1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <djiang@mvista.com>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 
21 #define EDAC_DEVICE_NAME_LEN	31
22 
23 struct device;
24 
25 #define EDAC_OPSTATE_INVAL	-1
26 #define EDAC_OPSTATE_POLL	0
27 #define EDAC_OPSTATE_NMI	1
28 #define EDAC_OPSTATE_INT	2
29 
30 extern int edac_op_state;
31 
32 struct bus_type *edac_get_sysfs_subsys(void);
33 int edac_get_report_status(void);
34 void edac_set_report_status(int new);
35 
36 enum {
37 	EDAC_REPORTING_ENABLED,
38 	EDAC_REPORTING_DISABLED,
39 	EDAC_REPORTING_FORCE
40 };
41 
opstate_init(void)42 static inline void opstate_init(void)
43 {
44 	switch (edac_op_state) {
45 	case EDAC_OPSTATE_POLL:
46 	case EDAC_OPSTATE_NMI:
47 		break;
48 	default:
49 		edac_op_state = EDAC_OPSTATE_POLL;
50 	}
51 	return;
52 }
53 
54 /* Max length of a DIMM label*/
55 #define EDAC_MC_LABEL_LEN	31
56 
57 /* Maximum size of the location string */
58 #define LOCATION_SIZE 256
59 
60 /* Defines the maximum number of labels that can be reported */
61 #define EDAC_MAX_LABELS		8
62 
63 /* String used to join two or more labels */
64 #define OTHER_LABEL " or "
65 
66 /**
67  * enum dev_type - describe the type of memory DRAM chips used at the stick
68  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
69  * @DEV_X1:		1 bit for data
70  * @DEV_X2:		2 bits for data
71  * @DEV_X4:		4 bits for data
72  * @DEV_X8:		8 bits for data
73  * @DEV_X16:		16 bits for data
74  * @DEV_X32:		32 bits for data
75  * @DEV_X64:		64 bits for data
76  *
77  * Typical values are x4 and x8.
78  */
79 enum dev_type {
80 	DEV_UNKNOWN = 0,
81 	DEV_X1,
82 	DEV_X2,
83 	DEV_X4,
84 	DEV_X8,
85 	DEV_X16,
86 	DEV_X32,		/* Do these parts exist? */
87 	DEV_X64			/* Do these parts exist? */
88 };
89 
90 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
91 #define DEV_FLAG_X1		BIT(DEV_X1)
92 #define DEV_FLAG_X2		BIT(DEV_X2)
93 #define DEV_FLAG_X4		BIT(DEV_X4)
94 #define DEV_FLAG_X8		BIT(DEV_X8)
95 #define DEV_FLAG_X16		BIT(DEV_X16)
96 #define DEV_FLAG_X32		BIT(DEV_X32)
97 #define DEV_FLAG_X64		BIT(DEV_X64)
98 
99 /**
100  * enum hw_event_mc_err_type - type of the detected error
101  *
102  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
103  *				corrected error was detected
104  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
105  *				can't be corrected by ECC, but it is not
106  *				fatal (maybe it is on an unused memory area,
107  *				or the memory controller could recover from
108  *				it for example, by re-trying the operation).
109  * @HW_EVENT_ERR_DEFERRED:	Deferred Error - Indicates an uncorrectable
110  *				error whose handling is not urgent. This could
111  *				be due to hardware data poisoning where the
112  *				system can continue operation until the poisoned
113  *				data is consumed. Preemptive measures may also
114  *				be taken, e.g. offlining pages, etc.
115  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
116  *				be recovered.
117  * @HW_EVENT_ERR_INFO:		Informational - The CPER spec defines a forth
118  *				type of error: informational logs.
119  */
120 enum hw_event_mc_err_type {
121 	HW_EVENT_ERR_CORRECTED,
122 	HW_EVENT_ERR_UNCORRECTED,
123 	HW_EVENT_ERR_DEFERRED,
124 	HW_EVENT_ERR_FATAL,
125 	HW_EVENT_ERR_INFO,
126 };
127 
mc_event_error_type(const unsigned int err_type)128 static inline char *mc_event_error_type(const unsigned int err_type)
129 {
130 	switch (err_type) {
131 	case HW_EVENT_ERR_CORRECTED:
132 		return "Corrected";
133 	case HW_EVENT_ERR_UNCORRECTED:
134 		return "Uncorrected";
135 	case HW_EVENT_ERR_DEFERRED:
136 		return "Deferred";
137 	case HW_EVENT_ERR_FATAL:
138 		return "Fatal";
139 	default:
140 	case HW_EVENT_ERR_INFO:
141 		return "Info";
142 	}
143 }
144 
145 /**
146  * enum mem_type - memory types. For a more detailed reference, please see
147  *			http://en.wikipedia.org/wiki/DRAM
148  *
149  * @MEM_EMPTY:		Empty csrow
150  * @MEM_RESERVED:	Reserved csrow type
151  * @MEM_UNKNOWN:	Unknown csrow type
152  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
153  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
154  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
155  * @MEM_SDR:		SDR - Single data rate SDRAM
156  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
157  *			They use 3 pins for chip select: Pins 0 and 2 are
158  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
159  *			is dual-rank.
160  * @MEM_RDR:		Registered SDR SDRAM
161  * @MEM_DDR:		Double data rate SDRAM
162  *			http://en.wikipedia.org/wiki/DDR_SDRAM
163  * @MEM_RDDR:		Registered Double data rate SDRAM
164  *			This is a variant of the DDR memories.
165  *			A registered memory has a buffer inside it, hiding
166  *			part of the memory details to the memory controller.
167  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
168  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
169  *			Those memories are labeled as "PC2-" instead of "PC" to
170  *			differentiate from DDR.
171  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
172  *			and JESD206.
173  *			Those memories are accessed per DIMM slot, and not by
174  *			a chip select signal.
175  * @MEM_RDDR2:		Registered DDR2 RAM
176  *			This is a variant of the DDR2 memories.
177  * @MEM_XDR:		Rambus XDR
178  *			It is an evolution of the original RAMBUS memories,
179  *			created to compete with DDR2. Weren't used on any
180  *			x86 arch, but cell_edac PPC memory controller uses it.
181  * @MEM_DDR3:		DDR3 RAM
182  * @MEM_RDDR3:		Registered DDR3 RAM
183  *			This is a variant of the DDR3 memories.
184  * @MEM_LRDDR3:		Load-Reduced DDR3 memory.
185  * @MEM_DDR4:		Unbuffered DDR4 RAM
186  * @MEM_RDDR4:		Registered DDR4 RAM
187  *			This is a variant of the DDR4 memories.
188  * @MEM_LRDDR4:		Load-Reduced DDR4 memory.
189  * @MEM_NVDIMM:		Non-volatile RAM
190  */
191 enum mem_type {
192 	MEM_EMPTY = 0,
193 	MEM_RESERVED,
194 	MEM_UNKNOWN,
195 	MEM_FPM,
196 	MEM_EDO,
197 	MEM_BEDO,
198 	MEM_SDR,
199 	MEM_RDR,
200 	MEM_DDR,
201 	MEM_RDDR,
202 	MEM_RMBS,
203 	MEM_DDR2,
204 	MEM_FB_DDR2,
205 	MEM_RDDR2,
206 	MEM_XDR,
207 	MEM_DDR3,
208 	MEM_RDDR3,
209 	MEM_LRDDR3,
210 	MEM_DDR4,
211 	MEM_RDDR4,
212 	MEM_LRDDR4,
213 	MEM_NVDIMM,
214 };
215 
216 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
217 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
218 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
219 #define MEM_FLAG_FPM		BIT(MEM_FPM)
220 #define MEM_FLAG_EDO		BIT(MEM_EDO)
221 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
222 #define MEM_FLAG_SDR		BIT(MEM_SDR)
223 #define MEM_FLAG_RDR		BIT(MEM_RDR)
224 #define MEM_FLAG_DDR		BIT(MEM_DDR)
225 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
226 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
227 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
228 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
229 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
230 #define MEM_FLAG_XDR            BIT(MEM_XDR)
231 #define MEM_FLAG_DDR3           BIT(MEM_DDR3)
232 #define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
233 #define MEM_FLAG_DDR4           BIT(MEM_DDR4)
234 #define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
235 #define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
236 #define MEM_FLAG_NVDIMM         BIT(MEM_NVDIMM)
237 
238 /**
239  * enum edac-type - Error Detection and Correction capabilities and mode
240  * @EDAC_UNKNOWN:	Unknown if ECC is available
241  * @EDAC_NONE:		Doesn't support ECC
242  * @EDAC_RESERVED:	Reserved ECC type
243  * @EDAC_PARITY:	Detects parity errors
244  * @EDAC_EC:		Error Checking - no correction
245  * @EDAC_SECDED:	Single bit error correction, Double detection
246  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
247  * @EDAC_S4ECD4ED:	Chipkill x4 devices
248  * @EDAC_S8ECD8ED:	Chipkill x8 devices
249  * @EDAC_S16ECD16ED:	Chipkill x16 devices
250  */
251 enum edac_type {
252 	EDAC_UNKNOWN =	0,
253 	EDAC_NONE,
254 	EDAC_RESERVED,
255 	EDAC_PARITY,
256 	EDAC_EC,
257 	EDAC_SECDED,
258 	EDAC_S2ECD2ED,
259 	EDAC_S4ECD4ED,
260 	EDAC_S8ECD8ED,
261 	EDAC_S16ECD16ED,
262 };
263 
264 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
265 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
266 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
267 #define EDAC_FLAG_EC		BIT(EDAC_EC)
268 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
269 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
270 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
271 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
272 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
273 
274 /**
275  * enum scrub_type - scrubbing capabilities
276  * @SCRUB_UNKNOWN:		Unknown if scrubber is available
277  * @SCRUB_NONE:			No scrubber
278  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
279  * @SCRUB_SW_SRC:		Software scrub only errors
280  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
281  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
282  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
283  * @SCRUB_HW_SRC:		Hardware scrub only errors
284  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
285  * @SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
286  */
287 enum scrub_type {
288 	SCRUB_UNKNOWN =	0,
289 	SCRUB_NONE,
290 	SCRUB_SW_PROG,
291 	SCRUB_SW_SRC,
292 	SCRUB_SW_PROG_SRC,
293 	SCRUB_SW_TUNABLE,
294 	SCRUB_HW_PROG,
295 	SCRUB_HW_SRC,
296 	SCRUB_HW_PROG_SRC,
297 	SCRUB_HW_TUNABLE
298 };
299 
300 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
301 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
302 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
303 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
304 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
305 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
306 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
307 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
308 
309 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
310 
311 /* EDAC internal operation states */
312 #define	OP_ALLOC		0x100
313 #define OP_RUNNING_POLL		0x201
314 #define OP_RUNNING_INTERRUPT	0x202
315 #define OP_RUNNING_POLL_INTR	0x203
316 #define OP_OFFLINE		0x300
317 
318 /**
319  * enum edac_mc_layer - memory controller hierarchy layer
320  *
321  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
322  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
323  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
324  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
325  * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
326  *				as a single memory area. This is used when
327  *				retrieving errors from a firmware driven driver.
328  *
329  * This enum is used by the drivers to tell edac_mc_sysfs what name should
330  * be used when describing a memory stick location.
331  */
332 enum edac_mc_layer_type {
333 	EDAC_MC_LAYER_BRANCH,
334 	EDAC_MC_LAYER_CHANNEL,
335 	EDAC_MC_LAYER_SLOT,
336 	EDAC_MC_LAYER_CHIP_SELECT,
337 	EDAC_MC_LAYER_ALL_MEM,
338 };
339 
340 /**
341  * struct edac_mc_layer - describes the memory controller hierarchy
342  * @type:		layer type
343  * @size:		number of components per layer. For example,
344  *			if the channel layer has two channels, size = 2
345  * @is_virt_csrow:	This layer is part of the "csrow" when old API
346  *			compatibility mode is enabled. Otherwise, it is
347  *			a channel
348  */
349 struct edac_mc_layer {
350 	enum edac_mc_layer_type	type;
351 	unsigned		size;
352 	bool			is_virt_csrow;
353 };
354 
355 /*
356  * Maximum number of layers used by the memory controller to uniquely
357  * identify a single memory stick.
358  * NOTE: Changing this constant requires not only to change the constant
359  * below, but also to change the existing code at the core, as there are
360  * some code there that are optimized for 3 layers.
361  */
362 #define EDAC_MAX_LAYERS		3
363 
364 /**
365  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
366  *		   array for the element given by [layer0,layer1,layer2]
367  *		   position
368  *
369  * @layers:	a struct edac_mc_layer array, describing how many elements
370  *		were allocated for each layer
371  * @nlayers:	Number of layers at the @layers array
372  * @layer0:	layer0 position
373  * @layer1:	layer1 position. Unused if n_layers < 2
374  * @layer2:	layer2 position. Unused if n_layers < 3
375  *
376  * For 1 layer, this macro returns "var[layer0] - var";
377  *
378  * For 2 layers, this macro is similar to allocate a bi-dimensional array
379  * and to return "var[layer0][layer1] - var";
380  *
381  * For 3 layers, this macro is similar to allocate a tri-dimensional array
382  * and to return "var[layer0][layer1][layer2] - var".
383  *
384  * A loop could be used here to make it more generic, but, as we only have
385  * 3 layers, this is a little faster.
386  *
387  * By design, layers can never be 0 or more than 3. If that ever happens,
388  * a NULL is returned, causing an OOPS during the memory allocation routine,
389  * with would point to the developer that he's doing something wrong.
390  */
391 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
392 	int __i;							\
393 	if ((nlayers) == 1)						\
394 		__i = layer0;						\
395 	else if ((nlayers) == 2)					\
396 		__i = (layer1) + ((layers[1]).size * (layer0));		\
397 	else if ((nlayers) == 3)					\
398 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
399 			    ((layers[1]).size * (layer0))));		\
400 	else								\
401 		__i = -EINVAL;						\
402 	__i;								\
403 })
404 
405 /**
406  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
407  *		   for the element given by [layer0,layer1,layer2] position
408  *
409  * @layers:	a struct edac_mc_layer array, describing how many elements
410  *		were allocated for each layer
411  * @var:	name of the var where we want to get the pointer
412  *		(like mci->dimms)
413  * @nlayers:	Number of layers at the @layers array
414  * @layer0:	layer0 position
415  * @layer1:	layer1 position. Unused if n_layers < 2
416  * @layer2:	layer2 position. Unused if n_layers < 3
417  *
418  * For 1 layer, this macro returns "var[layer0]";
419  *
420  * For 2 layers, this macro is similar to allocate a bi-dimensional array
421  * and to return "var[layer0][layer1]";
422  *
423  * For 3 layers, this macro is similar to allocate a tri-dimensional array
424  * and to return "var[layer0][layer1][layer2]";
425  */
426 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
427 	typeof(*var) __p;						\
428 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
429 	if (___i < 0)							\
430 		__p = NULL;						\
431 	else								\
432 		__p = (var)[___i];					\
433 	__p;								\
434 })
435 
436 struct dimm_info {
437 	struct device dev;
438 
439 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
440 
441 	/* Memory location data */
442 	unsigned location[EDAC_MAX_LAYERS];
443 
444 	struct mem_ctl_info *mci;	/* the parent */
445 
446 	u32 grain;		/* granularity of reported error in bytes */
447 	enum dev_type dtype;	/* memory device type */
448 	enum mem_type mtype;	/* memory dimm type */
449 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
450 
451 	u32 nr_pages;			/* number of pages on this dimm */
452 
453 	unsigned csrow, cschannel;	/* Points to the old API data */
454 };
455 
456 /**
457  * struct rank_info - contains the information for one DIMM rank
458  *
459  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
460  * @ce_count:	number of correctable errors for this rank
461  * @csrow:	A pointer to the chip select row structure (the parent
462  *		structure). The location of the rank is given by
463  *		the (csrow->csrow_idx, chan_idx) vector.
464  * @dimm:	A pointer to the DIMM structure, where the DIMM label
465  *		information is stored.
466  *
467  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
468  *	  This is a bad assumption, but it makes this patch easier. Later
469  *	  patches in this series will fix this issue.
470  */
471 struct rank_info {
472 	int chan_idx;
473 	struct csrow_info *csrow;
474 	struct dimm_info *dimm;
475 
476 	u32 ce_count;		/* Correctable Errors for this csrow */
477 };
478 
479 struct csrow_info {
480 	struct device dev;
481 
482 	/* Used only by edac_mc_find_csrow_by_page() */
483 	unsigned long first_page;	/* first page number in csrow */
484 	unsigned long last_page;	/* last page number in csrow */
485 	unsigned long page_mask;	/* used for interleaving -
486 					 * 0UL for non intlv */
487 
488 	int csrow_idx;			/* the chip-select row */
489 
490 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
491 	u32 ce_count;		/* Correctable Errors for this csrow */
492 
493 	struct mem_ctl_info *mci;	/* the parent */
494 
495 	/* channel information for this csrow */
496 	u32 nr_channels;
497 	struct rank_info **channels;
498 };
499 
500 /*
501  * struct errcount_attribute - used to store the several error counts
502  */
503 struct errcount_attribute_data {
504 	int n_layers;
505 	int pos[EDAC_MAX_LAYERS];
506 	int layer0, layer1, layer2;
507 };
508 
509 /**
510  * struct edac_raw_error_desc - Raw error report structure
511  * @grain:			minimum granularity for an error report, in bytes
512  * @error_count:		number of errors of the same type
513  * @top_layer:			top layer of the error (layer[0])
514  * @mid_layer:			middle layer of the error (layer[1])
515  * @low_layer:			low layer of the error (layer[2])
516  * @page_frame_number:		page where the error happened
517  * @offset_in_page:		page offset
518  * @syndrome:			syndrome of the error (or 0 if unknown or if
519  * 				the syndrome is not applicable)
520  * @msg:			error message
521  * @location:			location of the error
522  * @label:			label of the affected DIMM(s)
523  * @other_detail:		other driver-specific detail about the error
524  * @enable_per_layer_report:	if false, the error affects all layers
525  *				(typically, a memory controller error)
526  */
527 struct edac_raw_error_desc {
528 	/*
529 	 * NOTE: everything before grain won't be cleaned by
530 	 * edac_raw_error_desc_clean()
531 	 */
532 	char location[LOCATION_SIZE];
533 	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
534 	long grain;
535 
536 	/* the vars below and grain will be cleaned on every new error report */
537 	u16 error_count;
538 	int top_layer;
539 	int mid_layer;
540 	int low_layer;
541 	unsigned long page_frame_number;
542 	unsigned long offset_in_page;
543 	unsigned long syndrome;
544 	const char *msg;
545 	const char *other_detail;
546 	bool enable_per_layer_report;
547 };
548 
549 /* MEMORY controller information structure
550  */
551 struct mem_ctl_info {
552 	struct device			dev;
553 	struct bus_type			*bus;
554 
555 	struct list_head link;	/* for global list of mem_ctl_info structs */
556 
557 	struct module *owner;	/* Module owner of this control struct */
558 
559 	unsigned long mtype_cap;	/* memory types supported by mc */
560 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
561 	unsigned long edac_cap;	/* configuration capabilities - this is
562 				 * closely related to edac_ctl_cap.  The
563 				 * difference is that the controller may be
564 				 * capable of s4ecd4ed which would be listed
565 				 * in edac_ctl_cap, but if channels aren't
566 				 * capable of s4ecd4ed then the edac_cap would
567 				 * not have that capability.
568 				 */
569 	unsigned long scrub_cap;	/* chipset scrub capabilities */
570 	enum scrub_type scrub_mode;	/* current scrub mode */
571 
572 	/* Translates sdram memory scrub rate given in bytes/sec to the
573 	   internal representation and configures whatever else needs
574 	   to be configured.
575 	 */
576 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
577 
578 	/* Get the current sdram memory scrub rate from the internal
579 	   representation and converts it to the closest matching
580 	   bandwidth in bytes/sec.
581 	 */
582 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
583 
584 
585 	/* pointer to edac checking routine */
586 	void (*edac_check) (struct mem_ctl_info * mci);
587 
588 	/*
589 	 * Remaps memory pages: controller pages to physical pages.
590 	 * For most MC's, this will be NULL.
591 	 */
592 	/* FIXME - why not send the phys page to begin with? */
593 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
594 					   unsigned long page);
595 	int mc_idx;
596 	struct csrow_info **csrows;
597 	unsigned nr_csrows, num_cschannel;
598 
599 	/*
600 	 * Memory Controller hierarchy
601 	 *
602 	 * There are basically two types of memory controller: the ones that
603 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
604 	 * All old memory controllers enumerate memories per rank, but most
605 	 * of the recent drivers enumerate memories per DIMM, instead.
606 	 * When the memory controller is per rank, csbased is true.
607 	 */
608 	unsigned n_layers;
609 	struct edac_mc_layer *layers;
610 	bool csbased;
611 
612 	/*
613 	 * DIMM info. Will eventually remove the entire csrows_info some day
614 	 */
615 	unsigned tot_dimms;
616 	struct dimm_info **dimms;
617 
618 	/*
619 	 * FIXME - what about controllers on other busses? - IDs must be
620 	 * unique.  dev pointer should be sufficiently unique, but
621 	 * BUS:SLOT.FUNC numbers may not be unique.
622 	 */
623 	struct device *pdev;
624 	const char *mod_name;
625 	const char *ctl_name;
626 	const char *dev_name;
627 	void *pvt_info;
628 	unsigned long start_time;	/* mci load start time (in jiffies) */
629 
630 	/*
631 	 * drivers shouldn't access those fields directly, as the core
632 	 * already handles that.
633 	 */
634 	u32 ce_noinfo_count, ue_noinfo_count;
635 	u32 ue_mc, ce_mc;
636 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
637 
638 	struct completion complete;
639 
640 	/* Additional top controller level attributes, but specified
641 	 * by the low level driver.
642 	 *
643 	 * Set by the low level driver to provide attributes at the
644 	 * controller level.
645 	 * An array of structures, NULL terminated
646 	 *
647 	 * If attributes are desired, then set to array of attributes
648 	 * If no attributes are desired, leave NULL
649 	 */
650 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
651 
652 	/* work struct for this MC */
653 	struct delayed_work work;
654 
655 	/*
656 	 * Used to report an error - by being at the global struct
657 	 * makes the memory allocated by the EDAC core
658 	 */
659 	struct edac_raw_error_desc error_desc;
660 
661 	/* the internal state of this controller instance */
662 	int op_state;
663 
664 	struct dentry *debugfs;
665 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
666 	bool fake_inject_ue;
667 	u16 fake_inject_count;
668 };
669 
670 /*
671  * Maximum number of memory controllers in the coherent fabric.
672  */
673 #define EDAC_MAX_MCS	16
674 
675 #endif
676