 /* reg_mogcr_ptp_eftc
9310 * PTP Egress FIFO Trap Clear
9311 * The PTP_EGR_FIFO trap provides MTPPTR with clr according
9312 * to this value. Default 0.
9313 * Reserved when IB switches and when SwitchX/-2, Spectrum-2
9314 * Access: RW
9315 */
9316 MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1);
9317
9318 /* MTPPPC - Time Precision Packet Port Configuration
9319 * -------------------------------------------------
9320 * This register serves for configuration of which PTP messages should be
9321 * timestamped. This is a global configuration, despite the register name.
9322 *
9323 * Reserved when Spectrum-2.
9324 */
9325 #define MLXSW_REG_MTPPPC_ID 0x9090
9326 #define MLXSW_REG_MTPPPC_LEN 0x28
9327
9328 MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN);
9329
9330 /* reg_mtpppc_ing_timestamp_message_type
9331 * Bitwise vector of PTP message types to timestamp at ingress.
9332 * MessageType field as defined by IEEE 1588
9333 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
9334 * Default all 0
9335 * Access: RW
9336 */
9337 MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16);
9338
9339 /* reg_mtpppc_egr_timestamp_message_type
9340 * Bitwise vector of PTP message types to timestamp at egress.
9341 * MessageType field as defined by IEEE 1588
9342 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
9343 * Default all 0
9344 * Access: RW
9345 */
9346 MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16);
9347
mlxsw_reg_mtpppc_pack(char * payload,u16 ing,u16 egr)9348 static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr)
9349 {
9350 MLXSW_REG_ZERO(mtpppc, payload);
9351 mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing);
9352 mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr);
9353 }
9354
9355 /* MTPPTR - Time Precision Packet Timestamping Reading
9356 * ---------------------------------------------------
9357 * The MTPPTR is used for reading the per port PTP timestamp FIFO.
9358 * There is a trap for packets which are latched to the timestamp FIFO, thus the
9359 * SW knows which FIFO to read. Note that packets enter the FIFO before been
9360 * trapped. The sequence number is used to synchronize the timestamp FIFO
9361 * entries and the trapped packets.
9362 * Reserved when Spectrum-2.
9363 */
9364
9365 #define MLXSW_REG_MTPPTR_ID 0x9091
9366 #define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */
9367 #define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */
9368 #define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4
9369 #define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \
9370 MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT)
9371
9372 MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN);
9373
9374 /* reg_mtpptr_local_port
9375 * Not supported for CPU port.
9376 * Access: Index
9377 */
9378 MLXSW_ITEM32(reg, mtpptr, local_port, 0x00, 16, 8);
9379
9380 enum mlxsw_reg_mtpptr_dir {
9381 MLXSW_REG_MTPPTR_DIR_INGRESS,
9382 MLXSW_REG_MTPPTR_DIR_EGRESS,
9383 };
9384
9385 /* reg_mtpptr_dir
9386 * Direction.
9387 * Access: Index
9388 */
9389 MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1);
9390
9391 /* reg_mtpptr_clr
9392 * Clear the records.
9393 * Access: OP
9394 */
9395 MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1);
9396
9397 /* reg_mtpptr_num_rec
9398 * Number of valid records in the response
9399 * Range 0.. cap_ptp_timestamp_fifo
9400 * Access: RO
9401 */
9402 MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4);
9403
9404 /* reg_mtpptr_rec_message_type
9405 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value
9406 * (e.g. Bit0: Sync, Bit1: Delay_Req)
9407 * Access: RO
9408 */
9409 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type,
9410 MLXSW_REG_MTPPTR_BASE_LEN, 8, 4,
9411 MLXSW_REG_MTPPTR_REC_LEN, 0, false);
9412
9413 /* reg_mtpptr_rec_domain_number
9414 * DomainNumber field as defined by IEEE 1588
9415 * Access: RO
9416 */
9417 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number,
9418 MLXSW_REG_MTPPTR_BASE_LEN, 0, 8,
9419 MLXSW_REG_MTPPTR_REC_LEN, 0, false);
9420
9421 /* reg_mtpptr_rec_sequence_id
9422 * SequenceId field as defined by IEEE 1588
9423 * Access: RO
9424 */
9425 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id,
9426 MLXSW_REG_MTPPTR_BASE_LEN, 0, 16,
9427 MLXSW_REG_MTPPTR_REC_LEN, 0x4, false);
9428
9429 /* reg_mtpptr_rec_timestamp_high
9430 * Timestamp of when the PTP packet has passed through the port Units of PLL
9431 * clock time.
9432 * For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec.
9433 * Access: RO
9434 */
9435 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high,
9436 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
9437 MLXSW_REG_MTPPTR_REC_LEN, 0x8, false);
9438
9439 /* reg_mtpptr_rec_timestamp_low
9440 * See rec_timestamp_high.
9441 * Access: RO
9442 */
9443 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low,
9444 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
9445 MLXSW_REG_MTPPTR_REC_LEN, 0xC, false);
9446
mlxsw_reg_mtpptr_unpack(const char * payload,unsigned int rec,u8 * p_message_type,u8 * p_domain_number,u16 * p_sequence_id,u64 * p_timestamp)9447 static inline void mlxsw_reg_mtpptr_unpack(const char *payload,
9448 unsigned int rec,
9449 u8 *p_message_type,
9450 u8 *p_domain_number,
9451 u16 *p_sequence_id,
9452 u64 *p_timestamp)
9453 {
9454 u32 timestamp_high, timestamp_low;
9455
9456 *p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec);
9457 *p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec);
9458 *p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec);
9459 timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec);
9460 timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec);
9461 *p_timestamp = (u64)timestamp_high << 32 | timestamp_low;
9462 }
9463
9464 /* MTPTPT - Monitoring Precision Time Protocol Trap Register
9465 * ---------------------------------------------------------
9466 * This register is used for configuring under which trap to deliver PTP
9467 * packets depending on type of the packet.
9468 */
9469 #define MLXSW_REG_MTPTPT_ID 0x9092
9470 #define MLXSW_REG_MTPTPT_LEN 0x08
9471
9472 MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN);
9473
9474 enum mlxsw_reg_mtptpt_trap_id {
9475 MLXSW_REG_MTPTPT_TRAP_ID_PTP0,
9476 MLXSW_REG_MTPTPT_TRAP_ID_PTP1,
9477 };
9478
9479 /* reg_mtptpt_trap_id
9480 * Trap id.
9481 * Access: Index
9482 */
9483 MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4);
9484
9485 /* reg_mtptpt_message_type
9486 * Bitwise vector of PTP message types to trap. This is a necessary but
9487 * non-sufficient condition since need to enable also per port. See MTPPPC.
9488 * Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g.
9489 * Bit0: Sync, Bit1: Delay_Req)
9490 */
9491 MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16);
9492
mlxsw_reg_mtptptp_pack(char * payload,enum mlxsw_reg_mtptpt_trap_id trap_id,u16 message_type)9493 static inline void mlxsw_reg_mtptptp_pack(char *payload,
9494 enum mlxsw_reg_mtptpt_trap_id trap_id,
9495 u16 message_type)
9496 {
9497 MLXSW_REG_ZERO(mtptpt, payload);
9498 mlxsw_reg_mtptpt_trap_id_set(payload, trap_id);
9499 mlxsw_reg_mtptpt_message_type_set(payload, message_type);
9500 }
9501
9502 /* MGPIR - Management General Peripheral Information Register
9503 * ----------------------------------------------------------
9504 * MGPIR register allows software to query the hardware and
9505 * firmware general information of peripheral entities.
9506 */
9507 #define MLXSW_REG_MGPIR_ID 0x9100
9508 #define MLXSW_REG_MGPIR_LEN 0xA0
9509
9510 MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN);
9511
9512 enum mlxsw_reg_mgpir_device_type {
9513 MLXSW_REG_MGPIR_DEVICE_TYPE_NONE,
9514 MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE,
9515 };
9516
9517 /* device_type
9518 * Access: RO
9519 */
9520 MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4);
9521
9522 /* devices_per_flash
9523 * Number of devices of device_type per flash (can be shared by few devices).
9524 * Access: RO
9525 */
9526 MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8);
9527
9528 /* num_of_devices
9529 * Number of devices of device_type.
9530 * Access: RO
9531 */
9532 MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8);
9533
mlxsw_reg_mgpir_pack(char * payload)9534 static inline void mlxsw_reg_mgpir_pack(char *payload)
9535 {
9536 MLXSW_REG_ZERO(mgpir, payload);
9537 }
9538
9539 static inline void
mlxsw_reg_mgpir_unpack(char * payload,u8 * num_of_devices,enum mlxsw_reg_mgpir_device_type * device_type,u8 * devices_per_flash)9540 mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices,
9541 enum mlxsw_reg_mgpir_device_type *device_type,
9542 u8 *devices_per_flash)
9543 {
9544 if (num_of_devices)
9545 *num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload);
9546 if (device_type)
9547 *device_type = mlxsw_reg_mgpir_device_type_get(payload);
9548 if (devices_per_flash)
9549 *devices_per_flash =
9550 mlxsw_reg_mgpir_devices_per_flash_get(payload);
9551 }
9552
9553 /* TNGCR - Tunneling NVE General Configuration Register
9554 * ----------------------------------------------------
9555 * The TNGCR register is used for setting up the NVE Tunneling configuration.
9556 */
9557 #define MLXSW_REG_TNGCR_ID 0xA001
9558 #define MLXSW_REG_TNGCR_LEN 0x44
9559
9560 MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN);
9561
9562 enum mlxsw_reg_tngcr_type {
9563 MLXSW_REG_TNGCR_TYPE_VXLAN,
9564 MLXSW_REG_TNGCR_TYPE_VXLAN_GPE,
9565 MLXSW_REG_TNGCR_TYPE_GENEVE,
9566 MLXSW_REG_TNGCR_TYPE_NVGRE,
9567 };
9568
9569 /* reg_tngcr_type
9570 * Tunnel type for encapsulation and decapsulation. The types are mutually
9571 * exclusive.
9572 * Note: For Spectrum the NVE parsing must be enabled in MPRS.
9573 * Access: RW
9574 */
9575 MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4);
9576
9577 /* reg_tngcr_nve_valid
9578 * The VTEP is valid. Allows adding FDB entries for tunnel encapsulation.
9579 * Access: RW
9580 */
9581 MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1);
9582
9583 /* reg_tngcr_nve_ttl_uc
9584 * The TTL for NVE tunnel encapsulation underlay unicast packets.
9585 * Access: RW
9586 */
9587 MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8);
9588
9589 /* reg_tngcr_nve_ttl_mc
9590 * The TTL for NVE tunnel encapsulation underlay multicast packets.
9591 * Access: RW
9592 */
9593 MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8);
9594
9595 enum {
9596 /* Do not copy flow label. Calculate flow label using nve_flh. */
9597 MLXSW_REG_TNGCR_FL_NO_COPY,
9598 /* Copy flow label from inner packet if packet is IPv6 and
9599 * encapsulation is by IPv6. Otherwise, calculate flow label using
9600 * nve_flh.
9601 */
9602 MLXSW_REG_TNGCR_FL_COPY,
9603 };
9604
9605 /* reg_tngcr_nve_flc
9606 * For NVE tunnel encapsulation: Flow label copy from inner packet.
9607 * Access: RW
9608 */
9609 MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1);
9610
9611 enum {
9612 /* Flow label is static. In Spectrum this means '0'. Spectrum-2
9613 * uses {nve_fl_prefix, nve_fl_suffix}.
9614 */
9615 MLXSW_REG_TNGCR_FL_NO_HASH,
9616 /* 8 LSBs of the flow label are calculated from ECMP hash of the
9617 * inner packet. 12 MSBs are configured by nve_fl_prefix.
9618 */
9619 MLXSW_REG_TNGCR_FL_HASH,
9620 };
9621
9622 /* reg_tngcr_nve_flh
9623 * NVE flow label hash.
9624 * Access: RW
9625 */
9626 MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1);
9627
9628 /* reg_tngcr_nve_fl_prefix
9629 * NVE flow label prefix. Constant 12 MSBs of the flow label.
9630 * Access: RW
9631 */
9632 MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12);
9633
9634 /* reg_tngcr_nve_fl_suffix
9635 * NVE flow label suffix. Constant 8 LSBs of the flow label.
9636 * Reserved when nve_flh=1 and for Spectrum.
9637 * Access: RW
9638 */
9639 MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8);
9640
9641 enum {
9642 /* Source UDP port is fixed (default '0') */
9643 MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH,
9644 /* Source UDP port is calculated based on hash */
9645 MLXSW_REG_TNGCR_UDP_SPORT_HASH,
9646 };
9647
9648 /* reg_tngcr_nve_udp_sport_type
9649 * NVE UDP source port type.
9650 * Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2).
9651 * When the source UDP port is calculated based on hash, then the 8 LSBs
9652 * are calculated from hash the 8 MSBs are configured by
9653 * nve_udp_sport_prefix.
9654 * Access: RW
9655 */
9656 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1);
9657
9658 /* reg_tngcr_nve_udp_sport_prefix
9659 * NVE UDP source port prefix. Constant 8 MSBs of the UDP source port.
9660 * Reserved when NVE type is NVGRE.
9661 * Access: RW
9662 */
9663 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8);
9664
9665 /* reg_tngcr_nve_group_size_mc
9666 * The amount of sequential linked lists of MC entries. The first linked
9667 * list is configured by SFD.underlay_mc_ptr.
9668 * Valid values: 1, 2, 4, 8, 16, 32, 64
9669 * The linked list are configured by TNUMT.
9670 * The hash is set by LAG hash.
9671 * Access: RW
9672 */
9673 MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8);
9674
9675 /* reg_tngcr_nve_group_size_flood
9676 * The amount of sequential linked lists of flooding entries. The first
9677 * linked list is configured by SFMR.nve_tunnel_flood_ptr
9678 * Valid values: 1, 2, 4, 8, 16, 32, 64
9679 * The linked list are configured by TNUMT.
9680 * The hash is set by LAG hash.
9681 * Access: RW
9682 */
9683 MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8);
9684
9685 /* reg_tngcr_learn_enable
9686 * During decapsulation, whether to learn from NVE port.
9687 * Reserved when Spectrum-2. See TNPC.
9688 * Access: RW
9689 */
9690 MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1);
9691
9692 /* reg_tngcr_underlay_virtual_router
9693 * Underlay virtual router.
9694 * Reserved when Spectrum-2.
9695 * Access: RW
9696 */
9697 MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16);
9698
9699 /* reg_tngcr_underlay_rif
9700 * Underlay ingress router interface. RIF type should be loopback generic.
9701 * Reserved when Spectrum.
9702 * Access: RW
9703 */
9704 MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16);
9705
9706 /* reg_tngcr_usipv4
9707 * Underlay source IPv4 address of the NVE.
9708 * Access: RW
9709 */
9710 MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32);
9711
9712 /* reg_tngcr_usipv6
9713 * Underlay source IPv6 address of the NVE. For Spectrum, must not be
9714 * modified under traffic of NVE tunneling encapsulation.
9715 * Access: RW
9716 */
9717 MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16);
9718
mlxsw_reg_tngcr_pack(char * payload,enum mlxsw_reg_tngcr_type type,bool valid,u8 ttl)9719 static inline void mlxsw_reg_tngcr_pack(char *payload,
9720 enum mlxsw_reg_tngcr_type type,
9721 bool valid, u8 ttl)
9722 {
9723 MLXSW_REG_ZERO(tngcr, payload);
9724 mlxsw_reg_tngcr_type_set(payload, type);
9725 mlxsw_reg_tngcr_nve_valid_set(payload, valid);
9726 mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl);
9727 mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl);
9728 mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY);
9729 mlxsw_reg_tngcr_nve_flh_set(payload, 0);
9730 mlxsw_reg_tngcr_nve_udp_sport_type_set(payload,
9731 MLXSW_REG_TNGCR_UDP_SPORT_HASH);
9732 mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0);
9733 mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1);
9734 mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1);
9735 }
9736
9737 /* TNUMT - Tunneling NVE Underlay Multicast Table Register
9738 * -------------------------------------------------------
9739 * The TNUMT register is for building the underlay MC table. It is used
9740 * for MC, flooding and BC traffic into the NVE tunnel.
9741 */
9742 #define MLXSW_REG_TNUMT_ID 0xA003
9743 #define MLXSW_REG_TNUMT_LEN 0x20
9744
9745 MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN);
9746
9747 enum mlxsw_reg_tnumt_record_type {
9748 MLXSW_REG_TNUMT_RECORD_TYPE_IPV4,
9749 MLXSW_REG_TNUMT_RECORD_TYPE_IPV6,
9750 MLXSW_REG_TNUMT_RECORD_TYPE_LABEL,
9751 };
9752
9753 /* reg_tnumt_record_type
9754 * Record type.
9755 * Access: RW
9756 */
9757 MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4);
9758
9759 enum mlxsw_reg_tnumt_tunnel_port {
9760 MLXSW_REG_TNUMT_TUNNEL_PORT_NVE,
9761 MLXSW_REG_TNUMT_TUNNEL_PORT_VPLS,
9762 MLXSW_REG_TNUMT_TUNNEL_FLEX_TUNNEL0,
9763 MLXSW_REG_TNUMT_TUNNEL_FLEX_TUNNEL1,
9764 };
9765
9766 /* reg_tnumt_tunnel_port
9767 * Tunnel port.
9768 * Access: RW
9769 */
9770 MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4);
9771
9772 /* reg_tnumt_underlay_mc_ptr
9773 * Index to the underlay multicast table.
9774 * For Spectrum the index is to the KVD linear.
9775 * Access: Index
9776 */
9777 MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24);
9778
9779 /* reg_tnumt_vnext
9780 * The next_underlay_mc_ptr is valid.
9781 * Access: RW
9782 */
9783 MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1);
9784
9785 /* reg_tnumt_next_underlay_mc_ptr
9786 * The next index to the underlay multicast table.
9787 * Access: RW
9788 */
9789 MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24);
9790
9791 /* reg_tnumt_record_size
9792 * Number of IP addresses in the record.
9793 * Range is 1..cap_max_nve_mc_entries_ipv{4,6}
9794 * Access: RW
9795 */
9796 MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3);
9797
9798 /* reg_tnumt_udip
9799 * The underlay IPv4 addresses. udip[i] is reserved if i >= size
9800 * Access: RW
9801 */
9802 MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false);
9803
9804 /* reg_tnumt_udip_ptr
9805 * The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if
9806 * i >= size. The IPv6 addresses are configured by RIPS.
9807 * Access: RW
9808 */
9809 MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false);
9810
mlxsw_reg_tnumt_pack(char * payload,enum mlxsw_reg_tnumt_record_type type,enum mlxsw_reg_tnumt_tunnel_port tport,u32 underlay_mc_ptr,bool vnext,u32 next_underlay_mc_ptr,u8 record_size)9811 static inline void mlxsw_reg_tnumt_pack(char *payload,
9812 enum mlxsw_reg_tnumt_record_type type,
9813 enum mlxsw_reg_tnumt_tunnel_port tport,
9814 u32 underlay_mc_ptr, bool vnext,
9815 u32 next_underlay_mc_ptr,
9816 u8 record_size)
9817 {
9818 MLXSW_REG_ZERO(tnumt, payload);
9819 mlxsw_reg_tnumt_record_type_set(payload, type);
9820 mlxsw_reg_tnumt_tunnel_port_set(payload, tport);
9821 mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr);
9822 mlxsw_reg_tnumt_vnext_set(payload, vnext);
9823 mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr);
9824 mlxsw_reg_tnumt_record_size_set(payload, record_size);
9825 }
9826
9827 /* TNQCR - Tunneling NVE QoS Configuration Register
9828 * ------------------------------------------------
9829 * The TNQCR register configures how QoS is set in encapsulation into the
9830 * underlay network.
9831 */
9832 #define MLXSW_REG_TNQCR_ID 0xA010
9833 #define MLXSW_REG_TNQCR_LEN 0x0C
9834
9835 MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN);
9836
9837 /* reg_tnqcr_enc_set_dscp
9838 * For encapsulation: How to set DSCP field:
9839 * 0 - Copy the DSCP from the overlay (inner) IP header to the underlay
9840 * (outer) IP header. If there is no IP header, use TNQDR.dscp
9841 * 1 - Set the DSCP field as TNQDR.dscp
9842 * Access: RW
9843 */
9844 MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1);
9845
mlxsw_reg_tnqcr_pack(char * payload)9846 static inline void mlxsw_reg_tnqcr_pack(char *payload)
9847 {
9848 MLXSW_REG_ZERO(tnqcr, payload);
9849 mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0);
9850 }
9851
9852 /* TNQDR - Tunneling NVE QoS Default Register
9853 * ------------------------------------------
9854 * The TNQDR register configures the default QoS settings for NVE
9855 * encapsulation.
9856 */
9857 #define MLXSW_REG_TNQDR_ID 0xA011
9858 #define MLXSW_REG_TNQDR_LEN 0x08
9859
9860 MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN);
9861
9862 /* reg_tnqdr_local_port
9863 * Local port number (receive port). CPU port is supported.
9864 * Access: Index
9865 */
9866 MLXSW_ITEM32(reg, tnqdr, local_port, 0x00, 16, 8);
9867
9868 /* reg_tnqdr_dscp
9869 * For encapsulation, the default DSCP.
9870 * Access: RW
9871 */
9872 MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6);
9873
mlxsw_reg_tnqdr_pack(char * payload,u8 local_port)9874 static inline void mlxsw_reg_tnqdr_pack(char *payload, u8 local_port)
9875 {
9876 MLXSW_REG_ZERO(tnqdr, payload);
9877 mlxsw_reg_tnqdr_local_port_set(payload, local_port);
9878 mlxsw_reg_tnqdr_dscp_set(payload, 0);
9879 }
9880
9881 /* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register
9882 * --------------------------------------------------------
9883 * The TNEEM register maps ECN of the IP header at the ingress to the
9884 * encapsulation to the ECN of the underlay network.
9885 */
9886 #define MLXSW_REG_TNEEM_ID 0xA012
9887 #define MLXSW_REG_TNEEM_LEN 0x0C
9888
9889 MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN);
9890
9891 /* reg_tneem_overlay_ecn
9892 * ECN of the IP header in the overlay network.
9893 * Access: Index
9894 */
9895 MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2);
9896
9897 /* reg_tneem_underlay_ecn
9898 * ECN of the IP header in the underlay network.
9899 * Access: RW
9900 */
9901 MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2);
9902
mlxsw_reg_tneem_pack(char * payload,u8 overlay_ecn,u8 underlay_ecn)9903 static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn,
9904 u8 underlay_ecn)
9905 {
9906 MLXSW_REG_ZERO(tneem, payload);
9907 mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn);
9908 mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn);
9909 }
9910
9911 /* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register
9912 * --------------------------------------------------------
9913 * The TNDEM register configures the actions that are done in the
9914 * decapsulation.
9915 */
9916 #define MLXSW_REG_TNDEM_ID 0xA013
9917 #define MLXSW_REG_TNDEM_LEN 0x0C
9918
9919 MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN);
9920
9921 /* reg_tndem_underlay_ecn
9922 * ECN field of the IP header in the underlay network.
9923 * Access: Index
9924 */
9925 MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2);
9926
9927 /* reg_tndem_overlay_ecn
9928 * ECN field of the IP header in the overlay network.
9929 * Access: Index
9930 */
9931 MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2);
9932
9933 /* reg_tndem_eip_ecn
9934 * Egress IP ECN. ECN field of the IP header of the packet which goes out
9935 * from the decapsulation.
9936 * Access: RW
9937 */
9938 MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2);
9939
9940 /* reg_tndem_trap_en
9941 * Trap enable:
9942 * 0 - No trap due to decap ECN
9943 * 1 - Trap enable with trap_id
9944 * Access: RW
9945 */
9946 MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4);
9947
9948 /* reg_tndem_trap_id
9949 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
9950 * Reserved when trap_en is '0'.
9951 * Access: RW
9952 */
9953 MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9);
9954
mlxsw_reg_tndem_pack(char * payload,u8 underlay_ecn,u8 overlay_ecn,u8 ecn,bool trap_en,u16 trap_id)9955 static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn,
9956 u8 overlay_ecn, u8 ecn, bool trap_en,
9957 u16 trap_id)
9958 {
9959 MLXSW_REG_ZERO(tndem, payload);
9960 mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn);
9961 mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn);
9962 mlxsw_reg_tndem_eip_ecn_set(payload, ecn);
9963 mlxsw_reg_tndem_trap_en_set(payload, trap_en);
9964 mlxsw_reg_tndem_trap_id_set(payload, trap_id);
9965 }
9966
9967 /* TNPC - Tunnel Port Configuration Register
9968 * -----------------------------------------
9969 * The TNPC register is used for tunnel port configuration.
9970 * Reserved when Spectrum.
9971 */
9972 #define MLXSW_REG_TNPC_ID 0xA020
9973 #define MLXSW_REG_TNPC_LEN 0x18
9974
9975 MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN);
9976
9977 enum mlxsw_reg_tnpc_tunnel_port {
9978 MLXSW_REG_TNPC_TUNNEL_PORT_NVE,
9979 MLXSW_REG_TNPC_TUNNEL_PORT_VPLS,
9980 MLXSW_REG_TNPC_TUNNEL_FLEX_TUNNEL0,
9981 MLXSW_REG_TNPC_TUNNEL_FLEX_TUNNEL1,
9982 };
9983
9984 /* reg_tnpc_tunnel_port
9985 * Tunnel port.
9986 * Access: Index
9987 */
9988 MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4);
9989
9990 /* reg_tnpc_learn_enable_v6
9991 * During IPv6 underlay decapsulation, whether to learn from tunnel port.
9992 * Access: RW
9993 */
9994 MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1);
9995
9996 /* reg_tnpc_learn_enable_v4
9997 * During IPv4 underlay decapsulation, whether to learn from tunnel port.
9998 * Access: RW
9999 */
10000 MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1);
10001
mlxsw_reg_tnpc_pack(char * payload,enum mlxsw_reg_tnpc_tunnel_port tport,bool learn_enable)10002 static inline void mlxsw_reg_tnpc_pack(char *payload,
10003 enum mlxsw_reg_tnpc_tunnel_port tport,
10004 bool learn_enable)
10005 {
10006 MLXSW_REG_ZERO(tnpc, payload);
10007 mlxsw_reg_tnpc_tunnel_port_set(payload, tport);
10008 mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable);
10009 mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable);
10010 }
10011
10012 /* TIGCR - Tunneling IPinIP General Configuration Register
10013 * -------------------------------------------------------
10014 * The TIGCR register is used for setting up the IPinIP Tunnel configuration.
10015 */
10016 #define MLXSW_REG_TIGCR_ID 0xA801
10017 #define MLXSW_REG_TIGCR_LEN 0x10
10018
10019 MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN);
10020
10021 /* reg_tigcr_ipip_ttlc
10022 * For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet
10023 * header.
10024 * Access: RW
10025 */
10026 MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1);
10027
10028 /* reg_tigcr_ipip_ttl_uc
10029 * The TTL for IPinIP Tunnel encapsulation of unicast packets if
10030 * reg_tigcr_ipip_ttlc is unset.
10031 * Access: RW
10032 */
10033 MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8);
10034
mlxsw_reg_tigcr_pack(char * payload,bool ttlc,u8 ttl_uc)10035 static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc)
10036 {
10037 MLXSW_REG_ZERO(tigcr, payload);
10038 mlxsw_reg_tigcr_ttlc_set(payload, ttlc);
10039 mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc);
10040 }
10041
10042 /* SBPR - Shared Buffer Pools Register
10043 * -----------------------------------
10044 * The SBPR configures and retrieves the shared buffer pools and configuration.
10045 */
10046 #define MLXSW_REG_SBPR_ID 0xB001
10047 #define MLXSW_REG_SBPR_LEN 0x14
10048
10049 MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN);
10050
10051 /* shared direstion enum for SBPR, SBCM, SBPM */
10052 enum mlxsw_reg_sbxx_dir {
10053 MLXSW_REG_SBXX_DIR_INGRESS,
10054 MLXSW_REG_SBXX_DIR_EGRESS,
10055 };
10056
10057 /* reg_sbpr_dir
10058 * Direction.
10059 * Access: Index
10060 */
10061 MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2);
10062
10063 /* reg_sbpr_pool
10064 * Pool index.
10065 * Access: Index
10066 */
10067 MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4);
10068
10069 /* reg_sbpr_infi_size
10070 * Size is infinite.
10071 * Access: RW
10072 */
10073 MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1);
10074
10075 /* reg_sbpr_size
10076 * Pool size in buffer cells.
10077 * Reserved when infi_size = 1.
10078 * Access: RW
10079 */
10080 MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24);
10081
10082 enum mlxsw_reg_sbpr_mode {
10083 MLXSW_REG_SBPR_MODE_STATIC,
10084 MLXSW_REG_SBPR_MODE_DYNAMIC,
10085 };
10086
10087 /* reg_sbpr_mode
10088 * Pool quota calculation mode.
10089 * Access: RW
10090 */
10091 MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4);
10092
mlxsw_reg_sbpr_pack(char * payload,u8 pool,enum mlxsw_reg_sbxx_dir dir,enum mlxsw_reg_sbpr_mode mode,u32 size,bool infi_size)10093 static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool,
10094 enum mlxsw_reg_sbxx_dir dir,
10095 enum mlxsw_reg_sbpr_mode mode, u32 size,
10096 bool infi_size)
10097 {
10098 MLXSW_REG_ZERO(sbpr, payload);
10099 mlxsw_reg_sbpr_pool_set(payload, pool);
10100 mlxsw_reg_sbpr_dir_set(payload, dir);
10101 mlxsw_reg_sbpr_mode_set(payload, mode);
10102 mlxsw_reg_sbpr_size_set(payload, size);
10103 mlxsw_reg_sbpr_infi_size_set(payload, infi_size);
10104 }
10105
10106 /* SBCM - Shared Buffer Class Management Register
10107 * ----------------------------------------------
10108 * The SBCM register configures and retrieves the shared buffer allocation
10109 * and configuration according to Port-PG, including the binding to pool
10110 * and definition of the associated quota.
10111 */
10112 #define MLXSW_REG_SBCM_ID 0xB002
10113 #define MLXSW_REG_SBCM_LEN 0x28
10114
10115 MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN);
10116
10117 /* reg_sbcm_local_port
10118 * Local port number.
10119 * For Ingress: excludes CPU port and Router port
10120 * For Egress: excludes IP Router
10121 * Access: Index
10122 */
10123 MLXSW_ITEM32(reg, sbcm, local_port, 0x00, 16, 8);
10124
10125 /* reg_sbcm_pg_buff
10126 * PG buffer - Port PG (dir=ingress) / traffic class (dir=egress)
10127 * For PG buffer: range is 0..cap_max_pg_buffers - 1
10128 * For traffic class: range is 0..cap_max_tclass - 1
10129 * Note that when traffic class is in MC aware mode then the traffic
10130 * classes which are MC aware cannot be configured.
10131 * Access: Index
10132 */
10133 MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6);
10134
10135 /* reg_sbcm_dir
10136 * Direction.
10137 * Access: Index
10138 */
10139 MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2);
10140
10141 /* reg_sbcm_min_buff
10142 * Minimum buffer size for the limiter, in cells.
10143 * Access: RW
10144 */
10145 MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24);
10146
10147 /* shared max_buff limits for dynamic threshold for SBCM, SBPM */
10148 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1
10149 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14
10150
10151 /* reg_sbcm_infi_max
10152 * Max buffer is infinite.
10153 * Access: RW
10154 */
10155 MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1);
10156
10157 /* reg_sbcm_max_buff
10158 * When the pool associated to the port-pg/tclass is configured to
10159 * static, Maximum buffer size for the limiter configured in cells.
10160 * When the pool associated to the port-pg/tclass is configured to
10161 * dynamic, the max_buff holds the "alpha" parameter, supporting
10162 * the following values:
10163 * 0: 0
10164 * i: (1/128)*2^(i-1), for i=1..14
10165 * 0xFF: Infinity
10166 * Reserved when infi_max = 1.
10167 * Access: RW
10168 */
10169 MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24);
10170
10171 /* reg_sbcm_pool
10172 * Association of the port-priority to a pool.
10173 * Access: RW
10174 */
10175 MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4);
10176
mlxsw_reg_sbcm_pack(char * payload,u8 local_port,u8 pg_buff,enum mlxsw_reg_sbxx_dir dir,u32 min_buff,u32 max_buff,bool infi_max,u8 pool)10177 static inline void mlxsw_reg_sbcm_pack(char *payload, u8 local_port, u8 pg_buff,
10178 enum mlxsw_reg_sbxx_dir dir,
10179 u32 min_buff, u32 max_buff,
10180 bool infi_max, u8 pool)
10181 {
10182 MLXSW_REG_ZERO(sbcm, payload);
10183 mlxsw_reg_sbcm_local_port_set(payload, local_port);
10184 mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff);
10185 mlxsw_reg_sbcm_dir_set(payload, dir);
10186 mlxsw_reg_sbcm_min_buff_set(payload, min_buff);
10187 mlxsw_reg_sbcm_max_buff_set(payload, max_buff);
10188 mlxsw_reg_sbcm_infi_max_set(payload, infi_max);
10189 mlxsw_reg_sbcm_pool_set(payload, pool);
10190 }
10191
10192 /* SBPM - Shared Buffer Port Management Register
10193 * ---------------------------------------------
10194 * The SBPM register configures and retrieves the shared buffer allocation
10195 * and configuration according to Port-Pool, including the definition
10196 * of the associated quota.
10197 */
10198 #define MLXSW_REG_SBPM_ID 0xB003
10199 #define MLXSW_REG_SBPM_LEN 0x28
10200
10201 MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN);
10202
10203 /* reg_sbpm_local_port
10204 * Local port number.
10205 * For Ingress: excludes CPU port and Router port
10206 * For Egress: excludes IP Router
10207 * Access: Index
10208 */
10209 MLXSW_ITEM32(reg, sbpm, local_port, 0x00, 16, 8);
10210
10211 /* reg_sbpm_pool
10212 * The pool associated to quota counting on the local_port.
10213 * Access: Index
10214 */
10215 MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4);
10216
10217 /* reg_sbpm_dir
10218 * Direction.
10219 * Access: Index
10220 */
10221 MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2);
10222
10223 /* reg_sbpm_buff_occupancy
10224 * Current buffer occupancy in cells.
10225 * Access: RO
10226 */
10227 MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24);
10228
10229 /* reg_sbpm_clr
10230 * Clear Max Buffer Occupancy
10231 * When this bit is set, max_buff_occupancy field is cleared (and a
10232 * new max value is tracked from the time the clear was performed).
10233 * Access: OP
10234 */
10235 MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1);
10236
10237 /* reg_sbpm_max_buff_occupancy
10238 * Maximum value of buffer occupancy in cells monitored. Cleared by
10239 * writing to the clr field.
10240 * Access: RO
10241 */
10242 MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24);
10243
10244 /* reg_sbpm_min_buff
10245 * Minimum buffer size for the limiter, in cells.
10246 * Access: RW
10247 */
10248 MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24);
10249
10250 /* reg_sbpm_max_buff
10251 * When the pool associated to the port-pg/tclass is configured to
10252 * static, Maximum buffer size for the limiter configured in cells.
10253 * When the pool associated to the port-pg/tclass is configured to
10254 * dynamic, the max_buff holds the "alpha" parameter, supporting
10255 * the following values:
10256 * 0: 0
10257 * i: (1/128)*2^(i-1), for i=1..14
10258 * 0xFF: Infinity
10259 * Access: RW
10260 */
10261 MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24);
10262
mlxsw_reg_sbpm_pack(char * payload,u8 local_port,u8 pool,enum mlxsw_reg_sbxx_dir dir,bool clr,u32 min_buff,u32 max_buff)10263 static inline void mlxsw_reg_sbpm_pack(char *payload, u8 local_port, u8 pool,
10264 enum mlxsw_reg_sbxx_dir dir, bool clr,
10265 u32 min_buff, u32 max_buff)
10266 {
10267 MLXSW_REG_ZERO(sbpm, payload);
10268 mlxsw_reg_sbpm_local_port_set(payload, local_port);
10269 mlxsw_reg_sbpm_pool_set(payload, pool);
10270 mlxsw_reg_sbpm_dir_set(payload, dir);
10271 mlxsw_reg_sbpm_clr_set(payload, clr);
10272 mlxsw_reg_sbpm_min_buff_set(payload, min_buff);
10273 mlxsw_reg_sbpm_max_buff_set(payload, max_buff);
10274 }
10275
mlxsw_reg_sbpm_unpack(char * payload,u32 * p_buff_occupancy,u32 * p_max_buff_occupancy)10276 static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy,
10277 u32 *p_max_buff_occupancy)
10278 {
10279 *p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload);
10280 *p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload);
10281 }
10282
10283 /* SBMM - Shared Buffer Multicast Management Register
10284 * --------------------------------------------------
10285 * The SBMM register configures and retrieves the shared buffer allocation
10286 * and configuration for MC packets according to Switch-Priority, including
10287 * the binding to pool and definition of the associated quota.
10288 */
10289 #define MLXSW_REG_SBMM_ID 0xB004
10290 #define MLXSW_REG_SBMM_LEN 0x28
10291
10292 MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN);
10293
10294 /* reg_sbmm_prio
10295 * Switch Priority.
10296 * Access: Index
10297 */
10298 MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4);
10299
10300 /* reg_sbmm_min_buff
10301 * Minimum buffer size for the limiter, in cells.
10302 * Access: RW
10303 */
10304 MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24);
10305
10306 /* reg_sbmm_max_buff
10307 * When the pool associated to the port-pg/tclass is configured to
10308 * static, Maximum buffer size for the limiter configured in cells.
10309 * When the pool associated to the port-pg/tclass is configured to
10310 * dynamic, the max_buff holds the "alpha" parameter, supporting
10311 * the following values:
10312 * 0: 0
10313 * i: (1/128)*2^(i-1), for i=1..14
10314 * 0xFF: Infinity
10315 * Access: RW
10316 */
10317 MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24);
10318
10319 /* reg_sbmm_pool
10320 * Association of the port-priority to a pool.
10321 * Access: RW
10322 */
10323 MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4);
10324
mlxsw_reg_sbmm_pack(char * payload,u8 prio,u32 min_buff,u32 max_buff,u8 pool)10325 static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff,
10326 u32 max_buff, u8 pool)
10327 {
10328 MLXSW_REG_ZERO(sbmm, payload);
10329 mlxsw_reg_sbmm_prio_set(payload, prio);
10330 mlxsw_reg_sbmm_min_buff_set(payload, min_buff);
10331 mlxsw_reg_sbmm_max_buff_set(payload, max_buff);
10332 mlxsw_reg_sbmm_pool_set(payload, pool);
10333 }
10334
10335 /* SBSR - Shared Buffer Status Register
10336 * ------------------------------------
10337 * The SBSR register retrieves the shared buffer occupancy according to
10338 * Port-Pool. Note that this register enables reading a large amount of data.
10339 * It is the user's responsibility to limit the amount of data to ensure the
10340 * response can match the maximum transfer unit. In case the response exceeds
10341 * the maximum transport unit, it will be truncated with no special notice.
10342 */
10343 #define MLXSW_REG_SBSR_ID 0xB005
10344 #define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */
10345 #define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */
10346 #define MLXSW_REG_SBSR_REC_MAX_COUNT 120
10347 #define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \
10348 MLXSW_REG_SBSR_REC_LEN * \
10349 MLXSW_REG_SBSR_REC_MAX_COUNT)
10350
10351 MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN);
10352
10353 /* reg_sbsr_clr
10354 * Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy
10355 * field is cleared (and a new max value is tracked from the time the clear
10356 * was performed).
10357 * Access: OP
10358 */
10359 MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1);
10360
10361 /* reg_sbsr_ingress_port_mask
10362 * Bit vector for all ingress network ports.
10363 * Indicates which of the ports (for which the relevant bit is set)
10364 * are affected by the set operation. Configuration of any other port
10365 * does not change.
10366 * Access: Index
10367 */
10368 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1);
10369
10370 /* reg_sbsr_pg_buff_mask
10371 * Bit vector for all switch priority groups.
10372 * Indicates which of the priorities (for which the relevant bit is set)
10373 * are affected by the set operation. Configuration of any other priority
10374 * does not change.
10375 * Range is 0..cap_max_pg_buffers - 1
10376 * Access: Index
10377 */
10378 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1);
10379
10380 /* reg_sbsr_egress_port_mask
10381 * Bit vector for all egress network ports.
10382 * Indicates which of the ports (for which the relevant bit is set)
10383 * are affected by the set operation. Configuration of any other port
10384 * does not change.
10385 * Access: Index
10386 */
10387 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1);
10388
10389 /* reg_sbsr_tclass_mask
10390 * Bit vector for all traffic classes.
10391 * Indicates which of the traffic classes (for which the relevant bit is
10392 * set) are affected by the set operation. Configuration of any other
10393 * traffic class does not change.
10394 * Range is 0..cap_max_tclass - 1
10395 * Access: Index
10396 */
10397 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1);
10398
mlxsw_reg_sbsr_pack(char * payload,bool clr)10399 static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr)
10400 {
10401 MLXSW_REG_ZERO(sbsr, payload);
10402 mlxsw_reg_sbsr_clr_set(payload, clr);
10403 }
10404
10405 /* reg_sbsr_rec_buff_occupancy
10406 * Current buffer occupancy in cells.
10407 * Access: RO
10408 */
10409 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
10410 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false);
10411
10412 /* reg_sbsr_rec_max_buff_occupancy
10413 * Maximum value of buffer occupancy in cells monitored. Cleared by
10414 * writing to the clr field.
10415 * Access: RO
10416 */
10417 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
10418 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false);
10419
mlxsw_reg_sbsr_rec_unpack(char * payload,int rec_index,u32 * p_buff_occupancy,u32 * p_max_buff_occupancy)10420 static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index,
10421 u32 *p_buff_occupancy,
10422 u32 *p_max_buff_occupancy)
10423 {
10424 *p_buff_occupancy =
10425 mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index);
10426 *p_max_buff_occupancy =
10427 mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index);
10428 }
10429
10430 /* SBIB - Shared Buffer Internal Buffer Register
10431 * ---------------------------------------------
10432 * The SBIB register configures per port buffers for internal use. The internal
10433 * buffers consume memory on the port buffers (note that the port buffers are
10434 * used also by PBMC).
10435 *
10436 * For Spectrum this is used for egress mirroring.
10437 */
10438 #define MLXSW_REG_SBIB_ID 0xB006
10439 #define MLXSW_REG_SBIB_LEN 0x10
10440
10441 MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN);
10442
10443 /* reg_sbib_local_port
10444 * Local port number
10445 * Not supported for CPU port and router port
10446 * Access: Index
10447 */
10448 MLXSW_ITEM32(reg, sbib, local_port, 0x00, 16, 8);
10449
10450 /* reg_sbib_buff_size
10451 * Units represented in cells
10452 * Allowed range is 0 to (cap_max_headroom_size - 1)
10453 * Default is 0
10454 * Access: RW
10455 */
10456 MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24);
10457
mlxsw_reg_sbib_pack(char * payload,u8 local_port,u32 buff_size)10458 static inline void mlxsw_reg_sbib_pack(char *payload, u8 local_port,
10459 u32 buff_size)
10460 {
10461 MLXSW_REG_ZERO(sbib, payload);
10462 mlxsw_reg_sbib_local_port_set(payload, local_port);
10463 mlxsw_reg_sbib_buff_size_set(payload, buff_size);
10464 }
10465
10466 static const struct mlxsw_reg_info *mlxsw_reg_infos[] = {
10467 MLXSW_REG(sgcr),
10468 MLXSW_REG(spad),
10469 MLXSW_REG(smid),
10470 MLXSW_REG(sspr),
10471 MLXSW_REG(sfdat),
10472 MLXSW_REG(sfd),
10473 MLXSW_REG(sfn),
10474 MLXSW_REG(spms),
10475 MLXSW_REG(spvid),
10476 MLXSW_REG(spvm),
10477 MLXSW_REG(spaft),
10478 MLXSW_REG(sfgc),
10479 MLXSW_REG(sftr),
10480 MLXSW_REG(sfdf),
10481 MLXSW_REG(sldr),
10482 MLXSW_REG(slcr),
10483 MLXSW_REG(slcor),
10484 MLXSW_REG(spmlr),
10485 MLXSW_REG(svfa),
10486 MLXSW_REG(svpe),
10487 MLXSW_REG(sfmr),
10488 MLXSW_REG(spvmlr),
10489 MLXSW_REG(cwtp),
10490 MLXSW_REG(cwtpm),
10491 MLXSW_REG(pgcr),
10492 MLXSW_REG(ppbt),
10493 MLXSW_REG(pacl),
10494 MLXSW_REG(pagt),
10495 MLXSW_REG(ptar),
10496 MLXSW_REG(ppbs),
10497 MLXSW_REG(prcr),
10498 MLXSW_REG(pefa),
10499 MLXSW_REG(pemrbt),
10500 MLXSW_REG(ptce2),
10501 MLXSW_REG(perpt),
10502 MLXSW_REG(peabfe),
10503 MLXSW_REG(perar),
10504 MLXSW_REG(ptce3),
10505 MLXSW_REG(percr),
10506 MLXSW_REG(pererp),
10507 MLXSW_REG(iedr),
10508 MLXSW_REG(qpts),
10509 MLXSW_REG(qpcr),
10510 MLXSW_REG(qtct),
10511 MLXSW_REG(qeec),
10512 MLXSW_REG(qrwe),
10513 MLXSW_REG(qpdsm),
10514 MLXSW_REG(qpdpm),
10515 MLXSW_REG(qtctm),
10516 MLXSW_REG(qpsc),
10517 MLXSW_REG(pmlp),
10518 MLXSW_REG(pmtu),
10519 MLXSW_REG(ptys),
10520 MLXSW_REG(ppad),
10521 MLXSW_REG(paos),
10522 MLXSW_REG(pfcc),
10523 MLXSW_REG(ppcnt),
10524 MLXSW_REG(plib),
10525 MLXSW_REG(pptb),
10526 MLXSW_REG(pbmc),
10527 MLXSW_REG(pspa),
10528 MLXSW_REG(pplr),
10529 MLXSW_REG(htgt),
10530 MLXSW_REG(hpkt),
10531 MLXSW_REG(rgcr),
10532 MLXSW_REG(ritr),
10533 MLXSW_REG(rtar),
10534 MLXSW_REG(ratr),
10535 MLXSW_REG(rtdp),
10536 MLXSW_REG(rdpm),
10537 MLXSW_REG(ricnt),
10538 MLXSW_REG(rrcr),
10539 MLXSW_REG(ralta),
10540 MLXSW_REG(ralst),
10541 MLXSW_REG(raltb),
10542 MLXSW_REG(ralue),
10543 MLXSW_REG(rauht),
10544 MLXSW_REG(raleu),
10545 MLXSW_REG(rauhtd),
10546 MLXSW_REG(rigr2),
10547 MLXSW_REG(recr2),
10548 MLXSW_REG(rmft2),
10549 MLXSW_REG(mfcr),
10550 MLXSW_REG(mfsc),
10551 MLXSW_REG(mfsm),
10552 MLXSW_REG(mfsl),
10553 MLXSW_REG(fore),
10554 MLXSW_REG(mtcap),
10555 MLXSW_REG(mtmp),
10556 MLXSW_REG(mtbr),
10557 MLXSW_REG(mcia),
10558 MLXSW_REG(mpat),
10559 MLXSW_REG(mpar),
10560 MLXSW_REG(mgir),
10561 MLXSW_REG(mrsr),
10562 MLXSW_REG(mlcr),
10563 MLXSW_REG(mtpps),
10564 MLXSW_REG(mtutc),
10565 MLXSW_REG(mpsc),
10566 MLXSW_REG(mcqi),
10567 MLXSW_REG(mcc),
10568 MLXSW_REG(mcda),
10569 MLXSW_REG(mgpc),
10570 MLXSW_REG(mprs),
10571 MLXSW_REG(mogcr),
10572 MLXSW_REG(mtpppc),
10573 MLXSW_REG(mtpptr),
10574 MLXSW_REG(mtptpt),
10575 MLXSW_REG(mgpir),
10576 MLXSW_REG(tngcr),
10577 MLXSW_REG(tnumt),
10578 MLXSW_REG(tnqcr),
10579 MLXSW_REG(tnqdr),
10580 MLXSW_REG(tneem),
10581 MLXSW_REG(tndem),
10582 MLXSW_REG(tnpc),
10583 MLXSW_REG(tigcr),
10584 MLXSW_REG(sbpr),
10585 MLXSW_REG(sbcm),
10586 MLXSW_REG(sbpm),
10587 MLXSW_REG(sbmm),
10588 MLXSW_REG(sbsr),
10589 MLXSW_REG(sbib),
10590 };
10591
mlxsw_reg_id_str(u16 reg_id)10592 static inline const char *mlxsw_reg_id_str(u16 reg_id)
10593 {
10594 const struct mlxsw_reg_info *reg_info;
10595 int i;
10596
10597 for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) {
10598 reg_info = mlxsw_reg_infos[i];
10599 if (reg_info->id == reg_id)
10600 return reg_info->name;
10601 }
10602 return "*UNKNOWN*";
10603 }
10604
10605 /* PUDE - Port Up / Down Event
10606 * ---------------------------
10607 * Reports the operational state change of a port.
10608 */
10609 #define MLXSW_REG_PUDE_LEN 0x10
10610
10611 /* reg_pude_swid
10612 * Switch partition ID with which to associate the port.
10613 * Access: Index
10614 */
10615 MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8);
10616
10617 /* reg_pude_local_port
10618 * Local port number.
10619 * Access: Index
10620 */
10621 MLXSW_ITEM32(reg, pude, local_port, 0x00, 16, 8);
10622
10623 /* reg_pude_admin_status
10624 * Port administrative state (the desired state).
10625 * 1 - Up.
10626 * 2 - Down.
10627 * 3 - Up once. This means that in case of link failure, the port won't go
10628 * into polling mode, but will wait to be re-enabled by software.
10629 * 4 - Disabled by system. Can only be set by hardware.
10630 * Access: RO
10631 */
10632 MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4);
10633
10634 /* reg_pude_oper_status
10635 * Port operatioanl state.
10636 * 1 - Up.
10637 * 2 - Down.
10638 * 3 - Down by port failure. This means that the device will not let the
10639 * port up again until explicitly specified by software.
10640 * Access: RO
10641 */
10642 MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4);
10643
10644 #endif
10645