1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3 
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6 
7 #include "item.h"
8 
9 #define MLXSW_CMD_MBOX_SIZE	4096
10 
mlxsw_cmd_mbox_alloc(void)11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15 
mlxsw_cmd_mbox_free(char * mbox)16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 	kfree(mbox);
19 }
20 
mlxsw_cmd_mbox_zero(char * mbox)21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25 
26 struct mlxsw_core;
27 
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 		   char *in_mbox, size_t in_mbox_size,
31 		   char *out_mbox, size_t out_mbox_size);
32 
mlxsw_cmd_exec_in(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,char * in_mbox,size_t in_mbox_size)33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35 				    size_t in_mbox_size)
36 {
37 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 			      false, in_mbox, in_mbox_size, NULL, 0);
39 }
40 
mlxsw_cmd_exec_out(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,bool out_mbox_direct,char * out_mbox,size_t out_mbox_size)41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 				     u8 opcode_mod, u32 in_mod,
43 				     bool out_mbox_direct,
44 				     char *out_mbox, size_t out_mbox_size)
45 {
46 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 			      out_mbox_direct, false, NULL, 0,
48 			      out_mbox, out_mbox_size);
49 }
50 
mlxsw_cmd_exec_none(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod)51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 				      u8 opcode_mod, u32 in_mod)
53 {
54 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 			      false, NULL, 0, NULL, 0);
56 }
57 
58 enum mlxsw_cmd_opcode {
59 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77 };
78 
mlxsw_cmd_opcode_str(u16 opcode)79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 	switch (opcode) {
82 	case MLXSW_CMD_OPCODE_QUERY_FW:
83 		return "QUERY_FW";
84 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 		return "QUERY_BOARDINFO";
86 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 		return "QUERY_AQ_CAP";
88 	case MLXSW_CMD_OPCODE_MAP_FA:
89 		return "MAP_FA";
90 	case MLXSW_CMD_OPCODE_UNMAP_FA:
91 		return "UNMAP_FA";
92 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 		return "CONFIG_PROFILE";
94 	case MLXSW_CMD_OPCODE_ACCESS_REG:
95 		return "ACCESS_REG";
96 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 		return "SW2HW_DQ";
98 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 		return "HW2SW_DQ";
100 	case MLXSW_CMD_OPCODE_2ERR_DQ:
101 		return "2ERR_DQ";
102 	case MLXSW_CMD_OPCODE_QUERY_DQ:
103 		return "QUERY_DQ";
104 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 		return "SW2HW_CQ";
106 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 		return "HW2SW_CQ";
108 	case MLXSW_CMD_OPCODE_QUERY_CQ:
109 		return "QUERY_CQ";
110 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 		return "SW2HW_EQ";
112 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 		return "HW2SW_EQ";
114 	case MLXSW_CMD_OPCODE_QUERY_EQ:
115 		return "QUERY_EQ";
116 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 		return "QUERY_RESOURCES";
118 	default:
119 		return "*UNKNOWN*";
120 	}
121 }
122 
123 enum mlxsw_cmd_status {
124 	/* Command execution succeeded. */
125 	MLXSW_CMD_STATUS_OK		= 0x00,
126 	/* Internal error (e.g. bus error) occurred while processing command. */
127 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128 	/* Operation/command not supported or opcode modifier not supported. */
129 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130 	/* Parameter not supported, parameter out of range. */
131 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132 	/* System was not enabled or bad system state. */
133 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134 	/* Attempt to access reserved or unallocated resource, or resource in
135 	 * inappropriate ownership.
136 	 */
137 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138 	/* Requested resource is currently executing a command. */
139 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140 	/* Required capability exceeds device limits. */
141 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142 	/* Resource is not in the appropriate state or ownership. */
143 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144 	/* Index out of range (might be beyond table size or attempt to
145 	 * access a reserved resource).
146 	 */
147 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148 	/* NVMEM checksum/CRC failed. */
149 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150 	/* Device is currently running reset */
151 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152 	/* Bad management packet (silently discarded). */
153 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154 };
155 
mlxsw_cmd_status_str(u8 status)156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 	switch (status) {
159 	case MLXSW_CMD_STATUS_OK:
160 		return "OK";
161 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 		return "INTERNAL_ERR";
163 	case MLXSW_CMD_STATUS_BAD_OP:
164 		return "BAD_OP";
165 	case MLXSW_CMD_STATUS_BAD_PARAM:
166 		return "BAD_PARAM";
167 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 		return "BAD_SYS_STATE";
169 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 		return "BAD_RESOURCE";
171 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 		return "RESOURCE_BUSY";
173 	case MLXSW_CMD_STATUS_EXCEED_LIM:
174 		return "EXCEED_LIM";
175 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 		return "BAD_RES_STATE";
177 	case MLXSW_CMD_STATUS_BAD_INDEX:
178 		return "BAD_INDEX";
179 	case MLXSW_CMD_STATUS_BAD_NVMEM:
180 		return "BAD_NVMEM";
181 	case MLXSW_CMD_STATUS_RUNNING_RESET:
182 		return "RUNNING_RESET";
183 	case MLXSW_CMD_STATUS_BAD_PKT:
184 		return "BAD_PKT";
185 	default:
186 		return "*UNKNOWN*";
187 	}
188 }
189 
190 /* QUERY_FW - Query Firmware
191  * -------------------------
192  * OpMod == 0, INMmod == 0
193  * -----------------------
194  * The QUERY_FW command retrieves information related to firmware, command
195  * interface version and the amount of resources that should be allocated to
196  * the firmware.
197  */
198 
mlxsw_cmd_query_fw(struct mlxsw_core * mlxsw_core,char * out_mbox)199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 				     char *out_mbox)
201 {
202 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205 
206 /* cmd_mbox_query_fw_fw_pages
207  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208  */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210 
211 /* cmd_mbox_query_fw_fw_rev_major
212  * Firmware Revision - Major
213  */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215 
216 /* cmd_mbox_query_fw_fw_rev_subminor
217  * Firmware Sub-minor version (Patch level)
218  */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220 
221 /* cmd_mbox_query_fw_fw_rev_minor
222  * Firmware Revision - Minor
223  */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225 
226 /* cmd_mbox_query_fw_core_clk
227  * Internal Clock Frequency (in MHz)
228  */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230 
231 /* cmd_mbox_query_fw_cmd_interface_rev
232  * Command Interface Interpreter Revision ID. This number is bumped up
233  * every time a non-backward-compatible change is done for the command
234  * interface. The current cmd_interface_rev is 1.
235  */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237 
238 /* cmd_mbox_query_fw_dt
239  * If set, Debug Trace is supported
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242 
243 /* cmd_mbox_query_fw_api_version
244  * Indicates the version of the API, to enable software querying
245  * for compatibility. The current api_version is 1.
246  */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248 
249 /* cmd_mbox_query_fw_fw_hour
250  * Firmware timestamp - hour
251  */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253 
254 /* cmd_mbox_query_fw_fw_minutes
255  * Firmware timestamp - minutes
256  */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258 
259 /* cmd_mbox_query_fw_fw_seconds
260  * Firmware timestamp - seconds
261  */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263 
264 /* cmd_mbox_query_fw_fw_year
265  * Firmware timestamp - year
266  */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268 
269 /* cmd_mbox_query_fw_fw_month
270  * Firmware timestamp - month
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273 
274 /* cmd_mbox_query_fw_fw_day
275  * Firmware timestamp - day
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278 
279 /* cmd_mbox_query_fw_clr_int_base_offset
280  * Clear Interrupt register's offset from clr_int_bar register
281  * in PCI address space.
282  */
283 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284 
285 /* cmd_mbox_query_fw_clr_int_bar
286  * PCI base address register (BAR) where clr_int register is located.
287  * 00 - BAR 0-1 (64 bit BAR)
288  */
289 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290 
291 /* cmd_mbox_query_fw_error_buf_offset
292  * Read Only buffer for internal error reports of offset
293  * from error_buf_bar register in PCI address space).
294  */
295 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296 
297 /* cmd_mbox_query_fw_error_buf_size
298  * Internal error buffer size in DWORDs
299  */
300 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301 
302 /* cmd_mbox_query_fw_error_int_bar
303  * PCI base address register (BAR) where error buffer
304  * register is located.
305  * 00 - BAR 0-1 (64 bit BAR)
306  */
307 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308 
309 /* cmd_mbox_query_fw_doorbell_page_offset
310  * Offset of the doorbell page
311  */
312 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313 
314 /* cmd_mbox_query_fw_doorbell_page_bar
315  * PCI base address register (BAR) of the doorbell page
316  * 00 - BAR 0-1 (64 bit BAR)
317  */
318 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319 
320 /* cmd_mbox_query_fw_free_running_clock_offset
321  * The offset of the free running clock page
322  */
323 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
324 
325 /* cmd_mbox_query_fw_fr_rn_clk_bar
326  * PCI base address register (BAR) of the free running clock page
327  * 0: BAR 0
328  * 1: 64 bit BAR
329  */
330 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
331 
332 /* QUERY_BOARDINFO - Query Board Information
333  * -----------------------------------------
334  * OpMod == 0 (N/A), INMmod == 0 (N/A)
335  * -----------------------------------
336  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
337  */
338 
mlxsw_cmd_boardinfo(struct mlxsw_core * mlxsw_core,char * out_mbox)339 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
340 				      char *out_mbox)
341 {
342 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
343 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
344 }
345 
346 /* cmd_mbox_boardinfo_intapin
347  * When PCIe interrupt messages are being used, this value is used for clearing
348  * an interrupt. When using MSI-X, this register is not used.
349  */
350 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
351 
352 /* cmd_mbox_boardinfo_vsd_vendor_id
353  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
354  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
355  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
356  * format and encoding as long as they use their assigned vsd_vendor_id.
357  */
358 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
359 
360 /* cmd_mbox_boardinfo_vsd
361  * Vendor Specific Data. The VSD string that is burnt to the Flash
362  * with the firmware.
363  */
364 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
365 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
366 
367 /* cmd_mbox_boardinfo_psid
368  * The PSID field is a 16-ascii (byte) character string which acts as
369  * the board ID. The PSID format is used in conjunction with
370  * Mellanox vsd_vendor_id (15B3h).
371  */
372 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
373 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
374 
375 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
376  * -----------------------------------------------------
377  * OpMod == 0 (N/A), INMmod == 0 (N/A)
378  * -----------------------------------
379  * The QUERY_AQ_CAP command returns the device asynchronous queues
380  * capabilities supported.
381  */
382 
mlxsw_cmd_query_aq_cap(struct mlxsw_core * mlxsw_core,char * out_mbox)383 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
384 					 char *out_mbox)
385 {
386 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
387 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
388 }
389 
390 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
391  * Log (base 2) of max WQEs allowed on SDQ.
392  */
393 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
394 
395 /* cmd_mbox_query_aq_cap_max_num_sdqs
396  * Maximum number of SDQs.
397  */
398 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
399 
400 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
401  * Log (base 2) of max WQEs allowed on RDQ.
402  */
403 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
404 
405 /* cmd_mbox_query_aq_cap_max_num_rdqs
406  * Maximum number of RDQs.
407  */
408 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
409 
410 /* cmd_mbox_query_aq_cap_log_max_cq_sz
411  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
412  */
413 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
414 
415 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
416  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
417  */
418 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
419 
420 /* cmd_mbox_query_aq_cap_max_num_cqs
421  * Maximum number of CQs.
422  */
423 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
424 
425 /* cmd_mbox_query_aq_cap_log_max_eq_sz
426  * Log (base 2) of max EQEs allowed on EQ.
427  */
428 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
429 
430 /* cmd_mbox_query_aq_cap_max_num_eqs
431  * Maximum number of EQs.
432  */
433 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
434 
435 /* cmd_mbox_query_aq_cap_max_sg_sq
436  * The maximum S/G list elements in an DSQ. DSQ must not contain
437  * more S/G entries than indicated here.
438  */
439 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
440 
441 /* cmd_mbox_query_aq_cap_
442  * The maximum S/G list elements in an DRQ. DRQ must not contain
443  * more S/G entries than indicated here.
444  */
445 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
446 
447 /* MAP_FA - Map Firmware Area
448  * --------------------------
449  * OpMod == 0 (N/A), INMmod == Number of VPM entries
450  * -------------------------------------------------
451  * The MAP_FA command passes physical pages to the switch. These pages
452  * are used to store the device firmware. MAP_FA can be executed multiple
453  * times until all the firmware area is mapped (the size that should be
454  * mapped is retrieved through the QUERY_FW command). All required pages
455  * must be mapped to finish the initialization phase. Physical memory
456  * passed in this command must be pinned.
457  */
458 
459 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
460 
mlxsw_cmd_map_fa(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 vpm_entries_count)461 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
462 				   char *in_mbox, u32 vpm_entries_count)
463 {
464 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
465 				 0, vpm_entries_count,
466 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
467 }
468 
469 /* cmd_mbox_map_fa_pa
470  * Physical Address.
471  */
472 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
473 
474 /* cmd_mbox_map_fa_log2size
475  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
476  * that starts at PA_L/H.
477  */
478 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
479 
480 /* UNMAP_FA - Unmap Firmware Area
481  * ------------------------------
482  * OpMod == 0 (N/A), INMmod == 0 (N/A)
483  * -----------------------------------
484  * The UNMAP_FA command unload the firmware and unmaps all the
485  * firmware area. After this command is completed the device will not access
486  * the pages that were mapped to the firmware area. After executing UNMAP_FA
487  * command, software reset must be done prior to execution of MAP_FW command.
488  */
489 
mlxsw_cmd_unmap_fa(struct mlxsw_core * mlxsw_core)490 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
491 {
492 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
493 }
494 
495 /* QUERY_RESOURCES - Query chip resources
496  * --------------------------------------
497  * OpMod == 0 (N/A) , INMmod is index
498  * ----------------------------------
499  * The QUERY_RESOURCES command retrieves information related to chip resources
500  * by resource ID. Every command returns 32 entries. INmod is being use as base.
501  * for example, index 1 will return entries 32-63. When the tables end and there
502  * are no more sources in the table, will return resource id 0xFFF to indicate
503  * it.
504  */
505 
506 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
507 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
508 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
509 
mlxsw_cmd_query_resources(struct mlxsw_core * mlxsw_core,char * out_mbox,int index)510 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
511 					    char *out_mbox, int index)
512 {
513 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
514 				  0, index, false, out_mbox,
515 				  MLXSW_CMD_MBOX_SIZE);
516 }
517 
518 /* cmd_mbox_query_resource_id
519  * The resource id. 0xFFFF indicates table's end.
520  */
521 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
522 
523 /* cmd_mbox_query_resource_data
524  * The resource
525  */
526 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
527 		     0x00, 0, 40, 0x8, 0, false);
528 
529 /* CONFIG_PROFILE (Set) - Configure Switch Profile
530  * ------------------------------
531  * OpMod == 1 (Set), INMmod == 0 (N/A)
532  * -----------------------------------
533  * The CONFIG_PROFILE command sets the switch profile. The command can be
534  * executed on the device only once at startup in order to allocate and
535  * configure all switch resources and prepare it for operational mode.
536  * It is not possible to change the device profile after the chip is
537  * in operational mode.
538  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
539  * state therefore it is required to perform software reset to the device
540  * following an unsuccessful completion of the command. It is required
541  * to perform software reset to the device to change an existing profile.
542  */
543 
mlxsw_cmd_config_profile_set(struct mlxsw_core * mlxsw_core,char * in_mbox)544 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
545 					       char *in_mbox)
546 {
547 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
548 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
549 }
550 
551 /* cmd_mbox_config_profile_set_max_vepa_channels
552  * Capability bit. Setting a bit to 1 configures the profile
553  * according to the mailbox contents.
554  */
555 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
556 
557 /* cmd_mbox_config_profile_set_max_lag
558  * Capability bit. Setting a bit to 1 configures the profile
559  * according to the mailbox contents.
560  */
561 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
562 
563 /* cmd_mbox_config_profile_set_max_port_per_lag
564  * Capability bit. Setting a bit to 1 configures the profile
565  * according to the mailbox contents.
566  */
567 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
568 
569 /* cmd_mbox_config_profile_set_max_mid
570  * Capability bit. Setting a bit to 1 configures the profile
571  * according to the mailbox contents.
572  */
573 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
574 
575 /* cmd_mbox_config_profile_set_max_pgt
576  * Capability bit. Setting a bit to 1 configures the profile
577  * according to the mailbox contents.
578  */
579 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
580 
581 /* cmd_mbox_config_profile_set_max_system_port
582  * Capability bit. Setting a bit to 1 configures the profile
583  * according to the mailbox contents.
584  */
585 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
586 
587 /* cmd_mbox_config_profile_set_max_vlan_groups
588  * Capability bit. Setting a bit to 1 configures the profile
589  * according to the mailbox contents.
590  */
591 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
592 
593 /* cmd_mbox_config_profile_set_max_regions
594  * Capability bit. Setting a bit to 1 configures the profile
595  * according to the mailbox contents.
596  */
597 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
598 
599 /* cmd_mbox_config_profile_set_flood_mode
600  * Capability bit. Setting a bit to 1 configures the profile
601  * according to the mailbox contents.
602  */
603 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
604 
605 /* cmd_mbox_config_profile_set_max_flood_tables
606  * Capability bit. Setting a bit to 1 configures the profile
607  * according to the mailbox contents.
608  */
609 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
610 
611 /* cmd_mbox_config_profile_set_max_ib_mc
612  * Capability bit. Setting a bit to 1 configures the profile
613  * according to the mailbox contents.
614  */
615 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
616 
617 /* cmd_mbox_config_profile_set_max_pkey
618  * Capability bit. Setting a bit to 1 configures the profile
619  * according to the mailbox contents.
620  */
621 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
622 
623 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
624  * Capability bit. Setting a bit to 1 configures the profile
625  * according to the mailbox contents.
626  */
627 MLXSW_ITEM32(cmd_mbox, config_profile,
628 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
629 
630 /* cmd_mbox_config_profile_set_ar_sec
631  * Capability bit. Setting a bit to 1 configures the profile
632  * according to the mailbox contents.
633  */
634 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
635 
636 /* cmd_mbox_config_set_kvd_linear_size
637  * Capability bit. Setting a bit to 1 configures the profile
638  * according to the mailbox contents.
639  */
640 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
641 
642 /* cmd_mbox_config_set_kvd_hash_single_size
643  * Capability bit. Setting a bit to 1 configures the profile
644  * according to the mailbox contents.
645  */
646 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
647 
648 /* cmd_mbox_config_set_kvd_hash_double_size
649  * Capability bit. Setting a bit to 1 configures the profile
650  * according to the mailbox contents.
651  */
652 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
653 
654 /* cmd_mbox_config_set_cqe_version
655  * Capability bit. Setting a bit to 1 configures the profile
656  * according to the mailbox contents.
657  */
658 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
659 
660 /* cmd_mbox_config_profile_max_vepa_channels
661  * Maximum number of VEPA channels per port (0 through 16)
662  * 0 - multi-channel VEPA is disabled
663  */
664 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
665 
666 /* cmd_mbox_config_profile_max_lag
667  * Maximum number of LAG IDs requested.
668  */
669 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
670 
671 /* cmd_mbox_config_profile_max_port_per_lag
672  * Maximum number of ports per LAG requested.
673  */
674 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
675 
676 /* cmd_mbox_config_profile_max_mid
677  * Maximum Multicast IDs.
678  * Multicast IDs are allocated from 0 to max_mid-1
679  */
680 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
681 
682 /* cmd_mbox_config_profile_max_pgt
683  * Maximum records in the Port Group Table per Switch Partition.
684  * Port Group Table indexes are from 0 to max_pgt-1
685  */
686 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
687 
688 /* cmd_mbox_config_profile_max_system_port
689  * The maximum number of system ports that can be allocated.
690  */
691 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
692 
693 /* cmd_mbox_config_profile_max_vlan_groups
694  * Maximum number VLAN Groups for VLAN binding.
695  */
696 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
697 
698 /* cmd_mbox_config_profile_max_regions
699  * Maximum number of TCAM Regions.
700  */
701 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
702 
703 /* cmd_mbox_config_profile_max_flood_tables
704  * Maximum number of single-entry flooding tables. Different flooding tables
705  * can be associated with different packet types.
706  */
707 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
708 
709 /* cmd_mbox_config_profile_max_vid_flood_tables
710  * Maximum number of per-vid flooding tables. Flooding tables are associated
711  * to the different packet types for the different switch partitions.
712  * Table size is 4K entries covering all VID space.
713  */
714 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
715 
716 /* cmd_mbox_config_profile_flood_mode
717  * Flooding mode to use.
718  * 0-2 - Backward compatible modes for SwitchX devices.
719  * 3 - Mixed mode, where:
720  * max_flood_tables indicates the number of single-entry tables.
721  * max_vid_flood_tables indicates the number of per-VID tables.
722  * max_fid_offset_flood_tables indicates the number of FID-offset tables.
723  * max_fid_flood_tables indicates the number of per-FID tables.
724  */
725 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
726 
727 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
728  * Maximum number of FID-offset flooding tables.
729  */
730 MLXSW_ITEM32(cmd_mbox, config_profile,
731 	     max_fid_offset_flood_tables, 0x34, 24, 4);
732 
733 /* cmd_mbox_config_profile_fid_offset_flood_table_size
734  * The size (number of entries) of each FID-offset flood table.
735  */
736 MLXSW_ITEM32(cmd_mbox, config_profile,
737 	     fid_offset_flood_table_size, 0x34, 0, 16);
738 
739 /* cmd_mbox_config_profile_max_fid_flood_tables
740  * Maximum number of per-FID flooding tables.
741  *
742  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
743  * FID value 4K and higher.
744  */
745 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
746 
747 /* cmd_mbox_config_profile_fid_flood_table_size
748  * The size (number of entries) of each per-FID table.
749  */
750 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
751 
752 /* cmd_mbox_config_profile_max_ib_mc
753  * Maximum number of multicast FDB records for InfiniBand
754  * FDB (in 512 chunks) per InfiniBand switch partition.
755  */
756 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
757 
758 /* cmd_mbox_config_profile_max_pkey
759  * Maximum per port PKEY table size (for PKEY enforcement)
760  */
761 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
762 
763 /* cmd_mbox_config_profile_ar_sec
764  * Primary/secondary capability
765  * Describes the number of adaptive routing sub-groups
766  * 0 - disable primary/secondary (single group)
767  * 1 - enable primary/secondary (2 sub-groups)
768  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
769  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
770  */
771 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
772 
773 /* cmd_mbox_config_profile_adaptive_routing_group_cap
774  * Adaptive Routing Group Capability. Indicates the number of AR groups
775  * supported. Note that when Primary/secondary is enabled, each
776  * primary/secondary couple consumes 2 adaptive routing entries.
777  */
778 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
779 
780 /* cmd_mbox_config_profile_arn
781  * Adaptive Routing Notification Enable
782  * Not supported in SwitchX, SwitchX-2
783  */
784 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
785 
786 /* cmd_mbox_config_kvd_linear_size
787  * KVD Linear Size
788  * Valid for Spectrum only
789  * Allowed values are 128*N where N=0 or higher
790  */
791 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
792 
793 /* cmd_mbox_config_kvd_hash_single_size
794  * KVD Hash single-entries size
795  * Valid for Spectrum only
796  * Allowed values are 128*N where N=0 or higher
797  * Must be greater or equal to cap_min_kvd_hash_single_size
798  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
799  */
800 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
801 
802 /* cmd_mbox_config_kvd_hash_double_size
803  * KVD Hash double-entries size (units of single-size entries)
804  * Valid for Spectrum only
805  * Allowed values are 128*N where N=0 or higher
806  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
807  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
808  */
809 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
810 
811 /* cmd_mbox_config_profile_swid_config_mask
812  * Modify Switch Partition Configuration mask. When set, the configu-
813  * ration value for the Switch Partition are taken from the mailbox.
814  * When clear, the current configuration values are used.
815  * Bit 0 - set type
816  * Bit 1 - properties
817  * Other - reserved
818  */
819 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
820 		     0x60, 24, 8, 0x08, 0x00, false);
821 
822 /* cmd_mbox_config_profile_swid_config_type
823  * Switch Partition type.
824  * 0000 - disabled (Switch Partition does not exist)
825  * 0001 - InfiniBand
826  * 0010 - Ethernet
827  * 1000 - router port (SwitchX-2 only)
828  * Other - reserved
829  */
830 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
831 		     0x60, 20, 4, 0x08, 0x00, false);
832 
833 /* cmd_mbox_config_profile_swid_config_properties
834  * Switch Partition properties.
835  */
836 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
837 		     0x60, 0, 8, 0x08, 0x00, false);
838 
839 /* cmd_mbox_config_profile_cqe_version
840  * CQE version:
841  * 0: CQE version is 0
842  * 1: CQE version is either 1 or 2
843  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
844  */
845 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
846 
847 /* ACCESS_REG - Access EMAD Supported Register
848  * ----------------------------------
849  * OpMod == 0 (N/A), INMmod == 0 (N/A)
850  * -------------------------------------
851  * The ACCESS_REG command supports accessing device registers. This access
852  * is mainly used for bootstrapping.
853  */
854 
mlxsw_cmd_access_reg(struct mlxsw_core * mlxsw_core,bool reset_ok,char * in_mbox,char * out_mbox)855 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
856 				       bool reset_ok,
857 				       char *in_mbox, char *out_mbox)
858 {
859 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
860 			      0, 0, false, reset_ok,
861 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
862 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
863 }
864 
865 /* SW2HW_DQ - Software to Hardware DQ
866  * ----------------------------------
867  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
868  * INMmod == DQ number
869  * ----------------------------------------------
870  * The SW2HW_DQ command transitions a descriptor queue from software to
871  * hardware ownership. The command enables posting WQEs and ringing DoorBells
872  * on the descriptor queue.
873  */
874 
__mlxsw_cmd_sw2hw_dq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number,u8 opcode_mod)875 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
876 				       char *in_mbox, u32 dq_number,
877 				       u8 opcode_mod)
878 {
879 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
880 				 opcode_mod, dq_number,
881 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
882 }
883 
884 enum {
885 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
886 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
887 };
888 
mlxsw_cmd_sw2hw_sdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)889 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
890 				      char *in_mbox, u32 dq_number)
891 {
892 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
893 				    MLXSW_CMD_OPCODE_MOD_SDQ);
894 }
895 
mlxsw_cmd_sw2hw_rdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)896 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
897 				      char *in_mbox, u32 dq_number)
898 {
899 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
900 				    MLXSW_CMD_OPCODE_MOD_RDQ);
901 }
902 
903 /* cmd_mbox_sw2hw_dq_cq
904  * Number of the CQ that this Descriptor Queue reports completions to.
905  */
906 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
907 
908 /* cmd_mbox_sw2hw_dq_sdq_tclass
909  * SDQ: CPU Egress TClass
910  * RDQ: Reserved
911  */
912 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
913 
914 /* cmd_mbox_sw2hw_dq_log2_dq_sz
915  * Log (base 2) of the Descriptor Queue size in 4KB pages.
916  */
917 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
918 
919 /* cmd_mbox_sw2hw_dq_pa
920  * Physical Address.
921  */
922 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
923 
924 /* HW2SW_DQ - Hardware to Software DQ
925  * ----------------------------------
926  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
927  * INMmod == DQ number
928  * ----------------------------------------------
929  * The HW2SW_DQ command transitions a descriptor queue from hardware to
930  * software ownership. Incoming packets on the DQ are silently discarded,
931  * SW should not post descriptors on nonoperational DQs.
932  */
933 
__mlxsw_cmd_hw2sw_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)934 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
935 				       u32 dq_number, u8 opcode_mod)
936 {
937 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
938 				   opcode_mod, dq_number);
939 }
940 
mlxsw_cmd_hw2sw_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)941 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
942 				      u32 dq_number)
943 {
944 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
945 				    MLXSW_CMD_OPCODE_MOD_SDQ);
946 }
947 
mlxsw_cmd_hw2sw_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)948 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
949 				      u32 dq_number)
950 {
951 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
952 				    MLXSW_CMD_OPCODE_MOD_RDQ);
953 }
954 
955 /* 2ERR_DQ - To Error DQ
956  * ---------------------
957  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
958  * INMmod == DQ number
959  * ----------------------------------------------
960  * The 2ERR_DQ command transitions the DQ into the error state from the state
961  * in which it has been. While the command is executed, some in-process
962  * descriptors may complete. Once the DQ transitions into the error state,
963  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
964  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
965  * When the command is completed successfully, the DQ is already in
966  * the error state.
967  */
968 
__mlxsw_cmd_2err_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)969 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
970 				      u32 dq_number, u8 opcode_mod)
971 {
972 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
973 				   opcode_mod, dq_number);
974 }
975 
mlxsw_cmd_2err_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)976 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
977 				     u32 dq_number)
978 {
979 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
980 				   MLXSW_CMD_OPCODE_MOD_SDQ);
981 }
982 
mlxsw_cmd_2err_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)983 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
984 				     u32 dq_number)
985 {
986 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
987 				   MLXSW_CMD_OPCODE_MOD_RDQ);
988 }
989 
990 /* QUERY_DQ - Query DQ
991  * ---------------------
992  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
993  * INMmod == DQ number
994  * ----------------------------------------------
995  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
996  *
997  * Note: Output mailbox has the same format as SW2HW_DQ.
998  */
999 
__mlxsw_cmd_query_dq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number,u8 opcode_mod)1000 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1001 				       char *out_mbox, u32 dq_number,
1002 				       u8 opcode_mod)
1003 {
1004 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1005 				  opcode_mod, dq_number, false,
1006 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1007 }
1008 
mlxsw_cmd_query_sdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1009 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1010 				      char *out_mbox, u32 dq_number)
1011 {
1012 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1013 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1014 }
1015 
mlxsw_cmd_query_rdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1016 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1017 				      char *out_mbox, u32 dq_number)
1018 {
1019 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1020 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1021 }
1022 
1023 /* SW2HW_CQ - Software to Hardware CQ
1024  * ----------------------------------
1025  * OpMod == 0 (N/A), INMmod == CQ number
1026  * -------------------------------------
1027  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1028  * to hardware. The command takes the CQ context entry from the input mailbox
1029  * and stores it in the CQC in the ownership of the hardware. The command fails
1030  * if the requested CQC entry is already in the ownership of the hardware.
1031  */
1032 
mlxsw_cmd_sw2hw_cq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 cq_number)1033 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1034 				     char *in_mbox, u32 cq_number)
1035 {
1036 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1037 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1038 }
1039 
1040 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1041 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1042 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1043 };
1044 
1045 /* cmd_mbox_sw2hw_cq_cqe_ver
1046  * CQE Version.
1047  */
1048 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1049 
1050 /* cmd_mbox_sw2hw_cq_c_eqn
1051  * Event Queue this CQ reports completion events to.
1052  */
1053 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1054 
1055 /* cmd_mbox_sw2hw_cq_st
1056  * Event delivery state machine
1057  * 0x0 - FIRED
1058  * 0x1 - ARMED (Request for Notification)
1059  */
1060 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1061 
1062 /* cmd_mbox_sw2hw_cq_log_cq_size
1063  * Log (base 2) of the CQ size (in entries).
1064  */
1065 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1066 
1067 /* cmd_mbox_sw2hw_cq_producer_counter
1068  * Producer Counter. The counter is incremented for each CQE that is
1069  * written by the HW to the CQ.
1070  * Maintained by HW (valid for the QUERY_CQ command only)
1071  */
1072 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1073 
1074 /* cmd_mbox_sw2hw_cq_pa
1075  * Physical Address.
1076  */
1077 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1078 
1079 /* HW2SW_CQ - Hardware to Software CQ
1080  * ----------------------------------
1081  * OpMod == 0 (N/A), INMmod == CQ number
1082  * -------------------------------------
1083  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1084  * to software. The CQC entry is invalidated as a result of this command.
1085  */
1086 
mlxsw_cmd_hw2sw_cq(struct mlxsw_core * mlxsw_core,u32 cq_number)1087 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1088 				     u32 cq_number)
1089 {
1090 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1091 				   0, cq_number);
1092 }
1093 
1094 /* QUERY_CQ - Query CQ
1095  * ----------------------------------
1096  * OpMod == 0 (N/A), INMmod == CQ number
1097  * -------------------------------------
1098  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1099  * The command stores the snapshot in the output mailbox in the software format.
1100  * Note that the CQ context state and values are not affected by the QUERY_CQ
1101  * command. The QUERY_CQ command is for debug purposes only.
1102  *
1103  * Note: Output mailbox has the same format as SW2HW_CQ.
1104  */
1105 
mlxsw_cmd_query_cq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 cq_number)1106 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1107 				     char *out_mbox, u32 cq_number)
1108 {
1109 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1110 				  0, cq_number, false,
1111 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1112 }
1113 
1114 /* SW2HW_EQ - Software to Hardware EQ
1115  * ----------------------------------
1116  * OpMod == 0 (N/A), INMmod == EQ number
1117  * -------------------------------------
1118  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1119  * to hardware. The command takes the EQ context entry from the input mailbox
1120  * and stores it in the EQC in the ownership of the hardware. The command fails
1121  * if the requested EQC entry is already in the ownership of the hardware.
1122  */
1123 
mlxsw_cmd_sw2hw_eq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 eq_number)1124 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1125 				     char *in_mbox, u32 eq_number)
1126 {
1127 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1128 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1129 }
1130 
1131 /* cmd_mbox_sw2hw_eq_int_msix
1132  * When set, MSI-X cycles will be generated by this EQ.
1133  * When cleared, an interrupt will be generated by this EQ.
1134  */
1135 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1136 
1137 /* cmd_mbox_sw2hw_eq_st
1138  * Event delivery state machine
1139  * 0x0 - FIRED
1140  * 0x1 - ARMED (Request for Notification)
1141  * 0x11 - Always ARMED
1142  * other - reserved
1143  */
1144 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1145 
1146 /* cmd_mbox_sw2hw_eq_log_eq_size
1147  * Log (base 2) of the EQ size (in entries).
1148  */
1149 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1150 
1151 /* cmd_mbox_sw2hw_eq_producer_counter
1152  * Producer Counter. The counter is incremented for each EQE that is written
1153  * by the HW to the EQ.
1154  * Maintained by HW (valid for the QUERY_EQ command only)
1155  */
1156 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1157 
1158 /* cmd_mbox_sw2hw_eq_pa
1159  * Physical Address.
1160  */
1161 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1162 
1163 /* HW2SW_EQ - Hardware to Software EQ
1164  * ----------------------------------
1165  * OpMod == 0 (N/A), INMmod == EQ number
1166  * -------------------------------------
1167  */
1168 
mlxsw_cmd_hw2sw_eq(struct mlxsw_core * mlxsw_core,u32 eq_number)1169 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1170 				     u32 eq_number)
1171 {
1172 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1173 				   0, eq_number);
1174 }
1175 
1176 /* QUERY_EQ - Query EQ
1177  * ----------------------------------
1178  * OpMod == 0 (N/A), INMmod == EQ number
1179  * -------------------------------------
1180  *
1181  * Note: Output mailbox has the same format as SW2HW_EQ.
1182  */
1183 
mlxsw_cmd_query_eq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 eq_number)1184 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1185 				     char *out_mbox, u32 eq_number)
1186 {
1187 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1188 				  0, eq_number, false,
1189 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1190 }
1191 
1192 #endif
1193