1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 MEMCG_RSS,
43 MEMCG_RSS_HUGE,
44 MEMCG_SWAP,
45 MEMCG_SOCK,
46 /* XXX: why are these zone and not node counters? */
47 MEMCG_KERNEL_STACK_KB,
48 MEMCG_NR_STAT,
49 };
50
51 enum memcg_memory_event {
52 MEMCG_LOW,
53 MEMCG_HIGH,
54 MEMCG_MAX,
55 MEMCG_OOM,
56 MEMCG_OOM_KILL,
57 MEMCG_SWAP_MAX,
58 MEMCG_SWAP_FAIL,
59 MEMCG_NR_MEMORY_EVENTS,
60 };
61
62 enum mem_cgroup_protection {
63 MEMCG_PROT_NONE,
64 MEMCG_PROT_LOW,
65 MEMCG_PROT_MIN,
66 };
67
68 struct mem_cgroup_reclaim_cookie {
69 pg_data_t *pgdat;
70 int priority;
71 unsigned int generation;
72 };
73
74 #ifdef CONFIG_MEMCG
75
76 #define MEM_CGROUP_ID_SHIFT 16
77 #define MEM_CGROUP_ID_MAX USHRT_MAX
78
79 struct mem_cgroup_id {
80 int id;
81 atomic_t ref;
82 };
83
84 /*
85 * Per memcg event counter is incremented at every pagein/pageout. With THP,
86 * it will be incremated by the number of pages. This counter is used for
87 * for trigger some periodic events. This is straightforward and better
88 * than using jiffies etc. to handle periodic memcg event.
89 */
90 enum mem_cgroup_events_target {
91 MEM_CGROUP_TARGET_THRESH,
92 MEM_CGROUP_TARGET_SOFTLIMIT,
93 MEM_CGROUP_TARGET_NUMAINFO,
94 MEM_CGROUP_NTARGETS,
95 };
96
97 struct mem_cgroup_stat_cpu {
98 long count[MEMCG_NR_STAT];
99 unsigned long events[NR_VM_EVENT_ITEMS];
100 unsigned long nr_page_events;
101 unsigned long targets[MEM_CGROUP_NTARGETS];
102 };
103
104 struct mem_cgroup_reclaim_iter {
105 struct mem_cgroup *position;
106 /* scan generation, increased every round-trip */
107 unsigned int generation;
108 };
109
110 struct lruvec_stat {
111 long count[NR_VM_NODE_STAT_ITEMS];
112 };
113
114 /*
115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116 * which have elements charged to this memcg.
117 */
118 struct memcg_shrinker_map {
119 struct rcu_head rcu;
120 unsigned long map[0];
121 };
122
123 /*
124 * per-zone information in memory controller.
125 */
126 struct mem_cgroup_per_node {
127 struct lruvec lruvec;
128
129 struct lruvec_stat __percpu *lruvec_stat_cpu;
130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131
132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133
134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
135
136 #ifdef CONFIG_MEMCG_KMEM
137 struct memcg_shrinker_map __rcu *shrinker_map;
138 #endif
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 bool congested; /* memcg has many dirty pages */
144 /* backed by a congested BDI */
145
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148 };
149
150 struct mem_cgroup_threshold {
151 struct eventfd_ctx *eventfd;
152 unsigned long threshold;
153 };
154
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 /* An array index points to threshold just below or equal to usage. */
158 int current_threshold;
159 /* Size of entries[] */
160 unsigned int size;
161 /* Array of thresholds */
162 struct mem_cgroup_threshold entries[0];
163 };
164
165 struct mem_cgroup_thresholds {
166 /* Primary thresholds array */
167 struct mem_cgroup_threshold_ary *primary;
168 /*
169 * Spare threshold array.
170 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 * It must be able to store at least primary->size - 1 entries.
172 */
173 struct mem_cgroup_threshold_ary *spare;
174 };
175
176 enum memcg_kmem_state {
177 KMEM_NONE,
178 KMEM_ALLOCATED,
179 KMEM_ONLINE,
180 };
181
182 #if defined(CONFIG_SMP)
183 struct memcg_padding {
184 char x[0];
185 } ____cacheline_internodealigned_in_smp;
186 #define MEMCG_PADDING(name) struct memcg_padding name;
187 #else
188 #define MEMCG_PADDING(name)
189 #endif
190
191 /*
192 * The memory controller data structure. The memory controller controls both
193 * page cache and RSS per cgroup. We would eventually like to provide
194 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195 * to help the administrator determine what knobs to tune.
196 */
197 struct mem_cgroup {
198 struct cgroup_subsys_state css;
199
200 /* Private memcg ID. Used to ID objects that outlive the cgroup */
201 struct mem_cgroup_id id;
202
203 /* Accounted resources */
204 struct page_counter memory;
205 struct page_counter swap;
206
207 /* Legacy consumer-oriented counters */
208 struct page_counter memsw;
209 struct page_counter kmem;
210 struct page_counter tcpmem;
211
212 /* Upper bound of normal memory consumption range */
213 unsigned long high;
214
215 /* Range enforcement for interrupt charges */
216 struct work_struct high_work;
217
218 unsigned long soft_limit;
219
220 /* vmpressure notifications */
221 struct vmpressure vmpressure;
222
223 /*
224 * Should the accounting and control be hierarchical, per subtree?
225 */
226 bool use_hierarchy;
227
228 /*
229 * Should the OOM killer kill all belonging tasks, had it kill one?
230 */
231 bool oom_group;
232
233 /* protected by memcg_oom_lock */
234 bool oom_lock;
235 int under_oom;
236
237 int swappiness;
238 /* OOM-Killer disable */
239 int oom_kill_disable;
240
241 /* memory.events */
242 struct cgroup_file events_file;
243
244 /* handle for "memory.swap.events" */
245 struct cgroup_file swap_events_file;
246
247 /* protect arrays of thresholds */
248 struct mutex thresholds_lock;
249
250 /* thresholds for memory usage. RCU-protected */
251 struct mem_cgroup_thresholds thresholds;
252
253 /* thresholds for mem+swap usage. RCU-protected */
254 struct mem_cgroup_thresholds memsw_thresholds;
255
256 /* For oom notifier event fd */
257 struct list_head oom_notify;
258
259 /*
260 * Should we move charges of a task when a task is moved into this
261 * mem_cgroup ? And what type of charges should we move ?
262 */
263 unsigned long move_charge_at_immigrate;
264 /* taken only while moving_account > 0 */
265 spinlock_t move_lock;
266 unsigned long move_lock_flags;
267
268 MEMCG_PADDING(_pad1_);
269
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
274 struct task_struct *move_lock_task;
275
276 /* memory.stat */
277 struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278
279 MEMCG_PADDING(_pad2_);
280
281 atomic_long_t stat[MEMCG_NR_STAT];
282 atomic_long_t events[NR_VM_EVENT_ITEMS];
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284
285 unsigned long socket_pressure;
286
287 /* Legacy tcp memory accounting */
288 bool tcpmem_active;
289 int tcpmem_pressure;
290
291 #ifdef CONFIG_MEMCG_KMEM
292 /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 int kmemcg_id;
294 enum memcg_kmem_state kmem_state;
295 struct list_head kmem_caches;
296 #endif
297
298 int last_scanned_node;
299 #if MAX_NUMNODES > 1
300 nodemask_t scan_nodes;
301 atomic_t numainfo_events;
302 atomic_t numainfo_updating;
303 #endif
304
305 #ifdef CONFIG_CGROUP_WRITEBACK
306 struct list_head cgwb_list;
307 struct wb_domain cgwb_domain;
308 #endif
309
310 /* List of events which userspace want to receive */
311 struct list_head event_list;
312 spinlock_t event_list_lock;
313
314 struct mem_cgroup_per_node *nodeinfo[0];
315 /* WARNING: nodeinfo must be the last member here */
316 };
317
318 /*
319 * size of first charge trial. "32" comes from vmscan.c's magic value.
320 * TODO: maybe necessary to use big numbers in big irons.
321 */
322 #define MEMCG_CHARGE_BATCH 32U
323
324 extern struct mem_cgroup *root_mem_cgroup;
325
mem_cgroup_is_root(struct mem_cgroup * memcg)326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327 {
328 return (memcg == root_mem_cgroup);
329 }
330
mem_cgroup_disabled(void)331 static inline bool mem_cgroup_disabled(void)
332 {
333 return !cgroup_subsys_enabled(memory_cgrp_subsys);
334 }
335
336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 struct mem_cgroup *memcg);
338
339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 bool compound);
342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 bool compound);
345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 bool lrucare, bool compound);
347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 bool compound);
349 void mem_cgroup_uncharge(struct page *page);
350 void mem_cgroup_uncharge_list(struct list_head *page_list);
351
352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353
354 static struct mem_cgroup_per_node *
mem_cgroup_nodeinfo(struct mem_cgroup * memcg,int nid)355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356 {
357 return memcg->nodeinfo[nid];
358 }
359
360 /**
361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362 * @node: node of the wanted lruvec
363 * @memcg: memcg of the wanted lruvec
364 *
365 * Returns the lru list vector holding pages for a given @node or a given
366 * @memcg and @zone. This can be the node lruvec, if the memory controller
367 * is disabled.
368 */
mem_cgroup_lruvec(struct pglist_data * pgdat,struct mem_cgroup * memcg)369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 struct mem_cgroup *memcg)
371 {
372 struct mem_cgroup_per_node *mz;
373 struct lruvec *lruvec;
374
375 if (mem_cgroup_disabled()) {
376 lruvec = node_lruvec(pgdat);
377 goto out;
378 }
379
380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 lruvec = &mz->lruvec;
382 out:
383 /*
384 * Since a node can be onlined after the mem_cgroup was created,
385 * we have to be prepared to initialize lruvec->pgdat here;
386 * and if offlined then reonlined, we need to reinitialize it.
387 */
388 if (unlikely(lruvec->pgdat != pgdat))
389 lruvec->pgdat = pgdat;
390 return lruvec;
391 }
392
393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394
395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397
398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399
400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401
402 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 return css ? container_of(css, struct mem_cgroup, css) : NULL;
405 }
406
mem_cgroup_put(struct mem_cgroup * memcg)407 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408 {
409 if (memcg)
410 css_put(&memcg->css);
411 }
412
413 #define mem_cgroup_from_counter(counter, member) \
414 container_of(counter, struct mem_cgroup, member)
415
416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 struct mem_cgroup *,
418 struct mem_cgroup_reclaim_cookie *);
419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420 int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 int (*)(struct task_struct *, void *), void *);
422
mem_cgroup_id(struct mem_cgroup * memcg)423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424 {
425 if (mem_cgroup_disabled())
426 return 0;
427
428 return memcg->id.id;
429 }
430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431
lruvec_memcg(struct lruvec * lruvec)432 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
433 {
434 struct mem_cgroup_per_node *mz;
435
436 if (mem_cgroup_disabled())
437 return NULL;
438
439 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
440 return mz->memcg;
441 }
442
443 /**
444 * parent_mem_cgroup - find the accounting parent of a memcg
445 * @memcg: memcg whose parent to find
446 *
447 * Returns the parent memcg, or NULL if this is the root or the memory
448 * controller is in legacy no-hierarchy mode.
449 */
parent_mem_cgroup(struct mem_cgroup * memcg)450 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
451 {
452 if (!memcg->memory.parent)
453 return NULL;
454 return mem_cgroup_from_counter(memcg->memory.parent, memory);
455 }
456
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)457 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
458 struct mem_cgroup *root)
459 {
460 if (root == memcg)
461 return true;
462 if (!root->use_hierarchy)
463 return false;
464 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
465 }
466
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)467 static inline bool mm_match_cgroup(struct mm_struct *mm,
468 struct mem_cgroup *memcg)
469 {
470 struct mem_cgroup *task_memcg;
471 bool match = false;
472
473 rcu_read_lock();
474 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
475 if (task_memcg)
476 match = mem_cgroup_is_descendant(task_memcg, memcg);
477 rcu_read_unlock();
478 return match;
479 }
480
481 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
482 ino_t page_cgroup_ino(struct page *page);
483
mem_cgroup_online(struct mem_cgroup * memcg)484 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
485 {
486 if (mem_cgroup_disabled())
487 return true;
488 return !!(memcg->css.flags & CSS_ONLINE);
489 }
490
491 /*
492 * For memory reclaim.
493 */
494 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
495
496 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
497 int zid, int nr_pages);
498
499 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
500 int nid, unsigned int lru_mask);
501
502 static inline
mem_cgroup_get_lru_size(struct lruvec * lruvec,enum lru_list lru)503 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
504 {
505 struct mem_cgroup_per_node *mz;
506 unsigned long nr_pages = 0;
507 int zid;
508
509 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
510 for (zid = 0; zid < MAX_NR_ZONES; zid++)
511 nr_pages += mz->lru_zone_size[zid][lru];
512 return nr_pages;
513 }
514
515 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)516 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
517 enum lru_list lru, int zone_idx)
518 {
519 struct mem_cgroup_per_node *mz;
520
521 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
522 return mz->lru_zone_size[zone_idx][lru];
523 }
524
525 void mem_cgroup_handle_over_high(void);
526
527 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
528
529 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
530 struct task_struct *p);
531
mem_cgroup_enter_user_fault(void)532 static inline void mem_cgroup_enter_user_fault(void)
533 {
534 WARN_ON(current->in_user_fault);
535 current->in_user_fault = 1;
536 }
537
mem_cgroup_exit_user_fault(void)538 static inline void mem_cgroup_exit_user_fault(void)
539 {
540 WARN_ON(!current->in_user_fault);
541 current->in_user_fault = 0;
542 }
543
task_in_memcg_oom(struct task_struct * p)544 static inline bool task_in_memcg_oom(struct task_struct *p)
545 {
546 return p->memcg_in_oom;
547 }
548
549 bool mem_cgroup_oom_synchronize(bool wait);
550 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
551 struct mem_cgroup *oom_domain);
552 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
553
554 #ifdef CONFIG_MEMCG_SWAP
555 extern int do_swap_account;
556 #endif
557
558 struct mem_cgroup *lock_page_memcg(struct page *page);
559 void __unlock_page_memcg(struct mem_cgroup *memcg);
560 void unlock_page_memcg(struct page *page);
561
562 /* idx can be of type enum memcg_stat_item or node_stat_item */
memcg_page_state(struct mem_cgroup * memcg,int idx)563 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
564 int idx)
565 {
566 long x = atomic_long_read(&memcg->stat[idx]);
567 #ifdef CONFIG_SMP
568 if (x < 0)
569 x = 0;
570 #endif
571 return x;
572 }
573
574 /* idx can be of type enum memcg_stat_item or node_stat_item */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)575 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
576 int idx, int val)
577 {
578 long x;
579
580 if (mem_cgroup_disabled())
581 return;
582
583 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
584 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
585 atomic_long_add(x, &memcg->stat[idx]);
586 x = 0;
587 }
588 __this_cpu_write(memcg->stat_cpu->count[idx], x);
589 }
590
591 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)592 static inline void mod_memcg_state(struct mem_cgroup *memcg,
593 int idx, int val)
594 {
595 unsigned long flags;
596
597 local_irq_save(flags);
598 __mod_memcg_state(memcg, idx, val);
599 local_irq_restore(flags);
600 }
601
602 /**
603 * mod_memcg_page_state - update page state statistics
604 * @page: the page
605 * @idx: page state item to account
606 * @val: number of pages (positive or negative)
607 *
608 * The @page must be locked or the caller must use lock_page_memcg()
609 * to prevent double accounting when the page is concurrently being
610 * moved to another memcg:
611 *
612 * lock_page(page) or lock_page_memcg(page)
613 * if (TestClearPageState(page))
614 * mod_memcg_page_state(page, state, -1);
615 * unlock_page(page) or unlock_page_memcg(page)
616 *
617 * Kernel pages are an exception to this, since they'll never move.
618 */
__mod_memcg_page_state(struct page * page,int idx,int val)619 static inline void __mod_memcg_page_state(struct page *page,
620 int idx, int val)
621 {
622 if (page->mem_cgroup)
623 __mod_memcg_state(page->mem_cgroup, idx, val);
624 }
625
mod_memcg_page_state(struct page * page,int idx,int val)626 static inline void mod_memcg_page_state(struct page *page,
627 int idx, int val)
628 {
629 if (page->mem_cgroup)
630 mod_memcg_state(page->mem_cgroup, idx, val);
631 }
632
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)633 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
634 enum node_stat_item idx)
635 {
636 struct mem_cgroup_per_node *pn;
637 long x;
638
639 if (mem_cgroup_disabled())
640 return node_page_state(lruvec_pgdat(lruvec), idx);
641
642 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
643 x = atomic_long_read(&pn->lruvec_stat[idx]);
644 #ifdef CONFIG_SMP
645 if (x < 0)
646 x = 0;
647 #endif
648 return x;
649 }
650
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)651 static inline void __mod_lruvec_state(struct lruvec *lruvec,
652 enum node_stat_item idx, int val)
653 {
654 struct mem_cgroup_per_node *pn;
655 long x;
656
657 /* Update node */
658 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
659
660 if (mem_cgroup_disabled())
661 return;
662
663 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
664
665 /* Update memcg */
666 __mod_memcg_state(pn->memcg, idx, val);
667
668 /* Update lruvec */
669 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
670 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
671 atomic_long_add(x, &pn->lruvec_stat[idx]);
672 x = 0;
673 }
674 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
675 }
676
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)677 static inline void mod_lruvec_state(struct lruvec *lruvec,
678 enum node_stat_item idx, int val)
679 {
680 unsigned long flags;
681
682 local_irq_save(flags);
683 __mod_lruvec_state(lruvec, idx, val);
684 local_irq_restore(flags);
685 }
686
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)687 static inline void __mod_lruvec_page_state(struct page *page,
688 enum node_stat_item idx, int val)
689 {
690 pg_data_t *pgdat = page_pgdat(page);
691 struct lruvec *lruvec;
692
693 /* Untracked pages have no memcg, no lruvec. Update only the node */
694 if (!page->mem_cgroup) {
695 __mod_node_page_state(pgdat, idx, val);
696 return;
697 }
698
699 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
700 __mod_lruvec_state(lruvec, idx, val);
701 }
702
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)703 static inline void mod_lruvec_page_state(struct page *page,
704 enum node_stat_item idx, int val)
705 {
706 unsigned long flags;
707
708 local_irq_save(flags);
709 __mod_lruvec_page_state(page, idx, val);
710 local_irq_restore(flags);
711 }
712
713 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
714 gfp_t gfp_mask,
715 unsigned long *total_scanned);
716
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)717 static inline void __count_memcg_events(struct mem_cgroup *memcg,
718 enum vm_event_item idx,
719 unsigned long count)
720 {
721 unsigned long x;
722
723 if (mem_cgroup_disabled())
724 return;
725
726 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
727 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
728 atomic_long_add(x, &memcg->events[idx]);
729 x = 0;
730 }
731 __this_cpu_write(memcg->stat_cpu->events[idx], x);
732 }
733
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)734 static inline void count_memcg_events(struct mem_cgroup *memcg,
735 enum vm_event_item idx,
736 unsigned long count)
737 {
738 unsigned long flags;
739
740 local_irq_save(flags);
741 __count_memcg_events(memcg, idx, count);
742 local_irq_restore(flags);
743 }
744
count_memcg_page_event(struct page * page,enum vm_event_item idx)745 static inline void count_memcg_page_event(struct page *page,
746 enum vm_event_item idx)
747 {
748 if (page->mem_cgroup)
749 count_memcg_events(page->mem_cgroup, idx, 1);
750 }
751
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)752 static inline void count_memcg_event_mm(struct mm_struct *mm,
753 enum vm_event_item idx)
754 {
755 struct mem_cgroup *memcg;
756
757 if (mem_cgroup_disabled())
758 return;
759
760 rcu_read_lock();
761 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
762 if (likely(memcg))
763 count_memcg_events(memcg, idx, 1);
764 rcu_read_unlock();
765 }
766
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)767 static inline void memcg_memory_event(struct mem_cgroup *memcg,
768 enum memcg_memory_event event)
769 {
770 atomic_long_inc(&memcg->memory_events[event]);
771 cgroup_file_notify(&memcg->events_file);
772 }
773
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)774 static inline void memcg_memory_event_mm(struct mm_struct *mm,
775 enum memcg_memory_event event)
776 {
777 struct mem_cgroup *memcg;
778
779 if (mem_cgroup_disabled())
780 return;
781
782 rcu_read_lock();
783 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
784 if (likely(memcg))
785 memcg_memory_event(memcg, event);
786 rcu_read_unlock();
787 }
788
789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
790 void mem_cgroup_split_huge_fixup(struct page *head);
791 #endif
792
793 #else /* CONFIG_MEMCG */
794
795 #define MEM_CGROUP_ID_SHIFT 0
796 #define MEM_CGROUP_ID_MAX 0
797
798 struct mem_cgroup;
799
mem_cgroup_is_root(struct mem_cgroup * memcg)800 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
801 {
802 return true;
803 }
804
mem_cgroup_disabled(void)805 static inline bool mem_cgroup_disabled(void)
806 {
807 return true;
808 }
809
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)810 static inline void memcg_memory_event(struct mem_cgroup *memcg,
811 enum memcg_memory_event event)
812 {
813 }
814
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)815 static inline void memcg_memory_event_mm(struct mm_struct *mm,
816 enum memcg_memory_event event)
817 {
818 }
819
mem_cgroup_protected(struct mem_cgroup * root,struct mem_cgroup * memcg)820 static inline enum mem_cgroup_protection mem_cgroup_protected(
821 struct mem_cgroup *root, struct mem_cgroup *memcg)
822 {
823 return MEMCG_PROT_NONE;
824 }
825
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)826 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
827 gfp_t gfp_mask,
828 struct mem_cgroup **memcgp,
829 bool compound)
830 {
831 *memcgp = NULL;
832 return 0;
833 }
834
mem_cgroup_try_charge_delay(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)835 static inline int mem_cgroup_try_charge_delay(struct page *page,
836 struct mm_struct *mm,
837 gfp_t gfp_mask,
838 struct mem_cgroup **memcgp,
839 bool compound)
840 {
841 *memcgp = NULL;
842 return 0;
843 }
844
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)845 static inline void mem_cgroup_commit_charge(struct page *page,
846 struct mem_cgroup *memcg,
847 bool lrucare, bool compound)
848 {
849 }
850
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)851 static inline void mem_cgroup_cancel_charge(struct page *page,
852 struct mem_cgroup *memcg,
853 bool compound)
854 {
855 }
856
mem_cgroup_uncharge(struct page * page)857 static inline void mem_cgroup_uncharge(struct page *page)
858 {
859 }
860
mem_cgroup_uncharge_list(struct list_head * page_list)861 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
862 {
863 }
864
mem_cgroup_migrate(struct page * old,struct page * new)865 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
866 {
867 }
868
mem_cgroup_lruvec(struct pglist_data * pgdat,struct mem_cgroup * memcg)869 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
870 struct mem_cgroup *memcg)
871 {
872 return node_lruvec(pgdat);
873 }
874
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)875 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
876 struct pglist_data *pgdat)
877 {
878 return &pgdat->lruvec;
879 }
880
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)881 static inline bool mm_match_cgroup(struct mm_struct *mm,
882 struct mem_cgroup *memcg)
883 {
884 return true;
885 }
886
task_in_mem_cgroup(struct task_struct * task,const struct mem_cgroup * memcg)887 static inline bool task_in_mem_cgroup(struct task_struct *task,
888 const struct mem_cgroup *memcg)
889 {
890 return true;
891 }
892
get_mem_cgroup_from_mm(struct mm_struct * mm)893 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
894 {
895 return NULL;
896 }
897
get_mem_cgroup_from_page(struct page * page)898 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
899 {
900 return NULL;
901 }
902
mem_cgroup_put(struct mem_cgroup * memcg)903 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
904 {
905 }
906
907 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)908 mem_cgroup_iter(struct mem_cgroup *root,
909 struct mem_cgroup *prev,
910 struct mem_cgroup_reclaim_cookie *reclaim)
911 {
912 return NULL;
913 }
914
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)915 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
916 struct mem_cgroup *prev)
917 {
918 }
919
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)920 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
921 int (*fn)(struct task_struct *, void *), void *arg)
922 {
923 return 0;
924 }
925
mem_cgroup_id(struct mem_cgroup * memcg)926 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
927 {
928 return 0;
929 }
930
mem_cgroup_from_id(unsigned short id)931 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
932 {
933 WARN_ON_ONCE(id);
934 /* XXX: This should always return root_mem_cgroup */
935 return NULL;
936 }
937
lruvec_memcg(struct lruvec * lruvec)938 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
939 {
940 return NULL;
941 }
942
mem_cgroup_online(struct mem_cgroup * memcg)943 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
944 {
945 return true;
946 }
947
948 static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec * lruvec,enum lru_list lru)949 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 {
951 return 0;
952 }
953 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)954 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
955 enum lru_list lru, int zone_idx)
956 {
957 return 0;
958 }
959
960 static inline unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)961 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
962 int nid, unsigned int lru_mask)
963 {
964 return 0;
965 }
966
mem_cgroup_get_max(struct mem_cgroup * memcg)967 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
968 {
969 return 0;
970 }
971
972 static inline void
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)973 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
974 {
975 }
976
lock_page_memcg(struct page * page)977 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
978 {
979 return NULL;
980 }
981
__unlock_page_memcg(struct mem_cgroup * memcg)982 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
983 {
984 }
985
unlock_page_memcg(struct page * page)986 static inline void unlock_page_memcg(struct page *page)
987 {
988 }
989
mem_cgroup_handle_over_high(void)990 static inline void mem_cgroup_handle_over_high(void)
991 {
992 }
993
mem_cgroup_enter_user_fault(void)994 static inline void mem_cgroup_enter_user_fault(void)
995 {
996 }
997
mem_cgroup_exit_user_fault(void)998 static inline void mem_cgroup_exit_user_fault(void)
999 {
1000 }
1001
task_in_memcg_oom(struct task_struct * p)1002 static inline bool task_in_memcg_oom(struct task_struct *p)
1003 {
1004 return false;
1005 }
1006
mem_cgroup_oom_synchronize(bool wait)1007 static inline bool mem_cgroup_oom_synchronize(bool wait)
1008 {
1009 return false;
1010 }
1011
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1012 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1013 struct task_struct *victim, struct mem_cgroup *oom_domain)
1014 {
1015 return NULL;
1016 }
1017
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1018 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1019 {
1020 }
1021
memcg_page_state(struct mem_cgroup * memcg,int idx)1022 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1023 int idx)
1024 {
1025 return 0;
1026 }
1027
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1028 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1029 int idx,
1030 int nr)
1031 {
1032 }
1033
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1034 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1035 int idx,
1036 int nr)
1037 {
1038 }
1039
__mod_memcg_page_state(struct page * page,int idx,int nr)1040 static inline void __mod_memcg_page_state(struct page *page,
1041 int idx,
1042 int nr)
1043 {
1044 }
1045
mod_memcg_page_state(struct page * page,int idx,int nr)1046 static inline void mod_memcg_page_state(struct page *page,
1047 int idx,
1048 int nr)
1049 {
1050 }
1051
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1052 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1053 enum node_stat_item idx)
1054 {
1055 return node_page_state(lruvec_pgdat(lruvec), idx);
1056 }
1057
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1058 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1059 enum node_stat_item idx, int val)
1060 {
1061 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1062 }
1063
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1064 static inline void mod_lruvec_state(struct lruvec *lruvec,
1065 enum node_stat_item idx, int val)
1066 {
1067 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1068 }
1069
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1070 static inline void __mod_lruvec_page_state(struct page *page,
1071 enum node_stat_item idx, int val)
1072 {
1073 __mod_node_page_state(page_pgdat(page), idx, val);
1074 }
1075
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1076 static inline void mod_lruvec_page_state(struct page *page,
1077 enum node_stat_item idx, int val)
1078 {
1079 mod_node_page_state(page_pgdat(page), idx, val);
1080 }
1081
1082 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1083 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1084 gfp_t gfp_mask,
1085 unsigned long *total_scanned)
1086 {
1087 return 0;
1088 }
1089
mem_cgroup_split_huge_fixup(struct page * head)1090 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1091 {
1092 }
1093
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1094 static inline void count_memcg_events(struct mem_cgroup *memcg,
1095 enum vm_event_item idx,
1096 unsigned long count)
1097 {
1098 }
1099
count_memcg_page_event(struct page * page,int idx)1100 static inline void count_memcg_page_event(struct page *page,
1101 int idx)
1102 {
1103 }
1104
1105 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1106 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1107 {
1108 }
1109 #endif /* CONFIG_MEMCG */
1110
1111 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_state(struct mem_cgroup * memcg,int idx)1112 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1113 int idx)
1114 {
1115 __mod_memcg_state(memcg, idx, 1);
1116 }
1117
1118 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_state(struct mem_cgroup * memcg,int idx)1119 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1120 int idx)
1121 {
1122 __mod_memcg_state(memcg, idx, -1);
1123 }
1124
1125 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_page_state(struct page * page,int idx)1126 static inline void __inc_memcg_page_state(struct page *page,
1127 int idx)
1128 {
1129 __mod_memcg_page_state(page, idx, 1);
1130 }
1131
1132 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_page_state(struct page * page,int idx)1133 static inline void __dec_memcg_page_state(struct page *page,
1134 int idx)
1135 {
1136 __mod_memcg_page_state(page, idx, -1);
1137 }
1138
__inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1139 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1140 enum node_stat_item idx)
1141 {
1142 __mod_lruvec_state(lruvec, idx, 1);
1143 }
1144
__dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1145 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1146 enum node_stat_item idx)
1147 {
1148 __mod_lruvec_state(lruvec, idx, -1);
1149 }
1150
__inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1151 static inline void __inc_lruvec_page_state(struct page *page,
1152 enum node_stat_item idx)
1153 {
1154 __mod_lruvec_page_state(page, idx, 1);
1155 }
1156
__dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1157 static inline void __dec_lruvec_page_state(struct page *page,
1158 enum node_stat_item idx)
1159 {
1160 __mod_lruvec_page_state(page, idx, -1);
1161 }
1162
1163 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_state(struct mem_cgroup * memcg,int idx)1164 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1165 int idx)
1166 {
1167 mod_memcg_state(memcg, idx, 1);
1168 }
1169
1170 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_state(struct mem_cgroup * memcg,int idx)1171 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1172 int idx)
1173 {
1174 mod_memcg_state(memcg, idx, -1);
1175 }
1176
1177 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_page_state(struct page * page,int idx)1178 static inline void inc_memcg_page_state(struct page *page,
1179 int idx)
1180 {
1181 mod_memcg_page_state(page, idx, 1);
1182 }
1183
1184 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_page_state(struct page * page,int idx)1185 static inline void dec_memcg_page_state(struct page *page,
1186 int idx)
1187 {
1188 mod_memcg_page_state(page, idx, -1);
1189 }
1190
inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1191 static inline void inc_lruvec_state(struct lruvec *lruvec,
1192 enum node_stat_item idx)
1193 {
1194 mod_lruvec_state(lruvec, idx, 1);
1195 }
1196
dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1197 static inline void dec_lruvec_state(struct lruvec *lruvec,
1198 enum node_stat_item idx)
1199 {
1200 mod_lruvec_state(lruvec, idx, -1);
1201 }
1202
inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1203 static inline void inc_lruvec_page_state(struct page *page,
1204 enum node_stat_item idx)
1205 {
1206 mod_lruvec_page_state(page, idx, 1);
1207 }
1208
dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1209 static inline void dec_lruvec_page_state(struct page *page,
1210 enum node_stat_item idx)
1211 {
1212 mod_lruvec_page_state(page, idx, -1);
1213 }
1214
1215 #ifdef CONFIG_CGROUP_WRITEBACK
1216
1217 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1218 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1219 unsigned long *pheadroom, unsigned long *pdirty,
1220 unsigned long *pwriteback);
1221
1222 #else /* CONFIG_CGROUP_WRITEBACK */
1223
mem_cgroup_wb_domain(struct bdi_writeback * wb)1224 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1225 {
1226 return NULL;
1227 }
1228
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1229 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1230 unsigned long *pfilepages,
1231 unsigned long *pheadroom,
1232 unsigned long *pdirty,
1233 unsigned long *pwriteback)
1234 {
1235 }
1236
1237 #endif /* CONFIG_CGROUP_WRITEBACK */
1238
1239 struct sock;
1240 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1241 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1242 #ifdef CONFIG_MEMCG
1243 extern struct static_key_false memcg_sockets_enabled_key;
1244 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1245 void mem_cgroup_sk_alloc(struct sock *sk);
1246 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1247 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1248 {
1249 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1250 return true;
1251 do {
1252 if (time_before(jiffies, memcg->socket_pressure))
1253 return true;
1254 } while ((memcg = parent_mem_cgroup(memcg)));
1255 return false;
1256 }
1257 #else
1258 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1259 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1260 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1261 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1262 {
1263 return false;
1264 }
1265 #endif
1266
1267 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1268 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1269 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1270 struct mem_cgroup *memcg);
1271 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1272 void memcg_kmem_uncharge(struct page *page, int order);
1273
1274 #ifdef CONFIG_MEMCG_KMEM
1275 extern struct static_key_false memcg_kmem_enabled_key;
1276 extern struct workqueue_struct *memcg_kmem_cache_wq;
1277
1278 extern int memcg_nr_cache_ids;
1279 void memcg_get_cache_ids(void);
1280 void memcg_put_cache_ids(void);
1281
1282 /*
1283 * Helper macro to loop through all memcg-specific caches. Callers must still
1284 * check if the cache is valid (it is either valid or NULL).
1285 * the slab_mutex must be held when looping through those caches
1286 */
1287 #define for_each_memcg_cache_index(_idx) \
1288 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1289
memcg_kmem_enabled(void)1290 static inline bool memcg_kmem_enabled(void)
1291 {
1292 return static_branch_unlikely(&memcg_kmem_enabled_key);
1293 }
1294
1295 /*
1296 * helper for accessing a memcg's index. It will be used as an index in the
1297 * child cache array in kmem_cache, and also to derive its name. This function
1298 * will return -1 when this is not a kmem-limited memcg.
1299 */
memcg_cache_id(struct mem_cgroup * memcg)1300 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1301 {
1302 return memcg ? memcg->kmemcg_id : -1;
1303 }
1304
1305 extern int memcg_expand_shrinker_maps(int new_id);
1306
1307 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1308 int nid, int shrinker_id);
1309 #else
1310 #define for_each_memcg_cache_index(_idx) \
1311 for (; NULL; )
1312
memcg_kmem_enabled(void)1313 static inline bool memcg_kmem_enabled(void)
1314 {
1315 return false;
1316 }
1317
memcg_cache_id(struct mem_cgroup * memcg)1318 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1319 {
1320 return -1;
1321 }
1322
memcg_get_cache_ids(void)1323 static inline void memcg_get_cache_ids(void)
1324 {
1325 }
1326
memcg_put_cache_ids(void)1327 static inline void memcg_put_cache_ids(void)
1328 {
1329 }
1330
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1331 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1332 int nid, int shrinker_id) { }
1333 #endif /* CONFIG_MEMCG_KMEM */
1334
1335 #endif /* _LINUX_MEMCONTROL_H */
1336